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Seven Things to Know about Exercise
Classification with Inertial Sensing Wearables

Vu Phan, Ke Song, Rodrigo Scattone Silva, Karin G. Silbernagel, Josh R. Baxter, and Eni Halilaj*

Abstract—Objective: Exercise monitoring with low-cost
wearables could improve the efficacy of remote physical-
therapy prescriptions by tracking compliance and informing
the delivery of tailored feedback. While a multitude of
commercial wearables can detect activities of daily life, such
as walking and running, they cannot accurately detect
physical-therapy exercises. The goal of this study was to
build open-source classifiers for remote physical therapy
monitoring and provide insight on how data collection
choices may impact classifier performance. Methods: We
trained and evaluated multi-class classifiers using data from
19 healthy adults who performed 37 exercises while wearing
10 inertial measurement units on the wrist, pelvis, thighs,
shanks, and feet. We investigated the effect of sensor
density, location, type, sampling frequency, output
granularity, feature engineering, and training-data size on
exercise-classification performance. Results: Exercise
groups (n=10) could be classified with 96% accuracy using a
set of 10 inertial measurement units (IMUs) and with 89%
accuracy using a single pelvis-worn IMU. Multiple sensor
modalities (i.e., accelerometers and gyroscopes), high
sampling frequencies, and more data from the same
population did not improve model performance, but in the
future data from diverse populations and better feature
engineering could. Conclusions: Given the growing demand
for exercise monitoring systems, our sensitivity analyses,
along with open-source tools and data, should reduce
barriers for product developers, who are balancing accuracy
with product formfactor, and increase transparency and trust
in clinicians and patients. The open-source data and code
are available at https://simtk.org/projects/imu-exercise.

Index Terms— Wearable sensors, inertial measurement
units (IMUs), deep learning, exercise classification, remote
rehabilitation.

[. INTRODUCTION

IGHTWEIGHT wearable sensors and the quantified-
self movement they awakened in the past decade
continue to inspire reflection on how to turn self-
tracking from a cultural phenomenon into a healthcare
revolution. Similar to glucose, temperature, heart rate, and
electrical activity monitors being adopted in clinical care,
remote tracking of rehabilitation exercises with motion
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sensors should also be feasible [1-3]. By tracking adherence,
inertial sensors could inform the delivery of precision
rehabilitation and lower overall healthcare costs. Yet, while
the formfactors characterizing commercial products continue
to improve, the modeling required to turn the data into
meaningful feedback remains opaque, limiting the practical
use of motion sensors. Physical activity monitors, including
those embedded in consumer-grade wearables, are generally
accurate but limited to recognition of basic activities of daily
living, such as walking and running [4, 5].

While remote rehabilitation would benefit from accurate
identification of activities that have clinical implications, the
feasibility of doing so using wearable sensors remains unclear.
Prior classifiers have reported high accuracy based on a small
number of exercises, such as lunges, squats, and heel raises [6-
9]. The training data have included a small number of both
upper- and lower-extremity exercises that are highly distinctive
[6, 8-14], which facilitates classification. Grouping upper- and
lower-extremity exercises into a single classifier may be helpful
for general fitness tracking but falls short of informing the
delivery of tailored physical therapy. Clinicians often prescribe
a multitude of exercises targeting specific lower or upper
extremity conditions. The large number of exercises and
narrower movement variability pose challenges for classifier
accuracy, but provide the opportunity to cluster similar
exercises that we expect will increase classifier accuracy while
maximizing clinical impact.

As wearable sensor systems are developed to address this
clinical need, they must not only be accurate in exercise
detection but also be practical to use in patient populations. For
example, sensors that require frequent patient interactions to log
data or charge the battery of multiple sensors increase patient
burden and decrease the large-scale implementability of
wearable sensors in healthcare. However, little is known about
the influence of sensor density, location, type, and optimal
frequency to help balance classifier accuracy with device
usability (e.g., battery life, user experience). While each study
uses different sensor densities, locations, and exercises, it is
difficult to understand if a wrist-worn sensor is as good as a
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Fig. 1. Data Collection Overview. (a) Examples of a subject performing a few of the lower-extremity exercises captured in this study. (b) The
distribution of exercise repetitions across the entire dataset of 19 subjects. Exercises were divided into 4 modules based on their intensity, with
breaks of 3 — 5 minutes between each module. Data were collected in the order presented here. Definitions of the exercise acronyms can be found

in Table I.

pelvis-worn one, or if a pelvis-worn one is as good as multiple
segment-specific sensors. Recent work considered single-
sensor placements at the wrist [6, 17], forearm [14, 15], upper
arm [18], lower back [19, 20], and shank [21], but it is difficult
to draw conclusions on which sensor location is optimal due to
differences in the exercises these studies included. Further, as
most studies focused on performance metrics, few translatable
insights have been provided to help researchers, clinicians, and
product developers choose parameters that are most practical
when implementing a monitoring system. For example, it is
unclear if power-hungry gyroscopes are essential for classifier
performance over accelerometry alone. It is also unknown if
sampling frequency can be lowered to extend battery life
without sacrificing performance. Another question is if the
models could be enhanced with more data and better feature
engineering, or if they have reached theoretical limits of
performance. One large focus in movement biomechanics is
kinematics estimation with inertial measurement units (IMUs)
[22, 23]. However, exercise classification models have in the
past been trained using accelerometry and gyroscope data
extracted directly from the sensors, instead of estimated
kinematics, which can be interpreted as domain-informed
feature engineering. In many applications, feature engineering
is a laborious step that can ultimately improve classifier
accuracy, but it remains unclear if this applies to exercise
classification.

The primary goal of this work was to build open-source
exercise classification models and perform sensitivity analyses
that would inform the development of remote physical therapy
monitoring  systems and data collection protocols,
democratizing the process for all researchers, clinicians, and
product-development entities. We first report classifier
performance across 37 lower-extremity load-bearing exercises
and use a data-driven approach to cluster similar exercises. We
then systematically investigate the impact of sensor density,
location, type, and sampling rate. Last, we investigate if more
data and better feature engineering would move these classifiers
toward theoretical limits of performance. In addition to the
code, we make all the data publicly available.

Il. METHODS

Nineteen healthy subjects (9 males:10 females; age: 25 £ 5
years; body-mass index: 24.1 + 2.4 kg/m2) were recruited to
participate in this study after we obtained approval from the
Institutional Review Board at the University of Pennsylvania
and informed consents [24]. None of the participants had self-
reported injuries in the past 6 months. They were instructed to
perform 37 lower-extremity exercises while following visual
demonstrations by a physical therapist. At least three successful
repetitions were recorded for each exercise. Based on the
intensity of exercises, we divided data collection into 4
modules, each containing 7 to 10 exercises (Fig. 1 and Table I).
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Fig. 2. Model Architecture Selection. (a) Three basic combinations of common CNN components were used: Type 1 has a Conv1D layer followed
by MaxPool1D layer, Type 2 has two Conv1D layers and a MaxPool1D layer, and Type 3 has a Conv1D layer followed by a BatchNorm and a
MaxPool1D layers. These were used as building blocks across different models. (b) The sequential architecture of the deep learning model with
various building blocks for feature extraction. The blocks were added to the feature extractor until no further improvement was observed. While the
structure and hyperparameters of the feature extraction block were fine-tuned, those of the downstream block remained the same. (c) The deep
learning model with a Type-3 block outperformed the others. An additional model that used a parallel architecture of Type-1 blocks was applied.
However, the performance of this model was relatively poor compared to its sequential counterparts.

Subjects took breaks of 3 — 5 minutes after each module to
prevent any possible confounding effects of physical
exhaustion.

We tracked movement with both inertial sensors (Opal,
APDM Wearable Technologies, USA) and marker-based
motion capture (Raptor Series, Motion Analysis Corporation,
USA), with the latter used to obtain ground-truth movement.
Ten IMUs were attached to the subject’s chest, pelvis, wrists,
thighs, shanks, and feet (Fig. 4) to measure three-dimensional
linear accelerations via accelerometry and angular velocities via
gyroscopes. These data were used as input to train the deep
learning models, with the labels indicating exercise type
recorded by the research team. The 12-camera marker-based
motion capture system recorded the motion of 31 retro-
reflective markers placed on the lower body. The purpose of
using marker-based motion capture was to obtain idealized joint
kinematics and determine whether they can help improve
classifier performance. IMU and motion capture data were
sampled at 100 Hz. Three in-floor force platforms (BP600900,
AMTI Force and Motion, USA) concurrently recorded ground
reaction forces at 1000 Hz. Data from different modalities were
synchronized by a syncing device (V2 Sync Box, APDM
Wearable Technologies, USA). Marker-based motion capture

data were filtered with a low-pass 4th order Butterworth filter
with a cut-off frequency of 6 Hz before being used to perform
inverse kinematics. To segment the linear acceleration, angular
velocity, and marker-based motion capture data into individual
exercise repetitions, we used the force plate data. Exercise
repetitions were then normalized and resampled (0 — 100%).
We first built convolutional neural network (CNN) models
with different architectures to classify 37 exercises, before
performing a cluster analysis to determine if the exercises could
be further simplified into fewer groups. Building blocks
consisted of rectified linear activated convolutional layers,
batch normalization layers, and maximum pooling layers (Fig.
2). The number of building blocks (1 - 3) was a
hyperparameter, along with batch size (16 — 128), convolutional
outputs (32 —256), and pool size (2 — 8), which were fine-tuned
though a grid search. The convolutional kernel size and stride
grid did not affect performance and were kept constant at 4 and
1, respectively. We used leave-one-subject-out cross validation
(LOSOCYV) for both hyperparameter tuning and performance
evaluation, splitting the data into train, validation, and test sets.
We carried out a cluster analysis using data from all ten
IMUs to determine which exercises could be grouped together
for lighter-weight models. Since exercise with similar
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Fig. 3. Full-Sensor Model Performance. (a) The deep learning model reached an accuracy of 81% in identifying 37 specific exercises. The confusion
matrix illustrates that misclassifications were due to exercises with similar movements, such as forward jump versus forward jump fast or forward
hop versus forward hop fast. (b) The elbow method suggested that the optimal number of clusters for k-mean clustering was 10. (c) The cluster-
specific classifier was more accurate than the exercise-specific classifier, with accuracy increasing from 81% to around 96%. Definitions of the

exercise acronyms can be found in Table I.

movements could result in similar clinical outcomes (e.g., joint
load), this grouping of exercises practically helps reduce patient
burden, while optimizing classifier performance. K-means was
used to cluster exercises into groups. We used the elbow
method on a curve of scaled inertia to determine the optimal
number of clusters, with the k ranging from 1 to 19. A
sensitivity analysis of the initialization parameters revealed
they had little bearing on the final results. Inertial data from all

the repetitions of the same exercise were averaged to obtain 37
samples representing 37 exercises. Each sample was
normalized and resampled as noted earlier before being input
into the cluster analysis. Once the exercise groups were
determined, we re-trained and re-evaluated the models for
classification of these groups. Here we report model
performance in terms of accuracy, precision, recall, and F1
score. For generalizability and rigor in model evaluation, we
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Fig. 4. Model Performance by Sensor Density: Exercise Groups. The model using data from 3 lower-body sensors placed on pelvis, and thighs
achieved a performance that was similar to that of the full sensor set. With fewer than 3 sensors, performance dropped progressively. Of the single-
sensor configurations, the pelvis one achieved the highest performance. Numerical results can be found in Table S1 (supplementary document).

ensured that all the data from a subject were included solely in
the training, validation, or test set.

In addition to training models with the full set of data from
10 IMUs, we also trained sparser models with data from 7, 5, 4,
3, 2, and 1 IMUs. For the single-sensor models, the IMUs
placed on right wrist, chest, pelvis, and right thigh were tested
due to their convenience for consumer products (Fig. Sa and
9a). For double-sensor settings, the sensors attached to chest
and right thigh, both thighs, right wrist and right thigh, and right
thigh and right shank (Fig. 5b and 9b) were tested.

To address questions around battery life, we compared
models built with different sensor types and data sampling
frequencies. Specifically, for the full-, single-, and double-
sensor configurations, the models were trained and tested with
data from the accelerometer only and gyroscope only, in
addition to the original model that included both. To test model
sensitivity to sampling frequency, the IMU data were
downsampled to 50, 25, 20, 10, and 5 Hz and full-sensor models
were retrained.

Last, we explored whether these models could be further
improved via feature engineering and additional training data.
To show that domain knowledge can boost model performance,
we obtained kinematics from the marker-based motion capture
data and trained models using only kinematics as the input
feature. Marker-based kinematics represent idealized
kinematics, which could theoretically be derived from IMU
data via feature engineering. To gauge how model performance
changes with the number of subjects included in the training
dataset, learning curves were generated using 2 to 19 subjects.
An inverse power law curve fitting approach [32, 33] was
applied to predict how performance would increase with
hypothetical sample sizes and what the theoretical limits of
these models are.

All data and codes of this work will be available on SimTK
(link: https://simtk.org/projects/imu-exercise).

IIl. RESULTS

A classifier built to predict exercise groups (i.e., clusters)
was more accurate than one built to predict individual exercises.
The optimal number of exercise clusters was 10 (Fig. 3b), and
similar exercises were grouped together (Fig. 3a). For example,
all the squats were grouped into the first group. Using linear
acceleration and angular velocity data from 10 IMUs, exercise
group could be predicted with nearly 96% accuracy (Fig. 3¢ and
4), while the 37 individual exercise with 81% accuracy (Fig. 2c¢,
3a, and 8). Most exercises misclassified by the individual
exercise model had similar movements and were typically
clustered under the same group. Examples include forward
jump versus forward jump fast and lateral hop versus lateral hop
fast (Fig. 3a).

Classification of exercise clusters was less sensitive to
sensor number and location than classification of individual
exercises. Reducing the sensor set reduced cluster-specific
model performance only minimally, from 96% to 93%, 91%,
93%, 89% for the 5-, 4-, 3-, 2-IMU systems, respectively (Fig.
4). Single-IMU models achieved accuracies of 89% for the
pelvis and 75% for the wrist (Fig. 5). Sensor density and
location, however, had a major impact on classification of
individual exercises, with accuracy dropping by more than
20%, from 81% to 61%, when a single pelvis-worn IMU was
used compared to 10 IMUs (Fig. 8 and 9).

Accelerometry-based models were as accurate as those
using both accelerometer and gyroscope data, and sampling
frequency could be reduced to 20 Hz without affecting model
accuracy (Fig. 6). With the full 10-IMU sensor set, a model
using accelerometer data achieved similar performance to that
using both accelerometer and gyroscope data sources (Fig. 6a).
In addition, models trained with data that were downsampled to
50 or 25 Hz performed as well as the model trained with the
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Fig. 5. Model Performance by Sensor Location: Exercise Groups. (a) Among single-sensor configurations, a sensor placed on the pelvis achieved
the highest performance overall (i.e., 89% in accuracy and 0.87 in F1-score). (b) A combination of sensors placed on both thighs achieved the
highest performance across two-sensor configurations (i.e., 89% in accuracy and 0.86 in F1-score). (c) The optimal sensor placements (for either
single- or double-sensor settings) varied by specific exercise, as illustrate in the botto  anels, where “” re resents the best erfor ance er
exercise, an “-“in icates less than ore ualto % ecreasesin erforan ceco a re tothe best erforan ce. Numerical results of (a) and (b)
can be found in Tables S2 and S3 (supplementary document), respectively.

original data recorded at 100 Hz. Further reducing the sampling
frequency to 20 Hz reduced performance by less than 3% (Fig.
6b). These trends were similar for the exercise-specific models
(Fig. 10).

Classification of exercise clusters was also less sensitive to
training sample size and feature engineering than classification
of individual exercises (Fig. 7). Our sample size analysis
indicated that adding 132 subjects would increase the accuracy
of identifying exercise clusters from 96% to 99%. Kinematics
data increased accuracy from 96% to 98% (Fig. 7a). On the
other hand, more subjects (n = 2322) would improve the
accuracy of exercise-specific models from 81% to 95%, when
using accelerometry and gyroscope data (Fig. 7b). Kinematics
would help improve the performance from 81% to 88% when
data from only 19 subjects are available. To reach 95%
accuracy, a kinematics-based model would require only 237
subjects. Generally, the accuracy of these models is
theoretically bound at 98%.

IV. DISCUSSION

The goal of this study was to develop open-source models for
exercise classification and carry out detailed sensitivity
analyses on sensor density, location, type, sampling frequency,
feature engineering, and training data size. We found that deep
learning classifiers could predict 10 exercise groups with an
accuracy of 96% and 37 individual exercises with an accuracy
of 81%. Ten full-body sensors and three placed on the lower
body led to comparable performance (i.e., less than 3%
difference). Of single-sensor systems, one worn on the pelvis
led to the best performance. Accelerometry data alone
performed as well as gyroscope and accelerometry together,
and when these modalities are jointly used to derive kinematics,
model performance improved only marginally. Our sample size
analysis indicated that more data from the same population
improves classification of individual exercises, but not exercise
groups.
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Fig. 8. Model Performance by Sensor Density: Individual Exercises. Unlike the cluster-specific classifier, whose performance maintained high
accuracy even with a single sensor, the accuracy of the exercise-specific model dropped with reduced sensor density. Numerical results can be

found in Table S1 (supplementary document).

Our work suggests that grouping exercises by similarity is
not only practically beneficial, but also clinically relevant. The
clustering approach, which increased model performance from
81% to 96%, automatically grouped exercises into 10 categories
with considerable affinity in terms of how they load joints of
interest. For example, a prior analysis has shown that the
patellofemoral joint is loaded similarly by a two-leg
countermovement jump (i.e, CMJDL) and one-leg
countermovement hop (i.e., CMJSL) [24] and our clustering
analysis grouped these activities together. The goal of remote
exercise prescription and monitoring programs is to track how
joints, ligaments, tendons, and muscles are loaded, and if a few
exercises bear similar clinical significance in this context, then
distinguishing among them at the expense of accuracy is not
worthwhile. This grouping has the added advantage of
generating equally accurate models with sparser sensor sets,
making it a more viable solution for translation. A pelvis-worn
sensor, which tracks the body’s center of mass, stands out
among single-sensor configurations with an accuracy of 86% in
predicting exercise clusters—a decrease of only 9% from the
model that uses the full set of 10 segment-specific sensors.

Our estimations also indicate that by cutting sampling
frequency and gyroscope data, we can prolong battery life
without sacrificing accuracy. The gyroscope consumes at least
6 times more energy than the accelerometer [25, 26] but does
not substantially improve accuracy. Typically, gyroscope data
are more informative in highly dynamic movements, which is
not the case in rehabilitation exercises to avoid injuries for
patients. However, the complementary nature of these two
sensors can be harnessed by using domain knowledge to further
improve classifier performance, as noted below. As movement
frequency for physical therapy exercises is likely below 10 Hz,
a sampling frequency of 20 Hz should be the lowest sampling
frequency that guarantees good performance based on the
Nyquist theorem [27-30]. At the cost of less than 3% reduction

LIST OF EXERCISES IN THE DATASET (IN THE ORDER OF DATA COLLECTION)

TABLE |

AND THEIR ABBREVIATIONS

Module  Exercise Abbreviation
Static pose Pose
Heel raises HeelRaise
Walk Walk
Step up (low step) StepUpL
Step down (low step) StepDnL
Step up (high step) StepUpH

1 Step down (high step) StepDnH
Lunges Lunge
2-leg counter-movement jump CMJDL
2-leg drop-landing DropLandDL
2-leg drop-and-jump DropJumpDL
2-leg maximal forward jump MaxJump
Run Run
2-leg squat (half depth) SqHalfDL
2-leg squat (full depth) SqDL
Decline squat DeclineSq
Sumo squat SumoSq

2 Spanish squat SpainSq
Run-and-cut RunCut
1-leg maximal forward hop MaxHop
Run-and-stop RunDec
Sports movement jump SportJump
1-leg squat (half depth) SqHafISL
1-leg squat (full depth) SqSL
Bulgarian squat BulgSq

3 1-leg counter-movement hop CMISL
2-leg repeated forward jumps (regular) Fwlump
2-leg repeated forward jumps (fast) FwJumpFast
2-leg repeated lateral jumps (regular) LatJump
2-leg repeated lateral jumps (fast) LatJumpFast
1-leg drop-landing DropLandSL
1-leg drop-and-hop DropJumpSL
1-leg repeated forward hops (regular) FwHop

4 1-leg repeated forward hops (fast) FwHopFast
1-leg repeated lateral hops (regular) LatHop
1-leg repeated lateral hops (fast) LatHopFast
Alternating split jumps Splitlump
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Fig. 9. Model Performance by Sensor Location: Individual Exercises. (a) Among single-sensor configurations, a sensor placed on the pelvis achieved
the highest performance overall (i.e., 61% in accuracy and 0.54 in F1-score). (b) A combination of sensors placed on both thighs achieved the
highest performance across two-sensor configurations (i.e., 69% in accuracy and 0.64 in F1-score). (c) The optimal sensor placement (for either
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acronyms can be found in Table |. Numerical results of (a) and (b) can be found in Tables S2 and S3 (supplementary document), respectively.

in performance, this sampling rate theoretically improves
battery life up to 5 times, which is significant for out-of-clinic

monitoring applications [31].

Moving forward, we have identified two areas for further
investigation to improve exercise classification models: having
more diverse data and better feature engineering. While more
data from the same population do not seem to be beneficial,
diverse data, from older adults or those with musculoskeletal
diseases, could further improve model generalizability. Good
feature engineering is a more judicious and cost-efficient way
to improve performance compared to obtaining more data.
Models trained on kinematics, as opposed to accelerations and
angular velocities measured directly by the sensors, could

improve classification of individual exercises and exercise
groups by small margins. Two points are important to consider
in this context. First, to build the kinematics-based classifier,
instead of estimating kinematics from IMU data, we used
ground-truth kinematics from the marker-based motion capture
system. This model represents a best-case scenario for how
accurately kinematics can be estimated in natural environments.
In reality, estimation of kinematics with IMUs is an ongoing
technical challenge, albeit one that is receiving considerable
attention. Second, it is important to note that a heuristics-guided
approach could be better than a purely data-driven one at
training deep learning models when the kinematics data are
available. For example, an exercise can be detected based on
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Fig. 10. Model Performance by Sensor Type and Sampling Frequency: Individual Exercises. (a) The accelerometer data was more informative in
detecting exercises than the gyroscope data. (a) Overall, reducing the rate at which the sensor data are sampled by the factor of up to 5 (i.e., 20 Hz)
almost did not alter the performance (i.e., less than 3% in difference). The performance decreased noticeably as the sampling rate was reduced to
lower than 20 Hz. Numerical results of (a) and (b) can be found on Tables S4 and S5 (supplementary document), respectively.

joint- or segment-specific heuristics. While such an approach is
not feasible with accelerometry and angular velocity data, it is
the most intuitive and likely the most accurate when kinematics
data are available. The improvement in accuracy we report with
a deep learning approach therefore represents a worst-case
scenario. These factors that contribute to classification
performance should be carefully considered in the broader
context of implementing wearable sensors in clinical
populations. For example, using a kinematics-based classifier is
likely to marginally improve performance but at the expense of
additional sensors and data streams that increase the patient
burden beyond the performance benefit. This cost-benefit
analysis should be considered for each application and likely
will differ based on the patient cohort.

A few limitations are important to consider when
interpreting these results. First, we used only data from healthy
adults to train the models. However, we expect differences
across individuals to be smaller than differences across
exercises, which makes the classifier highly likely to generalize
to patient populations, although this remains to be
demonstrated. Second, the data were collected in a controlled
laboratory environment and may be cleaner than natural-
environment data. Future efforts may address this potential
limitation through the use of transfer learning, where a small set
of natural-environment data can be used to fine-tune the
models. Third, we did not emphasize the practical challenge of
detecting non-exercise movements as we envisioned the use of
a wearable system only during exercising sessions. Last,
exercise segmentation was carried out by experts here since
creating an end-to-end system is an engineering task that was

beyond the scientific scope of this work. Prior work focusing
on automated segmentation from inertial data has achieved
accuracies of 96% [34, 35].

V. CONCLUSION

We summarize our findings in the following seven lessons
and hope that would help fuel progress and more informed
translation.

1) We should aim for clinical relevance over
inconsequential granularity. Understanding how much
time each patient spends in each of the 10 exercise
clusters gives clinicians sufficient insight on joint
loading.

2) Exercise group classification can be performed with a
single sensor, while detection of individual exercises
needs up to five sensors on the lower body.

3) A pelvis, chest, and thigh-worn sensors are the most
informative for lower-extremity exercise monitoring,
while a wrist-worn sensor is the worst.

4) The gyroscope can be removed without sacrificing
performance. We recommend leaving out the power-
hungry gyroscope.

5) Sampling frequency can be reduced to 20 Hz to
prolong battery life and preserve sensor memory that
will extend monitoring capabilities and decrease
patient burdens in out-of-clinic environments.

6) More data from the same population may not be
beneficial. Instead, we suggest diversifying the
training data to include a diverse sense of patients and
possibly employ transfer learning.
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7) Better feature engineering could improve classifier
accuracy, but that improvement should be weighted
against the added burden to patients resulting from
multi-sensor system requirements.

The open-source code should help verify our conclusions on
additional datasets, increase product transparency, and build
trust in patients. Our open-source provides normative wearables
data across a wide range of lower-extremity rehabilitation
exercises that are used to treat and screen individuals recovering
from musculoskeletal injuries, including anterior cruciate
ligament, patellar tendon, and Achilles tendon pathology.

APPENDIX

A. Lower-extremity Exercises

Exercises included in the dataset and their abbreviations can
be found in Table 1.

B. Performance of Exercise-Specific Models

In addition to outcomes of the group-specific models
reported in the main content, here, we present performance of
models when classifying 37 individual exercises, see Figs. 8, 9,
and 10.
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