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Abstract 29 

Soil carbon loss is likely to increase due to climate warming, but microbiomes and 30 

microenvironments may dampen this effect. In a 30-year warming experiment, physical 31 

protection within soil aggregates affected the thermal responses of soil microbiomes and carbon 32 

dynamics. In this study, we combined metagenomic analysis with physical characterization of 33 

soil aggregates to explore mechanisms by which microbial communities respond to climate 34 

warming across different soil microenvironments. Long-term warming decreased the relative 35 

abundances of genes involved in degrading labile compounds (e.g., cellulose), but increased 36 

those genes involved in degrading recalcitrant compounds (e.g., lignin) across aggregate sizes. 37 

These changes were observed in most phyla of bacteria, especially for Acidobacteria, 38 

Actinobacteria, Bacteroidetes, Chloroflexi, and Planctomycetes. Microbial community 39 

composition was considerably altered by warming, leading to declined diversity for bacteria and 40 

fungi but not for archaea. Microbial functional genes, diversity, and community composition 41 

differed between macroaggregates and microaggregates, indicating the essential role of physical 42 

protection in controlling microbial community dynamics. Our findings suggest that microbes 43 

have the capacity to employ various strategies to acclimate or adapt to climate change (e.g., 44 
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warming, heat stress) by shifting functional gene abundances and community structures in 45 

varying microenvironments, as regulated by soil physical protection. 46 

 47 

Keywords: carbon storage and sequestration; bacterial necromass; substrate accessibility; 48 

biogeochemical cycles; soil aggregation; microbial evolution; organic matter decomposition; 49 

functional genomics; degradation enzymes; plant soil interactions.  50 

 51 

Introduction 52 

Microbes play a crucial role in soil organic matter (SOM) decomposition and have the potential 53 

to accelerate soil carbon loss to the atmosphere in response to climate warming [1–4]. Previous 54 

studies have demonstrated that warming is associated with increased abundances of functional 55 

genes involved in the degradation of organic matter with varying levels of recalcitrance [5–9] 56 

and enriched pathways related to cellulose degradation [10–12], but the effects on microbial 57 

abundances and community structure have been variable [13–17]. In soils, substrate availability 58 

is affected by physico-chemical protection mechanisms like adsorption, desorption, and 59 

aggregate turnover that decrease depolymerization and microbial decomposition [18], but the 60 

extent to which functional genes, metabolic pathways and taxonomic groups vary with chronic 61 

warming, especially in different aggregate sizes, remains poorly studied. 62 

Soil structure and mineralogy drive microbial community composition by affecting substrate 63 

availability and physical accessibility [19–24]. The presence of physical barriers within soil 64 

aggregates can protect SOM from decomposition by inducing microenvironmental constraints on 65 

decomposer movement and metabolism [25–28]. Different microbial groups also exhibited 66 

varying relative abundances between aggregates, with bacteria and fungi showing distinct 67 



 

 4 

patterns [29–31]. For instance, bacterial communities were found to be less diverse [22], while 68 

fungi were more diverse in macroaggregates than in microaggregates [32, 33], where the 69 

competition between the two groups was stronger [34, 35]. Furthermore, fungi may play a more 70 

dominant role in forming macroaggregates [36–39], although the ratio of fungi to bacteria can 71 

vary substantially [40]. Therefore, a fine-scale understanding of soil microbial community 72 

distribution is essential to comprehend how climate change impacts species interactions and 73 

metabolisms [41], and whether carbon persists in soils [42].  74 

Previously we reported on two studies that explored how long-term warming at the Harvard 75 

Forest has affected microbes in different microenvironments [20, 21]. Soil samples from the 76 

control and heated plots were separated into macroaggregate (250-2000 μm) and microaggregate 77 

(<250 μm) fractions, and microbial carbon use efficiency (CUE) was measured with 18O 78 

enriched water (H218O) in samples incubated at 15 or 25°C for 24 h. We found that warming 79 

reduced soil carbon and nitrogen concentrations, extracellular enzyme activities, microbial 80 

growth, respiration, and the temperature sensitivity (Q10) of CUE in macroaggregates [21]. To 81 

further explore how physical protection may inhibit SOM decomposition, we crushed aggregates 82 

to reduce physical protection and compared them to intact aggregates. We found that warming 83 

was associated with a smaller effect of physical protection for respiration but with a larger effect 84 

for biomass turnover rate in macroaggregates [20], suggesting that microbial functional traits 85 

vary across microenvironments with different physical protection, yet their responses to climate 86 

warming remain unclear.  87 

In the new study we report here, we used metagenomics to examine how long-term warming 88 

affects the gene abundances and community structures of soil microbiomes associated with both 89 

macroaggregates and microaggregates. Because of their known differences in physical 90 
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protection, our study aimed to provide insights into the mechanisms behind the differential 91 

effects of long-term warming on microbial functions and dynamics between macroaggregates 92 

and microaggregates. We posited that the effects of warming on gene abundances would be more 93 

pronounced in macroaggregates than in microaggregates. We further hypothesized that warming 94 

would increase the abundances of functional genes related to cell maintenance and degradation 95 

of complex substrates, but would reduce the abundances of genes responsible for degrading 96 

labile substrates, corresponding to the changes in abundances of oligotrophs and copiotrophs.  97 

 98 

Materials and Methods 99 

Field site and sample processing  100 

Samples were collected as previously described [20, 21] from the Harvard Forest long-term 101 

warming experiment (Pertersham, MA, United States), where soils have been heated 5°C above 102 

ambient temperature since 1991 alongside control and disturbance control (instrumented but not 103 

heated) plots [43]. The soil for this study was collected in October 2017 from the mineral 104 

horizon (10 cm depth; N=3), from the same batch of samples used for prior experiments [20, 21]. 105 

The soil was air-dried at 4°C until it reached a moisture level of about 10% to minimize any 106 

potential disturbance to the microbial communities during aggregate fractionation [44]. 107 

Microaggregates (<250 µm) and macroaggregates (250-2000 µm) were separated with a 250 µm 108 

sieve, weighed and stored at -80 °C for molecular analysis. To extract DNA from the soil 109 

aggregates, 0.5 g of each sample was weighed out and processed using the DNeasy PowerSoil 110 

Kit (Qiagen, Hilden, Germany). The extracted DNA was assessed for quality using the 111 

NanoDrop One (Thermo Scientific), quantified with the PicoGreen Kit (Quant-IT, Invitrogen), 112 

and treated with RNase A to avoid potential RNA contamination. 113 
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Processing of metagenomic data 114 

Shotgun metagenome library preparation, sequencing, assembly, and annotation were performed 115 

at the Joint Genome Institute (JGI) following standard protocols and pipelines [45]. Soil DNA 116 

samples were sequenced at JGI using a NovaSeq 6000 System (2×150 bp; Illumina). The 117 

samples had an average GC content of 62.1%, reads of 3,942,584,112, and 94.9% of reads ≥Q30 118 

(BBTools, v38.59; Table S1). The filtered quality reads were assembled with metaSPAdes 119 

(version 3.13.0) using different k-mer lengths [46, 47]. On average, 25.3 Gb of MG sequence 120 

was obtained per soil sample.  121 

 122 

To annotate the functional profiles of the metagenomes, we employed the Integrated Microbial 123 

Genomes Annotation Pipeline (IMGAP v.5.0), which assigned protein-coding genes to Clusters 124 

of Orthologous Groups (COGs), Enzyme Commission (EC) numbers and KEGG Orthology 125 

(KO) terms [45, 48, 49]. Protein-coding genes were compared against high-quality genomes 126 

using USEARCH 6.0.294 to assign EC numbers [50], which were then mapped to the 127 

Carbohydrate-Active Enzymes database (CAZy) for taxonomic analysis of all functions [51]. 128 

Phylogenetic distributions were determined using the best BLAST hits against a non-redundant 129 

protein database derived from high-quality genomes based on the Integrated Microbial Genomes 130 

(IMG) platform. To analyze taxonomy, COG taxon-specific functions were filtered to include 131 

only hits with >30% identities at the phylum level. To account for differences in metagenome 132 

size, all functional abundance matrices were normalized to hits per million reads [52].  133 

 134 
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Taxonomic annotation of genes in metagenome 135 

To assess the taxonomic composition of a genome sample, the distribution of best BLAST hits of 136 

protein-coding genes was conducted in the dataset. Instead of e-value filtering, IMG utilizes 137 

percent identity filtering for best hits to account for the variation in alignment length between 138 

query and target proteins. Percent identity ranges used in IMG roughly correspond to the average 139 

amino acid identity found between genomes from the same genus (90+% range), the same family 140 

or order (60~89%), and same class or phylum (30~59%). Additionally, IMG provides links to 141 

COG functional category information for genes with 30, 60 and 90% hits. Here we selected the 142 

30% identity to investigate microbial taxonomic responses at the phylum/class level, and 143 

classified the best hits into two COG functional categories: metabolism (amino acid transport, 144 

carbohydrate transport, energy production, lipid transport, coenzyme transport, inorganic ion 145 

transport, nucleotide transport, secondary metabolites biosynthesis) and cellular processes (cell 146 

wall biogenesis, defense mechanisms, signal transduction, post-translational chaperones, cell 147 

division, cell motility, extracellular structures, and intracellular trafficking). 148 

 149 

CAZy degradation genes 150 

We employed the CAZy database, which relies on functionally related domains of enzymes that 151 

break down glycosidic bonds, to classify the enzyme genes [53]. Our study focused on four 152 

classes of enzymes: auxiliary activities (ΑA), carbohydrate esterases (CE), glycoside hydrolases 153 

(GH), and polysaccharide lyases (PL). These enzymes were assigned to substrates such as 154 

hemicellulose, starch, cellulose, chitin, pectin, and lignin, as listed in Table S2. Based on the 155 

origins, genes associated with peptidoglycan and chitin degradation were grouped for bacterial 156 
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and fungal biomass degradation, while hemicellulose, cellulose, and lignin for plant biomass 157 

degradation.  158 

 159 

Taxonomic analysis 160 

We employed metagenomic data to evaluate the abundance of bacterial and fungal communities 161 

in control and heated plots. We utilized Kraken2 (v. 2.0.9) to assign taxonomic groups with the 162 

NCBI taxonomy, which included bacteria, fungi, and archaea. The taxon-by-sample matrices 163 

were normalized based on the total number of reads per sample to mitigate the impact of uneven 164 

sequencing depth. The relative abundances of phyla or classes were calculated using the 165 

abundances of sequences that matched archaea, bacteria or fungi [54].  166 

 167 

Statistical analyses 168 

To minimize the effect of variation in sequencing depth among samples, functional genes and 169 

relative abundances of taxa were normalized to hits per million reads. We conducted non-metric 170 

multidimensional scaling (NMDS) using Bray-Curtis dissimilarities based on square-root 171 

transformed abundances of functional genes or relative abundances of bacterial or fungal 172 

communities. Shannon’s diversity was used to measure community evenness and richness. To 173 

test for differences in bacterial communities, we performed Permutational Multivariate Analysis 174 

of Variance (Permanova) and homogeneity of variances using the functions adonis and 175 

betadisper in R [8]. All sequencing data were analyzed based on three biological replicates per 176 

sample. P values for the relative abundances of taxa and functional genes were calculated using 177 

the two-tailed t test. All statistical analyses were performed with R [55]. Due to the small sample 178 

size, a P value of ≤0.10 was considered statistically significant for the tests [10, 51, 56]. 179 
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Results and Discussion 180 

Our prior findings show that long-term warming reduced soil carbon and nitrogen 181 

concentrations, activities of hydrolytic and oxidative enzymes, microbial growth, respiration, and 182 

Q10 of microbial CUE in macroaggregates but not in microaggregates [20, 21]. Besides, warming 183 

showed a larger effect on microbial biomass turnover but smaller effect on respiration in 184 

macroaggregates than in microaggregates. To understand how microbial functional traits vary in 185 

their responses to long-term warming across aggregates, here we conducted metagenomic 186 

analysis on the same microaggregates and macroaggregates from the heated and control soils. 187 

Our current study shows the interactive effects of warming and physical protection on 188 

microbiome functions, where soil aggregates drive microbial community composition and 189 

functional genes by influencing the substrate availability and physical accessibility. 190 

 191 

Warming effects on functional genes are partly regulated by microenvironments 192 

Our findings partly support the hypothesis that long-term warming would increase the 193 

abundances of genes responsible for cellular processes and metabolism. Specifically, warming 194 

consistently increased the gene abundances of Acidobacteria, Bacteroidetes, Crenarchaeota, 195 

Euryarchaeota, Gemmatimonadetes, Proteobacteria, and Ascomycota; while reduced the gene 196 

abundances for Actinobacteria, Armatimonadetes, Chloroflexi, Firmicutes, Planctomycetes, 197 

Basidiomycota, and Zoopagomycota in both macroaggregates and microaggregates (Figs. 1, S1-198 

S3). Compared to macroaggregates, with warming gene abundances increased more for 199 

Acidobacteria and Ascomycota but less for Proteobacteria, and decreased more for 200 

Actinobacteria but less for Planctomycetes in microaggregates. These findings suggest that 201 

warming effects on functional genes vary depending on the specific microbial communities that 202 
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are partly impacted by aggregates [8, 57], highlighting the need for further research to 203 

understand the physical protection associated mechanisms in driving microbial responses to 204 

climate warming.  205 

Our analysis of metabolic pathways revealed that the effects of long-term warming on gene 206 

abundances varied depending on individual functional traits and phyla. Under warming for both 207 

macroaggregates and microaggregates, abundances of genes associated with 1) amino acid 208 

transport increased for Acidobacteria, Bacteroidetes, Gemmatimonadetes, Thaumarchaeota 209 

while decreased for Chloroflexi, Firmicutes, Planctomycetes, Spirochaetes, and most fungal 210 

phyla; 2) carbohydrate transport increased for Acidobacteria and Bacteroidetes, while decreased 211 

for Chloroflexi, Deinococcus–Thermus, Zoopagomycota; 3) lipid transport increased for 212 

Bacteroidetes, Proteobacteria, Mucoromycota, while decreased for Armatimonadetes, 213 

Crenarchaeota, Cyanobacteria, Planctomycetes, Verrucomicrobia, and Basidiomycota (Figs. 2, 214 

S4-S8). Our results, depending on specific phyla, are partly supported by previous studies that 215 

have reported increases in abundances of genes associated with lipids and polysaccharides 216 

metabolisms under chronic warming, and an increase in genes associated with carbohydrate 217 

metabolism in permafrost systems [12, 58]. These findings suggest that long-term warming may 218 

have selected microbial species and genes that can either adapt or resist to heat associated stress 219 

conditions [59]. Thus, depending on their genetic and physiological states in variable 220 

microenvironments, microbes likely respond in different ways [60, 61] to climate warming [62]. 221 

Our analysis of gene abundances associated with cellular processes revealed that long-term 222 

warming had consistent effects on certain functional traits and phyla, while had variable effects 223 

on the others. Specifically, warming consistently increased the gene abundances associated with 224 

cell wall biogenesis, defense, signal transduction, and transcriptional chaperones for 225 



 

 11 

Acidobacteria, Bacteroidetes and Gemmatimonadetes in both macroaggregates and 226 

microaggregates (Figs. 2, S4-S8). However, warming reduced these gene abundances for 227 

Actinobacteria, Armatimonadetes, Chloroflexi, Firmicutes, and Planctomycetes. These findings 228 

highlight the inconsistent responses of functional traits associated with different phyla to 229 

environmental stress [63–65], and may allow for some predictive insights in feedbacks of soil 230 

carbon cycling to climate change.  231 

 232 

Warming effects on carbon degradation genes are independent of soil microenvironments 233 

Our hypothesis was that chronic warming would lead to an increase in genes associated with the 234 

degradation of complex substrates and a decrease in genes associated with the degradation of 235 

labile substrates, consistent with previous observations of microbial responses to long-term 236 

warming [2, 66]. We found that warming increased the abundance of genes responsible for the 237 

degradation of lignin and reduced genes associated with cellulose degradation (Fig. 3), consistent 238 

with observations of decreased relative abundances of lignin in the heated soils [67]. A short-239 

term warming reduced the genes associated with cellulose degradation but showed little effect on 240 

genes associated with degradation of hemicellulose and lignin [68]. However, we observed 241 

variable warming effects on the genes associated with hemicellulose degradation, with some 242 

genes showed either increased (CE4, GH10, PL5) or decreased abundances (GH38, PL8, PL12) 243 

in both macroaggregates and microaggregates (Figs. S9, S10). Our previous work found that 244 

warming reduced potential enzyme activities for degradation of labile carbon but not for 245 

degradation of recalcitrant carbon [21], indicating that gene abundances may not necessarily 246 

reflect microbial potential functions. Chronic warming was reported to increase relative 247 

abundances of genes associated with degradation of labile carbon, but showed inconsistent 248 
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effects on genes associated with complex carbon degradation in grasslands [8, 10, 11]. By 249 

contrast, short-term warming increased the abundances of functional genes involved in the 250 

degradation of labile and recalcitrant carbon in a permafrost system [7]. Our findings support the 251 

shift away from cellulose towards lignin as a source of substrates for soil heterotrophs based on 252 

declined nutrients [2, 6], though the capacity of microbes in degrading cellulose may increase 253 

with chronic warming [51]. 254 

Long-term warming had distinctive effects on the relative abundances of genes associated 255 

with degradation of bacterial, fungal and plant biomass (Fig. 3), suggesting that chronic warming 256 

may have accelerated microbial decomposition of necromass under substrate or nutrient limited 257 

conditions [69]. However, in the long-term, both bacteria and fungi may still play critical roles in 258 

enhancing soil organic carbon (SOC) sequestration [32]. Our study provides further insight into 259 

the complex and dynamic responses of soil microbial communities to chronic warming and 260 

highlights the need for continued research to better understand these processes in different 261 

microenvironments with implications for soil carbon cycling.  262 

 263 

Warming effects on microbial community dynamics are influenced by microenvironments 264 

We hypothesized that relative abundances of copiotrophs would decrease while oligotrophs 265 

increase after long-term warming. Our hypothesis was partly supported that the relative 266 

abundances of some copiotrophs (Actinobacteria) decreased and of some oligotrophs 267 

(Acidobacteria, Euryarchaeota, Nitrospirae) increased with warming (Figs. 4, S11-S14). 268 

However, warming also increased the relative abundances of other copiotrophs (Bacteroidetes, 269 

β-/γ- Proteobacteria, Crenarchaeota, Gemmatimonadetes) and reduced those of other 270 

oligotrophs (Chloroflexi, Planctomycetes). These findings suggest the difficulty in generalizing 271 
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microbial life strategies [61], such as either an increase [14, 70, 71] or a decrease [72] in relative 272 

abundances of copiotrophs and oligotrophs with warming. Warming tended to reduce the relative 273 

abundances of most fungi (Basidiomycota, Chytridiomycota, Zoopagomycota except 274 

Ascomycota), suggesting that fungi are less competitive than bacteria under warming [73]. Yet, 275 

heat stress has been reported to increase the relative abundances of Gemmatimonadetes, 276 

Verrucomicrobia, and Basidiomycota, but to reduce the relative abundances of Acidobacteria, 277 

Ascomycota, Firmicutes, and Myxococcota in a cropping ecosystem [74]. Our findings suggest 278 

that even with decreased nutrients [2, 20, 21], oligotrophs and copiotrophs may occupy niches 279 

with adaptive traits to enhance their ability to outcompete other microbes, supporting microbial 280 

life history trade-offs between competition and resource acquisition under warming [9, 75–77]. 281 

Alternatively, warming may act as a filtering factor to impose positive or negative selection on 282 

spore-forming (e.g., Actinobacteria, Firmicutes) or non-spore-forming microbes [72]. Our 283 

research reinforces that the copiotroph-oligotroph classification may not accurately represent 284 

microbial thermal responses, particularly in different microenvironments [21, 23, 28, 78].  285 

We also hypothesized that chronic warming would reduce microbial diversity and alter 286 

community composition. As expected, long-term warming decreased the diversity of bacteria 287 

and fungi, but only in macroaggregates (Fig. 5). Microbial community composition shifted with 288 

warming and varied between macroaggregates and microaggregates (Fig. 6). These findings are 289 

consistent with previous studies that warming has reduced microbial diversity and altered 290 

community composition in various ecosystems [16, 33, 71]. However, some studies reported 291 

little change of microbial diversity or community composition in response to warming [2, 8, 15, 292 

79]. These different responses of microbial communities to warming indicate complex 293 

interactions among soil substrate availability, community structure and other abiotic factors [69].  294 
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Aggregate physical protection regulates functional genes and community dynamics  295 

Our initial hypothesis was that warming would have a greater impact on functional gene 296 

abundances in macroaggregates compared to microaggregates, but our findings show that 297 

warming effects were highly phylum-dependent (Figs. 1 and 2). Compared to microaggregates, 298 

the warming effects on functional genes in macroaggregates were greater for Planctomycetes and 299 

Proteobacteria but smaller for Acidobacteria and Actinobacteria (Figs. 1,2, S1-S8). Different 300 

warming effects on the gene abundances associated with cell motility genes were observed for 301 

Armatimonadetes, Cyanobacteria, Deinococcus-Thermus, Gemmatimonadetes, Proteobacteria 302 

and Basidiomycota (Figs. S4-S8). Gene abundances of most functional traits increased with 303 

warming for some oligotrophic and copiotrophic microbes (Acidobacteria, Bacteroidetes, 304 

Euryarchaeota, Gemmatimonadetes, Proteobacteria), but decreased for others (Tables S3-S5). 305 

Nevertheless, the warming effects varied significantly between macroaggregates and 306 

microaggregates, suggesting that the responses of microbial communities to warming may be 307 

different in moisture and nutrient availability among aggregates [80, 81]. The observed 308 

differences in gene abundances also suggest that even closely related microbial species may 309 

exhibit varying abilities with warming, underscoring complicated interactions between microbial 310 

communities and the microenvironments [82]. 311 

Warming effects on the relative abundances of genes degrading different substrates varied 312 

between aggregate sizes (Figs. 3, S9, S10). For instance, warming increased the relative 313 

abundances of genes degrading hemicellulose, cellulose, lignin, and pectin in some enzyme 314 

families, but reduced the relative abundances of genes degrading hemicellulose and pectin in 315 

other families. Compared to microaggregates, the relative abundances were smaller for genes 316 

degrading cellulose, hemicellulose (e.g., CE4, GH38) and pectin in macroaggregates. Moreover, 317 
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the warming effects on abundances of genes of degrading microbial biomass were stronger than 318 

those degrading plant biomass, especially in the macroaggregates, suggesting that 319 

microenvironment-controlled physical protection is an important determinant of microbial 320 

necromass in forming new SOM and increasing soil carbon storage (i.e., sequestration). These 321 

findings are also consistent with previous studies that the decomposition of different substrates is 322 

regulated by different microbial populations [83, 84]. The variable responses of microbes to 323 

warming could be due to differences in the physical and chemical properties between aggregates, 324 

which affect the availability of different substrates and the composition of microbial 325 

communities [54, 85].  326 

We hypothesized that warming would have a greater impact on the relative abundances of 327 

microbial communities in macroaggregates compared to microaggregates. However, warming 328 

effects on the relative abundances of most phyla were smaller in macroaggregates than in 329 

microaggregates, suggesting that microbial functional differences can be largely attributed to 330 

different resource and moisture availability in microhabitats under warming [21, 86], rather than 331 

to the presence or absence of particular taxonomic groups [29]. Another possibility is that 332 

microbial communities might be associated with different predation pressures on populations 333 

between aggregates [31]. With warming the relative abundances of some oligotrophs 334 

(Armatimonadetes, Cyanobacteria, Deinococcus–Thermus, and δ-Proteobacteria) increased in 335 

macroaggregates but decreased in microaggregates, suggesting that oligotrophs are more adapted 336 

in low-nutrient environments [21, 61, 87, 88]. The greater loss of SOC and nitrogen in 337 

macroaggregates and changes in relative abundances and functional genes under warming [20, 338 

21] probably have influenced microbial habitats and niches [42], indicating potential influence of 339 

microbial communities on soil carbon and nitrogen cycling over climate change [89, 90]. 340 
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Bacterial and fungal diversity was greater in macroaggregates than in microaggregates, with 341 

the bacterial diversity being greater than the fungal diversity, indicating consistent microbial 342 

responses at the domain level (Fig. 5). This finding is in accordance with previous research that 343 

microbial communities were associated with different soil aggregate fractions, highlighting the 344 

importance of the spatial distribution of bacterial and fungal communities [30, 33]. For example, 345 

bacterial diversity was smaller while fungal diversity was greater in macroaggregates than in 346 

microaggregates [23, 91]. These results imply that biotic interactions within microenvironments 347 

could play important roles in regulating changes in biodiversity in response to climate warming.  348 

We found distinct community composition between macroaggregates and microaggregates, 349 

indicating that the varying accessibility of nutrients [20, 21] may have induced the assembly of 350 

diverse communities [22]. For instance, different soil carbon quality has been suggested to cause 351 

the differentiation of microbial communities between free and occluded microaggregates [22]. 352 

However, bacterial and fungal community structures were similar across soil aggregates in 353 

agricultural systems [30]. These findings suggest that microbial communities might be 354 

susceptible to the effects of long-term climate warming, depending on different 355 

microenvironments and the associated physical protection. 356 

 357 

Conclusion 358 

Our study suggests that microbial communities in different soil microenvironments (e.g., 359 

macroaggregates, microaggregates) could play uncertain yet crucial roles in regulating soil 360 

carbon feedback responses to accelerating climate change. The reductions of microbial diversity, 361 

shifts in community composition, and variable changes in functional and taxonomic abundances 362 

resulting from warming, particularly in macroaggregates, suggest the microbial potential to 363 
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either reduce or increase soil carbon loss, depending on whether the dominant communities have 364 

declined or increased abundances of carbon degradation genes. A deeper understanding of the 365 

underlying microbial mechanisms and functions, substrate accessibility and availability, as well 366 

as the associated physical protection in the extremely heterogeneous soil environment, could 367 

enhance a better understanding of the larger-scale ecosystem responses. This represents a 368 

promising and critical frontier for improving climate-resilient models and managing soil 369 

microbiomes (e.g., enhance soil health and develop sustainable agricultural and natural 370 

ecosystems), to mitigate the negative effects of climate change. 371 
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Figure legends 639 

Figure 1. Changes of microbial functional genes associated with metabolism and cellular 640 

processes in different aggregates under long-term warming. MA and MI are macroaggregates 641 

and microaggregates (250-2000; <250 µm). Black symbols indicate significant effect sizes of 642 

warming ((heated-control)/control), while red symbols indicate significant differences between 643 

MA and MI (#, *, **, *** at P<0.10, 0.05, 0.01, and 0.001). 644 

 645 

Figure 2. Changes of microbial functional genes in different aggregates under long-term 646 

warming. MA and MI are macroaggregates and microaggregates (250-2000; <250 µm). Black 647 

symbols indicate significant effect sizes of warming ((heated-control)/control), while red 648 

symbols indicate significant differences between MA and MI (#, *, **, *** at P<0.10, 0.05, 0.01, 649 

and 0.001). 650 

 651 

Figure 3. Changes of microbial functional genes associated with carbon degradation in different 652 

aggregates under long-term warming. MA and MI are macroaggregates and microaggregates 653 

(250-2000; <250 µm). Black symbols indicate significant effect sizes of warming ((heated-654 

control)/control×100%) (*, **, *** at P<0.05, 0.01, and 0.001). Different uppercase and 655 

lowercase letters indicate differences within macroaggregates or microaggregates. 656 

 657 

Figure 4. Changes of bacterial relative abundances in different aggregates over long-term 658 

warming. MA and MI are macroaggregates and microaggregates (250-2000; <250 µm). Black 659 

symbols indicate significant effect sizes of warming ((heated-control)/control×100%)), while red 660 
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symbols indicate significant differences between MA and MI (#, *, **, *** at P<0.10, 0.05, 0.01, 661 

and 0.001).  662 

 663 

Figure 5. Microbial diversity as affected by aggregate size in response to long-term warming 664 

(different letters indicate differences between macroaggregates and microaggregates in control 665 

(blue) or heated plots (red). P values for diversity were obtained from two-way ANOVA. 666 

 667 

Figure 6. Community composition of different microbial groups as affected by aggregate size in 668 

response to long-term warming. P values for community composition were obtained from 669 

Permanova (adonis) test. Dispersion test (betadisper) showed no significant treatment effects. 670 


