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Abstract

Adaptation of soil microbes due to warming from climate change has been observed, but
it remains unknown what microbial growth traits are adaptive to warming. We studied bacterial
isolates from the Harvard Forest Long-Term Ecological Research site, where field soils have
been experimentally heated to 5°C above ambient temperature with unheated controls for thirty
years. We hypothesized that Alphaproteobacteria from warmed plots have (1) less temperature
sensitive growth rates; (2) higher optimum growth temperatures; and (3) higher maximum
growth temperatures compared to isolates from control plots. We made high-throughput
measurements of bacterial growth in liquid cultures over time and across temperatures from 22-
37°C in 2-3°C increments. We estimated growth rates by fitting Gompertz models to the growth
data. Temperature sensitivity of growth rate, optimum growth temperature, and maximum
growth temperature were estimated by the Ratkowsky 1983 model and a modified
Macromolecular Rate Theory (MMRT) model. To determine evidence of adaptation, we ran
phylogenetic generalized least squares tests on isolates from warmed and control soils. Our
results showed evidence of adaptation of higher optimum growth temperature of bacterial
isolates from heated soils. However, we observed no evidence of adaptation of temperature
sensitivity of growth and maximum growth temperature. Our project begins to capture the shape
of the temperature response curves, but illustrates that the relationship between growth and

temperature is complex and cannot be limited to a single point in the biokinetic range.

Importance
Soils are the largest terrestrial carbon sink and the foundation of our food, fiber, and fuel

systems. Healthy soils are carbon sinks, storing more carbon than they release. This reduces the
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amount of carbon dioxide released to the atmosphere and buffers against climate change. Soil
microbes drive biogeochemical cycling and contribute to soil health through organic matter
breakdown, plant growth promotion, and nutrient distribution. In this study, we determined how
soil microbial growth traits respond to long-term soil warming. We found that bacterial isolates
from warmed plots showed evidence of adaptation of increased optimum growth temperature.
This suggests that increased microbial biomass and growth relative to respiration in a warming
world should result in greater carbon storage. As temperatures increase, greater microbial
activity may help reduce the soil carbon feedback loop. Our results provide insight on how

atmospheric carbon cycling and soil health may respond in a warming world.

Introduction

The Earth’s climate is warming, and the cascading stressors from warming may have
irreversible effects on microbes and the ecosystem functions that they drive. Between 2011 and
2020, earth’s land temperatures increased by 1.59°C, which is the largest rise in temperature to
date (Masson-Delmotte et al., 2021). Temperature impacts rates of biological processes
(Davidson & Janssens, 2006) and can result in thermal adaptation or acclimation (M. Bradford,
2013). When microbes acclimate, rates of soil processes increase less with rising temperatures
compared to non-acclimated soils (M. A. Bradford et al., 2008). When microbes adapt,
populations acquire new traits that fundamentally change how microbial systems respond to
changes in the environment. Because soil microbes drive biogeochemical cycles and mediate
atmospheric carbon fluxes (Falkowski et al., 2008; Pold et al., 2016), we need to understand the

effects of long-term warming on soil microbes.
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The ability of microbes to adapt to environmental change may alter ecosystem function
(Wallenstein & Hall, 2012). Healthy soils are characterized by high concentrations of organic
matter and abundant and active microbial communities. The activity of these microbes
contributes to new organic matter deposition and soil health (Whalen et al., 2022). Soils serve as
a large carbon sink, and healthy soils absorb more carbon than they release. This reduces the
amount of carbon dioxide (CO-) emitted to the atmosphere and buffers against climate change
(Stockmann et al., 2012). Changing environments may impact microbial respiration, which may
also be constrained by changes in biomass and growth. Carbon storage may subsequently
increase when the ratio of growth to respiration increases (Lipson, 2015). Microbial adaptation in
response to warming due to climate change could thus impact soil carbon cycling (Malik et al.,
2020).

To study the impacts of long-term warming on soils, a 30-year field experiment is
ongoing at the Harvard Forest Long-Term Ecological Research (LTER) site in Petersham,
Massachusetts. Here, experimental soils are heated 5°C above ambient temperature throughout
the year since 1991 to simulate the effects of climate change. Five degrees of warming was
chosen as a worst-case scenario for the rise in soil temperatures by the year 2100 (Masson-
Delmotte et al., 2021); control soils received no warming treatment. Increased rates of
decomposition following thirty years of warming has led to 34% loss of soil organic matter and
increased flux of CO» to the atmosphere in the heated versus control plots (Melillo et al., 2017).
An isolate screen and metagenomic analysis showed that the ability of soil microbes to degrade
complex carbohydrates also increased in response to rising temperatures (Pold et al., 2016). This
was preliminary evidence of adaptation to long-term warming and suggests the potential for

adaptation of other microbial traits (Melillo et al., 2017; Pold et al., 2016). Given that microbial
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growth and activity contribute to soil health, we sought to characterize whether microbial growth
traits are associated with warming and whether they are adaptive.

We selected Alphaproteobacteria as the focus of our study because they tend to be
dominant in soils, and because they showed increased absolute abundance in heated plots
compared to control plots in a previous community level experiment of soil microbes (DeAngelis
et al., 2015). We hypothesized that (1) Growth of Alphaproteobacteria from warmed plots are
less temperature sensitive than those from control plots; (2) Optimum growth temperature of
Alphaproteobacteria from warmed plots are higher than those from control plots; and (3)
Maximum growth temperature of Alphaproteobacteria from warmed plots are higher than those
from control plots. Given that microbes in heated soils have been exposed to higher temperatures
for 22-23 years at the time of isolation, we expect them to have adapted microbial growth traits
that are advantageous in warmer temperatures (Rousk et al., 2012). However, if warming does
not result in adaptation of these microbial growth traits, this would suggest that changes in soil
carbon dynamics may be a result of other factors such as nutrient availability, changes in
microbial biomass and carbon use efficiency, or thermal acclimation (Melillo et al., 2017).

To directly measure the adaptation of bacterial growth traits due to chronic warming, we
measured growth over time and across temperatures for Alphaproteobacteria isolated from the
warmed and control soil plots. We estimated the intrinsic growth rate for each replicate isolate at
each temperature (Zwietering et al., 1990). The Ratkowsky 1983 model (Ratkowsky et al., 1983)
and a modified version of Macromolecular Rate Theory (MMRT) (Alster et al., 2022, 2023)
were fitted to data for growth rate over temperature for each isolate to estimate temperature
sensitivity of growth, optimum growth temperature, and maximum growth temperature. We

chose the Ratkowsky 1983 model because it is a widely accepted model for bacterial growth
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over temperature and the MMRT model because of its underlying thermodynamic theory and
application in soil microbial communities. Finally, we used phylogenetic comparative methods
to test for adaptation of soil microbial growth traits (Felsenstein, 1985; Washburne et al., 2018;

Yang & Rannala, 2012).

Materials and Methods
Isolate selection

All organisms were isolated from soils collected from the Harvard Forest long-term
warming study, located at the Harvard Forest Long-Term Ecological Research (LTER) site in
Petersham, MA (Peterjohn et al., 1994). The site is a mixed hardwood forest with paper and
black birch (Betula papyrifera and lenta), red maple (Acer rubrum), black and red oak (Quercus
velutina and rubra), and American beech (Fagus grandifolia) dominant tree species. Soils are
coarse-loamy inceptisols. Eighteen 6 x 6 m plots were randomly assigned one of three
treatments: (1) Plots with buried electrical cables, heating soils 5°C above ambient temperature
throughout the year; (2) Disturbance control plots with the same as set up as the heated plots, but
without electrical power; and (3) Undisturbed control plots. Soils are heated 5°C above ambient
temperature by way of electrical cables buried 10 cm below the soil surface. This temperature
was chosen as a worst-case scenario rise in soil temperatures by the year 2100 (IPCC, 2021).

We selected 23 strains of Alphaproteobacteria from our lab culture collection originating
from either the heated or control plots. Bacteria were isolated from soils using several cultivation
methods (Table S1) and cryopreserved at -80°C. Isolates were grown on 10% Tryptic Soy Agar
until we could identify distinct colony morphology. We genotyped isolates by sequencing their

full length 16S ribosomal RNA. We extracted genomic DNA using cetyltrimethylammonium
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bromide (CTAB) extraction buffer. 16S rRNA was amplified on an Eppendorf AG 22331
Hamburg using the 27F and 1492R primers. We used a 25 pl final reaction volume with 0.125 ul
Invitrogen Taq, 10 ul MgCl. 10X PCR buffer, 0.75 pl 50 mM MgCl,, 1 ul of each primer, 2 pl of
dNTP mix, and 1 pl of template for amplification reactions. We performed PCR amplifications
using 35 cycles of 94°C (45 s), 50°C (30 s), 72C (120 s), followed by a final extension of 72°C
(10 min). We used agarose gel electrophoresis to verify amplifications. DNA purification and

Sanger sequencing was performed by Genewiz at Azenta Life Sciences.

Genome sequencing

To extract genomic DNA for genome sequencing, strains were grown in 10% Tryptic Soy
Broth, and pellets extracted using the Qiagen Blood & Tissue. We let cultures grow until late
exponential phase. One day before extractions, we added 100 pl of 10% glycine to culture tubes
for a final concentration of 1%; this helped to prevent cells from adhering to one another and
forming clumps as cultures reached late exponential phase. DNA was eluted in TE buffer,
quantified by Qubit, and transferred to the freezer for long-term storage.

Genomes were sequenced by the United States Department of Energy’s Joint Genome
Institute (JGI), in house an Oxford Nanopore Technologies (ONT) MinlON, or by the University
of Massachusetts Medical Center (Table S1). [llumina sequencing technology was used at JGI
according to standard operating procedures (Tarver et al., 2010). Long-read ONT libraries were
prepared with the Ligation Sequencing Kit SQK-LSK-109 and samples were multiplexed using
the Native Barcoding Expansion Kit EXP-NBD104 (Oxford Nanopore Technologies, UK). The
Oxford Nanopore Native Barcoding Protocol (Oxford Nanopore Technologies, UK) was
followed, and approximately 6-8 strains were multiplexed together in a run. The Covaris g-

TUBE shearing step was skipped to target long fragment DNA. Starting with 1ug of DNA per
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strain, samples were repaired and end-prepped using the NEBNext® FFPE DNA Repair Mix and
NEBNext® Ultra™ II End Repair/dA-Tailing kits (New England Biolabs, USA). DNA was
cleaned using Ampure XP Beads (Beckman Coulter, USA). Samples were ligated to individual
barcodes, and then about 150 ng of each sample pooled together, for a final library of 700-1000
ng. Adapters were ligated to the sample with Blunt/TA ligase (New England Biolabs, USA). The
long fragment buffer provided in the sequencing kit was used in an extended 10 minute
incubation at 37°C to enrich for high-molecular weight DNA. The flow cell was primed using
the Flow Cell Priming Kit (Oxford Nanopore Technologies, UK), and about 15 fmols of the
library was mixed with the sequencing buffer and loading beads and then loaded through the
Spot-On port of the flow cell (Choudoir et al., 2023).

Sequence runs were initially basecalled using the high-accuracy base calling (HAC)
algorithm with Guppy (R. R. Wick et al., 2019). These fast5 files were concatenated into one
file, then reads were subsampled based on read quality using Filtlong (R. Wick & Menzel, 2019).
The filtered reads were de novo assembled using Flye (Kolmogorov et al., 2019). A consensus
assembly was generated using Racon (Vaser et al., 2017), and final polishing performed with
Medaka (Medaka, 2017/2023). These assemblies were checked for quality using Quast

(Gurevich et al., 2013) and CheckM (Parks et al., 2015).

Quantifying microbial growth in liquid culture

We measured bacterial growth over time using absorbance measurements for liquid
cultures spanning temperatures from 22-37°C along 2-3°C increments. We chose 22-37°C to
capture the temperature growth range of mesophiles and to accommodate instrumental

limitations. Absorbance was measured in 96-well plates by optical density at 600 nm (ODgoo nm)
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as a measure of cell abundance. Each well was filled with 240 ul of 10% Tryptic Soy Broth.
Colonies grown on petri plates were resuspended in 500 pl of Phosphate Buffered Saline and 10
ul resuspension was inoculated into each well. For temperatures at or above 30°C, we pipetted 2-
3 ml of a 0.05% solution of Triton X-100 in 20% ethanol on the plate lid to prevent
condensation. Each plate accommodated 8 isolates with 11 replicates each and 8 negative
controls according to a randomized plate format. Bacterial growth was measured using a
SpectraMax M2 plate reader (Molecular Devices, CA) at ODsoo nm. Growth curves lasted 72-99

hours or until microbes entered death phase.

Model fitting
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Fig 1. Example data sets for measuring growth parameters and estimating temperature sensitivity
of growth using two different models. (A) Cell abundance over time was measured for liquid

growth curves between 22-37°C in 2-3°C increments. A Gompertz growth curve was fit on data of
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cell abundance over time. Intrinsic growth rate was extracted from the fitted model. (B) The
Ratkowsky 1983 model was fitted to growth rate over temperature for each isolate. Temperature
sensitivity of growth, optimum growth temperature, and maximum growth temperature were
estimated from the fitted model. (C) A modified version Macromolecular Rate Theory was fitted to
natural log-transformed data of growth rate over temperature for each isolate. Values of zero were
removed from analysis. Temperature inflection point and optimum growth temperature were

calculated from the fitted model. Data for A, B, and C are of the same isolate.

We fitted the Gompertz growth curve on data for ODgoo nm over time to calculate growth
rate using the R package Growthcurver (Sprouffske & Wagner, 2016) (figure 1A). A Gompertz
growth curve is an established time course model that parametrizes bacterial growth over time as
a sigmoidal function (Zwietering et al., 1990). We estimated the intrinsic growth rate from the
fitted Gompertz model. This was repeated for each replicate at each temperature.

We fitted temperature response curves to estimate the microbial growth traits.
Temperature sensitivity of growth is an estimate of how growth rate changes with increasing
temperature, but it can be estimated using different parameters depending on the model applied
(Table 1). Optimum growth temperature is the temperature at which growth rate is the greatest.
Maximum growth temperature is the estimated highest temperature at which microbial growth is
permissible. We modeled the relationship between growth rate and temperature for each isolate

using the Ratkowsky 1983 model (figure 1B):

r=[b(T - Tmin)]z * {1 —exp[c(T — Trax)]1} (1)

Tonin 1s the minimum permissible temperature for growth (°C), Ty is the maximum permissible

growth temperature (°C), and c is an empirical parameter required to model data above the

10
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optimum temperature (°C™"). Temperature sensitivity of growth was quantified by the Ratkowsky
parameter b (ODgoonm*min"*3/°C), which is the regression coefficient for square root of growth
rate on temperature (Ratkowsky et al., 1983; Zwietering et al., 1991). Maximum growth T}«
(°C) was extracted as a parameter from the fitted model. Optimum growth Topt (°C) was
estimated from the fitted model (Padfield et al., 2021). Model fitting was performed using the R
package »TPC (Padfield et al., 2021).

The temperature optima (7opt) and inflection point (7inf) of each bacterial growth curve

were estimated using a modified version of Macromolecular Rate Theory (MMRT) (figure 1C):

RB;T) _AHfy _ ACK(T=Ty) + 4st, + ACh(inT-InT)) (2)
h RT RT R R

In(k) = In(

where, k is the bacterial growth rate (ODsoonm), kg is Boltzmann’s constant, T is temperature
(K), 4 is Planck’s constant, R is the universal gas constant, AH % (superscript denotes transition

state) is the change in enthalpy (J mol™!), ASE, is the change in entropy (J mol! K-!), AC% is the

change in heat capacity (J mol! K!), and Ty is the reference temperature (set to 296.1K) (Hobbs

et al., 2013). The MMRT equation was modified to allow AC ji to vary linearly with temperature:

ACL=A(T-T,)+B A3)

where, A is the slope and B is the value of AC ;E at Ty (Alster et al., 2023). We used a non-linear
least-squares regression in R version 4.2.1 (R Core Team 2021) to fit MMRT and calculated the
Topt and Tinf numerically using the first and second derivative, respectively. We chose to use the
modified version of MMRT to better capture the Top¢ due to asymmetries observed in the
temperature response data and because AC ﬁ varies over a wide temperature range (Darros-

Barbosa et al., 2003; Ghosh & McSween Jr., 1999; Prentice et al., 2020). We calculated residual

11
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standard errors to determine whether the modified MMRT or original MMRT more adequately
fit our data (Table S2).

To evaluate the fit of the models, we calculated the residual standard error (RSE). The
Ratkowsky parameter (b), Topt estimated by both Ratkowsky 1983 and MMRT, Tmax estimated
by Ratkowsky 1983, and Tinf estimated by MMRT were used as traits for the phylogenetic group
comparison. Outliers, potentially due to irregularities in the replicate, were excluded from
analysis if they were not within the same order of magnitude as the remaining points in the data
set.

Phylogenetic group comparison

We conducted a phylogenetic group comparison of traits (Felsenstein, 1985; Washburne
et al., 2018; Yang & Rannala, 2012) test our hypotheses that Alphaproteobacteria from warmed
plots have (1) less temperature sensitive growth rates; (2) higher optimum growth temperatures;
and (3) higher maximum growth temperatures compared to isolates from control plots. We used
the R package nlme to conduct phylogenetic generalized least squares (PGLS) test (Garland Jr. et
al., 1993; Lindstrom & Bates, 1990). A phylogenetic group comparison accounts for the lack of
independence in phylogenetic hierarchical species data. A Lilliefors test for normality was used
to determine whether residuals of PGLS tests were normally distributed, and Q-Q plots were
made. Trait data was transformed if the Lilliefors test failed. We removed outlier data points,
which were 3-4 orders of magnitude greater than the remaining points in the data set.

A genome-based phylogeny was constructed using the United States Department of
Energy’s Systems Biology Knowledgebase (KBase) (Arkin et al., 2018). We quality checked
genomes using the Quast (Gurevich et al., 2013) and CheckM (Parks et al., 2015) applications in

KBase. Genomes were annotated by Prokka (Seemann, 2014). The phylogeny was constructed

12
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using Insert Genome into SpeciesTree v2.2.0 (Price et al., 2009), which creates a multiple
sequence alignment based on universal genes defined by COG (Clusters of Orthologous Groups)
gene families. We set the nearest public genome count to one and removed the public node in R
using the package ape (Paradis & Schliep, 2019). Temperature sensitivity of growth, optimum
growth temperature, and maximum growth temperature were mapped as traits on the phylogeny.
We also calculated phylogenetic signal using Pagel’s A to quantify the tendency of the
isolates to closely resemble each other based on their phylogenetic distribution of traits. Pagel’s
A is a measure of correlation between species under Brownian Motion (Pagel, 1999) and was
estimated using the R package phytools (Revell, 2012). P-values and group means were
calculated for each microbial growth trait from warmed and control soils. Soil microbial isolates
were the experimental unit, and all P-values less than 0.05 were considered statistically
significant relationships. All statistical analyses were performed in R using RStudio (RStudio

Team, version 20200.02.0+443).
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267  Fig 2. Optimum growth temperature (A), temperature sensitivity of growth (B), and maximum
268  growth temperature (B) were quantified by fitting the Ratkowsky 1983 model on data for growth
269 rate over temperature for each isolate. A multiple sequence alignment of universal genes found
270  in core orthologous group genes was used to construct the phylogenetic tree. Phylogenetic

271  generalized least squares test was used to test for difference in optimum growth temperature

272  between isolates from heated and control soil plots.
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Optimum growth temperature quantified by Ratkowsky 1983 model shows evidence of adaptation

There was a significant difference between optimum growth temperature (7opt) of

isolates from heated versus control plots quantified by the Ratkowsky 1983 model (#23) = 2.84,

p =0.01, nyarm = 8, Ncontrol = 15) (Table S3). Optimum growth temperature for isolates from

warmed plots (M = 30.59, SD = 1.65) was greater than those of control plots (M = 29.75, SD =

1.88). Residuals were normally distributed according to the Lilliefors test (p = 0.41, nyarm = 8,

Neontrol = 15). Pagel’s A showed that Topt was not distributed according to Brownian motion (A =

6.61E-05, p = 1.00) (figure 2A).

point, Tinf (°C)

Model parameter Model fit Warmed | Warmed Control Control

mean standard mean standard
deviation deviation

Optimum growth Ratkowsky 30.59 1.65 29.75 1.88

temperature, Topt (°C) | 1983

Temperature sensitivity | Ratkowsky 0.0049 0.001 0.0047 0.002

of growth, b 1983

(ODGOO nm*min'O‘S/OC)

Maximum growth Ratkowsky 37.17 1.00 37.06 0.88

temperature, T (°C) 1983

Optimum growth MMRT 30.26 1.82 30.74 1.72

temperature, Topt (°C)

Temperature inflection | MMRT 28.00 2.84 26.73 2.45

Table 1. Microbial growth traits were estimated by Ratkowsky 1983 and Macromolecular Rate

Theory (MMRT) model parameters. The mean and standard deviation of model parameters for

isolates from the warmed and control plots were also calculated.
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No evidence of adaptation of temperature sensitivity of growth quantified by Ratkowsky 1983
Our results showed no significant difference in temperature sensitivity of growth
quantified by the Ratkowsky parameter (#(20) = 1.79, p = 0.09, nwarm = 7, Ncontrol = 13) (Table S3).
Temperature sensitivity of isolates from warmed and control plots were 0.0049 (SD = 0.001) and
0.0047 (SD = 0.002) respectively. Residuals were normally distributed according to the Lilliefors
test (p > 0.05). Pagel’s A showed that temperature sensitivity of growth was not distributed
according to Brownian motion, suggesting a random distribution (A = 6.61E-05, p = 1.00) (figure

2B).

No evidence of adaptation of maximum growth temperature quantified by Ratkowsky 1983

Results of the phylogenetic least squares test for maximum growth temperature
quantified by the Ratkowsky 1983 model showed no significant difference between isolates from
heated and control plots (#23) = -0.35, p > 0.05, nwarm = 8, Ncontrol = 15) (Table S3). Maximum
growth temperature for isolates from the warmed and control plots were 37.17°C (SD = 1.00) and
37.06°C (SD = 0.88) respectively. Residuals were normally distributed according to the Lilliefors
test (p = 0.45). Pagel’s A showed that maximum growth temperature was not distributed

according to Brownian motion (A = 6.61E-05, p = 1.00) (figure 2C).

Temperature sensitivity inferred by Macromolecular Rate Theory does not show evidence of

adaptation

16



307

308

309

310

311

312

313

314

315

Temperature inflection point (°C) Optimum growth temperature (°C)

32+

25 :

30+

28
20+

control warm control warm
Warming treatment Warming treatment

QOrigin
B o
. control

15 20 25 30 385.0 275 30.0 325 35.0
Temperature inflection peint (°C) Optimum growth temperature (°C)

Fig 3. Temperature inflection point (7inf) and optimum growth temperature (7opt) were
quantified through fitting the Macromolecular Rate Theory model on data for growth rate over
temperature for each isolate. A multiple sequence alignment of universal genes found in core
orthologous group genes was used to construct the phylogenetic tree. Phylogenetic generalized
least squares test was used to test for difference in 7inf'and Topt between isolates from heated

and control soil plots.

17



316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

Results of the phylogenetic generalized least squares test for optimum growth
temperature quantified by MMRT showed no significant difference between isolates from the
heated and control plots (#23) = 1.60, p =0.12, nwam = 8, Ncontrol = 15) (Table S4). Optimum
growth temperature for isolates from warmed plots (M = 30.26, SD = 1.82) was not significantly
different than those of control plots (M = 30.74, SD = 1.72). Residuals were normally distributed
according to the Lilliefors test (p > 0.05). Pagel’s A showed that Topt was not distributed
according to Brownian motion (A = 0.45, p > 0.05) (figure 3). Residual standard errors indicated
that the Ratkowsky 1983 model more adequately fit our data in comparison to the MMRT model
(Table S2).

There was no significant difference in temperature inflection point (7inf) between isolates
from the heated and control soils (#(23) = 1.04, p > 0.05, nyarm = 8, Ncontrol = 15) (Table S4).
Residuals of PGLS on untransformed 7inf data failed the Lilliefors test for normality (P < 0.05).
Average temperature inflection point for isolates from warmed plots was 28.00°C (SD = 2.84).
Average temperature inflection point for isolates from control plots was 26.73°C (SD = 2.45).
Residuals failed the Lilliefors test for normality following log, square root, and lambda (Box-
Cox test) transformations (p < 0.05). Pagel’s A showed that 7Tinf was not distributed according to
Brownian motion (A = 6.61E-05, p > 0.05) (Figure 3). Since the residuals failed the Lilliefors test
for normality, we transformed 7inf (i.e. log transformation, square root, box-cox). However, all
transformations also failed the test for normality, and suggest that results of PGLS for Tinf

estimated by MMRT should be interpreted with caution.

Discussion
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We expected Alphaproteobacteria isolated from warmed plots would have (1) lower
temperature sensitivities of growth; (2) higher optimum growth temperatures; and (3) higher
maximum growth temperatures compared to isolates from control plots. Our results showed
evidence of adaptation of optimum growth temperature quantified by the Ratkowsky 1983
model, but not for other measured traits. Evidence of adaptation of Topt estimated by the
Ratkowsky 1983 model affirm observations from previous studies, where increased optimum
growth temperature is associated with warmer soils (Donhauser et al., 2020; Smith et al., 2022).
However, the lack of differences observed in other microbial growth traits estimated by both the
Ratkowsky 1983 and MMRT models may be due to the shape of the temperature response curve,
model fitting, or the magnitude and duration of warming, for example. Evidence for this
conclusion lies in the observation that the Ratkowsky 1983 model fit was better than the MMRT
model for optimum growth temperature.

The difference in evidence of adaptation for optimum growth temperature quantified by
the Ratkowsky 1983 and modified MMRT models may be due to a difference in fits. The
residual standard errors for the Ratkowsky 1983 fitted model on each isolate is 2-3 orders of
magnitude lower than those of the MMRT fitted models (Table S2). Adequate fitting of MMRT
requires a dataset to at least capture the optimum growth temperature. Although our dataset
includes Topt, it is considerably limited at lower temperatures and lacks growth rate data at the
temperature minima. This limitation may be associated with the less accurate MMRT fits,
resulting in inaccurate estimations of Topt. The difference in evidence of adaptation when Topt
was estimated by the Ratkowsky 1983 and MMRT models demonstrate the importance of model

fit when estimating microbial traits.
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There are several differences between the Ratkowsky 1983 model and Macromolecular
Rate Theory. Ratkowsky 1983 is an empirically determined model of growth rate over
temperature for each isolate (Ratkowsky et al., 1983). MMRT is based on thermodynamic theory
and is not empirically determined. It accounts for changes in the temperature response in the
absence of enzyme denaturation at temperatures above the optimum temperature through
changes in heat capacity. The residual standard errors indicate that the Ratkowsky 1983 is a more
appropriate fit for our data of growth rate over temperature compared to MMRT. However, we
are particularly interested in MMRT due to its underlying thermodynamic theory, as well as its
application in soil ecosystems (Alster et al., 2020, 2022, 2023).

The lack of evidence of adaptation of other microbial growth traits demonstrates the
limitations of inferring microbial growth traits based on a single temperature point. Traits such as
temperature sensitivity of growth are more nuanced and may be impacted by thermal niche
breadth. Thermal niche breadth is the range of temperatures that permits microbial growth.
Previous studies observed that changes in the range between minimum and maximum growth
temperatures depended on soil incubation temperatures (Rijkers et al., 2022; van Gestel et al.,
2013). This suggests that the relationship between growth rate and temperature may also vary
between minimum and maximum growth temperatures. The rate at which growth rate changes
across temperatures, or the steepness of the temperature response curve, may be impacted by the
environment, thus altering thermal niche breadth. Challenges in quantifying change in microbial
growth rate over temperature may result if such environmental factors are not fully accounted
for. This concept of a thermal niche breadth may have an associated fitness cost, as seen with
other microorganisms (Herren & Baym, 2022). Therefore, it may be challenging to identify

microbial growth trait adaptation without also considering changing thermal niche breadths.
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Pagel’s A was intermediate (0 <A < 1) for all microbial growth traits, which suggests that
the distribution of traits was not as expected under Brownian Motion. There are multiple
explanations for such results. One explanation is that climate warming may be associated with
selection of intermediate phenotypes (i.e. stabilizing selection) instead of extremes. This may
have resulted in constrained trait evolution. Additionally, changes in evolutionary rate over time
may have also resulted in non-Brownian Motion distribution of traits (Smith et al., 2022a). It is
possible that discontinuous substrate availability over the decades of experimental warming
could have caused a difference in growth rate, and possibly evolutionary rate, over time (Melillo
et al., 2017). Phylogenetic signal is also often quantified by Blomberg’s K, which is a variance
ratio and has the advantage of being able to be greater than one. However, our data was not
suitable for Blomberg’s K estimations as it resulted in a singular matrix.

Soil microbial growth tends to be limited by substrate availability, so evidence of
adaptation from PGLS tests may have been occluded by high levels of nutrient availability in the
laboratory growth conditions of these experiments. Kamble et al. (2018) observed that bacterial
and fungal growth in soils was carbon limited. In a community level experiment in a boreal
forest, Ekblad et al. (2002) observed that soil microbial biomass was limited by carbon but not
nitrogen availability. Although these experiments were conducted in soils on the community
level, it is possible that the carbon and nutrient rich media used in this study may obscure the
effect of nutrient availability and substrate-specific growth dynamics of microbes in warming
soils. Studying microbial growth under lower nutrient conditions may provide a different
perspective on how warming impacts microbial growth traits.

Thermal adaptation of increasing growth with temperature has been observed for other

organisms in response to climate warming. Among other microorganisms, growth rate of
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406  pathogenic fungi, Mycosphaerella graminicola was observed to be associated with increasing
407  temperatures (Zhan & McDonald, 2011). Globally distributed plant pathogens were also found to
408  locally adapt to their environments, resulting in significantly different optimum growth

409 temperatures (Boixel et al., 2022). Thermal adaptation is also often investigated more broadly
410  among other ectotherms. Villeneuve et al. (2021) observed that growth of Urosalpinx cinerea
411  (Atlantic oyster drill) was positively associated with spawning temperature. Studying thermal
412  adaptation is highly relevant as the effects of the climate crisis increase. However, doing so is
413  challenging among organisms with longer generation times, which highlights the importance of
414  utilizing techniques beyond lab and field-based experiments and suggests a benefit to studying
415  adaptation among organisms with short generation times and large populations like microbes. It
416  is also possible that the organismic adaptation to temperature appears overly significant due to
417  the difficulty in publishing negative or non-significant results.

418 Change in microbial growth traits is just one example of how warming may impact soil
419  microbes. Increasing temperatures are also associated with evolutionary selection of organisms
420  with smaller genome sizes, as seen in fire-affected soils (Sorensen et al., 2019). Evidence of
421  adaptation for other metabolic processes, such as respiration, has also been observed

422  (Nottingham et al., 2022; Tian et al., 2022). Differences in microbial growth traits between
423  isolates from warmed and control soils may be due to reasons other than adaptation. Such

424  differences may be due to depletion of labile carbon (M. A. Bradford et al., 2008; Melillo et al.,
425  2017), changing microbial community structure (Frey et al., 2008; Melillo et al., 2017),

426  microbial physiology (Allison et al., 2010), and species sorting and functional diversity (Smith et

427 al., 2022).

22



428 While thermal adaptation of microbial traits has been observed in other studies, our
429  results demonstrate that measuring growth potential may be impacted by additional factors. We
430  used laboratory settings to quantify microbial growth traits, which may be an inaccurate

431  representation of field conditions. Under these conditions, results of our study suggest that
432  warming has not resulted in adaptation of temperature sensitivity of growth and maximum
433  growth temperature quantified by the Ratkowsky 1983 model and temperature inflection point
434  and optimum growth temperature quantified by MMRT. However, optimum growth temperature
435 estimated by Ratkowsky 1983 showed some evidence of adaptation. As temperatures increase,
436  changes in soil microbial growth rate may affect rates of atmospheric carbon cycling. Future
437  exploration of whether growth strategies explain microbial adaptation to warming will help
438  predict changes in microbial community and ecosystem function and allow us to better

439  understand soil microbial responses to warming.

440

441  Data availability

442  The whole genome assemblies have been deposited at GenBank under the accession numbers
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445  Forest Data archive [HF data accession number]. All code used for model fitting and data

446  analysis are available in the supplemental information.
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