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Abstract

Soil carbon loss is likely to increase due to climate warming, but microbiomes and
microenvironments may dampen this effect. In a 30-year warming experiment, physical
protection within soil aggregates affected the thermal responses of soil microbiomes and carbon
dynamics. In this study, we combined metagenomic analysis with physical characterization of
soil aggregates to explore mechanisms by which microbial communities respond to climate
warming across different soil microenvironments. Long-term warming decreased the relative
abundances of genes involved in degrading labile compounds (e.g., cellulose), but increased
those genes involved in degrading recalcitrant compounds (e.g., lignin) across aggregate sizes.
These changes were observed in most phyla of bacteria, especially for Acidobacteria,
Actinobacteria, Bacteroidetes, Chloroflexi, and Planctomycetes. Microbial community
composition was considerably altered by warming, leading to declined diversity for bacteria and
fungi but not for archaea. Microbial functional genes, diversity, and community composition
differed between macroaggregates and microaggregates, indicating the essential role of physical
protection in controlling microbial community dynamics. Our findings suggest that microbes

have the capacity to employ various strategies to acclimate or adapt to climate change (e.g.,
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warming, heat stress) by shifting functional gene abundances and community structures in

varying microenvironments, as regulated by soil physical protection.

Keywords: carbon storage and sequestration; bacterial necromass; substrate accessibility;
biogeochemical cycles; soil aggregation; microbial evolution; organic matter decomposition;

functional genomics; degradation enzymes; plant soil interactions.

Introduction

Microbes play a crucial role in soil organic matter (SOM) decomposition and have the potential
to accelerate soil carbon loss to the atmosphere in response to climate warming [1-4]. Previous
studies have demonstrated that warming is associated with increased abundances of functional
genes involved in the degradation of organic matter with varying levels of recalcitrance [5—9]
and enriched pathways related to cellulose degradation [10—12], but the effects on microbial
abundances and community structure have been variable [13—17]. In soils, substrate availability
is affected by physico-chemical protection mechanisms like adsorption, desorption, and
aggregate turnover that decrease depolymerization and microbial decomposition [18], but the
extent to which functional genes, metabolic pathways and taxonomic groups vary with chronic
warming, especially in different aggregate sizes, remains poorly studied.

Soil structure and mineralogy drive microbial community composition by affecting substrate
availability and physical accessibility [19-24]. The presence of physical barriers within soil
aggregates can protect SOM from decomposition by inducing microenvironmental constraints on
decomposer movement and metabolism [25-28]. Different microbial groups also exhibited

varying relative abundances between aggregates, with bacteria and fungi showing distinct
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patterns [29-31]. For instance, bacterial communities were found to be less diverse [22], while
fungi were more diverse in macroaggregates than in microaggregates [32, 33], where the
competition between the two groups was stronger [34, 35]. Furthermore, fungi may play a more
dominant role in forming macroaggregates [36—39], although the ratio of fungi to bacteria can
vary substantially [40]. Therefore, a fine-scale understanding of soil microbial community
distribution is essential to comprehend how climate change impacts species interactions and
metabolisms [41], and whether carbon persists in soils [42].

Previously we reported on two studies that explored how long-term warming at the Harvard
Forest has affected microbes in different microenvironments [20, 21]. Soil samples from the
control and heated plots were separated into macroaggregate (250-2000 um) and microaggregate
(<250 um) fractions, and microbial carbon use efficiency (CUE) was measured with 30
enriched water (H>'%0) in samples incubated at 15 or 25°C for 24 h. We found that warming
reduced soil carbon and nitrogen concentrations, extracellular enzyme activities, microbial
growth, respiration, and the temperature sensitivity (Q10) of CUE in macroaggregates [21]. To
further explore how physical protection may inhibit SOM decomposition, we crushed aggregates
to reduce physical protection and compared them to intact aggregates. We found that warming
was associated with a smaller effect of physical protection for respiration but with a larger effect
for biomass turnover rate in macroaggregates [20], suggesting that microbial functional traits
vary across microenvironments with different physical protection, yet their responses to climate
warming remain unclear.

In the new study we report here, we used metagenomics to examine how long-term warming
affects the gene abundances and community structures of soil microbiomes associated with both

macroaggregates and microaggregates. Because of their known differences in physical
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protection, our study aimed to provide insights into the mechanisms behind the differential
effects of long-term warming on microbial functions and dynamics between macroaggregates
and microaggregates. We posited that the effects of warming on gene abundances would be more
pronounced in macroaggregates than in microaggregates. We further hypothesized that warming
would increase the abundances of functional genes related to cell maintenance and degradation
of complex substrates, but would reduce the abundances of genes responsible for degrading

labile substrates, corresponding to the changes in abundances of oligotrophs and copiotrophs.

Materials and Methods

Field site and sample processing

Samples were collected as previously described [20, 21] from the Harvard Forest long-term
warming experiment (Pertersham, MA, United States), where soils have been heated 5°C above
ambient temperature since 1991 alongside control and disturbance control (instrumented but not
heated) plots [43]. The soil for this study was collected in October 2017 from the mineral
horizon (10 cm depth; N=3), from the same batch of samples used for prior experiments [20, 21].
The soil was air-dried at 4°C until it reached a moisture level of about 10% to minimize any
potential disturbance to the microbial communities during aggregate fractionation [44].
Microaggregates (<250 um) and macroaggregates (250-2000 pum) were separated with a 250 um
sieve, weighed and stored at -80 °C for molecular analysis. To extract DNA from the soil
aggregates, 0.5 g of each sample was weighed out and processed using the DNeasy PowerSoil
Kit (Qiagen, Hilden, Germany). The extracted DNA was assessed for quality using the
NanoDrop One (Thermo Scientific), quantified with the PicoGreen Kit (Quant-IT, Invitrogen),

and treated with RNase A to avoid potential RNA contamination.
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Processing of metagenomic data

Shotgun metagenome library preparation, sequencing, assembly, and annotation were performed
at the Joint Genome Institute (JGI) following standard protocols and pipelines [45]. Soil DNA
samples were sequenced at JGI using a NovaSeq 6000 System (2x150 bp; [llumina). The
samples had an average GC content of 62.1%, reads of 3,942,584,112, and 94.9% of reads >Q30
(BBTools, v38.59; Table S1). The filtered quality reads were assembled with metaSPAdes
(version 3.13.0) using different k-mer lengths [46, 47]. On average, 25.3 Gb of MG sequence

was obtained per soil sample.

To annotate the functional profiles of the metagenomes, we employed the Integrated Microbial
Genomes Annotation Pipeline (IMGAP v.5.0), which assigned protein-coding genes to Clusters
of Orthologous Groups (COGs), Enzyme Commission (EC) numbers and KEGG Orthology
(KO) terms [45, 48, 49]. Protein-coding genes were compared against high-quality genomes
using USEARCH 6.0.294 to assign EC numbers [50], which were then mapped to the
Carbohydrate-Active Enzymes database (CAZy) for taxonomic analysis of all functions [51].
Phylogenetic distributions were determined using the best BLAST hits against a non-redundant
protein database derived from high-quality genomes based on the Integrated Microbial Genomes
(IMG) platform. To analyze taxonomy, COG taxon-specific functions were filtered to include
only hits with >30% identities at the phylum level. To account for differences in metagenome

size, all functional abundance matrices were normalized to hits per million reads [52].
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Taxonomic annotation of genes in metagenome

To assess the taxonomic composition of a genome sample, the distribution of best BLAST hits of
protein-coding genes was conducted in the dataset. Instead of e-value filtering, IMG utilizes
percent identity filtering for best hits to account for the variation in alignment length between
query and target proteins. Percent identity ranges used in IMG roughly correspond to the average
amino acid identity found between genomes from the same genus (90+% range), the same family
or order (60~89%), and same class or phylum (30~59%). Additionally, IMG provides links to
COG functional category information for genes with 30, 60 and 90% hits. Here we selected the
30% identity to investigate microbial taxonomic responses at the phylum/class level, and
classified the best hits into two COG functional categories: metabolism (amino acid transport,
carbohydrate transport, energy production, lipid transport, coenzyme transport, inorganic ion
transport, nucleotide transport, secondary metabolites biosynthesis) and cellular processes (cell
wall biogenesis, defense mechanisms, signal transduction, post-translational chaperones, cell

division, cell motility, extracellular structures, and intracellular trafficking).

CAZy degradation genes

We employed the CAZy database, which relies on functionally related domains of enzymes that
break down glycosidic bonds, to classify the enzyme genes [53]. Our study focused on four
classes of enzymes: auxiliary activities (AA), carbohydrate esterases (CE), glycoside hydrolases
(GH), and polysaccharide lyases (PL). These enzymes were assigned to substrates such as
hemicellulose, starch, cellulose, chitin, pectin, and lignin, as listed in Table S2. Based on the

origins, genes associated with peptidoglycan and chitin degradation were grouped for bacterial
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and fungal biomass degradation, while hemicellulose, cellulose, and lignin for plant biomass

degradation.

Taxonomic analysis

We employed metagenomic data to evaluate the abundance of bacterial and fungal communities
in control and heated plots. We utilized Kraken2 (v. 2.0.9) to assign taxonomic groups with the
NCBI taxonomy, which included bacteria, fungi, and archaea. The taxon-by-sample matrices
were normalized based on the total number of reads per sample to mitigate the impact of uneven
sequencing depth. The relative abundances of phyla or classes were calculated using the

abundances of sequences that matched archaea, bacteria or fungi [54].

Statistical analyses

To minimize the effect of variation in sequencing depth among samples, functional genes and
relative abundances of taxa were normalized to hits per million reads. We conducted non-metric
multidimensional scaling (NMDS) using Bray-Curtis dissimilarities based on square-root
transformed abundances of functional genes or relative abundances of bacterial or fungal
communities. Shannon’s diversity was used to measure community evenness and richness. To
test for differences in bacterial communities, we performed Permutational Multivariate Analysis
of Variance (Permanova) and homogeneity of variances using the functions adonis and
betadisper in R [8]. All sequencing data were analyzed based on three biological replicates per
sample. P values for the relative abundances of taxa and functional genes were calculated using
the two-tailed t test. All statistical analyses were performed with R [55]. Due to the small sample

size, a P value of <0.10 was considered statistically significant for the tests [10, 51, 56].
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Results and Discussion

Our prior findings show that long-term warming reduced soil carbon and nitrogen
concentrations, activities of hydrolytic and oxidative enzymes, microbial growth, respiration, and
Q1o of microbial CUE in macroaggregates but not in microaggregates [20, 21]. Besides, warming
showed a larger effect on microbial biomass turnover but smaller effect on respiration in
macroaggregates than in microaggregates. To understand how microbial functional traits vary in
their responses to long-term warming across aggregates, here we conducted metagenomic
analysis on the same microaggregates and macroaggregates from the heated and control soils.
Our current study shows the interactive effects of warming and physical protection on
microbiome functions, where soil aggregates drive microbial community composition and

functional genes by influencing the substrate availability and physical accessibility.

Warming effects on functional genes are partly regulated by microenvironments

Our findings partly support the hypothesis that long-term warming would increase the
abundances of genes responsible for cellular processes and metabolism. Specifically, warming
consistently increased the gene abundances of Acidobacteria, Bacteroidetes, Crenarchaeota,
Euryarchaeota, Gemmatimonadetes, Proteobacteria, and Ascomycota; while reduced the gene
abundances for Actinobacteria, Armatimonadetes, Chloroflexi, Firmicutes, Planctomycetes,
Basidiomycota, and Zoopagomycota in both macroaggregates and microaggregates (Figs. 1, S1-
S3). Compared to macroaggregates, with warming gene abundances increased more for
Acidobacteria and Ascomycota but less for Proteobacteria, and decreased more for
Actinobacteria but less for Planctomycetes in microaggregates. These findings suggest that

warming effects on functional genes vary depending on the specific microbial communities that
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are partly impacted by aggregates [8, 57], highlighting the need for further research to
understand the physical protection associated mechanisms in driving microbial responses to
climate warming.

Our analysis of metabolic pathways revealed that the effects of long-term warming on gene
abundances varied depending on individual functional traits and phyla. Under warming for both
macroaggregates and microaggregates, abundances of genes associated with 1) amino acid
transport increased for Acidobacteria, Bacteroidetes, Gemmatimonadetes, Thaumarchaeota
while decreased for Chloroflexi, Firmicutes, Planctomycetes, Spirochaetes, and most fungal
phyla; 2) carbohydrate transport increased for Acidobacteria and Bacteroidetes, while decreased
for Chloroflexi, Deinococcus—Thermus, Zoopagomycota; 3) lipid transport increased for
Bacteroidetes, Proteobacteria, Mucoromycota, while decreased for Armatimonadetes,
Crenarchaeota, Cyanobacteria, Planctomycetes, Verrucomicrobia, and Basidiomycota (Figs. 2,
S4-S8). Our results, depending on specific phyla, are partly supported by previous studies that
have reported increases in abundances of genes associated with lipids and polysaccharides
metabolisms under chronic warming, and an increase in genes associated with carbohydrate
metabolism in permafrost systems [12, 58]. These findings suggest that long-term warming may
have selected microbial species and genes that can either adapt or resist to heat associated stress
conditions [59]. Thus, depending on their genetic and physiological states in variable
microenvironments, microbes likely respond in different ways [60, 61] to climate warming [62].

Our analysis of gene abundances associated with cellular processes revealed that long-term
warming had consistent effects on certain functional traits and phyla, while had variable effects
on the others. Specifically, warming consistently increased the gene abundances associated with

cell wall biogenesis, defense, signal transduction, and transcriptional chaperones for
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Acidobacteria, Bacteroidetes and Gemmatimonadetes in both macroaggregates and
microaggregates (Figs. 2, S4-S8). However, warming reduced these gene abundances for
Actinobacteria, Armatimonadetes, Chloroflexi, Firmicutes, and Planctomycetes. These findings
highlight the inconsistent responses of functional traits associated with different phyla to
environmental stress [63—65], and may allow for some predictive insights in feedbacks of soil

carbon cycling to climate change.

Warming effects on carbon degradation genes are independent of soil microenvironments
Our hypothesis was that chronic warming would lead to an increase in genes associated with the
degradation of complex substrates and a decrease in genes associated with the degradation of
labile substrates, consistent with previous observations of microbial responses to long-term
warming [2, 66]. We found that warming increased the abundance of genes responsible for the
degradation of lignin and reduced genes associated with cellulose degradation (Fig. 3), consistent
with observations of decreased relative abundances of lignin in the heated soils [67]. A short-
term warming reduced the genes associated with cellulose degradation but showed little effect on
genes associated with degradation of hemicellulose and lignin [68]. However, we observed
variable warming effects on the genes associated with hemicellulose degradation, with some
genes showed either increased (CE4, GH10, PL5) or decreased abundances (GH38, PL8, PL12)
in both macroaggregates and microaggregates (Figs. S9, S10). Our previous work found that
warming reduced potential enzyme activities for degradation of labile carbon but not for
degradation of recalcitrant carbon [21], indicating that gene abundances may not necessarily
reflect microbial potential functions. Chronic warming was reported to increase relative

abundances of genes associated with degradation of labile carbon, but showed inconsistent
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effects on genes associated with complex carbon degradation in grasslands [8, 10, 11]. By
contrast, short-term warming increased the abundances of functional genes involved in the
degradation of labile and recalcitrant carbon in a permafrost system [7]. Our findings support the
shift away from cellulose towards lignin as a source of substrates for soil heterotrophs based on
declined nutrients [2, 6], though the capacity of microbes in degrading cellulose may increase
with chronic warming [51].

Long-term warming had distinctive effects on the relative abundances of genes associated
with degradation of bacterial, fungal and plant biomass (Fig. 3), suggesting that chronic warming
may have accelerated microbial decomposition of necromass under substrate or nutrient limited
conditions [69]. However, in the long-term, both bacteria and fungi may still play critical roles in
enhancing soil organic carbon (SOC) sequestration [32]. Our study provides further insight into
the complex and dynamic responses of soil microbial communities to chronic warming and
highlights the need for continued research to better understand these processes in different

microenvironments with implications for soil carbon cycling.

Warming effects on microbial community dynamics are influenced by microenvironments
We hypothesized that relative abundances of copiotrophs would decrease while oligotrophs
increase after long-term warming. Our hypothesis was partly supported that the relative
abundances of some copiotrophs (Actinobacteria) decreased and of some oligotrophs
(Acidobacteria, Euryarchaeota, Nitrospirae) increased with warming (Figs. 4, S11-S14).
However, warming also increased the relative abundances of other copiotrophs (Bacteroidetes,
[-/y- Proteobacteria, Crenarchaeota, Gemmatimonadetes) and reduced those of other

oligotrophs (Chloroflexi, Planctomycetes). These findings suggest the difficulty in generalizing

12



272 microbial life strategies [61], such as either an increase [14, 70, 71] or a decrease [72] in relative
273  abundances of copiotrophs and oligotrophs with warming. Warming tended to reduce the relative
274  abundances of most fungi (Basidiomycota, Chytridiomycota, Zoopagomycota except

275  Ascomycota), suggesting that fungi are less competitive than bacteria under warming [73]. Yet,
276  heat stress has been reported to increase the relative abundances of Gemmatimonadetes,

277  Verrucomicrobia, and Basidiomycota, but to reduce the relative abundances of Acidobacteria,
278  Ascomycota, Firmicutes, and Myxococcota in a cropping ecosystem [74]. Our findings suggest
279  that even with decreased nutrients [2, 20, 21], oligotrophs and copiotrophs may occupy niches
280  with adaptive traits to enhance their ability to outcompete other microbes, supporting microbial
281 life history trade-offs between competition and resource acquisition under warming [9, 75-77].
282  Alternatively, warming may act as a filtering factor to impose positive or negative selection on
283  spore-forming (e.g., Actinobacteria, Firmicutes) or non-spore-forming microbes [72]. Our

284  research reinforces that the copiotroph-oligotroph classification may not accurately represent
285  microbial thermal responses, particularly in different microenvironments [21, 23, 28, 78].

286 We also hypothesized that chronic warming would reduce microbial diversity and alter

287  community composition. As expected, long-term warming decreased the diversity of bacteria
288  and fungi, but only in macroaggregates (Fig. 5). Microbial community composition shifted with
289  warming and varied between macroaggregates and microaggregates (Fig. 6). These findings are
290  consistent with previous studies that warming has reduced microbial diversity and altered

291  community composition in various ecosystems [16, 33, 71]. However, some studies reported
292 little change of microbial diversity or community composition in response to warming [2, 8, 15,
293 79]. These different responses of microbial communities to warming indicate complex

294  interactions among soil substrate availability, community structure and other abiotic factors [69].
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Aggregate physical protection regulates functional genes and community dynamics

Our initial hypothesis was that warming would have a greater impact on functional gene
abundances in macroaggregates compared to microaggregates, but our findings show that
warming effects were highly phylum-dependent (Figs. 1 and 2). Compared to microaggregates,
the warming effects on functional genes in macroaggregates were greater for Planctomycetes and
Proteobacteria but smaller for Acidobacteria and Actinobacteria (Figs. 1,2, S1-S8). Different
warming effects on the gene abundances associated with cell motility genes were observed for
Armatimonadetes, Cyanobacteria, Deinococcus-Thermus, Gemmatimonadetes, Proteobacteria
and Basidiomycota (Figs. S4-S8). Gene abundances of most functional traits increased with
warming for some oligotrophic and copiotrophic microbes (Acidobacteria, Bacteroidetes,
Euryarchaeota, Gemmatimonadetes, Proteobacteria), but decreased for others (Tables S3-S5).
Nevertheless, the warming effects varied significantly between macroaggregates and
microaggregates, suggesting that the responses of microbial communities to warming may be
different in moisture and nutrient availability among aggregates [80, 81]. The observed
differences in gene abundances also suggest that even closely related microbial species may
exhibit varying abilities with warming, underscoring complicated interactions between microbial
communities and the microenvironments [82].

Warming effects on the relative abundances of genes degrading different substrates varied
between aggregate sizes (Figs. 3, S9, S10). For instance, warming increased the relative
abundances of genes degrading hemicellulose, cellulose, lignin, and pectin in some enzyme
families, but reduced the relative abundances of genes degrading hemicellulose and pectin in
other families. Compared to microaggregates, the relative abundances were smaller for genes

degrading cellulose, hemicellulose (e.g., CE4, GH38) and pectin in macroaggregates. Moreover,
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the warming effects on abundances of genes of degrading microbial biomass were stronger than
those degrading plant biomass, especially in the macroaggregates, suggesting that
microenvironment-controlled physical protection is an important determinant of microbial
necromass in forming new SOM and increasing soil carbon storage (i.e., sequestration). These
findings are also consistent with previous studies that the decomposition of different substrates is
regulated by different microbial populations [83, 84]. The variable responses of microbes to
warming could be due to differences in the physical and chemical properties between aggregates,
which affect the availability of different substrates and the composition of microbial
communities [54, 85].

We hypothesized that warming would have a greater impact on the relative abundances of
microbial communities in macroaggregates compared to microaggregates. However, warming
effects on the relative abundances of most phyla were smaller in macroaggregates than in
microaggregates, suggesting that microbial functional differences can be largely attributed to
different resource and moisture availability in microhabitats under warming [21, 86], rather than
to the presence or absence of particular taxonomic groups [29]. Another possibility is that
microbial communities might be associated with different predation pressures on populations
between aggregates [31]. With warming the relative abundances of some oligotrophs
(Armatimonadetes, Cyanobacteria, Deinococcus—Thermus, and J-Proteobacteria) increased in
macroaggregates but decreased in microaggregates, suggesting that oligotrophs are more adapted
in low-nutrient environments [21, 61, 87, 88]. The greater loss of SOC and nitrogen in
macroaggregates and changes in relative abundances and functional genes under warming [20,
21] probably have influenced microbial habitats and niches [42], indicating potential influence of

microbial communities on soil carbon and nitrogen cycling over climate change [89, 90].
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Bacterial and fungal diversity was greater in macroaggregates than in microaggregates, with
the bacterial diversity being greater than the fungal diversity, indicating consistent microbial
responses at the domain level (Fig. 5). This finding is in accordance with previous research that
microbial communities were associated with different soil aggregate fractions, highlighting the
importance of the spatial distribution of bacterial and fungal communities [30, 33]. For example,
bacterial diversity was smaller while fungal diversity was greater in macroaggregates than in
microaggregates [23, 91]. These results imply that biotic interactions within microenvironments
could play important roles in regulating changes in biodiversity in response to climate warming.

We found distinct community composition between macroaggregates and microaggregates,
indicating that the varying accessibility of nutrients [20, 21] may have induced the assembly of
diverse communities [22]. For instance, different soil carbon quality has been suggested to cause
the differentiation of microbial communities between free and occluded microaggregates [22].
However, bacterial and fungal community structures were similar across soil aggregates in
agricultural systems [30]. These findings suggest that microbial communities might be
susceptible to the effects of long-term climate warming, depending on different

microenvironments and the associated physical protection.

Conclusion

Our study suggests that microbial communities in different soil microenvironments (e.g.,
macroaggregates, microaggregates) could play uncertain yet crucial roles in regulating soil
carbon feedback responses to accelerating climate change. The reductions of microbial diversity,
shifts in community composition, and variable changes in functional and taxonomic abundances

resulting from warming, particularly in macroaggregates, suggest the microbial potential to
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either reduce or increase soil carbon loss, depending on whether the dominant communities have
declined or increased abundances of carbon degradation genes. A deeper understanding of the
underlying microbial mechanisms and functions, substrate accessibility and availability, as well
as the associated physical protection in the extremely heterogeneous soil environment, could
enhance a better understanding of the larger-scale ecosystem responses. This represents a
promising and critical frontier for improving climate-resilient models and managing soil
microbiomes (e.g., enhance soil health and develop sustainable agricultural and natural

ecosystems), to mitigate the negative effects of climate change.
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Figure legends

Figure 1. Changes of microbial functional genes associated with metabolism and cellular
processes in different aggregates under long-term warming. MA and MI are macroaggregates
and microaggregates (250-2000; <250 um). Black symbols indicate significant effect sizes of
warming ((heated-control)/control), while red symbols indicate significant differences between

MA and MI (¥, *, **_ *** at P<(.10, 0.05, 0.01, and 0.001).

Figure 2. Changes of microbial functional genes in different aggregates under long-term
warming. MA and MI are macroaggregates and microaggregates (250-2000; <250 pm). Black
symbols indicate significant effect sizes of warming ((heated-control)/control), while red
symbols indicate significant differences between MA and MI (¥, *, **, *** at P<0.10, 0.05, 0.01,

and 0.001).

Figure 3. Changes of microbial functional genes associated with carbon degradation in different
aggregates under long-term warming. MA and MI are macroaggregates and microaggregates
(250-2000; <250 um). Black symbols indicate significant effect sizes of warming ((heated-
control)/controlx100%) (*, **, *** at P<0.05, 0.01, and 0.001). Different uppercase and

lowercase letters indicate differences within macroaggregates or microaggregates.

Figure 4. Changes of bacterial relative abundances in different aggregates over long-term

warming. MA and MI are macroaggregates and microaggregates (250-2000; <250 um). Black

symbols indicate significant effect sizes of warming ((heated-control)/controlx100%)), while red
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symbols indicate significant differences between MA and MI (¥, *, **, *** at P<(.10, 0.05, 0.01,

and 0.001).

Figure 5. Microbial diversity as affected by aggregate size in response to long-term warming
(different letters indicate differences between macroaggregates and microaggregates in control

(blue) or heated plots (red). P values for diversity were obtained from two-way ANOVA.

Figure 6. Community composition of different microbial groups as affected by aggregate size in

response to long-term warming. P values for community composition were obtained from

Permanova (adonis) test. Dispersion test (betadisper) showed no significant treatment effects.
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