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Abstract

There has been significant interest in zero and
few-shot learning for dialogue state tracking
(DST) due to the high cost of collecting and an-
notating task-oriented dialogues. Recent work
has demonstrated that in-context learning re-
quires very little data and zero parameter up-
dates, and even outperforms trained methods
in the few-shot setting (Hu et al., 2022). We
propose RefPyDST, which advances the state
of the art with three advancements to in-context
learning for DST. First, we formulate DST as a
Python programming task, explicitly modeling
language coreference as variable reference in
Python. Second, since in-context learning de-
pends highly on the context examples, we pro-
pose a method to retrieve a diverse set of rele-
vant examples to improve performance. Finally,
we introduce a novel re-weighting method dur-
ing decoding that takes into account probabili-
ties of competing surface forms, and produces
a more accurate dialogue state prediction. We
evaluate our approach using MultiwOZ and
achieve state-of-the-art multi-domain joint-goal
accuracy in zero and few-shot settings. !

1 Introduction

Dialogue state tracking (DST) is an important lan-
guage understanding task required for supporting
task-oriented conversational agents. For each turn
in a dialogue, the goal of DST is to extract the in-
tentions and arguments a user communicates into a
meaning representation aligned with the capabili-
ties of the system. Often, this can be represented
as a set of slot-value pairs, using slots defined in a
system schema. For example, if a user asks a hotel
booking agent for "a four-star hotel with some-
where to park”, the agent could extract the state
{(hotel-stars, 4), (hotel-parking, yes) }.
Annotating these turn-level dialogue states is
challenging and time-intensive (Budzianowski
et al., 2018). Further, as system capabilities evolve
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class Hotel:
name: str
area: Literal['north', 'west', 'east', 'centre', ...]

class State:
hotel: Hotel

Retrieved representative examples

Example t-1 state &

state = State({'hotel’': {'area': 'centre', 'people': 4}})
Example t
print('agent: do you need further assistance ?')

print('user: i am looking for a nearby restaurant')
state.restaurant = find_restaurant(area=state.hotel.area)

Xz
Turn t-1 predicted state

state = State({'hotel': {'name': state.hotel.name,

Turnt area': 'west'}})

print('agent: your hotel is booked. anything else?')
print('user: can you find us dinner in the same area ?')
Turn t predicted state

state.restaurant = find_restaurant(

@ Iitreres LY area=state.hotel.area)

Figure 1: Our retrieval-augmented in-context learn-
ing approach to DST. We construct a prompt which
re-frames DST as a Python programming task condi-
tioned on a system definition and set of retrieved ex-
amples & (green). For each dialogue turn ¢, the goal
is to take the current state (state) and turn utter-
ances (print (...)) as ‘input’ and produce a pro-
gram which updates the state with missing values, i.e.
(restaurant-area, west). We represent linguistic corefer-
ence explicitly as variable reference (pink)

over time, the schema and DST requirements
change. As such, flexible and data-efficient DST
methods are highly valuable.

For these reasons, recent work has explored zero
and few-shot methods for DST. Few-shot methods
often fine-tune a pre-trained language model (LM)
on DST or a re-framing of the task (e.g. Su et al.,
2021; Shin et al., 2022; Lin et al., 2021a). While
these systems are often data efficient, they are in-
flexible to changing system definitions, requiring
re-training as new services are added. To address
this, zero-shot methods for domain transfer have
been proposed (e.g. Wu et al., 2019; Hosseini-Asl
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et al., 2020; Gupta et al., 2022), but their perfor-
mance in new domains can significantly depend
on conceptual overlap with training domains (Wu
etal., 2019).

The in-context learning framework (ICL)
(Brown et al., 2020) is particularly appealing in this
setting given that it is highly data-efficient and flex-
ible: instead of fine-tuning, ICL methods prompt
a fixed LM with templated examples for a task.
This approach requires no re-training when adapt-
ing to schema changes. In recent work, Hu et al.
(2022) find that prompting a language model with
examples for DST in a text-to-SQL format can out-
perform fine-tuned zero and few-shot methods.

In this work, we propose RefPyDST, a retrieval-
augmented in-context learning approach to DST for
use with language models pre-trained on code, such
as OpenAl Codex (Chen et al., 2021), by building
on recent ICL methods for DST (Hu et al., 2022).
Our approach advances the state of the art with
three key contributions.

First, we develop a novel in-context prompt that
re-frames DST as text-to-python, explicitly mod-
eling slot value coreferents using variables. We
provide an overview of this prompt and example
of such coreference in Figure 1. We demonstrate
that this approach significantly improves system
performance in the zero and few-shot settings, and
particularly improves accuracy on predictions re-
quiring coreference resolution.

Second, we introduce a novel method for diverse
supervised example retrieval, which yields a set
of in-context examples & that are both individu-
ally relevant and collectively representative of the
output space, inspired by maximum marginal rel-
evance (MMR) (Goldstein and Carbonell, 1998).
Our approach significantly improves performance
in few-shot settings, overcoming a failure mode
in supervised example retrieval in which examples
are each similar to an input x but redundant in the
outputs they demonstrate.

Third, we propose a novel scoring method
PMI? which compensates for surface-form com-
petition among sampled LM completions in con-
strained generation settings. Inspired by Holtzman
et al. (2021), we re-weigh each completion y by an
estimate of its a priori likelihood in the task context.
We find this improves system performance in both
the zero and few-shot settings.

Together, our contributions address key chal-
lenges in DST and in retrieval-augmented ICL gen-

erally. Our method produces state-of-the-art results
on MultiWOZ 2.1 and 2.4 DST benchmarks across
a variety of few-shot settings. Similarly, we obtain
a new zero-shot state-of-the-art in the multi-domain
setting.

2 Task Definition

A task-oriented dialogue consists of turns or paired
utterances between a user and an agent which in-
terfaces the user with a programmable system. At
each turn ¢, the purpose of a DST module is to
use the dialogue history up to that turn to predict
a dialogue state y;, which represents the user’s
goal and progress in using the system. Let A; be
an agent utterance, U; be a user utterance, and
C; = [(Al, Ul), (AQ, UQ), ...(At, Ut)]Z be the di-
alogue history up to turn £. The task is to map
the history C; to a state representation g;. In this
work, we predict dialogue states y; which can be
represented as slot-value pairs:

Yt = {(81,111), (327 UQ)"'(STH Un)}

where each slot s; and the types of values it permits
are defined in a system schema. For example, an
agent supporting hotel reservations might have a
slot ‘hotel-parking’ taking boolean values for con-
straining search to hotels that include parking.

We can equivalently define this task as predict-
ing state changes, as proposed in Hu et al. (2022).
Let z; = [yi—1,(As, Up)] be a dialogue context
consisting of the previous dialogue state prediction
and utterances for the current turn. Using this turn
context x¢, we predict a state change:

Ay = {+(si,vi)... — (s5,v5)...}

where y; is computed by applying the difference
Ay, to y;—1. This approach has two advantages
for few-shot in-context learning. First, the turn
context x; requires fewer tokens to represent than
the complete history C', permitting more in-context
examples. Second, the number of distinct state
changes Ay, observed in practice is much smaller
than the number of distinct states y;, simplifying
the search for relevant examples and the generation
problem.

For these reasons, we formulate our DST prob-
lem as mapping from the turn context z; to a state
change Ay;. For readability, we often use ‘turn’ to
refer to this turn context x, distinguishing it from
the history C' or turn number ¢ using notation.

For user-initiated dialogues, A; may be omitted



3 Methods

Given a dialogue turn ¢, our method produces a
state change Ay, by (1) retrieving a set of in-
context examples &, (2) formatting these into a
prompt fprompt (21, E), (3) generating and scor-
ing possible program solutions (LM completions)
with OpenAl Codex (Chen et al., 2021), (4) ex-
ecuting the program to compute a state change
Ayy. Given the state change, we compute the
complete dialogue state y; by applying the differ-
ence to y;—1. We describe our prompting function
Jorompt(Tt, &), in § 3.1. In § 3.2, we describe
our method for retrieving a diverse and representa-
tive set of examples £. Finally, we describe our
method for scoring LM completions with a point-
wise mutual information estimate in § 3.3.

3.1 Prompting with Text-to-Python

We design a novel prompt that re-frames DST
as a text-to-Python task, allowing us to explic-
itly represent coreference phenomena and lever-
age the unique capabilities of language models
pre-trained with code. Figure 1 provides an
overview. Formally, we define a prompting func-
tion fyrompt (2¢, £;), which takes a test dialogue
turn x; and a set of k in-context examples & =
{(z1,Ay1),...(zx, Ayg)} and produces a string
representing the program synthesis task.

Our prompt (Figure 1) starts with a task defini-
tion represented as a set of Python classes corre-
sponding to each DST domain. Each informable
slot is an attribute in the appropriate class. Type
hints are used to label categorical slots with their
values and non-categorical slots with the most ap-
propriate type. The dialogue state is also repre-
sented as an object which can be manipulated, hav-
ing an attribute per-domain.

We represent instances of our programming
synthesis task with in-context python examples.
Each in-context example ([y;—1, As, U], Ayy) is
represented as follows: the previous dialogue state
y1—1 1s represented as a dictionary, mapping slot
names to values. Non-categorical values such as
names are de-lexicalized by replacing their string
value with a variable referencing their existing
value in the state. Solutions to the programming
task are represented as function calls that manip-
ulate the dialogue state. One of the key benefits
of our formulation of the DST task as python is
explicit representation of coreference phenomena.
For example, the solution corresponding to a user

input “find me a restaurant in the same area as
my hotel" would be state.restaurant
= find_restaurant (area =
state.hotel.area), explicitly modeling the
resolution of the linguistic coreference.

3.2 Retrieving Diverse Relevant Examples

We propose a method for in-context example selec-
tion that produces an example set & that is both
relevant to a test turn x; and diverse, representing
the relevant portions of the output space. We first
learn an embedding space in which similar state
changes have high cosine similarity with one an-
other (§3.2.1), following (Hu et al., 2022). Using
this, we propose a novel method for decoding &
such that examples are similar to x; but dissimilar
to each other (§3.2.2).

3.2.1 Retriever Training

We fine-tune an embedding model to approximate
the true similarity between two turn contexts x;, x;
with the cosine similarity between their encoded
representations, following prior works (Hu et al.,
2022; Rubin et al., 2021). Let Dy;..;n be a set of
dialogue turns serving as training data for an exam-
ple retriever and selection pool at inference time.
As described in §2, each example e; € Dyyqip, 1S a
context state-change pair e; = (x;, Ay;). A single
example e; is shown in the green box in Figure 1.

We encode an example or query turn context x =
[y+—1, (A, Up)] by concatenating each element of
the turn context and passing the result through an
embedding model® emb. For two example turn
contexts x;, x;, the cosine similarity between their
embeddings cos(emb(z;), emb(x;)) approximates
their relevance to each other. At inference time, we
can embed a test turn z; and retrieve highly similar
examples with nearest neighbors search.

We fine-tune our embedding model with a super-
vised contrastive loss, such that high cosine simi-
larity of representations correlates with high sim-
ilarity between dialogue state changes, following
the procedure in Hu et al. (2022). For our learning
objective, we assume a metric that gives the true
similarity between two dialogue state changes for
a pair of turns simp,, which we define below. For
each dialogue turn in the training set, we use sim g
to define positive and (hard) negative examples as
the top and bottom 5% of the current nearest 200
examples, respectively. We train each retriever for

*We use all-mpnet-base-v2 (Song et al., 2020), available
in sentence-transformers (Reimers and Gurevych, 2019)



15 epochs using the hyperparameters detailed in
Appendix C.

We define the ground-truth similarity simp,
between two dialogue state changes as follows.
Let Ay® = {(s¢,v§)...(s%,v%)} and Ay’ =
{(s%,v})...(s2,v%)} be two dialogue state changes.
For any slot value v; exhibiting coreference to
another slot s;, we replace v; with s;. For
example, the state change corresponding to a
turn "I need a taxi to my hotel" would become
{(taxi-destination, hotel-name) }, regardless of the
particular hotel name value. We then compute true
state similarity using the average between the F}
score comparing updated slots and the F} score
comparing updated slot-value pairs, as proposed in
Hu et al. (2022):

1

simp, (Ay®, Ay®) = iFl({S'f, Sh{sh L+

ST D), b AT, - D)

3.2.2 Decoding Diverse Examples

We propose an adaptation of maximum marginal
relevance (MMR) (Goldstein and Carbonell, 1998)
which uses our learned embedding model emb to
produce a diverse set of examples & that max-
imizes similarity to z; and minimizes similarity
between examples in &. Particularly for encoders
that are fine-tuned to approximate output similarity,
this yields a set of examples that is more repre-
sentative of the output space than simply selecting
the nearest k£, which may all have the same label.
Formally, we define the ideal set of in-context ex-
amples & for an input z; to be the k examples
satisfying:

cos(emb(xt), emb(z;))
z;€E

— Z cos(emb(x;),emb(x;))

xi,IjG:‘:k

& = argmax
SkCDtT'ai7L

where the hyperparameter « is a dissimilarity fac-
tor and o = 0 corresponds to typical nearest-k
example selection. We greedily approximate &
by iteratively selecting the example which max-
imizes the equation at each step. For more effi-
cient decoding of &, with large selection pools,
we limit the considered examples to the nearest
N such that | Dyygin| >> N >> k. For example
in one run in the 5% MultiWOZ few-shot setting,
| Dirain| = 2754, N = 100, and k& = 10.

3.3 Decoding with Point-wise Mutual
Information

We introduce a new rescoring function, PM I A to
mitigate surface form competition when generating
from language models, that we use for making
predictions in our setting. PMI? is an extension
of PM Ipc, which was proposed in Holtzman et al.
(2021) for mitigating surface form competition in
the classification setting. We first describe surface
form competition and PM Ipc (§3.3.1), and then
describe PMI?, an adaptation of this method to
the constrained generative setting with in-context
examples (§3.3.2).

3.3.1 Surface-form Competition

Conditioned on a prompt, a language model assigns
a likelihood to all completing strings, from which
we can sample. While string likelihoods can be
used as a proxy for output class or structure likeli-
hoods, these are not the same. For example, in our
DST formulation, many strings can correspond to
the same state change Ay,, or may not correspond
to a valid state change at all. As such, Holtzman
et al. (2021) argue string likelihoods can be un-
reliable for scoring the best among a fixed set of
choices which may each contain numerous surface
forms in V*. To compensate for this, they propose
scoring with Domain Conditional Point-wise Mu-
tual Information (PM Ipc = %). This
re-weighs choices by a priori likelihood of their
string form in the task context P(y|domain).

3.3.2 Scoring with PMI?

To mitigate surface-form competition, we propose
PMT1I?: a prompt conditional pointwise mutual in-
formation scoring method that adapts PM Ipc to
our constrained generative setting with in-context
examples. Doing so requires overcoming two key
challenges. First, our choices to score amongst
are not practically enumerable. Second, the task
context we condition on is partly defined by our
choice of in-context examples £. We overcome
these by first generating a small set of plausible
completions C and their likelihoods according to
a language model. Then, we re-weigh these like-
lihoods according to an estimate of their a priori
likelihood conditioned on only the task context and
selected examples E:

Pyl fprompt(zt, Ex)))

Basy|E) =
PMI?(z;y|€y) = P! [ rompt (E8))P

)
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# DST Task and System Definition
class Hotel:

# DST Task and System Definition
class Hotel:

state = State({'hotel': {'area': 'centre'}})
print('agent: do you need further assistance ?')
print('user: i need a restaurant in the west')

state.restaurant = find_restaurant(area="west") }'1316

Ayi { state.restaurant = find_restaurant(area="west")

state = State({'hotel': {'area': 'centre'}})
z; print('agent: do you need further assistance ?')
print('user: i need a restaurant in the west')

state = State({'hotel': {'name':
state.hotel.name}})
print('agent: anything else ?')
print('user: after dinner i need a ride to my
hotel in the west')

@ Inference LM Yy e Cmpp H P(ylfp,-mpt(zt,gk))

}zt

state.restaurant = find_restaurant(
area="west"),

Y € Ciopp

@ Inference LM

P(Y| Fgrompi ()

Figure 2: An overview of our method (§3.3) for scoring completions y from Codex with PM I®, which re-weighs
using an estimate of the a priori likelihood of y in the context of the task. On the left, is our primary text-to-Python
prompt fprompt (1, Ek) (§3.1). We use nucleus sampling to generate a set of reasonable candidates Clop-p and their
probabilities. On the right is an inverted prompt with state changes preceding their inputs, allowing us to produce an
in-context estimate of the probability of y not conditioned on x

where f;,mmpt is a prompt designed for estimating
P(y|&x) without conditioning on z;, described be-
low, and f is a hyperparameter for adjusting the
impact of re-weighing by a priori likelihood.*

To generate the candidate completions C, we
sample a set of plausible candidates using nucleus
sampling (Holtzman et al., 2020).

While one could simply use the language model
to compute P(y) directly, such unconditional es-
timates tend to vary wildly. Following Holtzman
et al. (2021), we instead estimate the probability
of the completion in context, but further account
for the use of in-context examples. To do this, we
construct an additional prompt which contains the
same problem definition, but reverses the order out-
puts and inputs. Using this, we can estimate the
probability of a completion y in the context of our
task and examples without z;, illustrated in Fig-
ure 2. Finally, we select the completion §§ which
maximizes Eq. 1, and parse it to a dialogue state
change Ay;,:

i = argmax PMIP(z;y|&)
yeC
We choose a minimum a priori likelihood
of between 10~7 and 1072, as estimates for
Pyl fprompt(Ex)) can be very low, particularly
when rare slot values implied by x; are not present
in any example. When constructing our candidate
set C, we choose the five most likely sampled com-

“While only 8 = 1 corresponds neatly to a point-wise
mutual information estimate pmi(x¢;y), we find0 < 8 < 1
to be more effective in practice. Prior work in terminology
extraction has also proposed scaling PMI estimates, though in
a different context (Daille, 1994)

pletions under the original prompt. Finally, we
canonicalize each completion y when computing
Pyl fprompt(Ex)) by first parsing it to a dialogue
state change, and then re-writing it as a string in
the form as if it were an example in &. In effect,
this normalizes mis-spellings and enforces the ex-
pected order of keyword arguments in the update
string, further controlling for high variance in our
estimates.

4 Experiments

We describe our zero and few-shot experimental
setups, evaluation, and baselines. Hyperparameter
and implementation details can be found in Ap-
pendix C.

4.1 Experimental Settings

We conduct zero and few-shot DST experiments on
the MultiWOZ dataset (Budzianowski et al., 2018),
containing over ten thousand multi-domain task-
oriented dialogues crowd-sourced in a wizard-of-oz
setup. There are five domains in the validation/test
sets and a total of thirty informable slots. We evalu-
ate on the newest MultiwOZ 2.4 (Ye et al., 2022a).
For comparison with prior work, we also report on
MultiwOZ 2.1 (Eric et al., 2020).

We evaluate performance with standard joint-
goal accuracy (JGA) for all of our experiments.
For a turn x4, a dialogue state prediction ¢; is con-
sidered correct only if all slot names and values
exactly match the ground-truth state y;.

For the few-shot setting, following (Wu et al.,
2020), we sample 1%, 5%, or 10% of the dia-
logues from the training set to serve as a training



MultiwOZ 2.1 MultiwOZ 2.4
Model 1% 5% 10% 100% | 1% 5% 10% 100%
TRADE (Wu et al., 2019) 126 312 36.2 46.0 - - - 551
DiSTRICT (Venkateswaran et al., 2022) 13.4 41.3 49.7 56.1 - - - -
DS2 (Shin et al., 2022) 33.8 442 454 523|368 499 51.1 579
IC-DST Codex (Hu et al., 2022) 431 47.1 487 50.7 | 484 554 569 624
RefPyDST (ours) 473 49.6 50.8 52.0| 552 623 625 652

Table 1: Multi-domain JGA evaluated on MultiWOZ 2.1 & 2.4 using samples from 1%, 5%, 10%, and 100% of
the training set. Average of three runs is reported. Our method achieves state-of-the-art (bolded) for both dataset
versions in the 1%, 5%, and 10% few-shot settings. Our method also out-performs all few-shot baselines which
report results in the 100% setting on MultiWOZ 2.4. Line distinguishes fine-tuned from in-context learning methods.

set Dyqin for each experiment. We fine-tune our
retriever using Dyyq;y, and select in-context exam-
ples from it. We conduct three independent runs
for each sample size and report the average JGA
across runs. We also perform a single run in the
full setting, using 100% of the training data.

For the zero-shot setting, there are no labeled
examples to select from, but a single formatting
example is used for all inference turns, as in (Wang
et al., 2022; Hu et al., 2022). We consider two
evaluation settings. The first is the typical assess-
ment on all test set dialogues, as in few-shot and
complete training regimes, which we will refer to
as the standard MultiwWOZ benchmark. These re-
sults allow comparison to few-shot and full-data
results, as well as other methods which use zero
supervised dialogues in training. We also report re-
sults on the MultiWOZ ‘leave-one-out’ benchmark
for zero-shot transfer methods (Wu et al., 2019),
reporting JGA considering only slots in each indi-
vidual domain, as well as the average of these five
single-domain results.

We compare to a number of prior state-of-the-art
zero-shot and few-shot DST methods as baselines.
These include DST specific architectures (Wu et al.,
2019), various fine-tuning methods (Gupta et al.,
2022; Shin and Van Durme, 2022; Venkateswaran
et al., 2022), and a strong ICL baseline (Hu et al.,
2022).

5 Results

Few-shot DST on MultiWwOZ We present few-
shot and full-shot dialogue state tracking results
on MultiwOZ 2.1 & 2.4 in Table 1. We find that
our method achieves state-of-the-art in the 1%, 5%,
and 10% few-shot settings for both MultiwOZ 2.1
& 2.4, outperforming all fine-tuned methods as
well as other in-context learning methods. While

all methods considered improve with additional
data, our method is remarkably data efficient: Ref-
PyDST achieves 95% of its full-shot performance
using only 5% of the training data, on average. In
comparison, using 5% of the training data with
IC-DST Codex only achieves 89% of its full-shot
performance.

Zero-shot DST on MultiWOZ  We present zero-
shot multi-domain results on MultiWOZ 2.4 in Ta-
ble 3. We find our method outperforms all zero-
shot methods, achieving a 12.4% increase in multi-
domain JGA over IC-DST Codex, our strongest
performing baseline. Comparisons are limited to
methods that use zero training data, as opposed
to transfer methods that train on some MultiwOZ
domains and evaluate on others.

For comparison with domain transfer methods,
we present zero-shot results on the leave-one-out
benchmark for MultiwOZ 2.1 & 2.4 in Table 2.
Following prior work, we evaluate only dialogues
and slots in the held-out domain.> Evaluating aver-
age performance in this setting, we find our method
outperforms all methods except for the current
state-of-the-art transfer method, SDT-seq. Their
method outperforms ours by 1.5% on each held-
out domain on average. However, transfer methods
such as SDT-seq require significant out-of-domain
DST training data, while ours requires none. De-
spite this training data disadvantage, our approach
outperforms all other zero-shot transfer methods.

6 Analysis & Ablations

In this section, we further analyze the performance
characteristics of our method.

SPrior work on the leave-one-out setting evaluates using
the following method: (1) filter to dialogues which contain
the held out domain (this can include dialogues in multiple
domains) and (2) only check slots in that domain when com-
puting JGA. (Wu et al., 2019)



attraction hotel restaurant taxi train | Avg.
MultiwOZ 2.1
TRADE (Wu et al., 2019) § 20.1 142 126 59.2 224 | 257
TransferQA (Lin et al., 2021a) T 31.3 227 26.3 619 36.7 | 35.8
DiSTRICT (Venkateswaran et al., 2022) t 334 224 240 66.6 47.7 | 38.8
D3ST (Zhao et al., 2022) { 564 21.8 38.2 784 38.7 | 46.7
SDT-seq (Gupta et al., 2022) f 744 339 72.0 864 629 | 65.9
IC-DST (Hu et al., 2022) 60.0 46.7 573 714 494 | 57.0
RefPyDST (ours) 709 51.2 65.6 67.1 69.2 | 64.7
MultiwOZ 2.4
IC-DST Codex (Hu et al., 2022) 62.1 532 549 719 514 | 58.7
RefPyDST (ours) 74.5 56.6 68.2 685 76.1 | 68.8

Table 2: Zero-shot joint-goal accuracy (JGA) for each domain in MultiWwOZ 2.1 & 2.4 in the leave-one-out set up.
We report results on each held-out domain and the average held-out domain performance (Avg.) Domain transfer
methods (marked with ) learn from dialogues in the other four domains and are tested on the held-out domain.
Unlike domain transfer methods, IC-DST and our method do not use any DST data. Following prior work, we
evaluate only dialogues and slots in the held-out domain. For full evaluation of all dialogues in the zero-shot setup,

see Table 3.
MultiwOZ 2.4
IC-DST Codex (Hu et al., 2022) | 35.3
RefPyDST (ours) 47.9

Table 3: Zero-shot (zero DST training data) multi-
domain JGA evaluated on MultiwOZ 2.4. Our method
achieves state-of-the-art for this setting. Comparisons
with zero-shot transfer methods, which train on subsets
of the MultiWwOZ dataset, can be found in Table 2.

Ablations In order to assess how each part of our
method contributes to performance, we conduct
a leave-one-out ablation, as well as reporting the
performance of using only our prompting method.
Each ablation is conducted using a 20% sample of
the development data in the MultiWOZ 2.4 dataset
(200 dialogues), sampled independently of the set
used to tune hyperparameters. We present results in
Table 4 for the zero and 5% few-shot setting. In the
few-shot setting, we find leaving out our diverse
retrieval to be most impactful.

Does using Python improve coreference resolu-
tion? Since our Python prompting method explic-
itly models coreference through variable reference,
we analyzed how our system performed on state
predictions requiring coreference resolution. Using
coreference annotations released with the 2.3 ver-
sion of the MultiwWOZ dataset (Han et al., 2021),
we evaluate accuracy on slot values which require
coreference to resolve. Our results are presented in
Table 5. Overall, our full model improves upon the
baseline for coreference. Removing Python greatly

Few-Shot (5%)

IC-DST (baseline) 52.4
RefPyDST — Python | 54.8
RefPyDST — diverse | 54.6
RefPyDST — PM 1P | 56.1
RefPyDST (full) 579
Zero-Shot
IC-DST (baseline) 43.0
RefPyDST — Python | 40.7
RefPyDST — PM 1P | 46.0
RefPyDST (full) 46.7

Table 4: MultiWOZ joint-goal accuracy in the few-shot
(5%) and zero-shot settings, leaving out individual com-
ponents of our method. We evaluate on a 20% sample
of the development set (200 dialogues). For few-shot,
we average over three runs, each with independently
sampled Dy,q4;y. For ablating the removal of our Python
prompt, we use the Text-to-SQL format from (Hu et al.,
2022) as a baseline. The alternatives to our diverse re-
trieval approach and PM I? scoring are top-k retrieval
and greedy decoding, respectively

reduces our model’s performance, demonstrating
the benefit of modeling coreference as Python vari-
able reference.

Does our retrieval method improve demon-
strated label diversity? We investigate to what
degree our diverse decoding procedure increases
diversity in the distribution of demonstrated labels
for a given input. To approximate a label, we



Model 0% 5% Number of Distinct S in &

IC-DST (baseline) 67.7 | 78.9* 1% 5% 10% 100%
RefPyDST (prompt only) | 77.1* | 77.9* random 7.1 72 7.2 7.3
RefPyDST - Python 62.9 | 73.0 top-k 34 22 18 1.5
RefPyDST (full) 76.8° | 81.8 diverse (¢ =.2) | 5.3 4.1 33 22

Table 5: Accuracy on slot value predictions which re-
quire coreference resolution for the zero-shot (0%) and
few-shot (5%). For a given setting (column), * indicates
the difference is not statistically significant. All other
differences in a column are significant to p < 0.02

define S(e;) as the distinct combination of slot
names in the output for an in-context example
e; = (z;, Ay;), ignoring assigned values.

First, we simply count the average number of
distinct combinations of slot names in £, shown in
upper half of Table 6. For each x;, we retrieve a set
of in-context examples . We count the number
of distinct slot combinations across each ¢; € &y,
and report the development set average. A value
of 1 indicates the retriever is fully redundant: all
k examples demonstrate the same combination of
slots, while a value of k indicates every example in
&r 1s unique.

Second, we consider the entropy of slot combi-
nations present in &, shown in the lower half of
Table 6. For each x;, we again compute S(e;) for
each retrieved example in £. We then compute
the specific conditional entropy H(S|X = x),
estimating the probability of each slot combina-
tion p(S|x;) using its frequency in . We report
the development set average or conditional entropy
H(S|X). H(S|X = x¢) = 0 indicates a fully re-
dundant retriever that retrieves the same set of slots
for all examples, and a uniform distribution of slot
combinations yields H (S| X = x;) = loga(k).®

We find our retrieval methods increase the di-
versity of in-context examples across all settings.
For a given training set size, we see that diverse
decoding increases the number of distinct ‘labels’,
measured by S(e;), as well as the entropy H (S| X).
Still, selected examples are not random, as we
can see when comparing H(S|X) to a random
retriever which uniformly samples from Dirain.!
Finally, we see that as the size of the training set
increases, the diversity in exemplified labels for a

®While this is true of a uniform distribution over demon-
strated slot combinations, we find uniformly sampling from
D¢rain yields an entropy of ~ 2.6, as the distribution of labels
in the training data is not uniform.

"In Appendix D, we also compare few-shot task perfor-
mance for our retrieval method against random retrieval

diverse (« = .3) | 5.7 4.5 3.5 2.3
diverse (« =.5) | 7.5 5.7 4.8 2.8

Entropy H(S|X)
1% 5% 10% 100%
random 26 2.6 2.6 2.6
top-k 1.2 0.63 047 0.30
diverse (« = .2) | 1.8 1.5 1.1 0.64
diverse («=.3) | 19 1.6 12 0.68
diverse (« = .5) | 2.7 2.0 1.7 093

Table 6: We analyze the outputs demonstrated in &, for
different in-context example retrieval methods. Above,
we show the average number of distinct slot combina-
tions demonstrated in £,. Below, we show the condi-
tional entropy H (S]X) of the distribution of slot com-
binations in &. We underline the values corresponding
to methods used in our final models

given choice of « decreases. Increasing training
data leads to a higher density of each slot combi-
nation, requiring more aggressive discounting to
achieve the same diversity in £. As such, we in-
crease o with training set size, using o = 0.2 for
1% and 5% settings and o = 0.3 & o = 0.5 for
10% and 100% settings, respectively.

7 Related Work

Dialogue State Tracking There has been a re-
cent increase in work on the zero and few-shot
DST systems. Many approaches fine-tune a pre-
trained language model by re-framing DST as some
form of text-to-text or auto-regressive language
modeling task (Wu et al., 2020; Peng et al., 2021;
Hosseini-Asl et al., 2020; Su et al., 2021; Shin
et al., 2022; Lin et al., 2021b; Gupta et al., 2022;
Li et al., 2021; Xie et al., 2022). Many of these
methods often exhibit zero-shot transfer capabili-
ties (Wu et al., 2019; Gupta et al., 2022; Li et al.,
2021; Hosseini-Asl et al., 2020). However, these
approaches still require re-training when a domain
is added or changed, and zero-shot transfer perfor-
mance is dependent on the relatedness of the new
domain to existing ones.

Some recent works instead model DST as an in-
context learning problem (Hu et al., 2022; Xie et al.,
2022; Madotto et al., 2021), bypassing the need for



re-training when system definitions change. In par-
ticular, we build on the work of Hu et al. (2022),
which models DST by predicting dialogue state
changes at each turn, relying on only a state sum-
mary and agent/user turn utterances for inference.
Their work models DST as a text-to-SQL prob-
lem, whereas we model it as a Python program-
ming problem with novel methods for selecting
in-context examples and scoring language model
completions.

In-Context Learning Some recent works ex-
plore the properties of effective in-context exam-
ples. In classification settings, Gao et al. (2021)
find random examples can significantly limit perfor-
mance, and propose using a pre-trained embedding
model to find examples semantically close to z, re-
trieving one per class. Other works investigate the
role of examples in ICL performance in detail, find-
ing that ICL methods perform best when example
inputs and test inputs are as close in distribution as
possible, and when the distribution of exemplified
labels closely matches the target distribution (Min
et al., 2022; Liu et al., 2022).

Paralleling this, a number of works across NLP
tasks propose methods for retrieving relevant in-
context examples. Pasupat et al. (2021) use an
unsupervised embedding model to embed a test
input x and all available examples, retrieving the
k with highest embedding cosine similarity. Other
works use a similar dense retriever but in an em-
bedding space learned with supervision. Rubin
et al. (2021) fine-tune an example retriever with
contrastive learning in which positive examples
maximize pr,ps(y|z, e;). Hu et al. (2022) propose a
contrastive learning objective specific to DST, fine-
tuning an embedding model to embed turns with
similar state changes in proximity to each other.
Rather than use a separate retrieval module, Shin
and Van Durme (2022) use the LM itself to select
examples which are most likely when conditioned
on z. Given a test input z, each of these works
scores the relevance of an individual example e; to
a test input = and then selects the k£ most relevant
ones to include in a prompt. In most cases, this
yields a set of examples £, which are meaningfully
similar to . However, considering examples in-
dividually does not necessarily lead to adequate
exemplification of the output space. In supervised
settings that learn a relevance metric which approx-
imates output similarity, this can lead to degenerate
examples sets & which all exemplify the same out-

put. In contrast to this, we propose a novel method
for using this score to construct &, with examples
that are relevant to « while being distinct from each
other.

In concurrent work to our own, Ye et al. (2022b)
propose a method for decoding diverse examples
of explanations from a retriever for use in reason-
ing problems, also based on maximum-marginal-
relevance (MMR) (Goldstein and Carbonell, 1998).
Their work uses unsupervised measures of sim-
ilarity between explanations, where ours uses a
supervised retriever which approximates similar-
ity of outputs. Thus, diversity in our example sets
correlates to diversity in exemplified outputs. In
another concurrent work to our own (Levy et al.,
2022) propose a method for diverse example selec-
tion in a semantic parsing task, using the outputs
of selected examples to incrementally cover more
structures in &y.

For tasks which can be re-framed as program
synthesis, a number of works have also developed
ICL methods for use with LMs pre-trained on code
such as Codex and Codegen (Chen et al., 2021;
Nijkamp et al., 2022). Shin and Van Durme (2022)
use ICL with Codex to generate Lisp-like programs
in a dialogue semantic parsing task. Rajkumar et al.
(2022) evaluate such models capabilities in Text-to-
SQL problems, and Hu et al. (2022) use a Text-to-
SQL framing to use Codex for DST. Instead of SQL
queries, we generate Python programs, allowing for
intuitive modeling of phenomena like coreference.

Finally, recent works have considered adjust-
ing how completion strings are scored with an
LM. Brown et al. (2020) normalize log-likelihoods
by length before scoring completions. Zhao et al.
(2021) re-weigh LM probabilities by learning an
affine transformation that yields uniform scores
given ‘content-free inputs’. Holtzman et al. (2021)
propose PMIpc, a method for re-scoring com-
pletions using pointwise mutual information (pmi),
which we adapt to our constrained generative set-
ting.

8 Conclusion

We propose RefPyDST, an in-context learning
method for DST. Our contributions address key
challenges in DST and in retrieval-augmented ICL,
producing state-of-the-art results on MultiwOZ
DST benchmarks for few-shot and zero-shot se-
tups. Future work could apply methods developed
here to other in-context learning problems.



9 Limitations

While in-context learning methods for DST are
promising in their data efficiency and flexibility to
new domains, they typically require very large mod-
els to perform effectively. At 175 billion param-
eters, OpenAl Codex (Chen et al., 2021) is much
larger than some of the fine-tuned approaches to
DST, though with better performance and ability
to adapt to new domains without re-training. De-
spite our advances, there are still significant errors
when applying ICL for DST. As such, ICL may not
necessarily be relied on in safety-critical settings.
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A Dialogue State Normalization

Real world task oriented dialogue systems can in-
terface users with thousands or more entities, such
as restaurants or hotels in MultiWwOZ. Since rea-
soning directly over all such entities is intractable,
dialogue understanding modules often first predict
a surface form (e.g. a restaurant name mentioned
by a user) which another module links to a canoni-
cal form (e.g. that restaurants name in a database).
While dialogue state trackers evaluated on Mul-
tiWOZ do not need to interact with a database,
handling of typos and unexpected surface forms
is important for a realistic assessment of system
performance, since predictions for a slot are evalu-
ated on exact string match. As such, most research
systems including the baselines in this paper use
rule-based functions to fix typos and unexpected
surface forms. We propose a robust rule-based
method for effective linking of surface forms to
canonical forms described below.

Mapping to canonical forms We begin by first
reading in canonical forms for every informable
slot in the MultiWwOZ system. For categorical
slots, these are defined in a schema file, as re-
leased with MultiWOZ 2.1 (Eric et al., 2020). For
non-categorical slots, we read in values from the
database defined with the original MultiWOZ data
collection (Budzianowski et al., 2018). Neither
source of information contains dialogue data, only
information defining the task. The taxi and train
service have informable slots for departure and des-
tination locations. In addition to the locations listed
for these slots in a database (i.e. scheduled train
journeys), we accept the name of any entity which
has an address as a canonical form for these slots.
For time slots we consider any time represented in
"hh:mm" form as canonical. Overall, this gives us
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a mapping from a slot name s; to a set of canonical
forms C, for all slot names.

Given a slot name s; and a slot value surface
form v;, we select the correct canonical form c; as
follows: (1) we first generate a set of aliases for v;.
These are acceptable re-phrasings of v;, such as
adding the leading article "the", a domain specify-
ing suffix such as "hotel" or "museum", or switch-
ing numbers to/from digit form (e.g. "one" <+ "1").
We then consider a surface form v; as mapped to
a canonical form ¢; if any of the aliases a; € A;
is a fuzzy match for the canonical form c;, using
the fuzz.ratio scorer in the fuzzywuzzy ®
package. We require a score of 90 or higher, and
verify in the development data that no surface form
maps to more than one canonical form.

Choosing the most likely surface form While in
a real world dialogue system we would only need
to link to canonical forms, gold dialogue state
states in MultiWwOZ are themselves annotated
with surface forms, not always matching the name
of the entity in the database and occasionally dis-
agreeing on an entity name. So as to not alter the
evaluation process and make sure we can fairly
compare to prior work, we use the training data
available in each experimental setting to choose the
most likely surface form for a given canonical form
c;. To do this, we simply count the occurrences of
each surface form in the gold labels of the train-
ing set for that experiment, and select the most
frequently occurring one for ¢;. However for low
data regimes, we often do not observe all canonical
forms. Following numerous prior works, we make
use of the ontology file released with the dataset
(Eric et al., 2020; Ye et al., 2022a), which lists all
observed surface forms for a slot name, and treat
each of these as if we had seen them 10 times. This
serves as a smoothing factor for selecting the most
likely surface form. For the zero-shot experiments,
we use only the counts derived from the ontology
file, as we have no training data to observe.

Overall, we find this approach to normalization
to be robust when compared to other works, which
rely on hard-coded fixes for commonly observed
typos. Further, our normalization can be initialized
with any similarly formatted system definition and
data set, allowing for use in other domains.

To verify that our approach to normalization is
not the key factor distinguishing our performance
from previous methods, we apply it to a faithful

$https://pypi.org/project/fuzzywuzzy/

re-implementation of our IC-DST Codex baseline
(Hu et al., 2022) in our ablation in Table 4.

B Prompt Examples

Please see our GitHub repository for prompt exam-
ples: https://github.com/jlab-nlp/RefPyDST.

C Implementation Details

C.1 Hyperparameters

All hyperparameter tuning is performed using a
10% split of the development set (100 dialogues)
and manual tuning. We find that a smaller choice
for p (0.7) in nucleus sampling helps performance
in the zero-shot setting. Similarly, we find that in
order to select a diverse set of examples, we need
to scale . We use o = 0.2 for the 1% & 5% set-
tings, o = 0.3 for 10%, and o = 0.5 for the full
setting. For the full setting, we also increase the the
number of considered examples from the nearest
100 to nearest 200. Across all settings, we compute
PMTI? with 8 = 0.4. We use a robust approach
to normalizing predicted values (i.e. to resolve
mis-spellings, etc.) described in Appendix A. We
apply this normalization to our strongest baseline
(IC-DST Codex) in our ablations (§6). When com-
puting P(y| fp,ompt(Ex)), we clip low token log
probabilities at 5e-7 in the few-shot setting and 5e-
4 in the zero-shot setting, as the lack of examples
leads to poorer calibration in the zero-shot setting.
We also clip full-sequence log probabilities at 1e-7
in the few-shot setting and 1e-5 in the zero-shot
setting.

C.2 Retriever fine-tuning details

For both our methods and the re-implementation
of IC-DST Codex (Hu et al., 2022) used in
our ablations (§ 6), we fine-tune the retriever
using the sentence-transformers pack-
age (Reimers and Gurevych, 2019), following
the procedure of (Hu et al.,, 2022). We be-
gin with pre-trained all-mpnet-base-v2 em-
bedding model, which we use as a retriever
with nearest neighbors search’. Each of our
retrievers is trained for 15 epochs using the
OnlineContrastiveLoss, which computes
the contrastive loss proposed by Hadsell et al.
(2006) using only hard positives and hard nega-
tives. For each dialogue turn in the training set, we

We use the scipy implementation: https:
//docs.scipy.org/doc/scipy/reference/
generated/scipy.spatial .KDTree.html
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Few-Shot (5%)
RefPyDST (random-k) | 43.5
RefPyDST (top-k) 54.6
RefPyDST (full) 57.9

Table 7: MultiWOZ joint-goal accuracy in the 5% few-
shot setting, ablating different retrieval methods. The
full model includes both our trained retriever and di-
verse example decoding methods (§3.2). Top-k uses
the trained retriever but decodes the top-k nearest ex-
amples instead of using our diverse decoding procedure.
Random retrieval samples k examples from Dy,.q;,, uni-
formly at random

use simp, to define positive and (hard) negative
examples as the top and bottom 5% of the nearest
200 examples, respectively.

C.3 Arguments to Codex

For all methods, we make requests to Ope-
nAl Codex with arguments engine =
"code-davinci-002", max_tokens =
120, and stop sequences of either [' =", "\n’,
";", "#’]1 (IC-DST Codex baseline replication)
or ["\n\n", "#", "print ("] (ours). For
methods which utilize nucleus sampling (Holtzman
et al., 2020) with the top_p parameter. In the
few-shot setting, we sample with best_of=10,
keeping only n=5 most likely results. In the
zero-shot setting, we increase best_of to 32.

D Random Retrieval Ablation

In Table 7, we compare our retrieval methods to
random retrieval, on the 20% split of the develop-
ment set used in our previous ablations. For ran-
dom retrieval, we sample k examples from Dy,qip,
uniformly at random to construct £. We find this
significantly under-performs our learned retrieval
methods, whether selecting the top-k examples or
using our diverse decoding approach.



