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Abstract

Category learning is often tested with similar images that have no significance outside of the experiment for the subjects.
By contrast, in nature animals often need to generalize a behavioral response like “eat” across visually distinct stimuli, such
as spiders and seeds. Forming functional categories like “food” and “predator” may require conceptual rather than purely
perceptual generalization. We trained free-range chickens to classify images assigned to one of four categories based on
putative functional significance: inanimate objects, predators, food, and non-competing vertebrates. Images were visually
diverse within each category, discouraging classification by perceptual similarity alone. In Experiment 1, chickens classified
80 images into four categories. Chickens then generalized to 80 new exemplars in each of three successive generalization
tests. In Experiment 2, chickens saw new types of images to test whether their generalization was perceptual or functional. For
example, chickens saw images of skunks for the predator category after training with images of hawks and snakes. Chickens
used the “predator” response with these new images for both predators and non-threatening vertebrates, but not for objects
or food, and did not successfully generalize any category other than predator. In Experiment 3, chickens categorized fractals
as “food,” and three of four chickens categorized a range of vertebrates they had not previously encountered as “predators,”
suggesting that chickens did not see the images as representing real world objects and animals. These results highlight con-
straints on the use of computer-generated images to assess categorization of natural stimuli in chickens.
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Introduction

In order to react appropriately to the visual environment, a
chicken may need to discriminate between visually similar
stimuli. A snake and a worm share many visual character-
istics, but for a chicken one is a threat while the other is a
prized food item. Conversely, a worm and a sunflower seed
are visually distinct but both call for the same approach-and-
consume response. The extent to which birds form abstract
concepts like “predator” and “food” to categorize their natu-
ral environment has been subject to investigation and debate
in the literature. Some reviews suggest that the conceptual
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classification abilities of non-human animals are frequently
underestimated (e.g., Zentall et al., 2008), while others argue
that we cannot determine whether animals rely on concepts
to categorize (e.g., Chater & Heyes, 1994).

Birds categorize many types of arbitrary visual stimuli.
Pigeons, for instance, learn to categorize images based on
whether they contain humans (Herrnstein & Loveland,
1964), and based on whether the images depict benign or
malignant human breast tissue (Levenson et al., 2015). The
ability of pigeons to accurately categorize images of human
tissue suggests that real-world equivalence and function
are not necessary to categorize visually complex stimuli,
because pigeons have no real-world experience with human
breast cancer tissue. Pigeons can learn many category dis-
criminations (Watanabe et al., 1993), and can even general-
ize learning within a category after a single trial (Bhatt et al.,
1988). These impressive feats of visual categorization may
not rely on what the images in each category represent func-
tionally, but rather on perceptual similarity within categories
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(D’Amato & Van Sant, 1988). Some authors have therefore
concluded that we cannot determine whether animals cat-
egorize in the same sense that humans do because without
language, we cannot know what animals use to form catego-
ries (Chater & Heyes, 1994).

In contrast to the case for purely perceptual categoriza-
tion, birds have been shown to group stimuli based on func-
tion in some contexts. In one study, pigeons were shown
two stimuli (A and B) in succession followed by reinforce-
ment. They were then trained to choose a particular response
whenever stimulus A was presented. Finally, when tested
with stimulus B, they chose the trained response that was
previously associated with A more than would be predicted
by chance (Zentall et al., 2003). This study and other evi-
dence (reviewed by Zentall, 2006) suggest that pigeons can
spontaneously learn to treat previously unassociated and
distinct stimuli as functionally equivalent. A chicken may
similarly treat two food items as functionally equivalent,
even if they are visually distinct.

Birds have also been shown to learn differently about
some ecologically relevant stimuli, like predators. Black-
birds, for instance, learn to mob an otherwise harmless bird
or a plastic bottle, but their response to the plastic bottle
is weaker and does not persist as long as their response to
the harmless bird (Curio et al., 1978). Pigeons also tend
to over-generalize learned categories if they are associated
with a fear response, a bias that might be appropriate when
failing to respond with avoidance could be fatal (McLaren,
1994). These findings suggest that learning about stimuli in a
predator category may be different because of the functional
significance of that category.

If birds can link stimuli based on their functional out-
come, and they attend to characteristics that signify ecologi-
cally relevant categories, some semblance of spontaneous
functional categorization may be possible in birds in cases
where the category is visually diverse, but all exemplars
elicit the same behavioral response in nature. A worm and
a piece of fruit may therefore be categorized together not
because they appear similar, but because they both cause a
chicken to peck when encountered in the real world.

We designed the current study to test whether domestic
chickens categorize visually diverse computer images with
respect to real-world functional significance. Using a four-
choice categorization task (as described by Wasserman &
Astley, 1994), we introduced chickens to four categories of
natural stimuli based on their putative functional signifi-
cance: inanimate objects, predators, food, and non-compet-
ing vertebrates. We used visually similar images in different
categories and visually distinct images within the same cat-
egory to highlight the functional significance of images over
perceptual features as the basis for categorization. For exam-
ple, worms were in the “food” category and snakes were in
the “predators” category despite sharing visual similarities,
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whereas fruit and ants are visually distinct but are both in
the “food” category. If chickens categorize things in nature
in part based on their functional properties, they may also
learn to categorize visually diverse images of inanimate
objects, predators, food items, and non-competing verte-
brates, because each of those categories would be responded
to differently in the real world.

Subjects and materials
Subjects and testing environment

Four adult free-range female chickens (Gallus gallus domes-
ticus) with ad libitum access to food and water were used
in this study. The testing apparatuses used for the study
were introduced to the chickens’ home environment, where
they have been housed since they were purchased as chicks.
Chickens were housed in an outdoor coop at night for protec-
tion from predators but foraged in a large yard after sunrise
each day. They were supplied with chicken feed each morn-
ing and were free to forage in the open yard during the day
with ad libitum access to the testing apparatuses.

Chickens were fitted with leg-bands with attached radio
frequency identification tags (Fig. 1; GiS mbH, Lenningen
Germany) and had free access to the testing apparatuses dur-
ing daylight hours on most days. Apparatuses consisted of
a touchscreen (Elo Touch Solutions, Milpitas, CA, USA)

Fig.1 Panel A: Sample leg bands with attached Radio Frequency
Identification (RFID) tags. The arrow indicates an RFID tag. Panel B:
A chicken fitted with an RFID leg band. The arrow indicates the leg
band on the chicken’s leg, which is scanned using an antenna on the
ground to recognize the subject and administer the correct trial
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connected to a laptop computer, an RFID antenna (GiS
mbH, Lenningen Germany), and an automated food dis-
penser (Med Associates, Fairfax, VT, USA). Chickens ini-
tiated trials by stepping into a ground-level RFID antenna
which allowed the computer to determine the appropriate
next trial for each bird and for data to be associated with
specific birds. On correct trials, chickens were provided a
single fruit-flavored primate food pellet (TestDiet, Rich-
mond, IN, USA). The subjects used in this study were naive
to cognitive testing prior to this study except that they had
been trained to peck images on the computer screen for a
food reward.

Statistical analyses

Analyses were conducted using SPSS version 27. Wherever
we used accuracy scores, Correct response proportions were
calculated for each chicken separately then arcsine-trans-
formed using the formula (2*arcsine(sqrt(proportion)) prior
to analysis (Aron & Aron, 1999). We then compared the
mean of arcsine-transformed proportions to accuracy pre-
dicted by chance. In cases where we tested the distribution
of all four responses, or when a t-test was not appropriate,
we used a separate goodness of fit chi-square test for each
chicken based on the counts of responses.

Experiment 1: Chickens learned to classify
visually diverse computer images into four
categories

To determine whether chickens could learn to classify visu-
ally diverse stimuli into four categories, we first trained them
on a set of 20 images in each category. We then introduced
additional images depicting the same types of exemplars
at three points during the experiment to test generalization
and to increase the visual diversity within each category (as

described by Wasserman & Astley, 1994). If chickens learn
to group these visually diverse images, then they may be
able to rely on non-visual characteristics, such as putative
functional significance, to indicate category membership.

Procedure

Chickens were trained with images assigned to four puta-
tive functional categories: inanimate objects, predators,
food, and non-competing vertebrates, with one category
introduced at a time, in that order. Initially, each category
contained a training set of 20 visually diverse images chosen
to encourage functional categorization by including a variety
of outlines and backdrops (Table 1, example images shown
in Fig. 4). The number of exemplars within each member
of each category was not held constant in experiment one,
because we selected fewer predators that we thought the
chickens were most likely to recognize, while optimizing
for visual diversity in the other categories. Images for all
experiments in this study were sourced using the category
member names outlined in Table 1 as search terms in one of
several image search engines. In some cases, we used more
specific species names as search terms like “Cooper’s hawk”
or “Red-tailed hawk,” but we do not identify species here
because we cannot be positive that the pictures we used were
in fact a particular species. The full stimulus set is available
from the corresponding author upon request.

Each chicken was first presented with 20 trials using all
20 images in the object category, and only the object cat-
egory response was available at test. This ensured they were
rewarded on each trial. Next, 20 images from the predator
category were added and object and predator trials were
interleaved in a pseudo-random fashion such that each block
of four trials included two object and two predator tests with
both response options available. Trials with these two cate-
gories were presented to each chicken until it met a criterion
of 80% correct in a session of trials including all 40 images.

Table 1 Types of category exemplars used for training and generalization in Experiments 1 and 2

Category Experiment 1 and Generalization in Experiment 2
training in Experiment 2
Objects Briefcase, chair, clock, crayons, cups, lamp, oil barrel, shed, steps, wood, table, tools, Garden rocks, car, plates, bricks
watering can
Predators Coyote, hawk, raccoon, snake Skunk, opossum, weasel, cat
Food Ant eggs, clover, compost, cracked corn, earthworm, fruit, grasshopper, slug, sun- Beetle, stink bug, ladybug, leafy greens
flower seeds
Non- Beaver, bluebird, cedar waxwing, chickadee, eastern phoebe, rabbit, robin, tortoise, Heron, duck, sheep, armadillo
competing eastern towhee, woodpecker, Carolina wren
Vertebrates

The same types of exemplars were used for training and generalization in Experiment 1, such that each category had the same number of snake
images, for example. Those same types were used for training in Experiment 2, but new types of exemplars were introduced at generalization in
Experiment 2, such as by introducing images of opossums, which were not previously presented in the predator category
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At that point, 20 images from the food category were added
counterbalanced in blocks of six trials, and three-category
trials were administered until the same 80% correct criterion
was met, at which point the final category of non-competing
vertebrates was introduced, counterbalanced in blocks of
eight trials. The initial training set therefore contained 80
images divided evenly among the four categories, and the
categories were introduced one at a time until chickens met
a criterion of 80% correct across all four categories in a
single session of 80 trials before moving on the generaliza-
tion phase.

In the generalization phase, three successive generaliza-
tion tests were conducted, each involving 20 new images
in each category. Generalization trials were intermixed
randomly with trials using the previously trained images,
and trials were counterbalanced in blocks of eight tri-
als containing two trials from each category regardless
of whether they were from the training or generalization
set. Chickens therefore had to meet an accuracy criterion
across 80 images combined before the first generalization
test was presented, across 160 images before the second
generalization test, and across 240 images before the third.
Generalization images depicted the same types of exem-
plars within each category as in the training set (Fig. 4),
but were novel. For example, after training on images of
hawks as predators, generalization trials in Experiment 1
presented new images of hawks. Irrespective of whether
the images were new or previously trained, chickens were
only rewarded if they categorized correctly. Only the first
administration of each new image was used to calculate
generalization accuracy, preventing new learning from
contaminating this measure of generalization. While all

No reward X
Time

No reward ¥

Fig.2 Sequence on a four-category trial. The subject stepped up to
the testing apparatus displaying a blue screen, and the subject’s RFID
tag was scanned. A sample image was then displayed until the subject
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birds met the 80% criterion with the first set of images,
some birds began to struggle after the first generalization
test when the image set was expanded to 160 images. As
a result, we lowered the criterion to 70% going forward.
Chickens initiated trials by placing their right leg into
an antenna that read the RFID chip on their leg band. The
apparatus would then present the chicken with a sam-
ple image that remained on the screen until the chicken
pecked the image twice or left the apparatus. If the sample
image was pecked twice, the sample would dim, and cat-
egory symbols would appear at the corners of the screen.
Pecking the correct category symbol twice automatically
dispensed a food reward and ended the trial. Pecking an
incorrect category symbol ended the trial without a food
reward (Fig. 2). There was no programmed timeout fol-
lowing errors, and no explicit delay between trials, but
chickens had to make the computer scan their RFID chip
to initiate each trial. This required placing their right leg
within an antenna on the ground in front of the apparatus.
Because the time subjects took to reposition their legs cor-
rectly and rescan their RFID chip between trials varied,
and chickens could leave one testing apparatus for another
between trials to continue testing immediately, we did not
use a timeout following incorrect trials. After several
training sessions, but before the first generalization test, a
correction procedure was implemented whereby an incor-
rect trial would be repeated once with all response options
available, and a second time with only the correct category
response shown if the second attempt was also incorrect.
The correction procedure was removed right before the
first generalization test for the remainder of the study.

RFID scan initiates a trial

Double peck

Reward

X No reward

pecked on it twice, at which point the image dimmed and four cat-
egory responses were presented. Only the correct category response
was rewarded with a food pellet
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Fig.3 Panel A: Average proportion correct on the three successive
generalization tests in Experiment 1. Birds successfully general-
ized across all three tests in Experiment 1. Panel B: Proportion of
responses given by the three chickens on the third generalization test.
Chickens chose the correct response most frequently on all but the
vertebrate category, where predator was the most frequent response.
One of the four chickens never reached criterion with the training set
of 240 images, so that chicken was never tested on generalization test
3. A breakdown of response categories on generalization tests 1 and
2 is similar to panel B is provided in Online Supplemental Material

Experiment 1:
Within exemplar type

Trained

Object

Predator

-+

Food

Non-competing
Vertebrate

Generalization

object predator food

Sample Category

vertebrate

Fig. 2. In Panel A, * Refers to a significant one-sample t-test with
a=.05. f Refers to the number of Chi-squared tests that indicated
response proportions significantly different from chance performance
out of three (one test was conducted for each bird) because a t-test
was not appropriate. In Panel B, arrows point to the correct response
on each sample category (e.g., responding with the “object” category
label to new exemplars in the object category). Initials on the bars

refer to the response categories: O: Object; P: Predator; F: Food; V:
Non-competing vertebrate

Experiment 2:
Novel exemplar types

Trained Generalization

Fig.4 Sample training and generalization images used in Experiments 1 and 2. In Experiment 1, the images added for each generalization test
depicted the same types of exemplars trained previously. In Experiment 2, probe images were added that depicted new types of exemplars

@ Springer



Learning & Behavior

Results and discussion

Chickens learned to classify visually diverse images into
the categories we created. All four chickens met the train-
ing criterion on the original 80-image set across the four
categories (mean trials to criterion before generalization
test 1 = 29,323.75 including correction trials, before gen-
eralization test 2 = 23,795.50; before generalization test 3
= 25,443.33. Training data from the initial training set are
shown in Online Supplementary Material (OSM) Fig. 1).
Over the course of Experiment 1, the four chickens com-
pleted an average of 338 trials per day each (SD = 105.70
trials) excluding days with no trials completed, with a
maximum of 1,970 trials completed in one day by a single
chicken.

On the first and second generalization tests, the four
chickens collectively categorized the new exemplars cor-
rectly on the first exposure more often than would be
predicted by chance (chance is 25% correct; Panel A of
Fig. 3, first generalization test #(3) = 8.083, p = 0.004; sec-
ond generalization test #(3) = 8.493, p = 0.003). One of
the four chickens did not meet the accuracy criterion for
the set of 240 images after the second generalization test
before the end of the experiment, so the third generaliza-
tion test was performed by only three chickens. Because
two of those three chickens achieved identical accuracy on
the third generalization test, there was insufficient variance
for a t-test to be appropriate to test whether their accuracy
was different from chance. Instead, we performed a Chi-
squared test for each chicken independently, based on the
observed frequency of correct responses across the catego-
ries compared to that expected by chance (25%, or 20/80
correct responses). All three chickens were more accurate
than would be predicted by chance (XZ( 1, N=80) = 38.400,
35.267;35.267; all p < .001). A similar Chi-squared test for
the first two generalization tests with all four chickens is
reported in OSM Table 1, and those individual analyses pro-
duce the same result as the group analysis. Notably, despite
generalizing better than would be expected by chance over-
all, chickens often misclassified non-competing vertebrates
as “predators,” and by the third generalization test, “preda-
tor” was the most common response on vertebrate generali-
zation trials (Panel B of Fig. 3, OSM Fig. 2).

Experiment 2: Chickens generalized to new
types of exemplars only on the “predator”
category

The generalization results from Experiment 1 show that
chickens learned to classify the visually diverse types of
exemplars into four categories. Accurate performance in
Experiment 1 cannot be explained by memorization of
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individual images because the birds generalized on first
exposure to novel exemplars. However, this generalization
performance does not demonstrate that the birds categorized
on the basis of the functional properties of the depicted
objects. Generalization could have been achieved on per-
ceptual similarity alone, because the new exemplars were
all pictures of objects or animals on which the birds had
been trained. That is, they were novel pictures of worms
or red-tailed hawks, but they were still pictures of worms
and hawks. Similar accuracy could be achieved if chickens
learned multiple sub-categories based on each type of exem-
plar and used the same category response button for multiple
sub-categories. For example, a chicken could have learned
a perceptual category of the visual features of worms, and
another of fruits, and learned to provide the same “food”
response for either of these perceptual categories without
relying on the commonality of a behavioral response to a
food item. To address this possibility, we designed Experi-
ment 2 with generalization tests that maintained the same
types of exemplars within each category at training but intro-
duced new types of exemplars in the generalization phase. If
chickens grouped images into categories based on functional
significance of what the images depicted, then they should
generalize the category responses to new exemplars with
the same function, even if they look quite different from the
images used in training.

Procedure

The training procedure for Experiment 2 was similar to
Experiment 1, except that the chickens started the experi-
ment with all four categories present from the beginning. A
new set of 80 images that depicted the same types of exem-
plars from the previous experiment was used. The first tri-
als with each of these new images therefore constituted an
additional generalization test, albeit without the intermixed
training trials. After the chickens met an accuracy criterion
of 70% correct on a session containing all 80 images across
the four categories, a probe set of 80 new images was added
intermixed with regular training trials. Unlike generaliza-
tion tests in Experiment 1, these new probe images depicted
new types of exemplars within each category. For exam-
ple, subjects were trained and tested with images of coy-
otes and hawks in Experiment 1, whereas in Experiment 2
they were trained with images of coyotes and hawks, then
tested for generalization with images of opossums and cats
(Fig. 4). Trials with the new exemplars were always rein-
forced regardless of how the chickens categorized, so that
feedback on novel items does not contaminate categorization
of the other items in the same category. Table 1 lists the new
types of exemplars that were introduced to each category in
this experiment.
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Results and discussion

On the first trial with each new image depicting the same
types of exemplars trained in Experiment 1, chickens gen-
eralized more than would be expected by chance on all cat-
egories except non-threatening vertebrates, where “predator”
was the most common response instead, similar to the third
generalization test in Experiment 1 (Fig. 5, objects: #3) =
3.77, p = .03; predator #(3) = 6.17, p = .01; food: #(3) =
4.68, p = .02; vertebrates: #(3) = 1.23, p = .30). Including
those first trials, mean trials to criterion in Experiment 2 was
6,420.25, substantially quicker than training before generali-
zation tests 2 and 3 in Experiment 1, likely due to the smaller
overall stimulus set size in this experiment compared to the
end of Experiment 1. The effect of set size on learning rate
may suggest that chickens memorized responses to some
individual images despite being able to generalize to new
exemplars in some cases.

On generalization trials where the images depicted new
types of exemplars for each category, chickens correctly cat-
egorized predator images more often than would be expected
by chance (Fig. 6, #(3) = 7.09, p = .01), but did not do so
for any of the other three categories (Fig. 6, objects: #3) =
0.80, p = .48; food: #(3) = .84, p = .46; vertebrates: #(3) =
-0.73, p = .54).

Notably, “predator” was the most common response to new
non-competing vertebrate images but not for new exemplar
types of food or objects. Thus, better than chance accuracy with
predator images and failure with object and food images cannot
be explained solely as a bias to use the “predator” response.
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Chickens used the predator response similarly in the last gen-
eralization test in Experiment 1 and in the first training session
of this experiment, which depicted the same types of exemplars
as those used in training and testing in Experiment 1. One pos-
sibility is that chickens treat all vertebrate animals as potential
predators. Indeed, this might be an adaptive conservatism, par-
ticularly given we are not certain they have encountered all the
species used. Pigeons are reported to over-generalize categories
associated with a fear response (McLaren, 1994). Alternatively,
the chickens may have learned a perceptual category based on
visual characteristics that are common to the exemplars we used
in both the predator and non-competing vertebrate categories. If
S0, it is notable that they did not learn a similar perceptual cat-
egory for either objects or food, because they generalized to new
images depicting the same category members, but not to new
images depicting newly introduced members to each category.
We attempt to adjudicate these possibilities in Experiment 3.

Experiment 3: Chickens categorized fractals
as “food,” and most categorized all novel
vertebrates as “predators”

The images used in the “predator” and “non-competing ver-
tebrate” categories in both previous experiments contained a
mixture of animals that we would expect our chickens have
had firsthand experience with, and some they might not. The
chickens’ use of the predator category for all vertebrates more
than would be predicted by chance could therefore be driven
either by shared visual characteristics, or by an adaptively

*

l Response
I Object
W Predator
B Food

I \Vertebrate

olplrlvilMolp|rlvIMOle|r lvIMolplrlv
Food

Vertebrate

SampleCategory

Fig.5 Proportion of responses given by the chickens on the first
trial with each image in the training phase of Experiment 2, which
is equivalent to the generalization tests of Experiment 1, but without
the intermixed training trials. Arrows point to the correct response
on each sample category (e.g., responding with the “object” category
label to novel exemplars in the object category). Significance indica-

tors (* for significant, N.S. for non-significant) refer to a one-sample
t-test with « = .05. Error bars represent the 95% confidence interval
around each mean. The dashed line indicates chance. Initials on the
bars refer to the response categories: O: Object; P: Predator; F: Food;
V: Non-competing vertebrate
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Fig.6 Proportion of responses given by the chickens to each category
of probe images in the generalization phase of Experiment 2. Arrows
point to the correct response on each sample category (e.g., respond-
ing with the “object” category label to novel exemplars in the object
category). Significance indicators (* for significant, N.S. for non-sig-

conservative functional classification that associates fear with
all vertebrates with which the chickens have had firsthand
experience. To disambiguate these possibilities, we designed
Experiment 3 to introduce images of vertebrate animals that
the chickens would never have seen in their environment.
Additionally, to test whether the chickens had developed any
biases for any of the responses, we also introduced fractal
images as probes that should be impossible to categorize.

If the chickens relied on their firsthand experience with
animals in their environment to group together all verte-
brates, then they should not generalize that response to these
new vertebrates with which they have never had firsthand
experience. Additionally, if their categorization relies on
what each image depicts in the real world, they should not
know how to categorize the fractals and respond randomly.

Procedure

The training procedure for Experiment 3 was identical to that
of Experiment 2, and we used the same initial training images
that were used in Experiment 2. These images were presented
again as an initial training set in this Experiment to ensure
that the chickens were still proficient on the originally learned
categorization task. After chickens reached an accuracy crite-
rion of 70% on the training set, we introduced 80 new probe
images (Fig. 7). Forty images were of bats, elephants, red
macaws, ostriches, chameleons, Komodo dragons, penguins,
and ibexes, all vertebrates the subjects have never seen before.
Forty additional images were computer-generated fractals
that varied in color and shape and were intended to be un-
categorizable in the sense that they did not depict any of the
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nificant) refer to a one-sample t-test with a = .05. Error bars represent
the 95% confidence interval around each mean. The dashed line indi-
cates chance. Initials on the bars refer to the response categories: O:
Object; P: Predator; F: Food; V: Non-competing vertebrate

types of exemplars used throughout this study. Probe trials
were always rewarded regardless of response, firstly because
there is no “correct” response for the fractal stimuli by defini-
tion, and secondly so that feedback on some items in the “all
vertebrates” category does not contaminate categorization of
the other items in the same category.

Results and discussion

All four chickens categorized fractals as “food” more than
would be predicted by chance (Fig. 8, XZ( 3, N=40) = 26 .4,
21.6; 83.6; 31.0; all p<.001), and three of four chickens cat-
egorized the novel all-vertebrates probes as “predators” more
than would be predicted by chance (Fig. 8, Xz( 3,N=40)=2.5,
p =.457; 9.8, p =.020, 14.4, p = .002, 11.8, p = .008). Given
that the fractals were so reliably categorized as food despite
the fact that they do not represent anything with a real-world
equivalent for the chickens, it’s likely that the chickens did
not rely on what the images represented in their environment,
and instead learned perceptual categories that reflect a visual
similarity between the food images we presented and the frac-
tals. Although the new probe images introduced in the new
all-vertebrates category further increased the visual diversity
of vertebrates that the chickens categorized as predators, these
images represented vertebrates with which the chickens would
not have had any firsthand experience. Combined with the find-
ing from the fractal images, these results suggest that chickens
grouped images into categories based on perceptual similarity
from the outset. If chickens had relied on the real-world equiva-
lents of images of things like worms, grasshoppers, and fruit to
label those images as “food,” they would not use the same label
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Fig.7 Panel A: example images from the new probe categories intro-
duced in Experiment 3, depicting a wide range of animals never
previously encountered by the chickens, and computer-generated
fractals. Panel B: a few examples of trained images from the food cat-

to categorize the fractals they had never previously seen. It is
likewise unlikely that the chickens categorized the new images
of vertebrates as predators because of a real-world equivalence
given that they would not have had firsthand experience with
most of the vertebrates depicted in this set. If real-world experi-
ence was necessary for categorizing predator images, chickens
might have categorized the novel vertebrates randomly. It’s
still possible that these previously unencountered vertebrates
shared enough visual similarities with animals that the chickens
had previously encountered, which led the chickens to recog-
nize them as potential predators. While we cannot address that
possibility with the current study, their response to the fractal
images would not suggest that they were relying on firsthand
experience, and their response to the fractals images was even
more consistent than that to the new vertebrates.

General discussion

In our study, chickens learned to categorize visually
diverse images and generalized that learning to new
exemplars successfully, but only when the new exemplars
depicted the same types of category members as those

egory are shown to demonstrate that the fractals may have mimicked
some of the fine-detailed features typical of some but not all types of
exemplars in the food category

presented during training. In Experiment 1 and the train-
ing phase of Experiment 2, chickens correctly generalized
their category response to objects, predators, and food, but
tended to categorize all vertebrates as “predators.” When
new images were introduced that depicted new types of
exemplars in each category, thereby making the images
harder to categorize without reference to the functional
significance of each category, the chickens only appeared
to generalize the “predator” response, and used the preda-
tor response for stimuli most closely resembling those that
the chickens were previously trained to categorize in a
separate non-competing vertebrate category. If chickens
have a real tendency to label all vertebrates as predators,
this may be adaptive because ignoring a potential predator
could be lethal. In Experiment 3, when always-rewarded
probe trials were added that depicted presumably uncat-
egorizable fractals, chickens reliably categorized them
as food. Three of four chickens also used the predator
response on probe trials that depicted a wide range of ver-
tebrates that they had no prior firsthand experience with.

Under the conditions in our study, it’s likely that chick-
ens learned the categories based on perceptual features,
not function. We gave the subjects a task that would allow

@ Springer
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Fig.8 Average use of the four category responses on the two probe
types in Experiment 3. Chickens reliably categorized fractals as food
(top panel), and mostly categorized the novel “all vertebrates” probes
as predators (bottom panel). Asterisks refer to the number of Chi-
squared tests that indicated response proportions significantly differ-
ent from chance out of four (one test was conducted for each bird)

them to categorize according to either perceptual similarity
or functional relevance, and designed the stimulus set to
encourage functional relevance above perceptual similarity,
but categorization appears to have been controlled by per-
ceptual rather than functional properties. The finding that
chickens reliably categorized fractals as food suggests that
correspondence between the images and the real world was
not relevant for categorization.

We chose the categories in this study based on the behav-
ioral response that would be predicted from a chicken when
encountering a member of each category and did not find
evidence that chickens relied on the real-world function
of the stimuli to categorize them. Nevertheless, it may be
that chickens do categorize their environments based on
functional significance, but that the specific categories
we selected for their putative function are not the ones
that chickens spontaneously use. We selected the stimuli
across the four categories to introduce visual diversity in
the background and foreground of images within each cat-
egory, as well as some visual similarity between members

@ Springer

of different categories, based on our own perception. For
example, we purposely included both flying and land preda-
tors, as well as flying and land non-competing vertebrates.
Despite our attempt, there may have been particular features
of the stimulus set that encouraged perceptual rather than
functional categorization. Future studies may benefit from
using machine vision approaches to investigate the visual
characteristics of complex images that allowed the chick-
ens in our study to categorize them without reference to
their functional significance. Despite some visual similarity
between categories, and considerable visual diversity within
each category, the chickens in our study did not appear to
rely on the real-world equivalents of the images to categorize
them more accurately.

It is notable that the fractal probe images we used in
Experiment 3 may have been similar to the repeating finely
detailed features in some but not all of the images used in the
food category, such as a pile of cracked corn or seed (Fig. 7).
If that is the feature that the chickens relied on to categorize
the fractals, that would support the idea that they had learned
to categorize visually diverse stimuli by simultaneously
learning multiple sub-categories for each response option
we provided. Nevertheless, we cannot determine based on
our data alone whether the fine texture feature was critical
for categorizing the fractals as the chickens did, and fine tex-
ture is certainly not common to all food items that chickens
consume in the real-world.

All four chickens in our experiment tended to over-gen-
eralize the initially trained predator category to include all
vertebrates, and none of them showed the reverse pattern of
responding with the vertebrate label to predators. There is
some evidence that birds engage in different forms of learn-
ing for predators compared to other stimuli in their environ-
ment. In the tradeoff between generalizing and discriminat-
ing, responses associated with fear are more likely to be
generalized because ignoring them is more costly (McLaren,
1994). It is therefore plausible that our chickens learned to
categorize predators differently from the other categories.
Unfortunately, we cannot directly address this possibility in
our study, because all chickens initially learned the preda-
tor category before the non-competing vertebrate category.
The longer reinforcement history on the predator category
could equally be responsible for the special status of this cat-
egory. Notably, however, birds learned the inanimate object
category first, and this category was not overgeneralized as
the predator category was. Even though the initial training
criterion was evaluated based on average accuracy across
the four categories, the initial training data show that chick-
ens improved on each of the four categories over time as
they were introduced (OSM Fig. 1). Despite the vertebrate
category being introduced last, chickens gradually achieved
better than chance performance on that category before fin-
ishing training, so their propensity to label non-competing
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vertebrates as predators is not because they never learned
to discriminate the vertebrates. Especially given the pro-
pensity of chickens to categorize fractals as food, further
study is necessary to determine whether vertebrate animals
or predators are special categories for chickens when learn-
ing to discriminate and generalize images.

We did not control the real-life experience of our chickens
with any of the natural equivalents of our stimuli. It is possi-
ble that the chickens have not had firsthand experience with
the real-world function of each of the category members our
images depicted. For example, raccoons are primarily noc-
turnal, and while we have found them at the chicken coop on
multiple occasions, we did not track whether these specific
birds encountered a raccoon. Nevertheless, these chickens
produce alarm calls in response to hawks flying overhead,
and approach a wide range of food items to consume them.
They also encounter a variety of objects in the yard. Com-
pared to most laboratory animals, these chickens have more
experience interacting with diverse foods, objects, and ani-
mals in their environment.

Finally, it’s important to consider whether there is any
correspondence for a chicken between two-dimensional
computer images and their real-world equivalents, regard-
less of categorization. It’s possible that chickens do use
shared functional significance to classify animals and
objects in their environment, but that the images we pre-
sented our chickens did not correspond to their experience
of anything in the real world and were instead categorized
as sets of shapes and colors that have some similarities
and dissimilarities. The avian visual system is consider-
ably different from the human visual system and may not
respond the same way to computer screens (as reviewed
by Weisman & Spetch, 2010). In particular, birds can see
color in the ultraviolet range where humans cannot, and
birds have a tetrachromatic color space compared to the
human trichromatic color space for which computer dis-
plays are designed (Cuthill et al., 2000). Viewing images
from a short distance can also drive birds to focus on local
details instead of global features (Cavoto & Cook, 2006),
and we did not control viewing distance in our experi-
ment. Two-dimensional images on a flat computer display
may also not convey important depth and size features
that may be relevant for recognizing the stimuli depicted
in computer images (Dawkins et al., 1996). It is notable
however, that previous studies with male chickens have
used moving abstract stimuli on standard video displays to
elicit the appropriate alarm calls from male chickens based
on the location of the moving stimulus (Evans & Marler,
1992), so detailed colored features in particular may have
been a key limitation in the recognizability of our stimuli.

Some authors have suggested that pigeons learn to
categorize images of natural stimuli more readily than

artificial ones (Soto & Wasserman, 2010), and there is
some evidence that pigeons transfer learning between
real-world objects and high-resolution images (Aust &
Huber, 2006; Spetch & Friedman, 2006). Nevertheless,
Weisman and Spetch (2010) argue that categorization of
ecologically “natural” stimuli is no different from catego-
rization of paintings or tumors unless image to real-world
correspondence is demonstrated on a case-by-case basis,
because there are many conditions under which that cor-
respondence is absent. The fact that chickens in our study
categorized novel abstract fractals as food even more reli-
ably than natural images of food suggests that even though
the chickens may have initially appeared to rely on func-
tional significance, they likely never relied on recognizing
the real-world equivalents of the images.
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