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Abstract 14 

 Adaptation of soil microbes due to warming from climate change has been observed, but 15 

it remains unknown what microbial growth traits are adaptive to warming. We studied bacterial 16 

isolates from the Harvard Forest Long-Term Ecological Research site, where field soils have 17 

been experimentally heated to 5ºC above ambient temperature with unheated controls for thirty 18 

years. We hypothesized that Alphaproteobacteria from warmed plots have (1) less temperature 19 

sensitive growth rates; (2) higher optimum growth temperatures; and (3) higher maximum 20 

growth temperatures compared to isolates from control plots. We made high-throughput 21 

measurements of bacterial growth in liquid cultures over time and across temperatures from 22-22 

37ºC in 2-3ºC increments. We estimated growth rates by fitting Gompertz models to the growth 23 

data. Temperature sensitivity of growth rate, optimum growth temperature, and maximum 24 

growth temperature were estimated by the Ratkowsky 1983 model and a modified 25 

Macromolecular Rate Theory (MMRT) model. To determine evidence of adaptation, we ran 26 

phylogenetic generalized least squares tests on isolates from warmed and control soils. Our 27 

results showed evidence of adaptation of higher optimum growth temperature of bacterial 28 

isolates from heated soils. However, we observed no evidence of adaptation of temperature 29 

sensitivity of growth and maximum growth temperature. Our project begins to capture the shape 30 

of the temperature response curves, but illustrates that the relationship between growth and 31 

temperature is complex and cannot be limited to a single point in the biokinetic range. 32 

 33 

Importance 34 

Soils are the largest terrestrial carbon sink and the foundation of our food, fiber, and fuel 35 

systems. Healthy soils are carbon sinks, storing more carbon than they release. This reduces the 36 
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amount of carbon dioxide released to the atmosphere and buffers against climate change. Soil 37 

microbes drive biogeochemical cycling and contribute to soil health through organic matter 38 

breakdown, plant growth promotion, and nutrient distribution. In this study, we determined how 39 

soil microbial growth traits respond to long-term soil warming. We found that bacterial isolates 40 

from warmed plots showed evidence of adaptation of increased optimum growth temperature. 41 

This suggests that increased microbial biomass and growth relative to respiration in a warming 42 

world should result in greater carbon storage. As temperatures increase, greater microbial 43 

activity may help reduce the soil carbon feedback loop. Our results provide insight on how 44 

atmospheric carbon cycling and soil health may respond in a warming world. 45 

 46 

Introduction 47 

The Earth’s climate is warming, and the cascading stressors from warming may have 48 

irreversible effects on microbes and the ecosystem functions that they drive. Between 2011 and 49 

2020, earth’s land temperatures increased by 1.59ºC, which is the largest rise in temperature to 50 

date (Masson-Delmotte et al., 2021). Temperature impacts rates of biological processes 51 

(Davidson & Janssens, 2006) and can result in thermal adaptation or acclimation (M. Bradford, 52 

2013). When microbes acclimate, rates of soil processes increase less with rising temperatures 53 

compared to non-acclimated soils (M. A. Bradford et al., 2008). When microbes adapt, 54 

populations acquire new traits that fundamentally change how microbial systems respond to 55 

changes in the environment. Because soil microbes drive biogeochemical cycles and mediate 56 

atmospheric carbon fluxes (Falkowski et al., 2008; Pold et al., 2016), we need to understand the 57 

effects of long-term warming on soil microbes.  58 
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The ability of microbes to adapt to environmental change may alter ecosystem function 59 

(Wallenstein & Hall, 2012). Healthy soils are characterized by high concentrations of organic 60 

matter and abundant and active microbial communities. The activity of these microbes 61 

contributes to new organic matter deposition and soil health (Whalen et al., 2022). Soils serve as 62 

a large carbon sink, and healthy soils absorb more carbon than they release. This reduces the 63 

amount of carbon dioxide (CO2) emitted to the atmosphere and buffers against climate change 64 

(Stockmann et al., 2012). Changing environments may impact microbial respiration, which may 65 

also be constrained by changes in biomass and growth. Carbon storage may subsequently 66 

increase when the ratio of growth to respiration increases (Lipson, 2015). Microbial adaptation in 67 

response to warming due to climate change could thus impact soil carbon cycling (Malik et al., 68 

2020). 69 

To study the impacts of long-term warming on soils, a 30-year field experiment is 70 

ongoing at the Harvard Forest Long-Term Ecological Research (LTER) site in Petersham, 71 

Massachusetts. Here, experimental soils are heated 5ºC above ambient temperature throughout 72 

the year since 1991 to simulate the effects of climate change. Five degrees of warming was 73 

chosen as a worst-case scenario for the rise in soil temperatures by the year 2100 (Masson-74 

Delmotte et al., 2021); control soils received no warming treatment. Increased rates of 75 

decomposition following thirty years of warming has led to 34% loss of soil organic matter and 76 

increased flux of CO2 to the atmosphere in the heated versus control plots (Melillo et al., 2017). 77 

An isolate screen and metagenomic analysis showed that the ability of soil microbes to degrade 78 

complex carbohydrates also increased in response to rising temperatures (Pold et al., 2016). This 79 

was preliminary evidence of adaptation to long-term warming and suggests the potential for 80 

adaptation of other microbial traits (Melillo et al., 2017; Pold et al., 2016). Given that microbial 81 
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growth and activity contribute to soil health, we sought to characterize whether microbial growth 82 

traits are associated with warming and whether they are adaptive. 83 

We selected Alphaproteobacteria as the focus of our study because they tend to be 84 

dominant in soils, and because they showed increased absolute abundance in heated plots 85 

compared to control plots in a previous community level experiment of soil microbes (DeAngelis 86 

et al., 2015). We hypothesized that (1) Growth of Alphaproteobacteria from warmed plots are 87 

less temperature sensitive than those from control plots; (2) Optimum growth temperature of 88 

Alphaproteobacteria from warmed plots are higher than those from control plots; and (3) 89 

Maximum growth temperature of Alphaproteobacteria from warmed plots are higher than those 90 

from control plots. Given that microbes in heated soils have been exposed to higher temperatures 91 

for 22-23 years at the time of isolation, we expect them to have adapted microbial growth traits 92 

that are advantageous in warmer temperatures (Rousk et al., 2012). However, if warming does 93 

not result in adaptation of these microbial growth traits, this would suggest that changes in soil 94 

carbon dynamics may be a result of other factors such as nutrient availability, changes in 95 

microbial biomass and carbon use efficiency, or thermal acclimation (Melillo et al., 2017). 96 

To directly measure the adaptation of bacterial growth traits due to chronic warming, we 97 

measured growth over time and across temperatures for Alphaproteobacteria isolated from the 98 

warmed and control soil plots. We estimated the intrinsic growth rate for each replicate isolate at 99 

each temperature (Zwietering et al., 1990). The Ratkowsky 1983 model (Ratkowsky et al., 1983) 100 

and a modified version of Macromolecular Rate Theory (MMRT) (Alster et al., 2022, 2023) 101 

were fitted to data for growth rate over temperature for each isolate to estimate temperature 102 

sensitivity of growth, optimum growth temperature, and maximum growth temperature. We 103 

chose the Ratkowsky 1983 model because it is a widely accepted model for bacterial growth 104 
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over temperature and the MMRT model because of its underlying thermodynamic theory and 105 

application in soil microbial communities. Finally, we used phylogenetic comparative methods 106 

to test for adaptation of soil microbial growth traits (Felsenstein, 1985; Washburne et al., 2018; 107 

Yang & Rannala, 2012). 108 

 109 

Materials and Methods 110 

Isolate selection 111 

All organisms were isolated from soils collected from the Harvard Forest long-term 112 

warming study, located at the Harvard Forest Long-Term Ecological Research (LTER) site in 113 

Petersham, MA (Peterjohn et al., 1994). The site is a mixed hardwood forest with paper and 114 

black birch (Betula papyrifera and lenta), red maple (Acer rubrum), black and red oak (Quercus 115 

velutina and rubra), and American beech (Fagus grandifolia) dominant tree species. Soils are 116 

coarse-loamy inceptisols. Eighteen 6 x 6 m plots were randomly assigned one of three 117 

treatments: (1) Plots with buried electrical cables, heating soils 5ºC above ambient temperature 118 

throughout the year; (2) Disturbance control plots with the same as set up as the heated plots, but 119 

without electrical power; and (3) Undisturbed control plots. Soils are heated 5ºC above ambient 120 

temperature by way of electrical cables buried 10 cm below the soil surface. This temperature 121 

was chosen as a worst-case scenario rise in soil temperatures by the year 2100 (IPCC, 2021).  122 

We selected 23 strains of Alphaproteobacteria from our lab culture collection originating 123 

from either the heated or control plots. Bacteria were isolated from soils using several cultivation 124 

methods (Table S1) and cryopreserved at -80ºC. Isolates were grown on 10% Tryptic Soy Agar 125 

until we could identify distinct colony morphology. We genotyped isolates by sequencing their 126 

full length 16S ribosomal RNA. We extracted genomic DNA using cetyltrimethylammonium 127 
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bromide (CTAB) extraction buffer. 16S rRNA was amplified on an Eppendorf AG 22331 128 

Hamburg using the 27F and 1492R primers. We used a 25 μl final reaction volume with 0.125 μl 129 

Invitrogen Taq, 10 μl MgCl2 10X PCR buffer, 0.75 μl 50 mM MgCl2, 1 μl of each primer, 2 μl of 130 

dNTP mix, and 1 μl of template for amplification reactions. We performed PCR amplifications 131 

using 35 cycles of 94ºC (45 s), 50ºC (30 s), 72C (120 s), followed by a final extension of 72ºC 132 

(10 min). We used agarose gel electrophoresis to verify amplifications. DNA purification and 133 

Sanger sequencing was performed by Genewiz at Azenta Life Sciences. 134 

Genome sequencing 135 

To extract genomic DNA for genome sequencing, strains were grown in 10% Tryptic Soy 136 

Broth, and pellets extracted using the Qiagen Blood & Tissue. We let cultures grow until late 137 

exponential phase. One day before extractions, we added 100 µl of 10% glycine to culture tubes 138 

for a final concentration of 1%; this helped to prevent cells from adhering to one another and 139 

forming clumps as cultures reached late exponential phase. DNA was eluted in TE buffer, 140 

quantified by Qubit, and transferred to the freezer for long-term storage.  141 

Genomes were sequenced by the United States Department of Energy’s Joint Genome 142 

Institute (JGI), in house an Oxford Nanopore Technologies (ONT) MinION, or by the University 143 

of Massachusetts Medical Center (Table S1). Illumina sequencing technology was used at JGI 144 

according to standard operating procedures (Tarver et al., 2010). Long-read ONT libraries were 145 

prepared with the Ligation Sequencing Kit SQK-LSK-109 and samples were multiplexed using 146 

the Native Barcoding Expansion Kit EXP-NBD104 (Oxford Nanopore Technologies, UK). The 147 

Oxford Nanopore Native Barcoding Protocol (Oxford Nanopore Technologies, UK) was 148 

followed, and approximately 6-8 strains were multiplexed together in a run. The Covaris g-149 

TUBE shearing step was skipped to target long fragment DNA. Starting with 1𝜇g of DNA per 150 
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strain, samples were repaired and end-prepped using the NEBNext® FFPE DNA Repair Mix and 151 

NEBNext® Ultra™ II End Repair/dA-Tailing kits (New England Biolabs, USA). DNA was 152 

cleaned using Ampure XP Beads (Beckman Coulter, USA). Samples were ligated to individual 153 

barcodes, and then about 150 ng of each sample pooled together, for a final library of 700-1000 154 

ng. Adapters were ligated to the sample with Blunt/TA ligase (New England Biolabs, USA). The 155 

long fragment buffer provided in the sequencing kit was used in an extended 10 minute 156 

incubation at 37℃ to enrich for high-molecular weight DNA. The flow cell was primed using 157 

the Flow Cell Priming Kit (Oxford Nanopore Technologies, UK), and about 15 fmols of the 158 

library was mixed with the sequencing buffer and loading beads and then loaded through the 159 

Spot-On port of the flow cell (Choudoir et al., 2023).  160 

Sequence runs were initially basecalled using the high-accuracy base calling (HAC) 161 

algorithm with Guppy (R. R. Wick et al., 2019). These fast5 files were concatenated into one 162 

file, then reads were subsampled based on read quality using Filtlong (R. Wick & Menzel, 2019). 163 

The filtered reads were de novo assembled using Flye (Kolmogorov et al., 2019). A consensus 164 

assembly was generated using Racon (Vaser et al., 2017), and final polishing performed with 165 

Medaka (Medaka, 2017/2023). These assemblies were checked for quality using Quast 166 

(Gurevich et al., 2013) and CheckM (Parks et al., 2015).  167 

 168 

Quantifying microbial growth in liquid culture 169 

We measured bacterial growth over time using absorbance measurements for liquid 170 

cultures spanning temperatures from 22-37ºC along 2-3ºC increments. We chose 22-37ºC to 171 

capture the temperature growth range of mesophiles and to accommodate instrumental 172 

limitations. Absorbance was measured in 96-well plates by optical density at 600 nm (OD600 nm) 173 
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as a measure of cell abundance. Each well was filled with 240 μl of 10% Tryptic Soy Broth. 174 

Colonies grown on petri plates were resuspended in 500 μl of Phosphate Buffered Saline and 10 175 

μl resuspension was inoculated into each well. For temperatures at or above 30ºC, we pipetted 2-176 

3 ml of a 0.05% solution of Triton X-100 in 20% ethanol on the plate lid to prevent 177 

condensation. Each plate accommodated 8 isolates with 11 replicates each and 8 negative 178 

controls according to a randomized plate format. Bacterial growth was measured using a 179 

SpectraMax M2 plate reader (Molecular Devices, CA) at OD600 nm. Growth curves lasted 72-99 180 

hours or until microbes entered death phase.  181 

Model fitting 182 

 183 

Fig 1. Example data sets for measuring growth parameters and estimating temperature sensitivity 184 

of growth using two different models. (A) Cell abundance over time was measured for liquid 185 

growth curves between 22-37ºC in 2-3ºC increments. A Gompertz growth curve was fit on data of 186 
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cell abundance over time. Intrinsic growth rate was extracted from the fitted model. (B) The 187 

Ratkowsky 1983 model was fitted to growth rate over temperature for each isolate. Temperature 188 

sensitivity of growth, optimum growth temperature, and maximum growth temperature were 189 

estimated from the fitted model. (C) A modified version Macromolecular Rate Theory was fitted to 190 

natural log-transformed data of growth rate over temperature for each isolate. Values of zero were 191 

removed from analysis. Temperature inflection point and optimum growth temperature were 192 

calculated from the fitted model. Data for A, B, and C are of the same isolate.  193 

 194 

We fitted the Gompertz growth curve on data for OD600 nm over time to calculate growth 195 

rate using the R package Growthcurver (Sprouffske & Wagner, 2016) (figure 1A). A Gompertz 196 

growth curve is an established time course model that parametrizes bacterial growth over time as 197 

a sigmoidal function (Zwietering et al., 1990). We estimated the intrinsic growth rate from the 198 

fitted Gompertz model. This was repeated for each replicate at each temperature.  199 

We fitted temperature response curves to estimate the microbial growth traits. 200 

Temperature sensitivity of growth is an estimate of how growth rate changes with increasing 201 

temperature, but it can be estimated using different parameters depending on the model applied 202 

(Table 1). Optimum growth temperature is the temperature at which growth rate is the greatest. 203 

Maximum growth temperature is the estimated highest temperature at which microbial growth is 204 

permissible. We modeled the relationship between growth rate and temperature for each isolate 205 

using the Ratkowsky 1983 model (figure 1B): 206 

        𝑟 = [𝑏(𝑇 − 𝑇!"#)]2 ∗ {1− 𝑒𝑥𝑝[𝑐(𝑇 − 𝑇!$%)]} (1) 

Tmin is the minimum permissible temperature for growth (ºC), Tmax is the maximum permissible 207 

growth temperature (ºC), and c is an empirical parameter required to model data above the 208 
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optimum temperature (ºC-1). Temperature sensitivity of growth was quantified by the Ratkowsky 209 

parameter b (OD600nm*min-0.5/ºC), which is the regression coefficient for square root of growth 210 

rate on temperature (Ratkowsky et al., 1983; Zwietering et al., 1991). Maximum growth Tmax 211 

(ºC) was extracted as a parameter from the fitted model. Optimum growth Topt (ºC) was 212 

estimated from the fitted model (Padfield et al., 2021). Model fitting was performed using the R 213 

package rTPC (Padfield et al., 2021).  214 

The temperature optima (Topt) and inflection point (Tinf) of each bacterial growth curve 215 

were estimated using a modified version of Macromolecular Rate Theory (MMRT) (figure 1C): 216 

        𝑙𝑛(𝑘) = 𝑙𝑛(&!'
ℎ
) − ()"0

‡

*'
− (+$

‡('-'0)
*'

+ (/"0
‡

*
+ (+$

‡(0#'-0#'0)
*

 (2) 

where, k is the bacterial growth rate (OD600nm), kB is Boltzmann’s constant, T is temperature 217 

(K), h is Planck’s constant, R is the universal gas constant, 𝛥𝐻𝑇0
‡  (superscript denotes transition 218 

state) is the change in enthalpy (J mol-1), 𝛥𝑆𝑇0
‡  is the change in entropy (J mol-1 K-1),  𝛥𝐶𝑃

‡  is the 219 

change in heat capacity (J mol-1 K-1), and T0 is the reference temperature (set to 296.1K) (Hobbs 220 

et al., 2013). The MMRT equation was modified to allow 𝛥𝐶𝑃
‡  to vary linearly with temperature: 221 

        𝛥𝐶𝑃
‡ = 𝐴(𝑇 − 𝑇0) + 𝐵 (3) 

where, A is the slope and B is the value of 𝛥𝐶𝑃
‡  at T0 (Alster et al., 2023). We used a non-linear 222 

least-squares regression in R version 4.2.1 (R Core Team 2021) to fit MMRT and calculated the 223 

Topt and Tinf numerically using the first and second derivative, respectively. We chose to use the 224 

modified version of MMRT to better capture the Topt due to asymmetries observed in the 225 

temperature response data and because 𝛥𝐶𝑃
‡  varies over a wide temperature range (Darros-226 

Barbosa et al., 2003; Ghosh & McSween Jr., 1999; Prentice et al., 2020). We calculated residual 227 
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standard errors to determine whether the modified MMRT or original MMRT more adequately 228 

fit our data (Table S2).  229 

To evaluate the fit of the models, we calculated the residual standard error (RSE). The 230 

Ratkowsky parameter (b), Topt estimated by both Ratkowsky 1983 and MMRT, Tmax estimated 231 

by Ratkowsky 1983, and Tinf estimated by MMRT were used as traits for the phylogenetic group 232 

comparison. Outliers, potentially due to irregularities in the replicate, were excluded from 233 

analysis if they were not within the same order of magnitude as the remaining points in the data 234 

set.  235 

Phylogenetic group comparison 236 

We conducted a phylogenetic group comparison of traits (Felsenstein, 1985; Washburne 237 

et al., 2018; Yang & Rannala, 2012) test our hypotheses that Alphaproteobacteria from warmed 238 

plots have (1) less temperature sensitive growth rates; (2) higher optimum growth temperatures; 239 

and (3) higher maximum growth temperatures compared to isolates from control plots. We used 240 

the R package nlme to conduct phylogenetic generalized least squares (PGLS) test (Garland Jr. et 241 

al., 1993; Lindstrom & Bates, 1990). A phylogenetic group comparison accounts for the lack of 242 

independence in phylogenetic hierarchical species data. A Lilliefors test for normality was used 243 

to determine whether residuals of PGLS tests were normally distributed, and Q-Q plots were 244 

made. Trait data was transformed if the Lilliefors test failed. We removed outlier data points, 245 

which were 3-4 orders of magnitude greater than the remaining points in the data set. 246 

A genome-based phylogeny was constructed using the United States Department of 247 

Energy’s Systems Biology Knowledgebase (KBase) (Arkin et al., 2018). We quality checked 248 

genomes using the Quast (Gurevich et al., 2013) and CheckM (Parks et al., 2015) applications in 249 

KBase. Genomes were annotated by Prokka (Seemann, 2014). The phylogeny was constructed 250 
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using Insert Genome into SpeciesTree v2.2.0 (Price et al., 2009), which creates a multiple 251 

sequence alignment based on universal genes defined by COG (Clusters of Orthologous Groups) 252 

gene families. We set the nearest public genome count to one and removed the public node in R 253 

using the package ape (Paradis & Schliep, 2019). Temperature sensitivity of growth, optimum 254 

growth temperature, and maximum growth temperature were mapped as traits on the phylogeny. 255 

We also calculated phylogenetic signal using Pagel’s λ to quantify the tendency of the 256 

isolates to closely resemble each other based on their phylogenetic distribution of traits. Pagel’s 257 

λ is a measure of correlation between species under Brownian Motion (Pagel, 1999) and was 258 

estimated using the R package phytools (Revell, 2012). P-values and group means were 259 

calculated for each microbial growth trait from warmed and control soils. Soil microbial isolates 260 

were the experimental unit, and all P-values less than 0.05 were considered statistically 261 

significant relationships. All statistical analyses were performed in R using RStudio (RStudio 262 

Team, version 20200.02.0+443). 263 

 264 
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Results265 

 266 

Fig 2. Optimum growth temperature (A), temperature sensitivity of growth (B), and maximum 267 

growth temperature (B) were quantified by fitting the Ratkowsky 1983 model on data for growth 268 

rate over temperature for each isolate. A multiple sequence alignment of universal genes found 269 

in core orthologous group genes was used to construct the phylogenetic tree. Phylogenetic 270 

generalized least squares test was used to test for difference in optimum growth temperature 271 

between isolates from heated and control soil plots. 272 
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 273 

Optimum growth temperature quantified by Ratkowsky 1983 model shows evidence of adaptation 274 

There was a significant difference between optimum growth temperature (Topt) of 275 

isolates from heated versus control plots quantified by the Ratkowsky 1983 model (t(23) = 2.84, 276 

p = 0.01, nwarm = 8, ncontrol = 15) (Table S3). Optimum growth temperature for isolates from 277 

warmed plots (M = 30.59, SD = 1.65) was greater than those of control plots (M = 29.75, SD = 278 

1.88). Residuals were normally distributed according to the Lilliefors test (p = 0.41, nwarm = 8, 279 

ncontrol = 15). Pagel’s λ showed that Topt was not distributed according to Brownian motion (λ = 280 

6.61E-05, p = 1.00) (figure 2A).  281 

 282 

Model parameter Model fit Warmed 
mean 

Warmed 
standard 
deviation 

Control 
mean 

Control 
standard 
deviation 

Optimum growth 
temperature, Topt (ºC) 

Ratkowsky 
1983 

30.59 1.65 29.75 1.88 

Temperature sensitivity 
of growth, b  
(OD600 nm*min-0.5/ºC) 

Ratkowsky 
1983 

0.0049 0.001 0.0047 0.002 

Maximum growth 
temperature, Tmax (ºC) 

Ratkowsky 
1983 

37.17 1.00 37.06 0.88 

Optimum growth 
temperature, Topt (ºC) 

MMRT 30.26 1.82 30.74 1.72 

Temperature inflection 
point, Tinf (ºC) 

MMRT 28.00 2.84 26.73 2.45 

Table 1. Microbial growth traits were estimated by Ratkowsky 1983 and Macromolecular Rate 283 

Theory (MMRT) model parameters. The mean and standard deviation of model parameters for 284 

isolates from the warmed and control plots were also calculated. 285 

 286 
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No evidence of adaptation of temperature sensitivity of growth quantified by Ratkowsky 1983 287 

Our results showed no significant difference in temperature sensitivity of growth 288 

quantified by the Ratkowsky parameter (t(20) = 1.79, p = 0.09, nwarm = 7, ncontrol = 13) (Table S3). 289 

Temperature sensitivity of isolates from warmed and control plots were 0.0049 (SD = 0.001) and 290 

0.0047 (SD = 0.002) respectively. Residuals were normally distributed according to the Lilliefors 291 

test (p > 0.05). Pagel’s λ showed that temperature sensitivity of growth was not distributed 292 

according to Brownian motion, suggesting a random distribution (λ = 6.61E-05, p = 1.00) (figure 293 

2B). 294 

 295 

No evidence of adaptation of maximum growth temperature quantified by Ratkowsky 1983 296 

Results of the phylogenetic least squares test for maximum growth temperature 297 

quantified by the Ratkowsky 1983 model showed no significant difference between isolates from 298 

heated and control plots (t(23) = -0.35, p > 0.05, nwarm = 8, ncontrol = 15) (Table S3). Maximum 299 

growth temperature for isolates from the warmed and control plots were 37.17ºC (SD = 1.00) and 300 

37.06ºC (SD = 0.88) respectively. Residuals were normally distributed according to the Lilliefors 301 

test (p = 0.45). Pagel’s λ showed that maximum growth temperature was not distributed 302 

according to Brownian motion (λ = 6.61E-05, p = 1.00) (figure 2C). 303 

 304 

Temperature sensitivity inferred by Macromolecular Rate Theory does not show evidence of 305 

adaptation 306 
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 307 

 308 

Fig 3. Temperature inflection point (Tinf) and optimum growth temperature (Topt) were 309 

quantified through fitting the Macromolecular Rate Theory model on data for growth rate over 310 

temperature for each isolate. A multiple sequence alignment of universal genes found in core 311 

orthologous group genes was used to construct the phylogenetic tree. Phylogenetic generalized 312 

least squares test was used to test for difference in Tinf and Topt between isolates from heated 313 

and control soil plots. 314 

 315 
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 Results of the phylogenetic generalized least squares test for optimum growth 316 

temperature quantified by MMRT showed no significant difference between isolates from the 317 

heated and control plots (t(23) = 1.60,  p = 0.12, nwarm = 8, ncontrol = 15) (Table S4). Optimum 318 

growth temperature for isolates from warmed plots (M = 30.26, SD = 1.82) was not significantly 319 

different than those of control plots (M = 30.74, SD = 1.72). Residuals were normally distributed 320 

according to the Lilliefors test (p > 0.05). Pagel’s λ showed that Topt was not distributed 321 

according to Brownian motion (λ = 0.45, p > 0.05) (figure 3). Residual standard errors indicated 322 

that the Ratkowsky 1983 model more adequately fit our data in comparison to the MMRT model 323 

(Table S2). 324 

There was no significant difference in temperature inflection point (Tinf) between isolates 325 

from the heated and control soils (t(23) = 1.04, p > 0.05, nwarm = 8, ncontrol = 15) (Table S4). 326 

Residuals of PGLS on untransformed Tinf data failed the Lilliefors test for normality (P < 0.05). 327 

Average temperature inflection point for isolates from warmed plots was 28.00ºC (SD = 2.84). 328 

Average temperature inflection point for isolates from control plots was 26.73ºC (SD = 2.45). 329 

Residuals failed the Lilliefors test for normality following log, square root, and lambda (Box-330 

Cox test) transformations (p < 0.05). Pagel’s λ showed that Tinf was not distributed according to 331 

Brownian motion (λ = 6.61E-05, p > 0.05) (Figure 3). Since the residuals failed the Lilliefors test 332 

for normality, we transformed Tinf (i.e. log transformation, square root, box-cox). However, all 333 

transformations also failed the test for normality, and suggest that results of PGLS for Tinf 334 

estimated by MMRT should be interpreted with caution. 335 

 336 

Discussion 337 
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We expected Alphaproteobacteria isolated from warmed plots would have (1) lower 338 

temperature sensitivities of growth; (2) higher optimum growth temperatures; and (3) higher 339 

maximum growth temperatures compared to isolates from control plots. Our results showed 340 

evidence of adaptation of optimum growth temperature quantified by the Ratkowsky 1983 341 

model, but not for other measured traits. Evidence of adaptation of Topt estimated by the 342 

Ratkowsky 1983 model affirm observations from previous studies, where increased optimum 343 

growth temperature is associated with warmer soils (Donhauser et al., 2020; Smith et al., 2022). 344 

However, the lack of differences observed in other microbial growth traits estimated by both the 345 

Ratkowsky 1983 and MMRT models may be due to the shape of the temperature response curve, 346 

model fitting, or the magnitude and duration of warming, for example. Evidence for this 347 

conclusion lies in the observation that the Ratkowsky 1983 model fit was better than the MMRT 348 

model for optimum growth temperature.  349 

The difference in evidence of adaptation for optimum growth temperature quantified by 350 

the Ratkowsky 1983 and modified MMRT models may be due to a difference in fits. The 351 

residual standard errors for the Ratkowsky 1983 fitted model on each isolate is 2-3 orders of 352 

magnitude lower than those of the MMRT fitted models (Table S2). Adequate fitting of MMRT 353 

requires a dataset to at least capture the optimum growth temperature. Although our dataset 354 

includes Topt, it is considerably limited at lower temperatures and lacks growth rate data at the 355 

temperature minima. This limitation may be associated with the less accurate MMRT fits, 356 

resulting in inaccurate estimations of Topt. The difference in evidence of adaptation when Topt 357 

was estimated by the Ratkowsky 1983 and MMRT models demonstrate the importance of model 358 

fit when estimating microbial traits. 359 
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There are several differences between the Ratkowsky 1983 model and Macromolecular 360 

Rate Theory. Ratkowsky 1983 is an empirically determined model of growth rate over 361 

temperature for each isolate (Ratkowsky et al., 1983). MMRT is based on thermodynamic theory 362 

and is not empirically determined. It accounts for changes in the temperature response in the 363 

absence of enzyme denaturation at temperatures above the optimum temperature through 364 

changes in heat capacity. The residual standard errors indicate that the Ratkowsky 1983 is a more 365 

appropriate fit for our data of growth rate over temperature compared to MMRT. However, we 366 

are particularly interested in MMRT due to its underlying thermodynamic theory, as well as its 367 

application in soil ecosystems (Alster et al., 2020, 2022, 2023). 368 

The lack of evidence of adaptation of other microbial growth traits demonstrates the 369 

limitations of inferring microbial growth traits based on a single temperature point. Traits such as 370 

temperature sensitivity of growth are more nuanced and may be impacted by thermal niche 371 

breadth. Thermal niche breadth is the range of temperatures that permits microbial growth. 372 

Previous studies observed that changes in the range between minimum and maximum growth 373 

temperatures depended on soil incubation temperatures (Rijkers et al., 2022; van Gestel et al., 374 

2013). This suggests that the relationship between growth rate and temperature may also vary 375 

between minimum and maximum growth temperatures. The rate at which growth rate changes 376 

across temperatures, or the steepness of the temperature response curve, may be impacted by the 377 

environment, thus altering thermal niche breadth. Challenges in quantifying change in microbial 378 

growth rate over temperature may result if such environmental factors are not fully accounted 379 

for. This concept of a thermal niche breadth may have an associated fitness cost, as seen with 380 

other microorganisms (Herren & Baym, 2022). Therefore, it may be challenging to identify 381 

microbial growth trait adaptation without also considering changing thermal niche breadths. 382 
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Pagel’s λ was intermediate (0 < λ < 1) for all microbial growth traits, which suggests that 383 

the distribution of traits was not as expected under Brownian Motion. There are multiple 384 

explanations for such results. One explanation is that climate warming may be associated with 385 

selection of intermediate phenotypes (i.e. stabilizing selection) instead of extremes. This may 386 

have resulted in constrained trait evolution. Additionally, changes in evolutionary rate over time 387 

may have also resulted in non-Brownian Motion distribution of traits (Smith et al., 2022a). It is 388 

possible that discontinuous substrate availability over the decades of experimental warming 389 

could have caused a difference in growth rate, and possibly evolutionary rate, over time (Melillo 390 

et al., 2017). Phylogenetic signal is also often quantified by Blomberg’s K, which is a variance 391 

ratio and has the advantage of being able to be greater than one. However, our data was not 392 

suitable for Blomberg’s K estimations as it resulted in a singular matrix. 393 

Soil microbial growth tends to be limited by substrate availability, so evidence of 394 

adaptation from PGLS tests may have been occluded by high levels of nutrient availability in the 395 

laboratory growth conditions of these experiments. Kamble et al. (2018) observed that bacterial 396 

and fungal growth in soils was carbon limited. In a community level experiment in a boreal 397 

forest, Ekblad et al. (2002) observed that soil microbial biomass was limited by carbon but not 398 

nitrogen availability. Although these experiments were conducted in soils on the community 399 

level, it is possible that the carbon and nutrient rich media used in this study may obscure the 400 

effect of nutrient availability and substrate-specific growth dynamics of microbes in warming 401 

soils. Studying microbial growth under lower nutrient conditions may provide a different 402 

perspective on how warming impacts microbial growth traits. 403 

Thermal adaptation of increasing growth with temperature has been observed for other 404 

organisms in response to climate warming. Among other microorganisms, growth rate of 405 
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pathogenic fungi, Mycosphaerella graminicola was observed to be associated with increasing 406 

temperatures (Zhan & McDonald, 2011). Globally distributed plant pathogens were also found to 407 

locally adapt to their environments, resulting in significantly different optimum growth 408 

temperatures (Boixel et al., 2022). Thermal adaptation is also often investigated more broadly 409 

among other ectotherms. Villeneuve et al. (2021) observed that growth of Urosalpinx cinerea 410 

(Atlantic oyster drill) was positively associated with spawning temperature. Studying thermal 411 

adaptation is highly relevant as the effects of the climate crisis increase. However, doing so is 412 

challenging among organisms with longer generation times, which highlights the importance of 413 

utilizing techniques beyond lab and field-based experiments and suggests a benefit to studying 414 

adaptation among organisms with short generation times and large populations like microbes. It 415 

is also possible that the organismic adaptation to temperature appears overly significant due to 416 

the difficulty in publishing negative or non-significant results.  417 

Change in microbial growth traits is just one example of how warming may impact soil 418 

microbes. Increasing temperatures are also associated with evolutionary selection of organisms 419 

with smaller genome sizes, as seen in fire-affected soils (Sorensen et al., 2019). Evidence of 420 

adaptation for other metabolic processes, such as respiration, has also been observed 421 

(Nottingham et al., 2022; Tian et al., 2022).  Differences in microbial growth traits between 422 

isolates from warmed and control soils may be due to reasons other than adaptation. Such 423 

differences may be due to depletion of labile carbon (M. A. Bradford et al., 2008; Melillo et al., 424 

2017), changing microbial community structure (Frey et al., 2008; Melillo et al., 2017), 425 

microbial physiology (Allison et al., 2010), and species sorting and functional diversity (Smith et 426 

al., 2022). 427 
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While thermal adaptation of microbial traits has been observed in other studies, our 428 

results demonstrate that measuring growth potential may be impacted by additional factors. We 429 

used laboratory settings to quantify microbial growth traits, which may be an inaccurate 430 

representation of field conditions. Under these conditions, results of our study suggest that 431 

warming has not resulted in adaptation of temperature sensitivity of growth and maximum 432 

growth temperature quantified by the Ratkowsky 1983 model and temperature inflection point 433 

and optimum growth temperature quantified by MMRT. However, optimum growth temperature 434 

estimated by Ratkowsky 1983 showed some evidence of adaptation. As temperatures increase, 435 

changes in soil microbial growth rate may affect rates of atmospheric carbon cycling. Future 436 

exploration of whether growth strategies explain microbial adaptation to warming will help 437 

predict changes in microbial community and ecosystem function and allow us to better 438 

understand soil microbial responses to warming. 439 

 440 

Data availability 441 

The whole genome assemblies have been deposited at GenBank under the accession numbers 442 

listed in Table S1, along with the raw data deposited in the Sequence Read Archive, and 443 

associated BioProject and BioSamples. Microbial growth data can be found in the Harvard 444 

Forest Data archive [HF data accession number]. All code used for model fitting and data 445 

analysis are available in the supplemental information. 446 
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