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Abstract Tropical cyclones (TCs) that undergo rapid intensification (RI) before landfall are notoriously
difficult to predict and have caused tremendous damage to coastal regions in the United States. Using
downscaled synthetic TCs and physics‐based models for storm tide and rain, we investigate the hazards posed
by TCs that rapidly intensify before landfall under both historical and future mid‐emissions climate scenarios. In
the downscaled synthetic data, the percentage of TCs experiencing RI is estimated to rise across a significant
portion of the North Atlantic basin. Notably, future climate warming causes large increases in the probability of
RI within 24 hr of landfall. Also, our analysis shows that RI events induce notably higher rainfall hazard levels
than non‐RI events with equivalent TC intensities. As a result, RI events dominate increases in 100‐year rainfall
and storm tide levels under climate change for most of the US coastline.

Plain Language Summary Tropical cyclones (TCs) that rapidly intensify (RI) before hitting land are
typically hard to predict and cause immense destruction. We used synthetic TCs downscaled from global
climate models and physics‐based hazard models to examine the dangers posed by these RI storms in historical
and future climates. The TC simulation shows that, as the climate warms, the number of TCs undergoing rapid
intensification could rise substantially in the North Atlantic region. Additionally, the likelihood of rapid
intensification within 24 hr of landfall significantly increases. These TCs are much riskier, particularly in terms
of heavy rainfall, even when compared to equally strong TCs that did not rapidly intensify. Consequently, 100‐
year rainfall and storm tide levels will greatly increase under climate change, largely due to the increase of RI
events in the future.

1. Introduction
Tropical cyclones (TCs) that undergo rapid intensification (RI) often become high intensity storms, which are
responsible for the majority of the fatalities and damage from TCs (Emanuel, 2017). Notable examples include
Hurricanes Andrew (1992) and Katrina (2004), which escalated into formidable high intensity storms, resulting in
significant loss of life and extensive damages. RI is commonly measured as a substantial increase in wind in-
tensity occurring within a brief duration. Many studies opt to define it as a change in 30 knots within a 24‐hr
timeframe (Kaplan & DeMaria, 2003; Lee et al., 2016), although some define it at as a change of 35 (Lu
et al., 2023) or 45 knots (Li et al., 2022) within 24 hr. Over the last 30 years of the historical record in the North
Atlantic, the 95th percentile of intensity changes in the North Atlantic corresponds to a change of 35 knots over
24 hr (Balaguru et al., 2018). The brief time‐scales involved in RI, if it happens near landfall, present a pressing
challenge, as coastal communities may have limited opportunity to initiate evacuation measures and adequately
prepare for the arrival of an exceptionally intense TC, as exemplified by the historical event of Hurricane Audrey
in 1957.

Forecasting RI of TCs is particularly problematic; RI events are responsible for intensity forecasts with the
highest errors, and few operational models are skillful in predicting RI (DeMaria et al., 2021). The difficulty of
operationally predicting RI is due in large part to the multiscale nature of the problem with environmental,
oceanic, and inner‐core processes all likely playing important roles in determining when a TC will undergo RI
(Elsberry et al., 2021; Kaplan & DeMaria, 2003; Kaplan et al., 2015). Prior studies suggest that the occurrence of
RI is primarily influenced by environmental factors (Bhatia et al., 2022; Lu et al., 2023); Kaplan and DeMa-
ria (2003) found over the historical record in the North Atlantic that RI events form in regions with warmer SSTs
and higher lower‐tropospheric relative humidity compared to non‐RI cases.
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Historical destruction associated with TCs that undergo RI have inspired new research on whether RI frequency
will increase into the future. A recent statistical‐deterministic downscaling study found that the number of TCs
that undergo RI before U.S. landfall is projected to significantly increase in the late 21st century compared to the
late 20th century, particularly within 24 hr of making landfall (Emanuel, 2017). Using a coupled high‐resolution
global climate model (GCM), Bhatia et al. (2018) projected a large increase in the incidence of RI due to global
warming, with large portions of every basin expected to experience a significant increase in the percentage of TCs
that undergo RI. Jing et al. (2021) performed statistical and statistical‐deterministic downscaling of the GCM used
in Bhatia et al. (2018), and projected significant increase in RI events, although the extent of increase varies
among the downscaling methods. Finally, theory of TC intensification implies that the maximum rate of inten-
sification increases with the square of the potential intensity (Emanuel, 1987), which is expected to increase at an
approximate rate of 2%–3% per 1° global mean temperature change (Knutson et al., 2020; Lockwood, Oppen-
heimer, et al., 2022).

Despite these expected changes in TCs that undergo RI, no studies to our knowledge have assessed the role of RI
on flood hazard. In this study, we use synthetic TCs generated by the statistical‐deterministic model and utilize
physics‐based storm tide and rain rate models to assess the hazards presented by TCs that undergo RI. Our
analysis encompasses an exploration of changes in North Atlantic RI metrics from historical to mid‐emissions
climate scenarios, as well as an examination of the distinctions in storm tide and rain rate levels produced by
RI before landfall and non‐RI events. Additionally, we investigate changes in storm tide and rain rate return levels
associated with changes in TCs that undergo RI before landfall compared to non‐RI events along the US East and
Gulf coasts.

2. Methodology
2.1. Synthetic TCs Data Sets and RI

We use 5018 synthetic TCs generated in Gori et al. (2022) for the historical period between 1980 and 2005, that
are downscaled using the statistical‐deterministic TC model for the National Centers for Environmental Pre-
diction (NCEP) reanalysis (we refer to this as the historical simulation). Given the large‐scale environment along
the modeled track, the TC model calculates the storm intensity evolution deterministically through the use of the
Coupled Hurricane Intensity Prediction System (Emanuel & Nolan, 2004). We use approximately 6000 synthetic
TC generated in Xi et al. (2023), downscaled using the same TC model for years 2070–2100 of SSP2‐4.5 based on
six CMIP6 climate models: Canadian Earth System Model (CANESM), Centre National de Recherches Mété-
orologiques (CNRM), EC‐Earth Consortium Model (ECEARTH), Model for Interdisciplinary Research on
Climate (MIROC) and UK Met Office (UKMO). Additionally, we also use TCs generated for the historical period
(1980–2005) from each GCM for bias correction.

As noted in Gori et al. (2022), the downscaled TCs from each CMIP6 model may be biased compared to the
NCEP‐downscaled TCs, and biases within the TC characteristics can propagate to become biases in the hazard
estimation. TC intensity and annual frequency are both important drivers of coastal flood risk, and both variables
may be biased due to biases in CMIP6 projections. Therefore, we bias correct the frequency based on the fre-
quency ratio between the NCEP and CMIP6 historical simulations and bias correct the intensity (Vmax) by
performing the quantile delta mapping bias correction of Cannon (2018). Specifically, the change between the
GCM‐projected future (2070–2100) and historical (1984–2005) downscaled Vmax quantiles is added to the
NCEP‐downscaled historical quantiles to create a corrected future Vmax distribution for each GCM model. The
deployment of modeling approaches and empirical data in this study is indicated in Figure S1 in Supporting
Information S1.

Various thresholds have been utilized to define RI, with numerous studies opting to identify it based on wind
speed changes such as 25, 30, and 35 knots occurring within a 24‐hr timeframe or less (Bhatia et al., 2018, 2019;
Lee et al., 2016). Kaplan et al. (2010) demonstrated that intensity changes of 25, 30, and 35 knots corresponded
approximately to the 90th, 94th, and 97th percentiles, respectively, of 24‐hr over water changes in the tropical
regions of the Atlantic basins between 1989 and 2006. Over the observational record from 1986 to 2015, 35 knots
or above in 24 hr is estimated to be the 95th percentile in the north Atlantic (Balaguru et al., 2018). The tracks of
RI cases satisfying the 25‐ and 30‐kt thresholds span a significant portion of the Atlantic basin, whereas cases
meeting the 35‐kt threshold exhibit more limited coverage, with very few instances occurring north of 30°N.
Moreover, we performed a sensitivity analysis at three different threshold levels: 25, 35, and 45 knots (refer to
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Figures S2–S4 in Supporting Information S1). We note that our results and conclusions are relatively insensitive
to changes in the threshold. For the remainder of this paper, we choose to concentrate on the threshold of 35 knots
or above in 24 hr.

Following Emanuel (2017), we separate the storms into two categories: RI events, that have rapidly intensified
within the 24 hr prior to landfall, and non‐rapid intensification events (non‐RI), that have not rapidly intensified
within 24 hr of landfall. As RI is calculated as the change over 24 hr, the calculation of RI is designed to initiate
48 hr before the time of landfall. We note that out of the 5,018 synthetic events for the historical time period, 847
undergo RI during their life cycle using a definition of 35 knots or above in 24 hr (a rate of 18%). In comparison,
the IBTrACs data for the North Atlantic during the same period (1980–2005) includes 1,543 events, with 290 (or
18%) of these events undergoing RI at some point during their life cycle.

2.2. Storm Tide and Rainfall Modeling

Storm tide and rain rate estimates for the synthetic TCs are from Gori et al. (2022) and Xi et al. (2023), generated
using the full physics 2D depth‐integrated version of the hydrodynamic model ADvanced CIRCulation
(ADCIRC; Luettich et al. (1992); Westerink et al. (1994)) and the physics‐based tropical cyclone rain model
(TCRM) described in Zhu et al. (2013) and Lu et al. (2018). The storm surge levels for each synthetic TC are
modeled using an unstructured computational mesh developed and validated by Marsooli and Lin (2018) that
spans the entire North Atlantic basin. For each event, the maximum rain rate and storm tide level is extracted at
300 sites located along the US East and Gulf Coasts.

TCRM has been evaluated against a weather and research forecasting model WRF (Lu et al., 2018) and obser-
vational data in the North Atlantic (Xi & Lin, 2022). The model has been used for TC rainfall risk assessment
(Emanuel, 2017; Gori et al., 2022). TCRM is a horizontally distributed and vertically integrated numerical model,
where the rain rate is related to the upward vapor flux, which is contributed by frictional convergence (Ekman
pumping), changes in the axisymmetric vorticity of the gradient wind (vortex spinup and spindown), and
interaction of the storm with topography and large‐scale baroclinity (wind shear) (see Lu et al. (2018) for model
derivation). In particular, the effect of vortex stretching (i.e., changes in the storm's vorticity), derived from the
principles of mass continuity and conservation of angular momentum, depends on the time derivative of storm
intensity. Thus, everything else being equal, storm intensification induces increases in rain rates.

Both the storm tide and rainfall modeling are driven primarily by the surface wind field. We represent the wind
field of each synthetic TC using the physically derived complete wind profile of Chavas et al. (2015) (C15)
combined with the wind intensity (maximum wind speed, Vmax) from the deterministic intensity component of
the statistical‐deterministic TC model and TC size information. To our knowledge, no physical model of TC outer
size exists, due to a lack of physical understanding of the variation of TC outer size (Schenkel et al., 2018). Thus,
to be consistent, we follow the approach of the statistical‐deterministic TC model to randomly draw an outer size
value based on the historical distribution of North Atlantic outer size (Chavas et al., 2016) for each synthetic TC.
Then the complete wind model uses the outer size and Vmax to estimate the inner size (radius of maximum wind;
Rmax) and thus the symmetrical wind field.

The Rmax estimated with this wind model is statistically consistent with the observation (Chavas et al., 2016).
Using this approach, the sizes for RI and non‐RI storms are from the same underlying distribution (i.e. historical
outer size distribution) and, given the outer size, Rmax is inversly correlated with Vmax. The other intensity
measure obtained from the TC model, pressure deficit, is also correlated to Vmax. Given the outer size, therefore,
we can focus on comparing RI and non RI events with similar wind intensity (i.e., we do not need to normalize for
size or pressure in our analysis).

To capture asymmetrical wind forcing, we add an empirically estimated surface background wind vector onto the
symmetric wind profile (Lin & Chavas, 2012). The C15 model with the background‐wind correction has been
shown to capture historical rainfall and storm surges well and can reproduce the observed hazard with lower errors
than the often‐used Holland wind model (Holland, 1980) coupled with the translation‐speed‐based asymmetry
(Wang et al., 2022; Xi & Lin, 2020).

Statistical analysis is performed on the modeled peak storm tides and peak rain rates to produce return level
curves. Assuming that the storms arrive as a stationary Poisson process under a given climate, the return period
(Th) can be calculated as (Lin et al., 2012):
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T(h) =
1

P{Ha > h}
=

1
1 − P{Ha ≤ h}

=
1

1 − e−λP{H > h}
≈

1
λ(1 − P{H ≤ h})

(1)

where P(Ha ≤ h) is the cumulative density function (CDF) of the annual maximum hazard level, P({H ≤ h) is the
CDF of the event peak hazard level, and λ is the storm annual frequency for the location.

To assess the change in the hazard levels attributable to changes in RI, we consider the hazards generated from RI
and non‐RI events separately. We assume RI TCs and non‐RI TCs occur as separate, independent Poisson
processes with their respective arrival rates determined by the proportion of RI and non‐RI landfalls at the given
location. The overall hazard return period can be calculated by combining the individual RI and non‐RI return
periods as follows:

1 −
1

T(h)
= P{Ha ≤ h} = P{Ha

RI ≤ h} ⋅ P{Ha
NRI ≤ h} = (1 −

1
TRI(h)

) ⋅ (1 −
1

TNRI(h)
)

≈ (1 − λRI ⋅ (1 − P{HRI ≤ h})) ⋅ (1 − λNRI ⋅ (1 − P{HNRI ≤ h}))

(2)

where T(RI) (T(NRI)) is the hazard return period calculated for solely RI (non‐RI) TCs, λRI (λNRI) is the yearly
frequency of RI (non‐RI) TCs, and P(HRI ≤ h) and P(HNRI ≤ h) are the hazard CDFs for RI and non‐RI TCs,
respectively.

The location‐specific arrival rate is an adjustment of the basin arrival rate according to the proportion of storms
passing within 200 km of each location and according to whether storms are RI or non‐RI. Here, we model the tail
of the hazard CDF using the Peaks‐Over‐Threshold method with a Generalized Pareto Distribution and maximum
likelihood estimation (Coles, 2001). Non‐parametric density estimations are used to model the rest of the dis-
tribution. We determine the tail threshold value by trial and error so that the smallest error in the distribution fitted
to the tail is obtained.

3. Results
3.1. Future Changes in TC Intensification

Figure 1 shows the common logarithm of the probability densities of the 24‐hr intensification rates calculated for
the NCEP and SSP2‐4.5 synthetic TCs. The data on either side of zero intensity change tend to fall on straight
lines, indicating that the probability densities are nearly exponentially distributed. The 2070–2100 synthetic TCs
have significantly more 24‐hr intensity changes above 40 kt than the 1980–2005 NCEP TCs. The 1980–2005
NCEP simulation has zero 24‐hr intensification events of 125 kt or more, but by the end of century the
CMIP6 models used here indicate an increase in events exceeding 125 knots in 24 hr toward the end of the century
(Figure 1b). While such a rate of intensification is nowhere apparent in the historical record and the future
probability of occurrence (10−4–10−5) is rather low (Figure 1) the mere possibility of such rapid intensification is
worthy of attention by risk managers.

Figure 1. Common logarithm of the probability densities of 24‐hr intensity change calculated from NCEP synthetic events
(blue) and SSP2‐4.5 (red), for the full North Atlantic basin (a) and for storms 24 hr prior to landfall (b). Thin curves show the
range of six CMIP6 estimates. The average value of the CMIP6 models is calculated as the average of the six CMIP6
estimates of each intensity change level.
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We calculate the change in lead time, defined as the amount of time in hours from when a TC undergoes RI to
landfall (Figure 2). For the NCEP storms, the probability of RI is relatively uniform from the time of landfall up to
120 hr before landfall. For the SSP2‐4.5 emissions storms, the probability of RI happening close to landfall
increases in all CMIP6 models, such that the probability of RI within 24 hr of landfall increases from 0.15 to 0.28.

We proceed to investigate the RI ratio as the count of 24‐hr intensity changes that surpass 35 knots, divided by the
overall number of 24‐hr intensity changes at a given location. It's noted that this represents a revised version of the
RI ratio, defined for 30‐knot increases over 24 hr in Bhatia et al. (2018). Figure 3a shows the RI ratio for the NCEP
storms, with most regions having a ratio of between 0.05 and 0.07. The highest RI ratios are in the Gulf of Mexico
basin and low latitude states along the eastern coast of the US. The large RI ratio in low latitude regions shows
some agreement to the location of historical events in IBTrACS that have undergone RI over the same time period
(black dots on Figure 3a). The model results are also in close agreement with Bhatia et al. (2023), who found using
a threshold of 30 knots over 24 hr in the historical record a RI ratio of between 0.05 and 0.1 between 1982 and
2017 across the North Atlantic basin.

Figure 2. Probability of leadtime (hours) between onset of rapid intensification (defined as a change of at least 35 knots/24 hr)
and landfall for the NCEP (blue line; 984–2005) and SSP2‐4.5 simulations (red lines; 2070–2100). The thick solid red line
shows the CMIP6 model mean.

Figure 3. Maps of (a) NCEP rapid intensification ratio (RIR), (b) percentage change in RIR and (c) change in RIR per degree global warming. Change is calculated as the
difference between the NCEP period and bias corrected SSP2‐4.5 period. Dots on (a) show the location of RI in historical events identified in the International Best
Track Archive for Climate Stewardship (IBTrACS) product for the same time period (1980–2005). Rapid intensification ratio is calculated as the number of events that
rapidly intensify out of all intensity changes at each location.
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Figure 3b shows the percentage change in RI ratio from the NCEP period to the SSP2‐4.5 future period (averaged
over the CMIP6 models). We find strong increases in RI ratio by the end of the twenty first century, with many
regions projected to have a 30%–100% increase. Importantly, the majority of the TC‐prone coastal regions show a
significantly higher increase in RI ratio compared to the open ocean regions. There are particularly large increases
along the Western Gulf of Mexico and along mid to high latitude Atlantic region. Figure 3c shows the percentage
increase in RI ratio per degree global warming, calculated for each CMIP6 model individually before being
averaged across the models. The percentage of TCs reaching or surpassing a 35 knots/24 hr intensity threshold is
projected to rise by 10%–30% for each degree of global mean temperature increase by the century's end. Some
high latitude regions are projected to have an increase in RIR by up to 50% or greater per degree temperature
change in the future, as these regions are characterized by historically low RI ratio and thus even a minor increase
in RI events would signify a substantial percentage change.

3.2. Flood Hazard Associated With RI Events

We next explore if the flood hazards generated by RI events are statistically different from non‐RI events. To do
this we use quantile–quantile maps (QQplot) to examine the distribution of storm tide levels and rain rate values
modeled for the NCEP storms for each intensity category (Figure 4). Specifically, Figure 4 shows the quantiles of
rain rates and storm tide levels at 300 locations along the US East and Gulf Coasts for RI versus non‐RI storms.
The QQplot determines if two data sets come from populations with a common distribution; if the estimates fall
on the dotted line then they are likely from the same distribution. Also, we separate the storms into the average
wind‐speed intensity categories (1–5) in the 24 hr before landfall.

We find that the rain rates produced by RI events are larger when compared to non‐RI events, with the same
intensity category (Figure 4a). To test whether the hazard produced by each category of storms is statistically
different, we use the two sided Kolmogorov‐Smirnov test. We find that there are significant difference in rain rate
for all categories at 95% significance level (p‐value below 0.05), and thus they are likely from different
distributions.

Storm tide levels produced by category 5 RI TCs are also significantly higher than non‐RI TCs of the same
magnitude, with a p‐value below 0.05 (Figure 4b), but the difference is not significant for other categories. Thus,
storm tide is relatively less sensitive to RI compared to rain rate levels, except for the strongest storms. This may
be a result of the rain rates levels being more directly influenced by changes in storm intensity change, as in the
TCRM. Additionally, storm surge is also significantly influenced by other factors unrelated to intensity, including
the shape of the coastline, depth of the continental shelf and storm translation speed (Lockwood, Lin, et al., 2022).

Finally, the large increases in probability of RI into the future may suggest an increase in TCs that rapidly
intensify in short time‐scales close to landfall. To explore the change in hazard, we focus here on the change in
100 years return level at the 300 sites along the US East and Gulf coasts. For all locations, there is considerable
increases in the 100 years return level for both rain rates and storm tides into the future period (green lines

Figure 4. Q‐Q plot of rain rate and storm tide levels for RI (y‐axis) and non‐RI (x‐axis) events. RI and non‐RI events are defined based on intensity change within 24 hr of
landfall. The analysis is for the NCEP synthetic TCs, separated by mean storm category in the 24 hr prior to landfall. P‐values for the Kolmogorov‐Smirnov test of each
category storm are found at lower right of both panels; if the p‐value is below 0.05, then the non‐RI and RI distributions are statistically different.
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showing total change on Figure 5). Our projections show that TC changes have a relatively small impact on the
100 years return level at high latitudes, whereas its impact at lower latitudes is as high as 1.5 m for storm tides and
30 mm/hr for rain rates.

To explore the importance of RI changes on future hazards we calculate the change in 100‐year return levels for
storm tides and rain rates isolating the change attributed to the changes in RI and non‐RI events separately
(Figure 5). At the majority of locations in the Gulf of Mexico and South East Atlantic, effects of RI storm changes
on the 100 years hazard levels are considerably larger than effects of non‐RI storm changes, especially for rainfall
hazards (Figure 5). It is plausible that the reduction of the relative importance of RI events on 100 years return
levels with latitude is related to the relatively low frequency of these events even in future climate scenarios at
higher latitudes.

4. Discussion and Conclusions
Theory of TC intensification implies that the maximum rate of intensification increases with the square of the
potential intensity (Emanuel, 1987), the latter is expected to increase with an approximate rate of 2%–3% per 1°
(Knutson et al., 2020; Lockwood, Oppenheimer, et al., 2022). Indeed, we find that the proportion of TCs that
rapidly intensify increases substantially into the future across Atlantic basin and particularly near the US East and
Gulf Coasts. As a result, the probability of RI within 24 hr of landfall increases substantially under SSP2‐4.5.
These results suggest that coastal communities will have less time to prepare and evacuate from the onset of RI to
landfall into the future.

Jing et al. (2021) conducted both statistical and statistical‐deterministic downscaling of the Geophysical Fluid
Dynamics Laboratory's High‐Resolution Forecast‐Oriented Low Ocean Resolution (HiFLOR) model under the
representative concentration pathway 4.5 (RCP4.5). They found that the extent of increase in RI events varies
among the downscaling methods, suggesting that our results may differ under different TC downscaling models.
Under the RCP4.5 scenario, HiFLOR demonstrated a significant rise in RI ratio, using a definition as storms with
a velocity increase of 30 knots over 24 hr, reaching a staggering 76% increase by the period 2081–2100. In
comparison, the statistical‐deterministic model (Emanuel et al., 2006) and the Princeton environment‐dependent
probabilistic tropical cyclone (PepC; Jing & Lin, 2020) downscaling methods exhibited notable increases of
20.5% and 10.8%, respectively, under the same scenario (Jing et al., 2021). Our findings align with these out-
comes, revealing similar trends for the years 2070–2100. We employ a more conservative definition of RI,
necessitating an increase of 35 knots or greater within a 24‐hr period, and project increases of RI ratio ranging
from 30% to 70% for the SSP2‐4.5 scenario based on the CMIP6 models used here.

Instead of using high‐resolution GCMs, which are mainly employed to study changes in average RI rates, we
opted for a statistical‐deterministic downscaling approach. Given available computational resources, this method
enables us to model the hazards for a very large set of TCs to investigate the impact of RI events on extreme
hazards with a long return period such as 100 years. Further research could use different approaches, that avoid

Figure 5. Projected changes to the 100‐year hazard level for (b) storm tide levels and (c) rain rate at (a) locations along the East and Gulf Coasts. The black line is all
NCEP storms; the red line shows the historical non‐RI events combined with SSP2‐4.5 RI events; and the blue line shows the historical RI events combined with SSP2‐
4.5 non‐RI events. The green lines show the combined change in RI and non‐RI. RI and non‐RI events are defined based on intensity change within 24 hr of landfall.
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the underlying assumptions made in the statistical‐deterministic framework, to study RI impact on coastal haz-
ards. We acknowledge the potential benefits of utilizing ensembles of high‐resolution GCM simulations for this
purpose, but presently, such an approach would be excessively costly.

We find that there are statistical differences in the rain rates produced by RI events when compared to non‐RI
events for storms of the same intensity, due to the physically derived stretching mechanism that influences
rain rates in the TCRM model. Specifically, storm intensification, which is associated with an inward shift of
angular momentum surfaces (increasing maximum wind intensity and decreasing radius of maximum wind),
leads to positive vertical velocity (air lifting, more rainfall) within the core and inner radius. This vortex‐
stretching effect varies greatly with storm intensity evolution, with the vortex‐stretching‐induced increase in
the vertical velocity in TCRM being a function of the radial and time derivatives of the angular momentum/
azimuthal wind (Lu et al., 2018). Thus, the large changes in wind and radius of maximum wind that occur during
RI will result in higher vertical velocity and rainfall rates compared to non‐RI events with the same intensity.

Larger rainfall hazards in RI storms compared to non‐RI storms have been observed in historical events, although
most of previous studies didn't control for intensity. Multiple studies, including Rogers et al. (2013); Jiang
et al. (2011), have shown that the inner‐core convection in TCs undergoing RI tends to be more robust than that
observed in non‐RI TCs. Specifically, research using composites of airborne Doppler observations from NOAA
P‐3 aircraft missions, as conducted by Rogers et al. (2013), revealed greater azimuthal coverage of eyewall and
outer‐core precipitation in RI TCs. Moreover, a comprehensive study utilizing a decade of Tropical Rainfall
Measuring Mission data by Jiang et al. (2011) uncovered statistically significant disparities in convective intensity
parameters within the inner core between RI and non‐RI storms. The findings from Jiang et al. (2011) further
demonstrated that RI storms consistently exhibit a larger rain fall area and greater total volumetric rainfall in the
inner core, thus substantiating the expectation of larger rain rates during RI events. Larger rain rates for RI events
has also been observed due to the rapid reorganization of the cyclone's mesoscale cloud and rain structures when a
TC undergoes RI (Houze, 2010).

We did not find a significant difference in storm tide between RI and non‐RI storms with the same intensity,
except for category 5 TCs. This lack of identified difference indicates that the effect of RI on storm tide is
small compared to the effects of storm intensity, geophysical location, and astronomical tide. We note that in
this modeling set‐up with the outer size of the TCs derived from an empirical lognormal distribution (Chavas
et al., 2015), wind intensity has an inverse correlation with Rmax. However, storm track including storm
forward speed, can affect also storm surge levels, but its effect are complex depending on coastal geometry
(Lockwood, Lin, et al., 2022). We have not examined if the track features of RI storms are different from
those of non‐RI storms. Future research should more thoroughly explore the impact of RI on storm surge
levels.

Several studies indicate a substantial projected rise in rainfall and storm surge levels along the US East and Gulf
Coasts into the future (Guzman & Jiang, 2021; Wing et al., 2022). In alignment with these findings, we compare
the change in 100 years rain rate and storm tide hazard levels for RI and non‐RI events at locations along the US
East and Gulf Coasts. Our analysis reveals that the increases in flood hazard related to increases in RI events are
notably more pronounced than those associated with changes in non‐RI events, particularly concerning rainfall
hazards.

Our results suggest that coastal communities, particularly in low latitude regions will not only need to adapt to
higher rainfall rates and storm tide levels, but also to TCs that rapidly intensify in short time‐scales close to land.
This may lead to disastrous scenarios when coastal areas are not given adequate notice to evacuate and prepare.
This, together with increasing sea levels, implies the need for enhanced focus on refining hurricane intensity
forecasts and preparing communities to quickly react to high‐intensity hurricanes making landfall.

Data Availability Statement
You can access the hurricane data set IBTrACS from the National Climatic Data Center Knapp et al. (2010). The
original synthetic TC data sets used in this study are available for research purposes and can be obtained freely
from Kerry Emanuel. For detailed information about the synthetic data sets and their availability, please refer to
Emanuel (2021).
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