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Orbital-flop transition of superfluid 3He in
anisotropic silica aerogel

M. D. Nguyen 1 , Joshua Simon1, J. W. Scott 1, A. M. Zimmerman 1,
Y. C. Cincia Tsai1 & W. P. Halperin 1

Superfluid 3He is a paradigm for odd-parity Cooper pairing, ranging from
neutron stars to uranium-based superconducting compounds. Recently it has
been shown that 3He, imbibed in anisotropic silica aerogel with either positive
or negative strain, preferentially selects either the chiral A-phase or the time-
reversal-symmetric B-phase. This control over basic order parameter sym-
metry provides a useful model for understanding imperfect unconventional
superconductors. For both phases, the orbital quantization axis is fixed by the
direction of strain. Unexpectedly, at a specific temperature Tx, the orbital axis
flops by 90∘, but in reverse order for A and B-phases. Aided by diffusion limited
cluster aggregation simulations of anisotropic aerogel and small angle X-ray
measurements, we are able to classify these aerogels as either “planar" and
“nematic" concluding that the orbital-flop is caused by competition between
short and long range structures in these aerogels.

Disorder in quantum condensed states can be responsible for
instability of thermodynamic phases1, as has been predicted and
shown to be the case in superfluid 3He in the presence of high porosity
silica aerogel2,3. Similarly, disorder in cuprate superconductors in a
magnetic field results in the vortex glass phase4, and the role of mac-
roscopic anisotropy from crystal twinning can influence the vortex
structure5.We have shown that random isotropic disorder imposed on
superfluid 3He imbibed in aerogels, destabilizes the chiral 3He A-phase
in zero magnetic field6,7. Phase stability can be further tuned by
introducing anisotropy, either by positive strain (stretching) which
favors the chiral A-phase8, Fig. 1a, or negative strain (compressing)
which stabilizes the time-reveral symmetric isotropic B-phase9, Fig. 1b.
In another example of the strong influence of anisotropic impurity, the
polar phase of superfluid 3He was discovered in the highly anisotropic
Al2O3 aerogel (Nafen)10 where half-quantum vortices have been
identified11 and predicted to harbor Majorana zero modes. In brief,
pure superfluid 3He is a paradigm for odd-parity and unconventional
BCS paired states and as such, superfluid 3He in aerogel can serve as a
guide for understanding the effect of impurities and their anisotropy in
superconductors.

The effect of aerogel structure on the superfluid has been
described with quasiparticle scattering models12,13, parametrized by

the quasiparticle elastic mean free path and an impurity correlation
length, also extended to include anisotropic scattering14,15. Experi-
mentally, the structure has been investigated with small angle X-ray
scattering (SAXS)16,17, complemented by three-dimensional numerical
simulations of the formation of the gel based on isotropic diffusion-
limited cluster aggregation (DLCA) algorithms18–22. Here, we present a
framework for simulating, analyzing, and classifying uniaxial aniso-
tropic aerogels. In these simulated aerogels, we find a dominant large
scale behavior that is consistent with SAXS data of lab grown aerogel17.
We propose that this structure is responsible for the orbital analog of
the spin-flop textural transition in superfluid 3He, denoted Tx23, shown
in Fig. 1c. We attribute the mechanism to the aerogel structure since it
predicts a common behavior for both A and B-phases as observed
in Fig. 1d.

Our DLCA simulations create an aerogel network by a process
similar to that described by Hasmy et al.20 which we summarize in the
following section. To simulate anisotropic aerogel, we modify this
procedure by biasing the diffusion of the constituent particles along
one axis taken to be the z-axis. The degree of anisotropy is labeled by a
single continuous variable, ϵ = ϵẑ, with ϵ defined to be the ratio of
diffusivity along the z-axis to the diffusivity perpendicular to z. Iso-
tropic aerogel has an anisotropy parameter of ϵ = 1. Samples with ϵ > 1
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and ϵ < 1 have markedly different large scale structures representing
two classes of anisotropic aerogel. These structures have distinct sig-
natures in their correlation function and structure factor which can be
directly calculated from the aerogel network. The structure factor is a
particularly useful metric as it can be compared with small-angle X-ray
scattering (SAXS) data from real amorphous materials like silica
aerogel20,24,25. The SAXS measurements on anisotropic aerogels show
clear anisotropy in the scattering pattern but the underlying structure
can not be determined since scattering data is proportional to the
amplitude of the scattered wave where all phase information is lost26.
Consequently, it is not possible to fully reconstruct the underlying
structure from SAXS data alone27. On the other hand, starting from
simulated aerogel with a well-defined microscopic structure, we can
calculate the structure factor and compare it with the SAXS measure-
ments.We leverage this connection to classify silica aerogel as nematic
or planar corresponding to the sign of the strain. The orientation of the
order parameter of superfluid 3He in anisotropic silica aerogel depends
importantly on this classification.We demonstrate that for either case,
the structure induces the orbital-flop transition where the flop orien-
tation depends on the sign of anisotropy imposed by strain, shown in
Fig. 1a, b.

Results
We detail the simulation procedure for these anisotropic aerogels in
theMethods section. The resulting simulated cluster is a field denoted
ρ(r). For a discrete set of silica spheres,

ρðrÞ= 1, jr�rij
ϱi

≤ 1 8 i 2 ½1, :::,N�
0, otherwise

( )
ð1Þ

where ϱi is the radius and ri is center of the ith-particle. This is stored
numerically simply as a list of the ri and ϱi. As these spheres aggregate,
they formmore complex structures which create a hierarchy of coarse

graining. At a microscopic level, the spheres tend to aggregate into
quasi-one dimensional collectionswhichwe call strands. At the highest
level for anisotropic aerogels, the strands are seen to cluster into
nematic and planar structures which we detail below. In Fig. 2 we show
a sample aerogel field for isotropic aerogel revealing the emer-
gent order.

The full 3-D renderingofρ(r) obscures the strand and clusteringof
the aerogel network so 2-D, orthogonal projections are used to better
visualize the spatial variation in the aerogel. The right-hand panel of
Fig. 2 shows the highly-correlated distribution of particle position,
complex strand structure, and characteristic voids in the aerogel net-
work. For the case of isotropic aerogel, these properties have no pre-
ferred direction in space. In this work, we show that anisotropy can be
introduced by biasing the diffusion step size; ϵ > 1 indicates faster
diffusion (larger step size) along the z-axis while ϵ < 1 indicates faster
diffusion in the xy-plane.

For anisotropic aerogel, Fig. 3 reveals clear spatial anisotropy and
large scale structure not found in the isotropic samples. We have
numerically created two types of anisotropic aerogels with uniaxial,
anisotropic diffusion which we classify as nematic, with ϵ < 1, and
planar, with ϵ > 1. As seen in the the projected view of ρ in Fig. 3,
anisotropic diffusion introduces a preferred direction breaking the full
3-D large-scale rotational symmetry of isotropic aerogel. The aerogel
strands are depicted as simple cylinders in the inset cartoon to help
visualize the structure. A quantitative description of their properties is
given in the following sections. In the case of ϵ < 1, the strands are
preferentially aligned along the anisotropy direction ϵ. This is akin to
nematic liquid crystals where long molecules have orientational order
along one axis and an absence of regular spatial ordering in the per-
pendicular plane.

For ϵ > 1, the projected view along the x and y-axes reveals high-
density, planar sheets of aerogel clustered together with some char-
acteristic thickness. These sheets are separated from each other by
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Fig. 1 | Phase diagrams for superfluid 3He in 98% porous anisotropic silica
aerogel in the limit of zero magnetic field. a Pressure–temperature phase dia-
gram for 14% positive strain which stabilizes the chiral A-phase8. Solid blue line and
circles indicate Tc while orange line and circles indicate Tx. The orbital angular
momentum, ℓ, swaps orientation above and below Tx. b Phase diagram similar to
a for 20% negative strain which stabilizes the time-reversal symmetric B-phase23.

The orientation of ℓ is reversed for this system. c Temperature dependence of the
nuclearmagnetic resonance (NMR) frequency spectrumof 3He, with 4Hepreplating
to achieve specular surface conditions, aswas used to determine the phasediagram
of the B-phase, showing both transitions23. d The phase diagram for the flop tran-
sition temperature relative to the superfluid transition, Tc without 4He, demon-
strates universal behavior independent of order parameter symmetry.
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visible gaps of low density regions with fewer particles. We classify
samples with ϵ > 1 as planar aerogels. This structure can be thought of
as being analogous to a smectic liquid crystal. Quantitative measures
of the spatial variation of these anisotropic aerogels that confirm this
identification are given in the Methods Section.

Importantly, these two classifications of aerogel have been
realized in the form of silica aerogels grown with 98% porosity in
cylindrical form. A uniform uniaxial anisotropy can be imposed on
an isotropic silica aerogel by compression, producing negative
strain. Alternatively, growing the alcogel precursor of the aerogel
using an excess of catalyst, leads to radial shrinkage during the final
step of supercritical drying. This produces a stretched, or positively
strained silica aerogel17. Furthermore, with compression, a stret-
ched aerogel evolves smoothly to becoming isotropic and then,
ultimately, a compressed aerogel with negative strain. This behavior
was determined from SAXS and optical birefringence
measurements17.

Structure factor
The structure factor, S(q), establishes a connection between simulated
and real aerogel. The X-ray scattering intensity, I(q), can be decom-
posed as I(q)∝ S(q)F(q). F(q) is the single-particle form-factor that
encodes details about the particle shape which affects the large-q
behavior of I(q). S(q) encodes correlation in position of particles at
intermediate and large spatial scale (small-q). For small-angle X-ray

scattering (SAXS) S(q) dominates I(q). Therefore, the structure factor
can be used to directly compare with SAXS data.

There is extensive literature determining S(q) by calculating the
autocorrelation function, g, (see Methods section) and performing a
Fourier transform20,28,29. This is usually done in spherical coordinates
where the integration kernel simplifies from eiq⋅R to sin(qr)/(qr) because
the aerogel under consideration is isotropic. In the case of an aniso-
tropic system, it is easier to numerically perform this Fourier transform
in cartesian coordinates. This is done by first converting ρ(r) into a
sparse 3-D matrix, ρijk, whose indices form a lattice and whose matrix
elements represent the density at lattice site (i, j, k). This matrix ρijk is
numerically Fourier transformed into its conjugate field f̂ lmn with the
cartesian Sxyz given by30

Sxyz = jF ρxyz

n o
j2 = jf̂ lmnj2: ð2Þ

To compare with SAXS data for X-rays incident perpendicular to ϵ, Sxyz
is then converted to S(q∥,q⊥), where q∥ is the component parallel to ϵ
and q⊥ is the perpendicular component.

The calculated structure factors of simulated aerogel in Fig. 4a–c
are comparedwith the SAXS data from real aerogel Fig. 4d–f. Isotropic
aerogel with ϵ = 1 has the expected isotropic S(q). For anisotropic
samples, the structure factor has two features of note. First, the dis-
tinct dipolar angular distribution pattern at short q (corresponding to
a length scale of ~100 r0) is evident in yellow and orange in (b, c).

Fig. 3 | Projection of aerogel structure for anisotropic aerogel. The projections
reveal clear anisotropic strand structures for ϵ ≠ 1 (as compared with isotropic
aerogel in Fig. 1c). Illustrative cartoons in the insets depict the strands as cylinders.
a For ϵ = 0.25, the projections onto the xz- and yz-planes reveal long structures
parallel to the anisotropy direction, ϵ, corresponding to nematic strands. The

projection along z into the xy-plane reveals strands oriented along z correlated in
their positions in the xy-plane. b For ϵ = 4, sheets of aerogel strands form in the xy-
plane, perpendicular to ϵ with gaps between sheets (inset). The projection along z
into the xy-plane reveals a random structure indicating that the orientation of the
strands between distantly separated sheets are uncorrelated.

Fig. 2 | Real and simulated isotropic aerogel. a Scanning electron microscopy of
real, 98% porous isotropic aerogel shows the complex network of silica particles.
b Simulated aerogel cluster for isotropic diffusion for a small segment of the
sample (~0.5%of the total sample). Structural properties such as strand orientation,
clustering, and void size are difficult to determine in the 3-D representation for the

full sample. c Projecting the cluster onto orthogonal, 2-D planes reveals the posi-
tion of silica spheres to be highly correlated. Each plane represents a projection of
the aerogel sample along the axis perpendicular to that plane. For isotropic diffu-
sion, the strands of silica appear to be without a preferred direction; however,
characteristic clustering and void sizes are visibly apparent.

Article https://doi.org/10.1038/s41467-023-44557-5

Nature Communications |          (2024) 15:201 3



Secondly, the ellipsoidal pattern at intermediate q (corresponding to
~10 r0) can be seen in the purple regions. The orientation of these two
patterns can be used to unambiguously classify aerogels. Nematic-like
aerogels will have the short-q, dipolar pattern perpendicular to the
anisotropy while planar-like aerogels will have the dipolar pattern
parallel to ϵ. This is a general framework for classifying aerogel andwill
be the case irrespective of the material or type of aerogel. The orien-
tation of the anisotropy of the structure factor is a general feature
encoding the difference between nematic and planar correlations. At
larger q (in the purple region of panels b and c), themajor ("long") axis
of the ellipsoidal pattern is rotated 90o from the short-qdipole pattern.
Evidently, there are two scales of structure for the aerogel. The large-
scale structure is reflected in the dipole scattering pattern and the
smaller scale structure oriented perpendicular to the large structure is
reflected in the ellipsoidal pattern of the SAXS structure factor.We use
the large-scale behavior to classify and label the aerogel samples as
being either nematic or planar.

Comparison with SAXS Data
Figure 4d–f show the SAXS data for real aerogels. The two types of
anisotropic aerogel analyzed are obtained by either compressing
(negative strain) or stretching (positive strain) isotropic aerogels31,32. It
was not previously known how this strain affected the underlying
structure of aerogel. Comparing the SAXS data to our calculated S(q),
we can determine if compressing aerogel creates nematic or planar
structures. Compressed aerogels, seen in (e), has the dipolar scattering
pattern at short q with the “long" dipole axis perpendicular to the
anisotropy axis. For stretched aerogels in panel f, the short q dipole
pattern is parallel to ϵ while for intermediate q, the “long" axis is per-
pendicular to ϵ. In other words, the direction in which scattering is
more intense rotates by 90o as q increases (going to smaller length
scale), which is the same behavior observed in the calculated structure
factors. The structure factor of simulated aerogel for q larger than
displayed in Fig. 4 is shown in Supplementary Materials.

Comparing these SAXS patterns to the structure factor of simu-
lated aerogels, we can identify the structure of experimentally

produced aerogels. Stretched aerogel (positive strain) is consistent
with planar aerogel. On the other hand, compressing isotropic aerogel
unexpectedly leads to the formation of strands along the compression
axis. This is contrary to Volovik’s suggestion2. In his model, stretching
aerogel would create long nematic strands parallel to the anisotropy
axis while compressing aerogel would collapse the strands into planes.
Here we find the opposite behavior. Our identification however is
consistent with experimental results of superfluid 3He imbibed in
anisotropic aerogels8,9,23,33 which we discuss in the final section.

Free Path Distribution
The correlation function (see Methods) and structure factor char-
acterize the aerogel structure itself. For many applications of aerogel,
it is the void between the silica particles that is relevant rather than the
aerogel network. An important measure of this negative space is the
distribution of geometric free paths through the aerogel (which
appears as a parameter in theoretical calculations of properties of 3He
in aerogel12,34). That is to say, starting at the surface of a random par-
ticle, how far can a test ray move before colliding with the aerogel
network? The condition for collision between a ray and a sphere is
given by the discriminant35:

disc= ðd̂ � ðpf � piÞÞ
2 � ðjpf � pij2 � r2f Þ≥0 ð3Þ

whered =dd̂ is the ray, pi is the origin of the ray, and pf is the center of
the final sphere with a radius rf. If disc≥0 and d̂ � ðpf � piÞ≥0 (this
second condition ensures that only collisions in the forward direction
are considered), then the path length, d, is calculated as
d = ðd̂ � ðpf � piÞÞ �

ffiffiffiffiffiffiffiffiffi
disc

p
. The free path is determined by taking the

minimum d observed along the direction of travel. If no collision is
observed within the initial box, periodic boundary conditions are
applied. The bounding box plane that the ray intersects is determined,
and then the aerogel sample is shifted in the appropriate direction and
collision detection is applied for the shifted sample. This is repeated
until a collision is found. A probability density function, P(d), is
obtained by taking a histogram of the catalog of free paths. A random

Fig. 4 | CalculatedS(q) versus small angleX-rayscatteringdata31.Anisotropyaxis
is vertical. The top panels display the calculated structure factor S(q). (a) isotropic;
(b) nematic (ϵ =0.25), and (c) planar (ϵ = 4) (axes and scale in Supplementary
Materials). For the nematic simulation, at short q, S(q) has a dipolar shape with the
“long axis" perpendicular to ϵ. For the planar case, at short q, S(q) has a dipolar
shape with the “long axis" along the anisotropy direction. However, at larger q, as

seen in the purple regions, the “long axis" of the anisotropy pattern is rotated by
90o. The bottom panels display the small-angle X-ray scattering (SAXS) for lab-
grown aerogel samples, adapted with permission from Elsevier: (d) isotropic, (e)
axially compressed (12.7 % negative strain), and (f) stretched (13.7% positive strain)
from ref. 17. The black square in the data images is the shadow of the X-ray beam
stop, there is no data in those regions.
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walk through the aerogel will have a distribution of step sizes given by
P(d). Figure 5a shows the diverging path of two randomwalks through
nematic (ϵ =0.25) aerogel starting at the same particle but at different
angles. These random walks exhibit the key feature of what are called
“Lévy flights"36,37. The characteristic “jumps" of a Lévy flight are
observed where the test ray is confined to small regions followed by
big jumps to other regions37.

From P(d), we can calculate a mean free path, λ, which has been
shown to be inversely proportional to density, for low density
samples38. We find that while the distribution of free paths is very
different for high porosity aerogel compared with a uniform Poisson
pointfield of the samedensity, themean free path forboth systems are
similar towithin 7% of 60 r0. There are two reasons for this. First, at low
density, both a highly correlated system like aerogel and an uncorre-
lated uniform distribution will have large lines of sight. The excess
correlation of the aerogel structure, which affects the distribution at
short path lengths, has a smaller effect than density variations. Sec-
ondly, aerogel ceases to be a fractal above what is called the “upper-
fractal cutoff"28. If aerogel had no upper fractal cutoff, then the free
path distribution would be scale-free and described by a generalized
Lévy distribution with the asymptotic form P(d) ~ d−α, with 1 < α < 336,37.
This power-law distribution is fat-tailed meaning that there is sig-
nificantweight of the distribution in long free pathswith the possibility
that the mean is undefined (for α ≤ 2).

Anisotropic free path
However, both SAXS data and theoretical calculations show that
aerogel is not fractal at all lengths28,31. Correspondingly the free path
distribution is cut off and the mean is well defined. These “truncated

Lévyflights" however still retainmanyproperties of Lévyflights such as
super-diffusion39. As seen in Fig. 5, the distribution is indeed power-law
below 100 r0 with a very weak exponent of α =0.7 indicating a very flat
probability distribution. At longer length scales above ~100 r0, the
distribution is exponentially cut off. The cutoff is not due to finite size
effects of the simulation as it remains constant with increasing L/r0
from 100 to 350.

Uniaxially anisotropic aerogels, P(d)⇒ P(d, θ), are both functions
of path length, d, and polar angle, θ. The height of the peak of the
distribution has a θ-dependence similar to what is observed for the
correlation function discussed below in theMethods Section. Also like
the correlation function, the behavior of P(d, θ) for intermediate dis-
tances ~ 20 r0 is different from short distances. For planar aerogel,
Fig. 5b, there are more free paths along ϵ at very short distances but
more free paths perpendicular to ϵ at intermediate distances, con-
sistent with the existence of large planar gaps in the structure as
indicated in Fig. 3b (see also Methods Section).

Each angle can be considered an independent probability dis-
tribution and distributionmoments can be defined at different angles.
Two directions of particular interest are themean free path parallel, λ∥,
and mean free path perpendicular, λ⊥, to the anisotropy direction ϵ.
Despite very clear anisotropy, the first moments of P(d, θ) (mean free
path along a certain direction) are similar for each of the two ortho-
gonal directions. For ρ0 ~ 2%, λ∥ ~ λ⊥ ~ 60 r0 in both the nematic and
planar aerogels. For real silica aerogels used in superfluid 3He experi-
ments, r0 is ~1.5 − 2 nm, indicating amean free path of ~90−120 nm12. In
general, r0 can be much larger, up to ~ 10 nm40,41, consistent with
experimental measurements for isotropic aerogel of comparable
density42. Consequently, themean free path is not a goodparameter to
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characterize the path distributionof high porosity anisotropic aerogel.
Furthermore, the mean free path in the anisotropic samples does not
reveal the two length scales we find in both scattering data and
simulation. The blue and orange curves in Fig. 5 b are quite different
and yet they have the same firstmoment. We infer that it is insufficient
for theoretical calculations of superfluid 3He in anisotropic aerogel to
use the mean free path to represent the effects of anisotropy.

To recap, we find that the correlation function (see Methods),
structure factor, and distribution of free paths form a set of metrics
that can be used to characterize and classify anisotropic aerogels.
From this process, it was determined that axially compressed silica
aerogel has nematic strands while stretched aerogel has planar struc-
ture. We use this result in the following section to interpret superfluid
3He experiments that employ these aerogels.

Anisotropic aerogel and superfluid 3He
Superfluid 3He is an unconventional, topological superfluid with qua-
siparticles forming p-wave (L = 1), spin-triplet (S = 1) Cooper pairs
creating a manifold of possible phases. In the chiral A-phase, the
Cooper pairs have a net orbital angular momentum, ℓA, with a vector
order parameter. In the isotropic B-phase, the Cooper pairs exist in a
superposition of all three components of spin and orbital angular
momentum projections with total angular momentum J = 0. The rela-
tive stability of the phases is strongly affected by aerogel. In the pure
superfluid, both the A and B-phases can exist as stable equilibrium
phases depending upon temperature, pressure, and magnetic field.

This phase diagram is drastically altered in the presence of ani-
sotropic aerogel. For compressed (nematic) aerogel in zero magnetic
field, only the B-phase is observed for the entire pressure and tem-
perature phase diagram23,43. For stretched (planar) aerogel, on the
other hand, theA-phase becomes the equilibriumphaseat allmagnetic
fields, pressures, and temperatures8,44,45, in the absence of 4He pre-
plating. Enhanced stability of the A-phase is consistent with both the-
oretical expectations15,46 and other experiments notably in thin slabs47.
Confirmation that stretched aerogel is indeed planar comes from
recent observations of the magnetic susceptibility of surface Andreev
bound states (SABS)48. The B-phase can be recovered in stretched

aerogels by pre-plating the surface of aerogel with 4He. The magnetic
susceptibility in the B-phase is greatly enhanced by SABS, theoretically
predicated for a planar-confined B-phase.

In addition to altering the stability of phases, anisotropic aerogel
has beenobserved to reorient theorbital degrees of freedomas seen in
Fig. 1a, b. In the presence of symmetry-breaking effects such as mag-
netic fields, boundaries, or anisotropic disorder, the B-phase orbital
degrees of freedom are distorted giving rise to a preferred axis
denoted ℓB. Recently, sharp transitions have been observed where the
orbital vectors in the two phases spontaneously reorient by 90∘ uni-
formly across the entire system as temperature or pressure is
varied23,45. It was determined that this reorientation is dependent upon
the anisotropyof the aerogel andnot fromcompetingorienting effects
such as from boundaries as has been reported previously in isotropic
aerogel49.

Phase identification of the superfluid, and identification of the
direction of the angularmomentum axis can be determined fromNMR
spectra obtained in a high homogeneity, steady magnetic field, dis-
cussed most recently by Zimmerman et al.50 In the superfluid A-phase
of stretched aerogel, ℓA orients parallel to the anisotropy axis ϵ at high
temperature near the superfluid transition, Tc. NMR experiments8,44,45

show that at a lower temperature, denoted Tx, ℓA spontaneously flops
to being perpendicular to ϵ across the entire sample, as depicted in
Fig. 6a. In the superfluid B-phase of compressed aerogel, ℓB is initially
perpendicular to ϵ near Tc, the opposite of what is observed in the
A-phase of stretched aerogel. At Tx, ℓB sharply reorients to being par-
allel to ϵ with a narrow transition width of ~ 15 μK23. This orbital-flop
transition varies with pressure between ~0.67 Tc at 7.5 bar to 0.88 Tc at
26 bar. The opposite behavior of these two samples is resolved by
considering the underlying structure of the aerogel comparing planar
and nematic as we discuss next.

From both the SAXS data and S(q), it is evident that these aniso-
tropic aerogels havedifferent structure at long and short length scales.
The large-scale structure is given by the dipolar pattern while the
small-scale structure is given by the ellipsoidal pattern at large q, Fig. 4
(also see Supplementary Materials). Furthermore, the scattering pat-
terns reveal that large-scale structure is oriented perpendicular to the
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Fig. 6 | Orbital angular momentum and coherence length. a Orientation of the
orbital angular momentum in stretched (planar) aerogel. Above Tx, the coherence
length is large as suggestedby the length of the green arrows for the orbital angular
momentum ℓ oriented perpendicular to the large scale planar structure. Below Tx,
the coherence length is small and ℓ reorients to being perpendicular to the small
scale structure. b The Ginzburg–Landau coherence length ξ(T, P) for various
pressures. The orbital flop transition Tx in the A-phase of stretched (planar) aerogel

for each pressure is indicated by the data points and the vertical dashed lines.
Although Tx/Tc varies with pressure, the coherence length evaluated at various Tx,
ξ(Tx, P), all fall into a narrow band near 50 nm. This indicates that the orbital flop
transition occurs when the superfluid coherence length decreases below that
length scale. c, dOrientation of orbital axis and coherence length for the B-phase of
compressed (nematic) aerogel. The orientation is reversed due to the opposite
structure but the consistency of ξ(Tx, P) remains.
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small-scale structure. We propose that this structural crossover in the
aerogel induces the orbital-flop transition. The most important length
scale in a superfluid is the coherence length, ξ, which canbe thought of
as the size of a Cooper pair (or more accurately, the healing length for
variations of the order parameter). The coherence length is largest
near the superfluid transition and decreases with temperature.
Therefore, at high temperature nearTc, the superfluid’s orbital degrees
of freedom will be sensitive to large-scale disorder. As ξ becomes
smaller at lower temperature, the smaller scale structure in the aerogel
dominates.

We have shown that at long-length scales stretched aerogel has
planar structure while compressed aerogel has a nematic structure.
For planar aerogels, the surface normal of the large scale structure is
parallel to the anisotropy axis. Correspondingly, for the A-phase of
superfluid 3He in planar aerogel we would expect A k ϵ̂ at high tem-
peratures above Tx, and Aϵ̂ below

8,44,45. If the preferred orientation of ℓ
is determined solely by aerogel structure itmust be independent of the
superfluid phase. Consequently, for a nematic aerogel, parallel and
perpendicular orbital orientations are just interchanged. This behavior
is consistent with experiment23,44 and summarized in Reference51.

The Ginzburg-Landau coherence length varies with both tem-
perature and pressure given by52

ξGLðT ,PÞ=
7ζ ð3Þ
12

� �1=2 _ vF ðPÞ
2π kBTcðPÞ

1� T=Tc

� ��1=2, ð4Þ

where ζ is the Riemann-zeta function, vF (P) is the pressure-dependent
Fermi velocity, and Tc(P) is the pressure dependent superfluid
transition temperature. The coherence length diverges near the
second order phase transition and decreases with temperature as
ð1� T=TcÞ�1=2. The temperature-independent prefactor ξ0(P) (not to
be confused with the zero-temperature BCS coherence length ξBCS)
varies from 15 to 80 nm between solidification pressure (34.4 bar) to 0
bar. The experiments in ref. 23 occur between 7.5 bar and 27 bar where
ξ0(P) ranges from 34 to 18 nm. The GL coherence length is shown in
Fig. 6 for various pressures.

Remarkably, ξ(Tx/Tc) is essentially pressure independent, shown
in Fig. 6. Furthermore, the fact that ξ(Tx/Tc) ~ 50nm, is consistentwith a
simplemechanism for the orbital-flop transition. Above Tx, ξ is large so
ℓ is oriented perpendicular to the large-scale aerogel structure. At the
temperature where ξ drops below ~ 50 nm, the orbital flop transition
occurs and ℓ is reoriented by the small-scale structure. The crossover
in scales seen in the correlation function and structure factor are of
order ~ 20–50 r0. For silica aerogel with r0 ~ 1.5 nm, this corresponds to
30-75 nm compared with ξGL(Tx, P) ~ 50 nm. The crossover is also evi-
dent in the SAXS data (see Supplementary Materials). This model
suggests that at low pressure where the coherence length is sub-
stantially larger we expect Tx to decrease as pressure is lowered. Below
1.5 bar, the coherence length does not drop below 50 nm and no
crossover transition would be expected.

Other experiments using a different type of planar aerogel also
observe a phase diagram dominated by the A-phase with the orbital
angular momentum orienting perpendicular to planar sheets33. How-
ever, an orbital flop transition was not observed in those experiments
because the aerogel has much stronger anisotropy and does not
appear to have two different length scales.

The sharpness of the orbital flop transition creates a useful
experimental tuning parameter for probing new physics since the
angular momentum axis is the chiral axis in the A-phase. Recently, it
was shown that there is a substantial anomalous thermal Hall effect in
superfluid 3He in the presence of impurities like aerogel53. The direc-
tion of transverse thermal current is strongly dependent upon the
orientation of the orbital angular momentum. Therefore, the orbital-
flop can be used as a switch to turn on, or off, the transverse thermal
gradient. Because of the sharpness of the transition, the Hall effect

should drop to zero abruptly as temperature is changed across Tx. This
switching would be a definitive signature of the anomalous thermal
Hall effect, an unambiguous indication of broken-time reversal
symmetry.

Summary
We have described a procedure to simulate and characterize aniso-
tropic aerogels with planar and nematic strands. The anisotropy is
induced by biasing the diffusion process and can be characterized by
the autocorrelation function, structure factor, and distribution of free
paths. We make a connection to experimental aerogel by comparing
the shapeof the SAXSpatternwith the simulated structure factor. Both
the calculated structure factor and the SAXS data exhibit a congruent
dipolar shape at small-q and a perpendicular ellipsoidal pattern at
large-q. These two patterns reveal the two different length scales of
anisotropy in the aerogels. Fromthis connection,we are able to classify
silica aerogel and show that stretched silica aerogel has large-scale
planar structure while compressed aerogel has large-scale nematic
structure. Finally, we provide a description of the aerogel’s effect on
the orbital angular momentum of superfluid 3He. The orbital angular
momentum is oriented by the large scale structure in the aerogel at
high temperature before spontaneously reorienting at a lower tem-
perature due to the small-scale structure. Temperature-dependent
sensitivity to the orientation of the order parameter of the superfluid is
directly linked to the temperature dependence of the superfluid
coherence length. We suggest that the “orbital-flop" transition can be
leveraged in future work to observe the anomalous thermal Hall effect
in superfluid 3He.

Methods
Simulation of anisotropic aerogel
Aerogel can be accurately simulated using the procedure detailed in
section IIof ref. 20. A randompoint field ofNparticles (ranging fromN
= 5000 to 200,000) is initialized in a periodic box with volume L3. The
particles have a distribution of radii given by a log-normal distribution
with a sample mean of r0 and sample standard deviation σ0. Themean
radius r0 sets the scale for comparing the simulated aerogel with real
aerogel, therefore all lengths are given in units of r0. Our work is
focused on high porosity (low density) aerogel with the filling fraction
ofρ0 ~ 2%,where ρ0 =

4
3πr

3
0

N
L3
, corresponding to real silica aerogelwith

mass density ~45 mg/cm332. For N = 200000, the box size L is 350 r0
which is the figure ofmerit for determining finite size effects discussed
later regarding the correlation function. The standard deviation is
fixed at σ0 = r0/8 because it does not affect the large scale structure for
reasonable values of σ0. For each simulation step, a randomly chosen
particle (or cluster of particles) is moved along a randomly chosen
direction (±x, ±y, or ±z with equal probability) by a step size ≤ r0/4,
depending upon the choice of ϵ. For ϵ = 1, all directions have the same
step size of r0/4. For ϵ < 1, the step size along z is reduced to (ϵr0)/4. For
ϵ > 1, the step sizes along x and y are reduced to r0/(4ϵ).

The particles are allowed to diffuse randomly until they collide
with another particle or cluster. If a collision occurs, the two particles
are joined into a cluster and thereafter diffuse together. The diffusion
coefficient is controlled by the mass, m, of the aggregate, with larger
clusters diffusing more slowly. The probability that a cluster is moved
at each time step is proportional to m−α, with α chosen to be between
0.5 − 1 which results in aerogels with a fractal dimension in the range
1.7 − 1.820,54. When all particles are joined into a single cluster, the
simulation ends yielding a gel.

The characteristic size of the planar andnematic structures can be
extracted from the density variation along each axis. This is calculated
by taking a planar cross section of aerogel with a thickness of 2 r0. As
this slice is translated in the direction normal to the plane, the total
number of aerogel particles in the slicewill vary. For planar aerogel, the
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density variation along the z-axis will have a periodicity given by the
thickness of the planar sheets and gaps, as seen in the left panel of
Fig. 7, which is the Fourier transform of the density. For nematic
aerogel, the opposite behavior is observed with density variations
along the x- and y- axes. We find a consistent description of these
nematic and planar structures from calculation of the autocorrelation
function, the structure factor, and the distribution of geometric free
paths presented in this work.

Correlation functions
Silica spheres aggregate to form strands which cluster together to
form larger structures thatmakeup the aerogel network. Thepositions
of the spheres are non-uniform and highly correlated in space. This
non-uniformity is encoded in the autocorrelation function, g, which is
the two-point characteristicofρ given bypoint-wisemultiplicationofρ
evaluated for all pairs of particles. In the most general case, it is a
function of all particle coordinates. This is reduced when certain
assumptions and symmetry constraints are applied. For a globally
homogeneous cluster of N particles in a volume V, g only depends
upon the separation vector, R, between two points given by

gðRÞ= ρðri +RÞ ρðriÞ
� �
NðN � 1Þ=ð2V Þ ð5Þ

where the angled-brackets, 〈. . . 〉, represent an ensemble average over
all pairs (the homogeneous assumption) and the denominator
N(N − 1)/(2V) is the mean density of pairs. When normalized to the
density of pairs, the autocorrelation function gives the excess like-
lihood to find two particles separated by a vector R, relative to a ran-
dom uniform Poisson point field of the same density20,55,56. The
correlation functiondefined in Eq. (5) is also sometimes called the “pair
correlation function", “pair distribution function", or “radial distribu-
tion function" depending upon the application28,56,57. It is useful to
define g in spherical coordinates, g(R, θ,ϕ), where θ is the polar angle
with respect to z and ϕ is the azimuthal angle in the xy-plane. In the
limit of large separation, R→∞, g(R)→ 1, indicating no excess correla-
tion above that of a uniform distribution.

While different samples drawn from the same probability dis-
tribution (i. e. simulated with the same parameters or experimentally
grown under the same conditions) will have a different value for the
aerogel field ρ(r) at any point ri, the two samples will have the same
two-point functions because the correlations remain the same.

Therefore, g(R) can be averaged between samples while ρ cannot. In
addition, most applications of aerogel do not depend on the location
of the silica spheres themselves; but rather the open space between
them, i. e. the complement of the aerogel structure. Characteristic
cluster and void sizes can be determined from the correlation func-
tion. Excess correlation (g > 1) indicates clustering at that separation
distance and direction while a deficit in correlation (g < 1) indi-
cates voids.

For isotropic aerogels (ϵ = 1), g(R) further simplifies to g(R) by
averaging over the angular variables, gðRÞ= 1

4π

R
gðRÞ sin θdθdϕ: On

the other hand, for anisotropic samples with ϵ ≠ 1, the angular-
dependence of g(R) becomes important. In the case of azimuthally
symmetric, uniaxial anisotropy, g is simplified by averaging only over
the azimuthal angle yielding gðR,θÞ= 1

2π

R
gðRÞdϕ. The correlation

functions determined here have more structure than the correlation
functions proposed in the literature which are simple power-laws with
an upper fractal exponential cutoff28. This is not surprising as the
aerogel is anisotropic with different macroscopic structure than for
isotropic aerogels. As seen in Fig. 8, g(R, θ) for nematic and planar
aerogel have non-uniform θ-dependence, a clear signature of aniso-
tropy. The R-dependence of the deficit in correlation gives the char-
acteristic size of voids, while the θ-dependence of the deficit gives the
shape of voids for each sample. In all directions, there is a significant
nearest-neighbor peak around 2 r0 indicating contact between parti-
cles. The relative height of the nearest-neighbor peaks in different
directions indicatewhether pairing along ϵ (cos(θ) = ± 1) or in the plane
perpendicular (cos(θ) = 0) is more likely. For nematic samples (the
green curves in c and d), there is greater likelihood for the nearest
neighbor to be in the plane perpendicular to ϵ thanparallel to ϵ as seen
in Fig. 8a. However, at intermediate separation, 10 r0 < R < 50 r0, the
direction of excess correlation swaps, indicating particles are more
likely to be collimated along ϵ. This is the signature of long nematic
strands.

The opposite behavior is observed for planar (ϵ > 1) samples (the
blue curves in panel Fig. 8 c, d). At small separations, there is pre-
ferential pairing along ϵ but for larger separations, a neighbor is more
likely to be found in the plane. Increasing ϵ increases the nearest-
neighbor peak at short separations but also increases the deficit in
correlation in the intermediate range of ~ 20 r0. This canbe interpreted
to be the scale of the thickness of the planes of aerogel strands. A silica
sphere located in the planes is less likely to have a neighbor above or
below it at distances greater than the sheet thickness, but less than two
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sheet thicknesses. Correspondingly, as ϵ increases, so does the size of
gaps between the sheets for planar aerogel. In both the ϵ > 1 and ϵ < 1
cases, it is the behavior of the correlation function at the intermediate
length scale of 10 to 50 r0 that is central to understanding the mac-
roscopic properties of the aerogel. The correlation function is domi-
nated by the nearest-neighbor peak at 2 r0; but this only describes the
small scale correlations.

We can also determine whether finite size effects are relevant for
understanding these anisotropic aerogels. As seen in Fig. 8, the cor-
relation approaches 1 for separations beyond 70 r0 for both the
nematic and planar aerogels indicating no complex structures above
that scale. This is well below the typical box size used, L = 350 r0. We
conclude that the anisotropic properties of these aerogels are not
limited by the box size.

There are two methods of numerically calculating g, the “direct"
method and the Fourier-correlation method, each with their own
advantages and disadvantages. The direct method simply applies the
definition of the correlation function considering every pair of parti-
cles, calculates their separation vector R, and histograms the set of R
into equal volume R and θ bins. The raw bin counts are then normal-
ized by the density of pairs and the bin volume, N N�1ð Þ

2V 2πr2dRdðcosθÞ.
The radial bin width is dR and the theta bin width is dðcosθÞ. This
method can be implemented natively in spherical coordinates but is
slow in time, scaling as OðN2Þ for N particles.

Becauseoffinite sample size, particles near the edgeof the sample
box will have an artificial deficit in neighbors leading to the tail of the
distribution (large R) being incorrect. This can be corrected by several
different methods as described in ref. 56. Astronomers calculating
auto-correlation functions of galaxies observe biases for large R58 and
have devised various estimators to correct for this. The central idea is

to consider a randomly distributed sample of similar size and density.
This artificial sample will have the same finite size effects as the
simulation of interest. The autocorrelations of the simulation of
interest and of the artificial sample along with the cross-correlation
between the artificial sample and the simulation are combined to
remove finite size effects. Different combinations of autocorrelations
and cross-correlation have been suggested each with their own sta-
tistical bias56. We have implemented several of the most widely used
estimators and compared them with a simple procedure of cross-
correlating the original aerogel sample ρ(r) with a copy of itself that
has been spatially-shifted in all three directions by the simulation box
size, ρðr ± Lðx̂, ŷ, ẑÞÞ. This procedure is equivalent to applying the
periodic boundary used in the simulation. We find that the latter
method effectively corrects the tail of g(R) consistent with the other
estimators without the need to generate a test sample. The correla-
tions in Fig. 8 were determined using the direct method with periodic
boundary conditions.

The second method uses the Fourier-correlation
(Wiener–Khinchin) theorem and the efficiency of fast-Fourier trans-
forms (FFT) to speed up the process. This is best done in the cartesian
representation of the aerogel field, ρijk. The cartesian autocorrelation
function, gxyz, is the inverse Fourier transform given by

gxyz =
ρijk ρi0 j0k0

D E
NðN � 1Þ=ð2V Þ =

F�1 jf̂ lmnj2
n o

NðN � 1Þ=ð2V Þ
ð6Þ

This calculates the circular autocorrelation of ρ(r) which naturally
enforces the periodic boundary used in the simulation so it does not
need to be corrected for finite size effects. Due to the speed and effi-
ciency of FFT algorithms, thismethod is significantly faster in time and
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scales only asOðNLogNÞ. However, thismethod ismemory intensive as
the matrix representation of ρ grows as L3 for L lattice sites in each
dimension. For a cubic lattice with 103 sites per dimension, ρijk, stored
as a 32-bit float, there will be ~4 Gb of data. In computational
complexity, the FFT-correlation method scales well in time but poorly
in space (memory), while the directmethod is the opposite, efficient in
space but slow in time. Importantly, the FFTmethodalso calculates the
three-dimensional, cartesian structure factor, Sxyz.

Data availability
Experimental data and simulation results are available from the cor-
responding author upon request. A sample nematic aerogel (ϵ =0.5)
can be found at https://github.com/Halperin-Lab/DLCA.

Code availability
Simulation and analysis code are available from the corresponding
author upon request. CompiledDLCAprogramcanbe foundathttps://
github.com/Halperin-Lab/DLCA, https://doi.org/10.5281/zenodo.
10086252.
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