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Abstract—Objective: Exercise monitoring with low-cost 
wearables could improve the efficacy of remote physical-
therapy prescriptions by tracking compliance and informing 
the delivery of tailored feedback. While a multitude of 
commercial wearables can detect activities of daily life, such 
as walking and running, they cannot accurately detect 
physical-therapy exercises. The goal of this study was to 
build open-source classifiers for remote physical therapy 
monitoring and provide insight on how data collection 
choices may impact classifier performance. Methods: We 
trained and evaluated multi-class classifiers using data from 
19 healthy adults who performed 37 exercises while wearing 
10 inertial measurement units on the wrist, pelvis, thighs, 
shanks, and feet. We investigated the effect of sensor 
density, location, type, sampling frequency, output 
granularity, feature engineering, and training-data size on 
exercise-classification performance. Results: Exercise 
groups (n=10) could be classified with 96% accuracy using a 
set of 10 inertial measurement units (IMUs) and with 89% 
accuracy using a single pelvis-worn IMU. Multiple sensor 
modalities (i.e., accelerometers and gyroscopes), high 
sampling frequencies, and more data from the same 
population did not improve model performance, but in the 
future data from diverse populations and better feature 
engineering could. Conclusions: Given the growing demand 
for exercise monitoring systems, our sensitivity analyses, 
along with open-source tools and data, should reduce 
barriers for product developers, who are balancing accuracy 
with product formfactor, and increase transparency and trust 
in clinicians and patients. The open-source data and code 
are available at https://simtk.org/projects/imu-exercise.  
 

Index Terms— Wearable sensors, inertial measurement 
units (IMUs), deep learning, exercise classification, remote 
rehabilitation.  

I. INTRODUCTION 
IGHTWEIGHT wearable sensors and the quantified-
self movement they awakened in the past decade 
continue to inspire reflection on how to turn self-

tracking from a cultural phenomenon into a healthcare 
revolution. Similar to glucose, temperature, heart rate, and 
electrical activity monitors being adopted in clinical care, 
remote tracking of rehabilitation exercises with motion 
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sensors should also be feasible [1-3]. By tracking adherence, 
inertial sensors could inform the delivery of precision 
rehabilitation and lower overall healthcare costs. Yet, while 
the formfactors characterizing commercial products continue 
to improve, the modeling required to turn the data into 
meaningful feedback remains opaque, limiting the practical 
use of motion sensors. Physical activity monitors, including 
those embedded in consumer-grade wearables, are generally 
accurate but limited to recognition of basic activities of daily 
living, such as walking and running [4, 5]. 

While remote rehabilitation would benefit from accurate 
identification of activities that have clinical implications, the 
feasibility of doing so using wearable sensors remains unclear. 
Prior classifiers have reported high accuracy based on a small 
number of exercises, such as lunges, squats, and heel raises [6-
9]. The training data have included a small number of both 
upper- and lower-extremity exercises that are highly distinctive 
[6, 8-14], which facilitates classification. Grouping upper- and 
lower-extremity exercises into a single classifier may be helpful 
for general fitness tracking but falls short of informing the 
delivery of tailored physical therapy. Clinicians often prescribe 
a multitude of exercises targeting specific lower or upper 
extremity conditions. The large number of exercises and 
narrower movement variability pose challenges for classifier 
accuracy, but provide the opportunity to cluster similar 
exercises that we expect will increase classifier accuracy while 
maximizing clinical impact. 

As wearable sensor systems are developed to address this 
clinical need, they must not only be accurate in exercise 
detection but also be practical to use in patient populations. For 
example, sensors that require frequent patient interactions to log 
data or charge the battery of multiple sensors increase patient 
burden and decrease the large-scale implementability of 
wearable sensors in healthcare. However, little is known about 
the influence of sensor density, location, type, and optimal 
frequency to help balance classifier accuracy with device 
usability (e.g., battery life, user experience). While each study 
uses different sensor densities, locations, and exercises, it is 
difficult to understand if a wrist-worn sensor is as good as a 
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pelvis-worn one, or if a pelvis-worn one is as good as multiple 
segment-specific sensors. Recent work considered single-
sensor placements at the wrist [6, 17], forearm [14, 15], upper 
arm [18], lower back [19, 20], and shank [21], but it is difficult 
to draw conclusions on which sensor location is optimal due to 
differences in the exercises these studies included. Further, as 
most studies focused on performance metrics, few translatable 
insights have been provided to help researchers, clinicians, and 
product developers choose parameters that are most practical 
when implementing a monitoring system. For example, it is 
unclear if power-hungry gyroscopes are essential for classifier 
performance over accelerometry alone. It is also unknown if 
sampling frequency can be lowered to extend battery life 
without sacrificing performance. Another question is if the 
models could be enhanced with more data and better feature 
engineering, or if they have reached theoretical limits of 
performance. One large focus in movement biomechanics is 
kinematics estimation with inertial measurement units (IMUs) 
[22, 23]. However, exercise classification models have in the 
past been trained using accelerometry and gyroscope data 
extracted directly from the sensors, instead of estimated 
kinematics, which can be interpreted as domain-informed 
feature engineering. In many applications, feature engineering 
is a laborious step that can ultimately improve classifier 
accuracy, but it remains unclear if this applies to exercise 
classification. 

The primary goal of this work was to build open-source 
exercise classification models and perform sensitivity analyses 
that would inform the development of remote physical therapy 
monitoring systems and data collection protocols, 
democratizing the process for all researchers, clinicians, and 
product-development entities. We first report classifier 
performance across 37 lower-extremity load-bearing exercises 
and use a data-driven approach to cluster similar exercises. We 
then systematically investigate the impact of sensor density, 
location, type, and sampling rate. Last, we investigate if more 
data and better feature engineering would move these classifiers 
toward theoretical limits of performance. In addition to the 
code, we make all the data publicly available. 

II. METHODS 
Nineteen healthy subjects (9 males:10 females; age: 25 ± 5 

years; body-mass index: 24.1 ± 2.4 kg/m2) were recruited to 
participate in this study after we obtained approval from the 
Institutional Review Board at the University of Pennsylvania 
and informed consents [24]. None of the participants had self-
reported injuries in the past 6 months. They were instructed to 
perform 37 lower-extremity exercises while following visual 
demonstrations by a physical therapist. At least three successful 
repetitions were recorded for each exercise. Based on the 
intensity of exercises, we divided data collection into 4 
modules, each containing 7 to 10 exercises (Fig. 1 and Table I). 

 
Fig. 1. Data Collection Overview. (a) Examples of a subject performing a few of the lower-extremity exercises captured in this study. (b) The 
distribution of exercise repetitions across the entire dataset of 19 subjects. Exercises were divided into 4 modules based on their intensity, with 
breaks of 3 – 5 minutes between each module. Data were collected in the order presented here. Definitions of the exercise acronyms can be found 
in Table I. 
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Subjects took breaks of 3 – 5 minutes after each module to 
prevent any possible confounding effects of physical 
exhaustion. 

We tracked movement with both inertial sensors (Opal, 
APDM Wearable Technologies, USA) and marker-based 
motion capture (Raptor Series, Motion Analysis Corporation, 
USA), with the latter used to obtain ground-truth movement. 
Ten IMUs were attached to the subject’s chest, pelvis, wrists, 
thighs, shanks, and feet (Fig. 4) to measure three-dimensional 
linear accelerations via accelerometry and angular velocities via 
gyroscopes. These data were used as input to train the deep 
learning models, with the labels indicating exercise type 
recorded by the research team. The 12-camera marker-based 
motion capture system recorded the motion of 31 retro-
reflective markers placed on the lower body. The purpose of 
using marker-based motion capture was to obtain idealized joint 
kinematics and determine whether they can help improve 
classifier performance. IMU and motion capture data were 
sampled at 100 Hz. Three in-floor force platforms (BP600900, 
AMTI Force and Motion, USA) concurrently recorded ground 
reaction forces at 1000 Hz. Data from different modalities were 
synchronized by a syncing device (V2 Sync Box, APDM 
Wearable Technologies, USA). Marker-based motion capture 

data were filtered with a low-pass 4th order Butterworth filter 
with a cut-off frequency of 6 Hz before being used to perform 
inverse kinematics. To segment the linear acceleration, angular 
velocity, and marker-based motion capture data into individual 
exercise repetitions, we used the force plate data. Exercise 
repetitions were then normalized and resampled (0 – 100%). 

We first built convolutional neural network (CNN) models 
with different architectures to classify 37 exercises, before 
performing a cluster analysis to determine if the exercises could 
be further simplified into fewer groups. Building blocks 
consisted of rectified linear activated convolutional layers, 
batch normalization layers, and maximum pooling layers (Fig. 
2). The number of building blocks (1 – 3) was a 
hyperparameter, along with batch size (16 – 128), convolutional 
outputs (32 – 256), and pool size (2 – 8), which were fine-tuned 
though a grid search. The convolutional kernel size and stride 
grid did not affect performance and were kept constant at 4 and 
1, respectively. We used leave-one-subject-out cross validation 
(LOSOCV) for both hyperparameter tuning and performance 
evaluation, splitting the data into train, validation, and test sets. 

We carried out a cluster analysis using data from all ten 
IMUs to determine which exercises could be grouped together 
for lighter-weight models. Since exercise with similar 

 
Fig. 2. Model Architecture Selection. (a) Three basic combinations of common CNN components were used: Type 1 has a Conv1D layer followed 
by MaxPool1D layer, Type 2 has two Conv1D layers and a MaxPool1D layer, and Type 3 has a Conv1D layer followed by a BatchNorm and a 
MaxPool1D layers. These were used as building blocks across different models. (b) The sequential architecture of the deep learning model with 
various building blocks for feature extraction. The blocks were added to the feature extractor until no further improvement was observed. While the 
structure and hyperparameters of the feature extraction block were fine-tuned, those of the downstream block remained the same. (c) The deep 
learning model with a Type-3 block outperformed the others. An additional model that used a parallel architecture of Type-1 blocks was applied. 
However, the performance of this model was relatively poor compared to its sequential counterparts. 
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movements could result in similar clinical outcomes (e.g., joint 
load), this grouping of exercises practically helps reduce patient 
burden, while optimizing classifier performance. K-means was 
used to cluster exercises into groups. We used the elbow 
method on a curve of scaled inertia to determine the optimal 
number of clusters, with the k ranging from 1 to 19. A 
sensitivity analysis of the initialization parameters revealed 
they had little bearing on the final results.  Inertial data from all 

the repetitions of the same exercise were averaged to obtain 37 
samples representing 37 exercises. Each sample was 
normalized and resampled as noted earlier before being input 
into the cluster analysis. Once the exercise groups were 
determined, we re-trained and re-evaluated the models for 
classification of these groups. Here we report model 
performance in terms of accuracy, precision, recall, and F1 
score. For generalizability and rigor in model evaluation, we 

(c) 

 
Fig. 3. Full-Sensor Model Performance. (a) The deep learning model reached an accuracy of 81% in identifying 37 specific exercises. The confusion 
matrix illustrates that misclassifications were due to exercises with similar movements, such as forward jump versus forward jump fast or forward 
hop versus forward hop fast. (b) The elbow method suggested that the optimal number of clusters for k-mean clustering was 10. (c) The cluster-
specific classifier was more accurate than the exercise-specific classifier, with accuracy increasing from 81% to around 96%. Definitions of the 
exercise acronyms can be found in Table I. 
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ensured that all the data from a subject were included solely in 
the training, validation, or test set. 

In addition to training models with the full set of data from 
10 IMUs, we also trained sparser models with data from 7, 5, 4, 
3, 2, and 1 IMUs. For the single-sensor models, the IMUs 
placed on right wrist, chest, pelvis, and right thigh were tested 
due to their convenience for consumer products (Fig. 5a and 
9a). For double-sensor settings, the sensors attached to chest 
and right thigh, both thighs, right wrist and right thigh, and right 
thigh and right shank (Fig. 5b and 9b) were tested. 

To address questions around battery life, we compared 
models built with different sensor types and data sampling 
frequencies. Specifically, for the full-, single-, and double-
sensor configurations, the models were trained and tested with 
data from the accelerometer only and gyroscope only, in 
addition to the original model that included both. To test model 
sensitivity to sampling frequency, the IMU data were 
downsampled to 50, 25, 20, 10, and 5 Hz and full-sensor models 
were retrained. 

Last, we explored whether these models could be further 
improved via feature engineering and additional training data. 
To show that domain knowledge can boost model performance, 
we obtained kinematics from the marker-based motion capture 
data and trained models using only kinematics as the input 
feature. Marker-based kinematics represent idealized 
kinematics, which could theoretically be derived from IMU 
data via feature engineering. To gauge how model performance 
changes with the number of subjects included in the training 
dataset, learning curves were generated using 2 to 19 subjects. 
An inverse power law curve fitting approach [32, 33] was 
applied to predict how performance would increase with 
hypothetical sample sizes and what the theoretical limits of 
these models are. 

All data and codes of this work will be available on SimTK 
(link: https://simtk.org/projects/imu-exercise). 

III. RESULTS 
A classifier built to predict exercise groups (i.e., clusters) 

was more accurate than one built to predict individual exercises. 
The optimal number of exercise clusters was 10 (Fig. 3b), and 
similar exercises were grouped together (Fig. 3a). For example, 
all the squats were grouped into the first group. Using linear 
acceleration and angular velocity data from 10 IMUs, exercise 
group could be predicted with nearly 96% accuracy (Fig. 3c and 
4), while the 37 individual exercise with 81% accuracy (Fig. 2c, 
3a, and 8). Most exercises misclassified by the individual 
exercise model had similar movements and were typically 
clustered under the same group. Examples include forward 
jump versus forward jump fast and lateral hop versus lateral hop 
fast (Fig. 3a). 

Classification of exercise clusters was less sensitive to 
sensor number and location than classification of individual 
exercises. Reducing the sensor set reduced cluster-specific 
model performance only minimally, from 96% to 93%, 91%, 
93%, 89% for the 5-, 4-, 3-, 2-IMU systems, respectively (Fig. 
4). Single-IMU models achieved accuracies of 89% for the 
pelvis and 75% for the wrist (Fig. 5). Sensor density and 
location, however, had a major impact on classification of 
individual exercises, with accuracy dropping by more than 
20%, from 81% to 61%, when a single pelvis-worn IMU was 
used compared to 10 IMUs (Fig. 8 and 9). 

Accelerometry-based models were as accurate as those 
using both accelerometer and gyroscope data, and sampling 
frequency could be reduced to 20 Hz without affecting model 
accuracy (Fig. 6). With the full 10-IMU sensor set, a model 
using accelerometer data achieved similar performance to that 
using both accelerometer and gyroscope data sources (Fig. 6a). 
In addition, models trained with data that were downsampled to 
50 or 25 Hz performed as well as the model trained with the 

 
Fig. 4. Model Performance by Sensor Density: Exercise Groups. The model using data from 3 lower-body sensors placed on pelvis, and thighs 
achieved a performance that was similar to that of the full sensor set. With fewer than 3 sensors, performance dropped progressively. Of the single-
sensor configurations, the pelvis one achieved the highest performance. Numerical results can be found in Table S1 (supplementary document). 
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original data recorded at 100 Hz. Further reducing the sampling 
frequency to 20 Hz reduced performance by less than 3% (Fig. 
6b). These trends were similar for the exercise-specific models 
(Fig. 10). 

Classification of exercise clusters was also less sensitive to 
training sample size and feature engineering than classification 
of individual exercises (Fig. 7). Our sample size analysis 
indicated that adding 132 subjects would increase the accuracy 
of identifying exercise clusters from 96% to 99%. Kinematics 
data increased accuracy from 96% to 98% (Fig. 7a). On the 
other hand, more subjects (n = 2322) would improve the 
accuracy of exercise-specific models from 81% to 95%, when 
using accelerometry and gyroscope data (Fig. 7b). Kinematics 
would help improve the performance from 81% to 88% when 
data from only 19 subjects are available. To reach 95% 
accuracy, a kinematics-based model would require only 237 
subjects. Generally, the accuracy of these models is 
theoretically bound at 98%. 

IV. DISCUSSION 
The goal of this study was to develop open-source models for 
exercise classification and carry out detailed sensitivity 
analyses on sensor density, location, type, sampling frequency, 
feature engineering, and training data size. We found that deep 
learning classifiers could predict 10 exercise groups with an 
accuracy of 96% and 37 individual exercises with an accuracy 
of 81%. Ten full-body sensors and three placed on the lower 
body led to comparable performance (i.e., less than 3% 
difference). Of single-sensor systems, one worn on the pelvis 
led to the best performance. Accelerometry data alone 
performed as well as gyroscope and accelerometry together, 
and when these modalities are jointly used to derive kinematics, 
model performance improved only marginally. Our sample size 
analysis indicated that more data from the same population 
improves classification of individual exercises, but not exercise 
groups.  

 
Fig. 5. Model Performance by Sensor Location: Exercise Groups. (a) Among single-sensor configurations, a sensor placed on the pelvis achieved 
the highest performance overall (i.e., 89% in accuracy and 0.87 in F1-score). (b) A combination of sensors placed on both thighs achieved the 
highest performance across two-sensor configurations (i.e., 89% in accuracy and 0.86 in F1-score). (c) The optimal sensor placements (for either 
single- or double-sensor settings) varied by specific exercise, as illustrate  in the botto   anels, where “ ”  re resents the best  erfor ance  er 
exercise, an  “-“ in icates less than or e ual to  %  ecreases in  erfor an ce co  a re  to the best  erfor an ce. Numerical results of (a) and (b) 
can be found in Tables S2 and S3 (supplementary document), respectively. 
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Fig. 6. Model Performance by Sensor Type and Sampling Frequency: Exercise Groups. (a) The model trained with accelerometer data provided 
equivalent performance as that trained with gyroscope data or both. (b) Overall, reducing the rate at which the sensor data are sampled by the factor 
of up to 5 (i.e., 20 Hz) caused less than 3% decrease in performance. The performance decreased more noticeably as the sampling rate was reduced 
to 10 Hz and 5 Hz. Numerical results of (a) and (b) can be found in Tables S4 and S5 (supplementary document), respectively. 
 

 
Fig. 7. Model Performance with Sample Size and Feature Engineering. A learning curve was derived after training and evaluating models with 2 to 
19 subjects (i.e., dots in the figures). An inverse power law [32, 33] estimated how the models could improve with more data (i.e., solid lines), akin 
to sample size calculations in inferential statistics. (a) This sample size analysis predicted that group-specific models can theoretically reach 
accuracies of 100%. (b) Exercise-specific models can reach accuracies of 97% and 98% for the baseline and kinematics model, respectively, but 
data from thousands of subjects would be required. Numerical results can be found in Table S6 (supplementary document). 
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Our work suggests that grouping exercises by similarity is 
not only practically beneficial, but also clinically relevant. The 
clustering approach, which increased model performance from 
81% to 96%, automatically grouped exercises into 10 categories 
with considerable affinity in terms of how they load joints of 
interest. For example, a prior analysis has shown that the 
patellofemoral joint is loaded similarly by a two-leg 
countermovement jump (i.e., CMJDL) and one-leg 
countermovement hop (i.e., CMJSL) [24] and our clustering 
analysis grouped these activities together. The goal of remote 
exercise prescription and monitoring programs is to track how 
joints, ligaments, tendons, and muscles are loaded, and if a few 
exercises bear similar clinical significance in this context, then 
distinguishing among them at the expense of accuracy is not 
worthwhile. This grouping has the added advantage of 
generating equally accurate models with sparser sensor sets, 
making it a more viable solution for translation. A pelvis-worn 
sensor, which tracks the body’s center of mass, stands out 
among single-sensor configurations with an accuracy of 86% in 
predicting exercise clusters—a decrease of only 9% from the 
model that uses the full set of 10 segment-specific sensors. 

Our estimations also indicate that by cutting sampling 
frequency and gyroscope data, we can prolong battery life 
without sacrificing accuracy. The gyroscope consumes at least 
6 times more energy than the accelerometer [25, 26] but does 
not substantially improve accuracy. Typically, gyroscope data 
are more informative in highly dynamic movements, which is 
not the case in rehabilitation exercises to avoid injuries for 
patients. However, the complementary nature of these two 
sensors can be harnessed by using domain knowledge to further 
improve classifier performance, as noted below. As movement 
frequency for physical therapy exercises is likely below 10 Hz, 
a sampling frequency of 20 Hz should be the lowest sampling 
frequency that guarantees good performance based on the 
Nyquist theorem [27-30]. At the cost of less than 3% reduction 

 
Fig. 8. Model Performance by Sensor Density: Individual Exercises. Unlike the cluster-specific classifier, whose performance maintained high 
accuracy even with a single sensor, the accuracy of the exercise-specific model dropped with reduced sensor density. Numerical results can be 
found in Table S1 (supplementary document). 
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TABLE I  
LIST OF EXERCISES IN THE DATASET (IN THE ORDER OF DATA COLLECTION) 

AND THEIR ABBREVIATIONS 

Module Exercise Abbreviation 

1 

Static pose Pose 
Heel raises HeelRaise 
Walk Walk 
Step up (low step) StepUpL 
Step down (low step) StepDnL 
Step up (high step) StepUpH 
Step down (high step) StepDnH 
Lunges Lunge 
2-leg counter-movement jump CMJDL 
2-leg drop-landing DropLandDL 
2-leg drop-and-jump DropJumpDL 
2-leg maximal forward jump MaxJump 

2 

Run Run 
2-leg squat (half depth) SqHalfDL 
2-leg squat (full depth) SqDL 
Decline squat DeclineSq 
Sumo squat SumoSq 
Spanish squat SpainSq 
Run-and-cut RunCut 
1-leg maximal forward hop MaxHop 
Run-and-stop RunDec 
Sports movement jump SportJump 

3 

1-leg squat (half depth) SqHaflSL 
1-leg squat (full depth) SqSL 
Bulgarian squat BulgSq 
1-leg counter-movement hop CMJSL 
2-leg repeated forward jumps (regular) FwJump 
2-leg repeated forward jumps (fast) FwJumpFast 
2-leg repeated lateral jumps (regular) LatJump 
2-leg repeated lateral jumps (fast) LatJumpFast 

4 

1-leg drop-landing DropLandSL 
1-leg drop-and-hop DropJumpSL 
1-leg repeated forward hops (regular) FwHop 
1-leg repeated forward hops (fast) FwHopFast 
1-leg repeated lateral hops (regular) LatHop 
1-leg repeated lateral hops (fast) LatHopFast 
Alternating split jumps SplitJump 
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in performance, this sampling rate theoretically improves 
battery life up to 5 times, which is significant for out-of-clinic 
monitoring applications [31]. 

Moving forward, we have identified two areas for further 
investigation to improve exercise classification models: having 
more diverse data and better feature engineering. While more 
data from the same population do not seem to be beneficial, 
diverse data, from older adults or those with musculoskeletal 
diseases, could further improve model generalizability. Good 
feature engineering is a more judicious and cost-efficient way 
to improve performance compared to obtaining more data. 
Models trained on kinematics, as opposed to accelerations and 
angular velocities measured directly by the sensors, could 

improve classification of individual exercises and exercise 
groups by small margins. Two points are important to consider 
in this context. First, to build the kinematics-based classifier, 
instead of estimating kinematics from IMU data, we used 
ground-truth kinematics from the marker-based motion capture 
system. This model represents a best-case scenario for how 
accurately kinematics can be estimated in natural environments. 
In reality, estimation of kinematics with IMUs is an ongoing 
technical challenge, albeit one that is receiving considerable 
attention. Second, it is important to note that a heuristics-guided 
approach could be better than a purely data-driven one at 
training deep learning models when the kinematics data are 
available. For example, an exercise can be detected based on 

 
Fig. 9. Model Performance by Sensor Location: Individual Exercises. (a) Among single-sensor configurations, a sensor placed on the pelvis achieved 
the highest performance overall (i.e., 61% in accuracy and 0.54 in F1-score). (b) A combination of sensors placed on both thighs achieved the 
highest performance across two-sensor configurations (i.e., 69% in accuracy and 0.64 in F1-score). (c) The optimal sensor placement (for either 
single- or double-sensor settings  varie  b  s ecific exercise, as illustrate  in the botto   anel, where “ ”  re resents the best  erfor an ce  er 
exercise, an  “-“ in icates less than or e ual to  %  ecreases in  erfor an ce co  a re  to the best  erfor an ce   efinitions of the exercise 
acronyms can be found in Table I. Numerical results of (a) and (b) can be found in Tables S2 and S3 (supplementary document), respectively. 
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joint- or segment-specific heuristics. While such an approach is 
not feasible with accelerometry and angular velocity data, it is 
the most intuitive and likely the most accurate when kinematics 
data are available. The improvement in accuracy we report with 
a deep learning approach therefore represents a worst-case 
scenario. These factors that contribute to classification 
performance should be carefully considered in the broader 
context of implementing wearable sensors in clinical 
populations. For example, using a kinematics-based classifier is 
likely to marginally improve performance but at the expense of 
additional sensors and data streams that increase the patient 
burden beyond the performance benefit. This cost-benefit 
analysis should be considered for each application and likely 
will differ based on the patient cohort. 

A few limitations are important to consider when 
interpreting these results. First, we used only data from healthy 
adults to train the models. However, we expect differences 
across individuals to be smaller than differences across 
exercises, which makes the classifier highly likely to generalize 
to patient populations, although this remains to be 
demonstrated. Second, the data were collected in a controlled 
laboratory environment and may be cleaner than natural-
environment data. Future efforts may address this potential 
limitation through the use of transfer learning, where a small set 
of natural-environment data can be used to fine-tune the 
models. Third, we did not emphasize the practical challenge of 
detecting non-exercise movements as we envisioned the use of 
a wearable system only during exercising sessions. Last, 
exercise segmentation was carried out by experts here since 
creating an end-to-end system is an engineering task that was 

beyond the scientific scope of this work. Prior work focusing 
on automated segmentation from inertial data has achieved 
accuracies of 96% [34, 35]. 

V. CONCLUSION 
We summarize our findings in the following seven lessons 

and hope that would help fuel progress and more informed 
translation.  

1) We should aim for clinical relevance over 
inconsequential granularity. Understanding how much 
time each patient spends in each of the 10 exercise 
clusters gives clinicians sufficient insight on joint 
loading.  

2) Exercise group classification can be performed with a 
single sensor, while detection of individual exercises 
needs up to five sensors on the lower body.  

3) A pelvis, chest, and thigh-worn sensors are the most 
informative for lower-extremity exercise monitoring, 
while a wrist-worn sensor is the worst.  

4) The gyroscope can be removed without sacrificing 
performance. We recommend leaving out the power-
hungry gyroscope. 

5) Sampling frequency can be reduced to 20 Hz to 
prolong battery life and preserve sensor memory that 
will extend monitoring capabilities and decrease 
patient burdens in out-of-clinic environments.  

6) More data from the same population may not be 
beneficial. Instead, we suggest diversifying the 
training data to include a diverse sense of patients and 
possibly employ transfer learning.  

 
Fig. 10. Model Performance by Sensor Type and Sampling Frequency: Individual Exercises. (a) The accelerometer data was more informative in 
detecting exercises than the gyroscope data. (a) Overall, reducing the rate at which the sensor data are sampled by the factor of up to 5 (i.e., 20 Hz) 
almost did not alter the performance (i.e., less than 3% in difference). The performance decreased noticeably as the sampling rate was reduced to 
lower than 20 Hz. Numerical results of (a) and (b) can be found on Tables S4 and S5 (supplementary document), respectively. 

(a) 

(b) 
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7) Better feature engineering could improve classifier 
accuracy, but that improvement should be weighted 
against the added burden to patients resulting from 
multi-sensor system requirements.  

The open-source code should help verify our conclusions on 
additional datasets, increase product transparency, and build 
trust in patients. Our open-source provides normative wearables 
data across a wide range of lower-extremity rehabilitation 
exercises that are used to treat and screen individuals recovering 
from musculoskeletal injuries, including anterior cruciate 
ligament, patellar tendon, and Achilles tendon pathology. 

APPENDIX 

A. Lower-extremity Exercises 
Exercises included in the dataset and their abbreviations can 

be found in Table I. 
 

B. Performance of Exercise-Specific Models 
In addition to outcomes of the group-specific models 

reported in the main content, here, we present performance of 
models when classifying 37 individual exercises, see Figs. 8, 9, 
and 10. 
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