- 1 Title: Microbial responses to long-term warming differ across soil microenvironments
- 2
- 3 Running title: Aggregates regulate microbial functional genes
- 4
- 5 Xiao Jun A. Liu^{1,2,*}, Shun Han², Serita D. Frey³, Jerry M. Melillo⁴, Jizhong Zhou^{2,5,6}, Kristen M.
- 6 DeAngelis^{1,*}

7

- ¹Department of Microbiology, University of Massachusetts, Amherst, MA 01003, United States.
- ⁹ Institute for Environmental Genomics and School of Biological Sciences, University of
- Oklahoma, Norman, OK 73019, United States. ³Department of Natural Resources and the
- Environment, University of New Hampshire, Durham, NH 03824, United States. ⁴Ecosystems
- 12 Center, Marine Biological Laboratory, Woods Hole, MA 02543, United States. ⁵Earth and
- 13 Environmental Sciences, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, United
- 14 States. ⁶School of Civil Engineering and Environmental Sciences and School of Computer
- 15 Science, University of Oklahoma, Norman, OK 73019, United States.

16

- *Corresponding authors: Xiao Jun A. Liu, Institute for Environmental Genomics, University of
- Oklahoma, 101 David L Boren Blvd, Norman, OK 73019, United States. Email:
- 19 xj.allen.liu@gmail.com and Kristen M. DeAngelis, Department of Microbiology, University of
- 20 Massachusetts, 639 N Pleasant Street, Amherst, MA 01003, United States. Email:
- 21 deangelis@microbio.umass.edu

Study funding

- JGI Community Science Program grant (JGI-CSP-503736, XJAL, KMD).
- DOE Terrestrial Ecosystem Science Program grant (DEFOA0001437, KMD).
- DOE Genomic Science Program grant (DE-SC0022996, KMD).
- NSF Long Term Research grant (DEB-1456610 and DEB-1832110, KMD, SDF, JMM).

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

23

Abstract

Soil carbon loss is likely to increase due to climate warming, but microbiomes and microenvironments may dampen this effect. In a 30-year warming experiment, physical protection within soil aggregates affected the thermal responses of soil microbiomes and carbon dynamics. In this study, we combined metagenomic analysis with physical characterization of soil aggregates to explore mechanisms by which microbial communities respond to climate warming across different soil microenvironments. Long-term warming decreased the relative abundances of genes involved in degrading labile compounds (e.g., cellulose), but increased those genes involved in degrading recalcitrant compounds (e.g., lignin) across aggregate sizes. These changes were observed in most phyla of bacteria, especially for *Acidobacteria*, Actinobacteria, Bacteroidetes, Chloroflexi, and Planctomycetes. Microbial community composition was considerably altered by warming, leading to declined diversity for bacteria and fungi but not for archaea. Microbial functional genes, diversity, and community composition differed between macroaggregates and microaggregates, indicating the essential role of physical protection in controlling microbial community dynamics. Our findings suggest that microbes have the capacity to employ various strategies to acclimate or adapt to climate change (e.g.,

warming, heat stress) by shifting functional gene abundances and community structures in varying microenvironments, as regulated by soil physical protection.

Keywords: carbon storage and sequestration; bacterial necromass; substrate accessibility;

biogeochemical cycles; soil aggregation; microbial evolution; organic matter decomposition;

functional genomics; degradation enzymes; plant soil interactions.

Introduction

Microbes play a crucial role in soil organic matter (SOM) decomposition and have the potential to accelerate soil carbon loss to the atmosphere in response to climate warming [1–4]. Previous studies have demonstrated that warming is associated with increased abundances of functional genes involved in the degradation of organic matter with varying levels of recalcitrance [5–9] and enriched pathways related to cellulose degradation [10–12], but the effects on microbial abundances and community structure have been variable [13–17]. In soils, substrate availability is affected by physico-chemical protection mechanisms like adsorption, desorption, and aggregate turnover that decrease depolymerization and microbial decomposition [18], but the extent to which functional genes, metabolic pathways and taxonomic groups vary with chronic warming, especially in different aggregate sizes, remains poorly studied.

Soil structure and mineralogy drive microbial community composition by affecting substrate availability and physical accessibility [19–24]. The presence of physical barriers within soil aggregates can protect SOM from decomposition by inducing microenvironmental constraints on decomposer movement and metabolism [25–28]. Different microbial groups also exhibited varying relative abundances between aggregates, with bacteria and fungi showing distinct

patterns [29–31]. For instance, bacterial communities were found to be less diverse [22], while fungi were more diverse in macroaggregates than in microaggregates [32, 33], where the competition between the two groups was stronger [34, 35]. Furthermore, fungi may play a more dominant role in forming macroaggregates [36–39], although the ratio of fungi to bacteria can vary substantially [40]. Therefore, a fine-scale understanding of soil microbial community distribution is essential to comprehend how climate change impacts species interactions and metabolisms [41], and whether carbon persists in soils [42].

Previously we reported on two studies that explored how long-term warming at the Harvard Forest has affected microbes in different microenvironments [20, 21]. Soil samples from the control and heated plots were separated into macroaggregate (250-2000 μm) and microaggregate

Forest has affected microbes in different microenvironments [20, 21]. Soil samples from the control and heated plots were separated into macroaggregate (250-2000 µm) and microaggregate (<250 µm) fractions, and microbial carbon use efficiency (CUE) was measured with ¹⁸O enriched water (H₂¹⁸O) in samples incubated at 15 or 25°C for 24 h. We found that warming reduced soil carbon and nitrogen concentrations, extracellular enzyme activities, microbial growth, respiration, and the temperature sensitivity (Q₁₀) of CUE in macroaggregates [21]. To further explore how physical protection may inhibit SOM decomposition, we crushed aggregates to reduce physical protection and compared them to intact aggregates. We found that warming was associated with a smaller effect of physical protection for respiration but with a larger effect for biomass turnover rate in macroaggregates [20], suggesting that microbial functional traits vary across microenvironments with different physical protection, yet their responses to climate warming remain unclear.

In the new study we report here, we used metagenomics to examine how long-term warming affects the gene abundances and community structures of soil microbiomes associated with both macroaggregates and microaggregates. Because of their known differences in physical

protection, our study aimed to provide insights into the mechanisms behind the differential effects of long-term warming on microbial functions and dynamics between macroaggregates and microaggregates. We posited that the effects of warming on gene abundances would be more pronounced in macroaggregates than in microaggregates. We further hypothesized that warming would increase the abundances of functional genes related to cell maintenance and degradation of complex substrates, but would reduce the abundances of genes responsible for degrading labile substrates, corresponding to the changes in abundances of oligotrophs and copiotrophs.

Materials and Methods

Field site and sample processing

Samples were collected as previously described [20, 21] from the Harvard Forest long-term warming experiment (Pertersham, MA, United States), where soils have been heated 5°C above ambient temperature since 1991 alongside control and disturbance control (instrumented but not heated) plots [43]. The soil for this study was collected in October 2017 from the mineral horizon (10 cm depth; N=3), from the same batch of samples used for prior experiments [20, 21]. The soil was air-dried at 4°C until it reached a moisture level of about 10% to minimize any potential disturbance to the microbial communities during aggregate fractionation [44]. Microaggregates (<250 μm) and macroaggregates (250-2000 μm) were separated with a 250 μm sieve, weighed and stored at -80 °C for molecular analysis. To extract DNA from the soil aggregates, 0.5 g of each sample was weighed out and processed using the DNeasy PowerSoil Kit (Qiagen, Hilden, Germany). The extracted DNA was assessed for quality using the NanoDrop One (Thermo Scientific), quantified with the PicoGreen Kit (Quant-IT, Invitrogen), and treated with RNase A to avoid potential RNA contamination.

Processing of metagenomic data

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

Shotgun metagenome library preparation, sequencing, assembly, and annotation were performed at the Joint Genome Institute (JGI) following standard protocols and pipelines [45]. Soil DNA samples were sequenced at JGI using a NovaSeq 6000 System (2×150 bp; Illumina). The samples had an average GC content of 62.1%, reads of 3,942,584,112, and 94.9% of reads ≥Q30 (BBTools, v38.59; Table S1). The filtered quality reads were assembled with metaSPAdes (version 3.13.0) using different k-mer lengths [46, 47]. On average, 25.3 Gb of MG sequence was obtained per soil sample. To annotate the functional profiles of the metagenomes, we employed the Integrated Microbial Genomes Annotation Pipeline (IMGAP v.5.0), which assigned protein-coding genes to Clusters of Orthologous Groups (COGs), Enzyme Commission (EC) numbers and KEGG Orthology (KO) terms [45, 48, 49]. Protein-coding genes were compared against high-quality genomes using USEARCH 6.0.294 to assign EC numbers [50], which were then mapped to the Carbohydrate-Active Enzymes database (CAZy) for taxonomic analysis of all functions [51]. Phylogenetic distributions were determined using the best BLAST hits against a non-redundant protein database derived from high-quality genomes based on the Integrated Microbial Genomes (IMG) platform. To analyze taxonomy, COG taxon-specific functions were filtered to include only hits with >30% identities at the phylum level. To account for differences in metagenome

size, all functional abundance matrices were normalized to hits per million reads [52].

Taxonomic annotation of genes in metagenome

To assess the taxonomic composition of a genome sample, the distribution of best BLAST hits of protein-coding genes was conducted in the dataset. Instead of e-value filtering, IMG utilizes percent identity filtering for best hits to account for the variation in alignment length between query and target proteins. Percent identity ranges used in IMG roughly correspond to the average amino acid identity found between genomes from the same genus (90+% range), the same family or order (60~89%), and same class or phylum (30~59%). Additionally, IMG provides links to COG functional category information for genes with 30, 60 and 90% hits. Here we selected the 30% identity to investigate microbial taxonomic responses at the phylum/class level, and classified the best hits into two COG functional categories: metabolism (amino acid transport, carbohydrate transport, energy production, lipid transport, coenzyme transport, inorganic ion transport, nucleotide transport, secondary metabolites biosynthesis) and cellular processes (cell wall biogenesis, defense mechanisms, signal transduction, post-translational chaperones, cell division, cell motility, extracellular structures, and intracellular trafficking).

CAZy degradation genes

We employed the CAZy database, which relies on functionally related domains of enzymes that break down glycosidic bonds, to classify the enzyme genes [53]. Our study focused on four classes of enzymes: auxiliary activities (AA), carbohydrate esterases (CE), glycoside hydrolases (GH), and polysaccharide lyases (PL). These enzymes were assigned to substrates such as hemicellulose, starch, cellulose, chitin, pectin, and lignin, as listed in Table S2. Based on the origins, genes associated with peptidoglycan and chitin degradation were grouped for bacterial

and fungal biomass degradation, while hemicellulose, cellulose, and lignin for plant biomass degradation.

Taxonomic analysis

We employed metagenomic data to evaluate the abundance of bacterial and fungal communities in control and heated plots. We utilized Kraken2 (v. 2.0.9) to assign taxonomic groups with the NCBI taxonomy, which included bacteria, fungi, and archaea. The taxon-by-sample matrices were normalized based on the total number of reads per sample to mitigate the impact of uneven sequencing depth. The relative abundances of phyla or classes were calculated using the abundances of sequences that matched archaea, bacteria or fungi [54].

Statistical analyses

To minimize the effect of variation in sequencing depth among samples, functional genes and relative abundances of taxa were normalized to hits per million reads. We conducted non-metric multidimensional scaling (NMDS) using Bray-Curtis dissimilarities based on square-root transformed abundances of functional genes or relative abundances of bacterial or fungal communities. Shannon's diversity was used to measure community evenness and richness. To test for differences in bacterial communities, we performed Permutational Multivariate Analysis of Variance (Permanova) and homogeneity of variances using the functions adonis and betadisper in R [8]. All sequencing data were analyzed based on three biological replicates per sample. P values for the relative abundances of taxa and functional genes were calculated using the two-tailed t test. All statistical analyses were performed with R [55]. Due to the small sample size, a P value of ≤0.10 was considered statistically significant for the tests [10, 51, 56].

Results and Discussion

Our prior findings show that long-term warming reduced soil carbon and nitrogen concentrations, activities of hydrolytic and oxidative enzymes, microbial growth, respiration, and Q₁₀ of microbial CUE in macroaggregates but not in microaggregates [20, 21]. Besides, warming showed a larger effect on microbial biomass turnover but smaller effect on respiration in macroaggregates than in microaggregates. To understand how microbial functional traits vary in their responses to long-term warming across aggregates, here we conducted metagenomic analysis on the same microaggregates and macroaggregates from the heated and control soils. Our current study shows the interactive effects of warming and physical protection on microbiome functions, where soil aggregates drive microbial community composition and functional genes by influencing the substrate availability and physical accessibility.

Warming effects on functional genes are partly regulated by microenvironments Our findings partly support the hypothesis that long-term warming would increase the abundances of genes responsible for cellular processes and metabolism. Specifically, warming consistently increased the gene abundances of *Acidobacteria, Bacteroidetes, Crenarchaeota, Euryarchaeota, Gemmatimonadetes, Proteobacteria,* and *Ascomycota*; while reduced the gene abundances for *Actinobacteria, Armatimonadetes, Chloroflexi, Firmicutes, Planctomycetes, Basidiomycota,* and *Zoopagomycota* in both macroaggregates and microaggregates (Figs. 1, S1-S3). Compared to macroaggregates, with warming gene abundances increased more for *Acidobacteria* and *Ascomycota* but less for *Proteobacteria*, and decreased more for *Actinobacteria* but less for *Planctomycetes* in microaggregates. These findings suggest that warming effects on functional genes vary depending on the specific microbial communities that

are partly impacted by aggregates [8, 57], highlighting the need for further research to understand the physical protection associated mechanisms in driving microbial responses to climate warming.

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

Our analysis of metabolic pathways revealed that the effects of long-term warming on gene abundances varied depending on individual functional traits and phyla. Under warming for both macroaggregates and microaggregates, abundances of genes associated with 1) amino acid transport increased for Acidobacteria, Bacteroidetes, Gemmatimonadetes, Thaumarchaeota while decreased for Chloroflexi, Firmicutes, Planctomycetes, Spirochaetes, and most fungal phyla; 2) carbohydrate transport increased for Acidobacteria and Bacteroidetes, while decreased for Chloroflexi, Deinococcus-Thermus, Zoopagomycota; 3) lipid transport increased for Bacteroidetes, Proteobacteria, Mucoromycota, while decreased for Armatimonadetes, Crenarchaeota, Cyanobacteria, Planctomycetes, Verrucomicrobia, and Basidiomycota (Figs. 2, S4-S8). Our results, depending on specific phyla, are partly supported by previous studies that have reported increases in abundances of genes associated with lipids and polysaccharides metabolisms under chronic warming, and an increase in genes associated with carbohydrate metabolism in permafrost systems [12, 58]. These findings suggest that long-term warming may have selected microbial species and genes that can either adapt or resist to heat associated stress conditions [59]. Thus, depending on their genetic and physiological states in variable microenvironments, microbes likely respond in different ways [60, 61] to climate warming [62]. Our analysis of gene abundances associated with cellular processes revealed that long-term warming had consistent effects on certain functional traits and phyla, while had variable effects on the others. Specifically, warming consistently increased the gene abundances associated with cell wall biogenesis, defense, signal transduction, and transcriptional chaperones for

Acidobacteria, Bacteroidetes and Gemmatimonadetes in both macroaggregates and microaggregates (Figs. 2, S4-S8). However, warming reduced these gene abundances for Actinobacteria, Armatimonadetes, Chloroflexi, Firmicutes, and Planctomycetes. These findings highlight the inconsistent responses of functional traits associated with different phyla to environmental stress [63–65], and may allow for some predictive insights in feedbacks of soil carbon cycling to climate change.

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

226

227

228

229

230

231

Warming effects on carbon degradation genes are independent of soil microenvironments Our hypothesis was that chronic warming would lead to an increase in genes associated with the degradation of complex substrates and a decrease in genes associated with the degradation of labile substrates, consistent with previous observations of microbial responses to long-term warming [2, 66]. We found that warming increased the abundance of genes responsible for the degradation of lignin and reduced genes associated with cellulose degradation (Fig. 3), consistent with observations of decreased relative abundances of lignin in the heated soils [67]. A shortterm warming reduced the genes associated with cellulose degradation but showed little effect on genes associated with degradation of hemicellulose and lignin [68]. However, we observed variable warming effects on the genes associated with hemicellulose degradation, with some genes showed either increased (CE4, GH10, PL5) or decreased abundances (GH38, PL8, PL12) in both macroaggregates and microaggregates (Figs. S9, S10). Our previous work found that warming reduced potential enzyme activities for degradation of labile carbon but not for degradation of recalcitrant carbon [21], indicating that gene abundances may not necessarily reflect microbial potential functions. Chronic warming was reported to increase relative abundances of genes associated with degradation of labile carbon, but showed inconsistent

effects on genes associated with complex carbon degradation in grasslands [8, 10, 11]. By contrast, short-term warming increased the abundances of functional genes involved in the degradation of labile and recalcitrant carbon in a permafrost system [7]. Our findings support the shift away from cellulose towards lignin as a source of substrates for soil heterotrophs based on declined nutrients [2, 6], though the capacity of microbes in degrading cellulose may increase with chronic warming [51].

Long-term warming had distinctive effects on the relative abundances of genes associated with degradation of bacterial, fungal and plant biomass (Fig. 3), suggesting that chronic warming may have accelerated microbial decomposition of necromass under substrate or nutrient limited conditions [69]. However, in the long-term, both bacteria and fungi may still play critical roles in enhancing soil organic carbon (SOC) sequestration [32]. Our study provides further insight into the complex and dynamic responses of soil microbial communities to chronic warming and highlights the need for continued research to better understand these processes in different microenvironments with implications for soil carbon cycling.

Warming effects on microbial community dynamics are influenced by microenvironments We hypothesized that relative abundances of copiotrophs would decrease while oligotrophs increase after long-term warming. Our hypothesis was partly supported that the relative abundances of some copiotrophs (*Actinobacteria*) decreased and of some oligotrophs (*Acidobacteria*, *Euryarchaeota*, *Nitrospirae*) increased with warming (Figs. 4, S11-S14). However, warming also increased the relative abundances of other copiotrophs (*Bacteroidetes*, β -/ γ - *Proteobacteria*, *Crenarchaeota*, *Gemmatimonadetes*) and reduced those of other oligotrophs (*Chloroflexi*, *Planctomycetes*). These findings suggest the difficulty in generalizing

microbial life strategies [61], such as either an increase [14, 70, 71] or a decrease [72] in relative abundances of copiotrophs and oligotrophs with warming. Warming tended to reduce the relative abundances of most fungi (Basidiomycota, Chytridiomycota, Zoopagomycota except Ascomycota), suggesting that fungi are less competitive than bacteria under warming [73]. Yet, heat stress has been reported to increase the relative abundances of Gemmatimonadetes, Verrucomicrobia, and Basidiomycota, but to reduce the relative abundances of Acidobacteria, Ascomycota, Firmicutes, and Myxococcota in a cropping ecosystem [74]. Our findings suggest that even with decreased nutrients [2, 20, 21], oligotrophs and copiotrophs may occupy niches with adaptive traits to enhance their ability to outcompete other microbes, supporting microbial life history trade-offs between competition and resource acquisition under warming [9, 75–77]. Alternatively, warming may act as a filtering factor to impose positive or negative selection on spore-forming (e.g., Actinobacteria, Firmicutes) or non-spore-forming microbes [72]. Our research reinforces that the copiotroph-oligotroph classification may not accurately represent microbial thermal responses, particularly in different microenvironments [21, 23, 28, 78]. We also hypothesized that chronic warming would reduce microbial diversity and alter community composition. As expected, long-term warming decreased the diversity of bacteria and fungi, but only in macroaggregates (Fig. 5). Microbial community composition shifted with warming and varied between macroaggregates and microaggregates (Fig. 6). These findings are consistent with previous studies that warming has reduced microbial diversity and altered community composition in various ecosystems [16, 33, 71]. However, some studies reported little change of microbial diversity or community composition in response to warming [2, 8, 15, 79]. These different responses of microbial communities to warming indicate complex interactions among soil substrate availability, community structure and other abiotic factors [69].

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

Aggregate physical protection regulates functional genes and community dynamics Our initial hypothesis was that warming would have a greater impact on functional gene abundances in macroaggregates compared to microaggregates, but our findings show that warming effects were highly phylum-dependent (Figs. 1 and 2). Compared to microaggregates, the warming effects on functional genes in macroaggregates were greater for *Planctomycetes* and Proteobacteria but smaller for Acidobacteria and Actinobacteria (Figs. 1,2, S1-S8). Different warming effects on the gene abundances associated with cell motility genes were observed for Armatimonadetes, Cyanobacteria, Deinococcus-Thermus, Gemmatimonadetes, Proteobacteria and Basidiomycota (Figs. S4-S8). Gene abundances of most functional traits increased with warming for some oligotrophic and copiotrophic microbes (Acidobacteria, Bacteroidetes, Euryarchaeota, Gemmatimonadetes, Proteobacteria), but decreased for others (Tables S3-S5). Nevertheless, the warming effects varied significantly between macroaggregates and microaggregates, suggesting that the responses of microbial communities to warming may be different in moisture and nutrient availability among aggregates [80, 81]. The observed differences in gene abundances also suggest that even closely related microbial species may exhibit varying abilities with warming, underscoring complicated interactions between microbial communities and the microenvironments [82]. Warming effects on the relative abundances of genes degrading different substrates varied between aggregate sizes (Figs. 3, S9, S10). For instance, warming increased the relative abundances of genes degrading hemicellulose, cellulose, lignin, and pectin in some enzyme families, but reduced the relative abundances of genes degrading hemicellulose and pectin in other families. Compared to microaggregates, the relative abundances were smaller for genes degrading cellulose, hemicellulose (e.g., CE4, GH38) and pectin in macroaggregates. Moreover,

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

the warming effects on abundances of genes of degrading microbial biomass were stronger than those degrading plant biomass, especially in the macroaggregates, suggesting that microenvironment-controlled physical protection is an important determinant of microbial necromass in forming new SOM and increasing soil carbon storage (i.e., sequestration). These findings are also consistent with previous studies that the decomposition of different substrates is regulated by different microbial populations [83, 84]. The variable responses of microbes to warming could be due to differences in the physical and chemical properties between aggregates, which affect the availability of different substrates and the composition of microbial communities [54, 85].

We hypothesized that warming would have a greater impact on the relative abundances of microbial communities in macroaggregates compared to microaggregates. However, warming effects on the relative abundances of most phyla were smaller in macroaggregates than in microaggregates, suggesting that microbial functional differences can be largely attributed to different resource and moisture availability in microhabitats under warming [21, 86], rather than to the presence or absence of particular taxonomic groups [29]. Another possibility is that microbial communities might be associated with different predation pressures on populations between aggregates [31]. With warming the relative abundances of some oligotrophs (*Armatimonadetes, Cyanobacteria, Deinococcus–Thermus,* and δ -*Proteobacteria*) increased in macroaggregates but decreased in microaggregates, suggesting that oligotrophs are more adapted in low-nutrient environments [21, 61, 87, 88]. The greater loss of SOC and nitrogen in macroaggregates and changes in relative abundances and functional genes under warming [20, 21] probably have influenced microbial habitats and niches [42], indicating potential influence of microbial communities on soil carbon and nitrogen cycling over climate change [89, 90].

Bacterial and fungal diversity was greater in macroaggregates than in microaggregates, with the bacterial diversity being greater than the fungal diversity, indicating consistent microbial responses at the domain level (Fig. 5). This finding is in accordance with previous research that microbial communities were associated with different soil aggregate fractions, highlighting the importance of the spatial distribution of bacterial and fungal communities [30, 33]. For example, bacterial diversity was smaller while fungal diversity was greater in macroaggregates than in microaggregates [23, 91]. These results imply that biotic interactions within microenvironments could play important roles in regulating changes in biodiversity in response to climate warming. We found distinct community composition between macroaggregates and microaggregates, indicating that the varying accessibility of nutrients [20, 21] may have induced the assembly of diverse communities [22]. For instance, different soil carbon quality has been suggested to cause the differentiation of microbial communities between free and occluded microaggregates [22]. However, bacterial and fungal community structures were similar across soil aggregates in agricultural systems [30]. These findings suggest that microbial communities might be susceptible to the effects of long-term climate warming, depending on different microenvironments and the associated physical protection.

357

358

359

360

361

362

363

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

Conclusion

Our study suggests that microbial communities in different soil microenvironments (e.g., macroaggregates, microaggregates) could play uncertain yet crucial roles in regulating soil carbon feedback responses to accelerating climate change. The reductions of microbial diversity, shifts in community composition, and variable changes in functional and taxonomic abundances resulting from warming, particularly in macroaggregates, suggest the microbial potential to

either reduce or increase soil carbon loss, depending on whether the dominant communities have declined or increased abundances of carbon degradation genes. A deeper understanding of the underlying microbial mechanisms and functions, substrate accessibility and availability, as well as the associated physical protection in the extremely heterogeneous soil environment, could enhance a better understanding of the larger-scale ecosystem responses. This represents a promising and critical frontier for improving climate-resilient models and managing soil microbiomes (e.g., enhance soil health and develop sustainable agricultural and natural ecosystems), to mitigate the negative effects of climate change.

Acknowledgements

We want to thank the members of the Melillo group and the DeAngelis group who helped for the soil sampling. The research was supported by a JGI Community Science Program awarded to XJAL (proposal #503736), by a DOE Terrestrial Ecosystem Science Program grant (DEFOA0001437) and a DOE Genomic Science Program grant (DE-SC0022996) to KMD, and a NSF Long-Term Research in Environmental Biology grant (DEB-1456610) to SDF, KMD and JMM. The Prospect Hill Soil Warming Study at Harvard Forest is maintained with support from the NSF Long Term Ecological Research Program (DEB-1832110). We also thank the technical support by the JGI team (Marcel Huntemann, Alicia Clum, Brian Foster, Bryce Foster, Simon Roux, Krishnaveni Palaniappan, Neha Varghese, Supratim Mukherjee, T.B.K. Reddy, Chris Daum, Alex Copeland, I-Min A. Chen, Natalia N. Ivanova, Nikos C. Kyrpides, Nicole Shapiro, Emiley A. Eloe-Fadrosh) for soil DNA samples sequencing and raw data processing.

386	Data availability
387	Raw sequencing data were deposited at the JGI IMG platform (#503736). Other data supporting
388	the findings of this study are available at the Harvard Forest Data Archive, consistent with the
389	NSF LTER and Harvard Forest data policies [92].
390	
391	Author contributions
392	XJAL and KMD conceived and designed the experiment; XJAL performed the research; XJAL
393	analyzed the data; XJAL wrote the manuscript, with assistance from coauthors on the revision
394	drafts and the final version of the paper.
395	
396	Competing interests
397	The authors declare no competing interests.
398	
399	Supplementary information The online version contains supplementary material
400	available at.
401	
402	Correspondence and requests should be addressed to Xiao Jun A. Liu (xj.allen.liu@gmail.com)
403	or Kristen M. DeAngelis (deangelis@microbio.umass.edu).
404	
405	References
406	1. Hicks Pries CE, Castanha C, Porras RC, Torn MS. The whole-soil carbon flux in response to
407	warming. Science 2017; 355 : 1420–1423.

- 408 2. Melillo JM, Frey SD, DeAngelis KM, Werner WJ, Bernard MJ, Bowles FP, et al. Long-term
- pattern and magnitude of soil carbon feedback to the climate system in a warming world.
- 410 *Science* 2017; **358**: 101–105.
- 3. You M-Y, Liu XJA, Li L-J. Editorial: climate change and anthropogenic impacts on soil
- 412 organic matter. *Front Environ Sci* 2021; **9**: 811735.
- 4. Tao X, Yang Z, Feng J, Jian S, Yang Y, Bates CT, et al. Experimental warming accelerates
- positive soil priming in a temperate grassland ecosystem. *Nat Commun* 2024; **15**: 1178.
- 5. Mackelprang R, Waldrop MP, DeAngelis KM, David MM, Chavarria KL, Blazewicz SJ, et
- al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to
- 417 thaw. *Nature* 2011; **480**: 368–371.
- 418 6. Pold G, Melillo JM, DeAngelis KM. Two decades of warming increases diversity of a
- potentially lignolytic bacterial community. Front Microbiol 2015; **6**: 00480.
- 420 7. Xue K, M. Yuan M, J. Shi Z, Qin Y, Deng Y, Cheng L, et al. Tundra soil carbon is
- 421 vulnerable to rapid microbial decomposition under climate warming. *Nat Clim Change*
- 422 2016; **6**: 595–600.
- 423 8. Cheng L, Zhang N, Yuan M, Xiao J, Qin Y, Deng Y, et al. Warming enhances old organic
- carbon decomposition through altering functional microbial communities. *ISME J* 2017; **11**:
- 425 1825–1835.
- 426 9. Anthony MA, Knorr M, Moore JAM, Simpson M, Frey SD. Fungal community and
- functional responses to soil warming are greater than for soil nitrogen enrichment. *Elem Sci*
- 428 Anthr 2021; **9**: 000059.
- 429 10. Zhou J, Xue K, Xie J, Deng Y, Wu L, Cheng X, et al. Microbial mediation of carbon-cycle
- feedbacks to climate warming. *Nat Clim Change* 2012; **2**: 106–110.

- 11. Luo C, Rodriguez-R LM, Johnston ER, Wu L, Cheng L, Xue K, et al. Soil microbial
- community responses to a decade of warming as revealed by comparative metagenomics.
- 433 *Appl Environ Microbiol* 2014; **80**: 1777–1786.
- 12. Johnston ER, Hatt JK, He Z, Wu L, Guo X, Luo Y, et al. Responses of tundra soil microbial
- communities to half a decade of experimental warming at two critical depths. *Proc Natl*
- 436 *Acad Sci* 2019; **116**: 15096–15105.
- 13. Castro HF, Classen AT, Austin EE, Norby RJ, Schadt CW. Soil microbial community
- responses to multiple experimental climate change drivers. *Appl Environ Microbiol* 2010;
- **76**: 999–1007.
- 14. DeAngelis KM, Pold G, Topcuoglu BD, van Diepen LTA, Varney RM, Blanchard JL, et al.
- Long-term forest soil warming alters microbial communities in temperate forest soils. *Front*
- 442 *Microbiol* 2015; **6**: 00104.
- 15. Kuffner M, Hai B, Rattei T, Melodelima C, Schloter M, Zechmeister-Boltenstern S, et al.
- Effects of season and experimental warming on the bacterial community in a temperate
- mountain forest soil assessed by 16S rRNA gene pyrosequencing. FEMS Microbiol Ecol
- 446 2012; **82**: 551–562.
- 16. Sheik CS, Beasley WH, Elshahed MS, Zhou X, Luo Y, Krumholz LR. Effect of warming
- and drought on grassland microbial communities. *ISME J* 2011; **5**: 1692–1700.
- 17. Yanni SF, Helgason BL, Janzen HH, Ellert BH, Gregorich EG. Warming effects on carbon
- dynamics and microbial communities in soils of diverse texture. *Soil Biol Biochem* 2020;
- **140**: 107631.

- 18. Conant RT, Ryan MG, Ågren GI, Birge HE, Davidson EA, Eliasson PE, et al. Temperature
- and soil organic matter decomposition rates synthesis of current knowledge and a way
- 454 forward. *Glob Change Biol* 2011; **17**: 3392–3404.
- 455 19. Waring BG, Sulman BN, Reed S, Smith AP, Averill C, Creamer CA, et al. From pools to
- 456 flow: The PROMISE framework for new insights on soil carbon cycling in a changing
- world. *Glob Change Biol* 2020; **26**: 6631–6643.
- 458 20. Liu XJA, Frey SD, Melillo JM, DeAngelis KM. Physical protection regulates microbial
- thermal responses to chronic soil warming. *Soil Biol Biochem* 2021; **159**: 108298.
- 21. Liu XJA, Pold G, Domeignoz-Horta LA, Geyer KM, Caris H, Nicolson H, et al. Soil
- aggregate-mediated microbial responses to long-term warming. Soil Biol Biochem 2021;
- **152**: 108055.
- 22. Biesgen D, Frindte K, Maarastawi S, Knief C. Clay content modulates differences in
- bacterial community structure in soil aggregates of different size. *Geoderma* 2020; **376**:
- 465 114544.
- 466 23. Bailey VL, Fansler SJ, Stegen JC, McCue LA. Linking microbial community structure to β-
- glucosidic function in soil aggregates. *ISME J* 2013; 7: 2044–2053.
- 468 24. Goldfarb K, Karaoz U, Hanson C, Santee C, Bradford M, Treseder K, et al. Differential
- growth responses of soil bacterial taxa to carbon substrates of varying chemical
- 470 recalcitrance. Front Microbiol 2011; **2**: 00094.
- 471 25. Janzen HH. Soil carbon: A measure of ecosystem response in a changing world? *Can J Soil*
- 472 *Sci* 2005; **85**: 467–480.
- 473 26. Jastrow JD, Amonette JE, Bailey VL. Mechanisms controlling soil carbon turnover and their
- potential application for enhancing carbon sequestration. Clim Change 2007; 80: 5–23.

- 475 27. Kleber M. What is recalcitrant soil organic matter? *Environ Chem* 2010; 7: 320–332.
- 28. Stone BW, Blazewicz SJ, Koch BJ, Dijkstra P, Hayer M, Hofmockel KS, et al. Nutrients
- strengthen density dependence of per-capita growth and mortality rates in the soil bacterial
- 478 community. *Oecologia* 2023; **201**: 771–782.
- 479 29. Bailey VL, McCue LA, Fansler SJ, Boyanov MI, DeCarlo F, Kemner KM, et al.
- 480 Micrometer-scale physical structure and microbial composition of soil macroaggregates.
- 481 *Soil Biol Biochem* 2013; **65**: 60–68.
- 482 30. Bach EM, Williams RJ, Hargreaves SK, Yang F, Hofmockel KS. Greatest soil microbial
- diversity found in micro-habitats. *Soil Biol Biochem* 2018; **118**: 217–226.
- 484 31. Fox A, Ikoyi I, Torres-Sallan G, Lanigan G, Schmalenberger A, Wakelin S, et al. The
- influence of aggregate size fraction and horizon position on microbial community
- 486 composition. *Appl Soil Ecol* 2018; **127**: 19–29.
- 487 32. Murugan R, Djukic I, Keiblinger K, Zehetner F, Bierbaumer M, Zechmeister-Bolternstern S,
- et al. Spatial distribution of microbial biomass and residues across soil aggregate fractions
- at different elevations in the Central Austrian Alps. *Geoderma* 2019; **339**: 1–8.
- 490 33. Smith AP, Marín-Spiotta E, de Graaff MA, Balser TC. Microbial community structure varies
- 491 across soil organic matter aggregate pools during tropical land cover change. *Soil Biol*
- 492 *Biochem* 2014; 77: 292–303.
- 493 34. Zhang B, Chen S, He X, Liu W, Zhao Q, Zhao L, et al. Responses of soil microbial
- communities to experimental warming in alpine grasslands on the Qinghai-Tibet plateau.
- 495 *Plos One* 2014; **9**: e103859.

- 496 35. Zheng W, Zhao Z, Gong Q, Zhai B, Li Z. Responses of fungal-bacterial community and
- network to organic inputs vary among different spatial habitats in soil. Soil Biol Biochem
- 498 2018; **125**: 54–63.
- 36. Bossuyt H, Denef K, Six J, Frey SD, Merckx R, Paustian K. Influence of microbial
- populations and residue quality on aggregate stability. *Appl Soil Ecol* 2001; **16**: 195–208.
- 37. Helfrich M, Ludwig B, Thoms C, Gleixner G, Flessa H. The role of soil fungi and bacteria in
- plant litter decomposition and macroaggregate formation determined using phospholipid
- fatty acids. *Appl Soil Ecol* 2015; **96**: 261–264.
- 38. Morris EK, Morris DJP, Vogt S, Gleber S-C, Bigalke M, Wilcke W, et al. Visualizing the
- dynamics of soil aggregation as affected by arbuscular mycorrhizal fungi. *ISME J* 2019; **13**:
- 506 1639–1646.
- 39. Rahman MT, Zhu QH, Zhang ZB, Zhou H, Peng X. The roles of organic amendments and
- microbial community in the improvement of soil structure of a Vertisol. *Appl Soil Ecol*
- 509 2017; **111**: 84–93.
- 510 40. Wang X, Zhang W, Shao Y, Zhao J, Zhou L, Zou X, et al. Fungi to bacteria ratio: Historical
- misinterpretations and potential implications. *Acta Oecologica* 2019; **95**: 1–11.
- 41. Cordero OX, Datta MS. Microbial interactions and community assembly at microscales.
- 513 *Curr Opin Microbiol* 2016; **31**: 227–234.
- 42. Schimel J, Schaeffer SM. Microbial control over carbon cycling in soil. *Front Microbiol*
- 515 2012; **3**: 00348.
- 43. Peterjohn WT, Melillo JM, Steudler PA, Newkirk KM, Bowles FP, Aber JD. Responses of
- 517 trace gas fluxes and N availability to experimentally elevated soil temperatures. *Ecol Appl*
- 518 1994; **4**: 617–625.

- 519 44. Bach EM, Hofmockel KS. Soil aggregate isolation method affects measures of intra-
- aggregate extracellular enzyme activity. *Soil Biol Biochem* 2014; **69**: 54–62.
- 45. Chen I-MA, Chu K, Palaniappan K, Pillay M, Ratner A, Huang J, et al. IMG/M v.5.0: an
- integrated data management and comparative analysis system for microbial genomes and
- 523 microbiomes. *Nucleic Acids Res* 2019; **47**: D666–D677.
- 46. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. SPAdes: a
- new genome assembly algorithm and its applications to single-cell sequencing. *J Comput*
- 526 *Biol* 2012; **19**: 455–477.
- 527 47. Nurk S, Meleshko D, Korobeynikov A, Pevzner PA. metaSPAdes: a new versatile
- metagenomic assembler. *Genome Res* 2017; **27**: 824–834.
- 48. Marchler-Bauer A, Anderson JB, Derbyshire MK, DeWeese-Scott C, Gonzales NR, Gwadz
- M, et al. CDD: a conserved domain database for interactive domain family analysis.
- 531 *Nucleic Acids Res* 2007; **35**: D237–D240.
- 49. Kanehisa M, Sato Y, Kawashima M, Furumichi M, Tanabe M. KEGG as a reference
- resource for gene and protein annotation. *Nucleic Acids Res* 2016; **44**: D457–D462.
- 50. Edgar RC. Search and clustering orders of magnitude faster than BLAST. *Bioinformatics*
- 535 2010; **26**: 2460–2461.
- 51. Pold G, Billings AF, Blanchard JL, Burkhardt DB, Frey SD, Melillo JM, et al. Long-term
- warming alters carbohydrate degradation potential in temperate forest soils. *Appl Environ*
- 538 *Microbiol* 2016; **82**: 6518–6530.
- 539 52. Cardenas E, Kranabetter JM, Hope G, Maas KR, Hallam S, Mohn WW. Forest harvesting
- reduces the soil metagenomic potential for biomass decomposition. *ISME J* 2015; **9**: 2465–
- 541 2476.

- 53. Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-
- active enzymes database (CAZy) in 2013. *Nucleic Acids Res* 2014; **42**: D490–D495.
- 54. Bahram M, Hildebrand F, Forslund SK, Anderson JL, Soudzilovskaia NA, Bodegom PM, et
- al. Structure and function of the global topsoil microbiome. *Nature* 2018; **560**: 233–237.
- 546 55. R Core Team. R: A language and environment for statistical computing. 2020. Vienna,
- 547 Austria.
- 56. Guo X, Gao Q, Yuan M, Wang G, Zhou X, Feng J, et al. Gene-informed decomposition
- model predicts lower soil carbon loss due to persistent microbial adaptation to warming.
- *Nat Commun* 2020; **11**: 4897.
- 57. Roy Chowdhury P, Golas SM, Alteio LV, Stevens JTE, Billings AF, Blanchard JL, et al. The
- transcriptional response of soil bacteria to long-term warming and short-term seasonal
- fluctuations in a terrestrial forest. *Front Microbiol* 2021; **12**: 2310.
- 58. Woodcroft BJ, Singleton CM, Boyd JA, Evans PN, Emerson JB, Zayed AAF, et al. Genome-
- centric view of carbon processing in thawing permafrost. *Nature* 2018; **560**: 49–54.
- 59. Jansson JK, Hofmockel KS. Soil microbiomes and climate change. *Nat Rev Microbiol* 2019;
- **18**: 35–46.
- 60. Schimel J, Balser TC, Wallenstein M. Microbial stress-response physiology and its
- implications for ecosystem function. *Ecology* 2007; **88**: 1386–1394.
- 560 61. Stone BWG, Dijkstra P, Finley BK, Fitzpatrick R, Foley MM, Hayer M, et al. Life history
- strategies among soil bacteria—dichotomy for few, continuum for many. ISME J 2023; 17:
- 562 611–619.

- 62. Berg MP, Kiers ET, Driessen G, Van Der Heiden M, Kooi BW, Kuenen F, et al. Adapt or
- disperse: understanding species persistence in a changing world. *Glob Change Biol* 2010;
- **16**: 587–598.
- 63. Roncarati D, Scarlato V. Regulation of heat-shock genes in bacteria: from signal sensing to
- gene expression output. FEMS Microbiol Rev 2017; 41: 549–574.
- 64. Ribeiro RA, Bourbon-Melo N, Sá-Correia I. The cell wall and the response and tolerance to
- stresses of biotechnological relevance in yeasts. *Front Microbiol* 2022; **13**: 953479.
- 570 65. Schumann W. Regulation of bacterial heat shock stimulons. *Cell Stress Chaperones* 2016;
- **21**: 959–968.
- 572 66. Domeignoz-Horta LA, Pold G, Erb H, Sebag D, Verrecchia E, Northen T, et al. Substrate
- availability and not thermal acclimation controls microbial temperature sensitivity response
- to long-term warming. *Glob Change Biol* 2023; **29**: 1574–1590.
- 67. Pold G, Grandy AS, Melillo JM, DeAngelis KM. Changes in substrate availability drive
- carbon cycle response to chronic warming. *Soil Biol Biochem* 2017; **110**: 68–78.
- 577 68. Dove NC, Torn MS, Hart SC, Taş N. Metabolic capabilities mute positive response to direct
- and indirect impacts of warming throughout the soil profile. *Nat Commun* 2021; **12**: 2089.
- 69. Mitchell MF, MacLean MG, DeAngelis KM. Microbial necromass response to soil warming:
- 580 A meta-analysis. *Front Soil Sci* 2022; **2**: 987178.
- 581 70. Butler SM, Melillo JM, Johnson JE, Mohan J, Steudler PA, Lux H, et al. Soil warming alters
- 582 nitrogen cycling in a New England forest: implications for ecosystem function and
- structure. *Oecologia* 2012; **168**: 819–828.

- 584 71. Koranda M, Kaiser C, Fuchslueger L, Kitzler B, Sessitsch A, Zechmeister-Boltenstern S, et
- al. Seasonal variation in functional properties of microbial communities in beech forest soil.
- *Soil Biol Biochem* 2013; **60**: 95–104.
- 587 72. Wu L, Zhang Y, Guo X, Ning D, Zhou X, Feng J, et al. Reduction of microbial diversity in
- grassland soil is driven by long-term climate warming. *Nat Microbiol* 2022; 7: 1054–1062.
- 73. Zhou Y, Sun B, Xie B, Feng K, Zhang Z, Zhang Z, et al. Warming reshaped the microbial
- hierarchical interactions. *Glob Change Biol* 2021; **27**: 6331–6347.
- 591 74. Yuan A, Kumar SD, Wang H, Wang S, Impa S, Wang H, et al. Dynamic interplay among
- soil nutrients, rhizosphere metabolites, and microbes shape drought and heat stress
- responses in summer maize. Soil Biol Biochem 2024; **191**: 109357.
- 594 75. Oliverio AM, Bradford MA, Fierer N. Identifying the microbial taxa that consistently
- respond to soil warming across time and space. *Glob Change Biol* 2017; **23**: 2117–2129.
- 596 76. Li J, Mau RL, Dijkstra P, Koch BJ, Schwartz E, Liu XJA, et al. Predictive genomic traits for
- bacterial growth in culture versus actual growth in soil. *ISME J* 2019; **13**: 2162–2172.
- 598 77. Stone BW, Li J, Koch BJ, Blazewicz SJ, Dijkstra P, Hayer M, et al. Nutrients cause
- consolidation of soil carbon flux to small proportion of bacterial community. *Nat Commun*
- 600 2021; **12**: 3381.
- 78. Fierer N, Lauber CL, Ramirez KS, Zaneveld J, Bradford M A, Knight R. Comparative
- 602 metagenomic, phylogenetic and physiological analyses of soil microbial communities
- across nitrogen gradients. *ISME J* 2012; **6**: 1007–17.
- 604 79. Guo X, Feng J, Shi Z, Zhou X, Yuan M, Tao X, et al. Climate warming leads to divergent
- succession of grassland microbial communities. *Nat Clim Change* 2018; **8**: 813–818.

- 80. Waldrop MP, Firestone MK. Response of microbial community composition and function to
- soil climate change. *Microb Ecol* 2006; **52**: 716–724.
- 81. O'Brien SL, Jastrow JD. Physical and chemical protection in hierarchical soil aggregates
- regulates soil carbon and nitrogen recovery in restored perennial grasslands. *Soil Biol*
- 610 *Biochem* 2013; **61**: 1–13.
- 82. Daniel R. The metagenomics of soil. *Nat Rev Microbiol* 2005; **3**: 470–478.
- 83. Allison SD, Wallenstein MD, Bradford MA. Soil-carbon response to warming dependent on
- microbial physiology. *Nat Geosci* 2010; **3**: 336–340.
- 84. Strickland MS, Rousk J. Considering fungal:bacterial dominance in soils Methods,
- controls, and ecosystem implications. *Soil Biol Biochem* 2010; **42**: 1385–1395.
- 85. Six J, Bossuyt H, Degryze S, Denef K. A history of research on the link between
- 617 (micro)aggregates, soil biota, and soil organic matter dynamics. *Soil Tillage Res* 2004; **79**:
- 618 7–31.
- 86. Hartmann M, Niklaus PA, Zimmermann S, Schmutz S, Kremer J, Abarenkov K, et al.
- Resistance and resilience of the forest soil microbiome to logging-associated compaction.
- 621 *ISME J* 2014; **8**: 226–244.
- 87. Fierer N, Bradford MA, Jackson RB. Toward an ecological classification of soil bacteria.
- 623 Ecology 2007; **88**: 1354–1364.
- 88. Klappenbach JA, Dunbar JM, Schmidt TM. rRNA operon copy number reflects ecological
- strategies of bacteria. *Appl Environ Microbiol* 2000; **66**: 1328–1333.
- 89. Philippot L, Andersson SGE, Battin TJ, Prosser JI, Schimel JP, Whitman WB, et al. The
- ecological coherence of high bacterial taxonomic ranks. *Nat Rev Microbiol* 2010; **8**: 523–
- 628 529.

629 90. Banerjee S, Kirkby CA, Schmutter D, Bissett A, Kirkegaard JA, Richardson AE. Network 630 analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal 631 communities during organic matter decomposition in an arable soil. Soil Biol Biochem 632 2016; **97**: 188–198. 633 91. Poll C, Marhan S, Back F, Niklaus PA, Kandeler E. Field-scale manipulation of soil temperature and precipitation change soil CO₂ flux in a temperate agricultural ecosystem. 634 Agric Ecosyst Environ 2013; **165**: 88–97. 635 636 92. Liu XJA, DeAngelis KM. Effects of soil warming and substrate complexity on microbial carbon use efficiency at Harvard Forest. Harvard Forest Data Archive: HF372 (v.1). 637

Environmental Data Initiative. 2021.

Figure legends

Figure 1. Changes of microbial functional genes associated with metabolism and cellular processes in different aggregates under long-term warming. MA and MI are macroaggregates and microaggregates (250-2000; <250 μ m). Black symbols indicate significant effect sizes of warming ((heated-control)/control), while red symbols indicate significant differences between MA and MI (#, *, **, *** at P<0.10, 0.05, 0.01, and 0.001).

Figure 2. Changes of microbial functional genes in different aggregates under long-term warming. MA and MI are macroaggregates and microaggregates (250-2000; <250 μm). Black symbols indicate significant effect sizes of warming ((heated-control)/control), while red symbols indicate significant differences between MA and MI (#, *, **, *** at P<0.10, 0.05, 0.01, and 0.001).

Figure 3. Changes of microbial functional genes associated with carbon degradation in different aggregates under long-term warming. MA and MI are macroaggregates and microaggregates (250-2000; <250 μ m). Black symbols indicate significant effect sizes of warming ((heated-control)/control×100%) (*, **, *** at P<0.05, 0.01, and 0.001). Different uppercase and lowercase letters indicate differences within macroaggregates or microaggregates.

Figure 4. Changes of bacterial relative abundances in different aggregates over long-term warming. MA and MI are macroaggregates and microaggregates (250-2000; <250 μm). Black symbols indicate significant effect sizes of warming ((heated-control)/control×100%)), while red

symbols indicate significant differences between MA and MI (#, *, **, *** at P<0.10, 0.05, 0.01, 661 and 0.001). 662 663 664 Figure 5. Microbial diversity as affected by aggregate size in response to long-term warming (different letters indicate differences between macroaggregates and microaggregates in control 665 (blue) or heated plots (red). P values for diversity were obtained from two-way ANOVA. 666 667 Figure 6. Community composition of different microbial groups as affected by aggregate size in 668 response to long-term warming. P values for community composition were obtained from 669 670 Permanova (adonis) test. Dispersion test (betadisper) showed no significant treatment effects.