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A B S T R A C T   

Inertial sensing and computer vision are promising alternatives to traditional optical motion tracking, but until 
now these data sources have been explored either in isolation or fused via unconstrained optimization, which 
may not take full advantage of their complementary strengths. By adding physiological plausibility and 
dynamical robustness to a proposed solution, biomechanical modeling may enable better fusion than uncon
strained optimization. To test this hypothesis, we fused video and inertial sensing data via dynamic optimization 
with a nine degree-of-freedom model and investigated when this approach outperforms video-only, inertial- 
sensing-only, and unconstrained-fusion methods. We used both experimental and synthetic data that mimicked 
different ranges of video and inertial measurement unit (IMU) data noise. Fusion with a dynamically constrained 
model significantly improved estimation of lower-extremity kinematics over the video-only approach and esti
mation of joint centers over the IMU-only approach. It consistently outperformed single-modality approaches 
across different noise profiles. When the quality of video data was high and that of inertial data was low, 
dynamically constrained fusion improved estimation of joint kinematics and joint centers over unconstrained 
fusion, while unconstrained fusion was advantageous in the opposite scenario. These findings indicate that 
complementary modalities and techniques can improve motion tracking by clinically meaningful margins and 
that data quality and computational complexity must be considered when selecting the most appropriate method 
for a particular application.   

1. Introduction 

Accessible motion tracking could transform rehabilitation research 
and therapy. The traditional marker-based approach is limited to 
specialized laboratories equipped with expensive optical motion 
tracking systems that require infrared cameras and trained personnel. 
Inertial sensing and computer vision approaches applied to standard 
red-green-blue (RGB) videos offer greater flexibility, given their low cost 
and portability, but collective understanding of the strengths and 
weaknesses of kinematics estimation algorithms associated with each 
technology is still evolving (Table 1). Additionally, efforts to merge the 
strengths of these complementary technologies are sparse. 

Vision-based methods using RGB cameras are successful in camera- 
dense environments, but occlusion continues to pose challenges in 
reduced-camera settings (Joo et al., 2019). Although now widely used in 

robotics applications, adoption of vision-based methods in human 
movement sciences lags behind due to accuracy limitations (Seethapathi 
et al., 2019). Computer vison models are data-driven and typically not 
constrained to satisfy physiological constraints. Biomechanical 
modeling has been considered as a possible approach for improving the 
accuracy of computer vision approaches and making them more acces
sible to the biomechanics community (Kanko et al., 2021; Strutzen
berger et al., 2021; Uhlrich et al., 2022). Although comparisons with 
marker-based data suggest that the accuracy of these methods ranges 
widely between 3–20◦, depending on the degree-of-freedom, no study to 
date has systematically discerned how this accuracy compares to alter
native approaches and to what degree the incorporation of biome
chanical models improves results. 

Similarly, converting multimodal time series data from inertial 
measurement units (IMU) into accurate joint kinematics remains 
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challenging due to the many possible sources of uncertainty, including 
bias noise, thermo-mechanical white noise, flicker noise, temperature 
effects, calibration errors, and soft-tissue artifacts (Park & Gao, 2008; 
Picerno, 2017). Traditional sensor fusion filters used to mitigate drift 
(Madgwick, 2010; Mahony et al., 2008; Sabatini, 2011) typically rely on 

magnetometers, which are susceptible to ferromagnetic interference (de 
Vries et al., 2009). The results of sensor-fusion filters have been refined 
with biomechanical models (Al Borno et al., 2022), but whether findings 
will translate to natural environments remains uncertain because 
marker-based motion capture has been used for sensor-to-body 

Table 1 
Qualitative comparison of state-of-the-art IMU and video-based motion capture techniques for measuring joint kinematics.  

Modality Method Example Articles Advantages Disadvantages 

IMUs Sensor-Fusion Filters (e.g., 
EKF, Madgwick, Mahoney) 

Mahony, 2008. 
Madgwick, 2010.  
Sabatini, 2011. 

Joukov et al., 
2014.. 
Al Borno, 2022. 

Computationally efficient; Open-source Magnetometers are often unreliable; 
Magnetometer-free approaches are 
inaccurate       

Deep Learning (e.g., CNNs, 
LSTMs, Transformers) 

Huang, 2018. 
Rapp, 2021. 
Mundt, 2020-21. 
Yi, 2021-22. 

Implicitly learns noise; Open-source Training data are not sufficiently 
representative of pathologies and 
activities       

Biomechanical Modeling: 
Static Optimization 

Roetenberg, 2013. 
Karatsidis, 2016- 
19. 

Predicts GRFs, joint loads, and muscle forces Requires drift correction using 
additional sensors; Computational cost; 
Closed-source  

Biomechanical Modeling: 
Direct Collocation 

Dorschky, 2019. Predicts GRFs, joint loads, and muscle forces Requires drift correction via limiting 
assumptions; Computational cost; 
Closed-source 

Videos Deep learning & 
Unconstrained 
Optimization 

Kanazawa, 2018. 
Iskakov, 2019. 
Zhang et al., 2020. 
Kocabas et al., 
2020-21. 

Computationally efficient; Open-source Data-driven: training data not 
representative of clinical populations; 
Sensitive to occlusions  

Deep Learning & 
Biomechanical Modeling 

Kanko, 2021. 
Strutzenberger, 
2021. 
Uhlrich, 2022. 

Predicts GRFs, joint loads, and muscle forces; Open-source Data-driven: training data not 
representative of clinical populations; 
Computational cost 

IMUs & 
Videos 

Deep Learning & 
Unconstrained 
Optimization 

Halilaj, 2021. Computationally efficient; Merges complementary modalities; No 
integration of inertial data necessary 

Poor initial estimations from video are 
propagated in the optimization  

Deep Learning 
& Dynamically 
Constrained Optimization 

Proposed Method Predicts GRFs, joint loads, and muscle forces; Merges complementary 
modalities while satisfying the laws of physics; No integration of 
inertial data necessary; Accurate with noisy IMU data 

Currently, 2-D proof of concept with 3- 
D validity remaining to be tested; 
Computational cost  

Fig. 1. Biomechanical Model and Dynamically Constrained Fusion Overview. Red-green-blue (RGB) video and inertial measurement unit (IMU) data are fused 
into a single optimal control trajectory tracking problem, where the state of a planar musculoskeletal model is optimized to produce joint center trajectories and 
inertial profiles that match the experimental data. A nine degree-of-freedom (two translational, seven rotational) model is actuated by seven joint torques, four 
ground contact forces, and two residual forces accounting for dynamic inconsistencies due to modeling simplifications. The model fuses data from eight anatomical 
keypoints acquired from three-dimensional triangulation of computer vision keypoints extracted from RGB video data and seven inertial measurement units placed 
on each rigid body segment. Direct collocation is used to minimize a cost functional with keypoint and IMU tracking error costs and an effort cost for regulating the 
joint torques and residual forces. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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calibration and the effect of soft-tissue motion has been mostly elimi
nated by attaching IMUs to solid marker cluster plates, allowing the 
IMUs to move rigidly with the marker clusters. Deep learning has been 
proposed as an alternative (Mundt et al., 2020; Rapp et al., 2021) but has 
been limited by datasets that are not representative of all activities and 
clinical populations. Constrained optimization via biomechanical 
modeling, both static and dynamic, has also been used for estimation of 
both kinematics and kinetics. Static-optimization approaches rely on 
zero-velocity detection algorithms from joint constraints, external con
tacts, and additional sensors (e.g., GPS, RF-based local positioning 
sensors, barometers) to correct the position of the model at each step 
(Karatsidis et al., 2019; Roetenberg et al., 2013), while dynamic opti
mization approaches currently require that the motion be periodic 
(Dorschky et al., 2019), both of which limit ease of implementation and 
generalizability. 

IMU and vision data have complementary strengths that can be 
leveraged to overcome their individual limitations, but it is unclear if 

fusion via a dynamically constrained biomechanical model would 
improve estimation of kinematics over unconstrained optimization 
(Halilaj et al., 2021). Inertial sensing can compensate for occlusions in 
videos, videos can compensate for drift in inertial data, and biome
chanical models can add physiological plausibility and dynamical 
robustness. Here we fuse video and IMU data via dynamic optimization 
of a nine degree-of-freedom (DOF) model (Fig. 1) and investigate the 
circumstances under which this approach outperforms (1) standard 
computer vision techniques using video data, (2) dynamic optimization 
of a biomechanical model using IMU data, and (3) fusion of IMU and 
video data via unconstrained optimization (i.e., without a biomechan
ical model). In addition to comparing these methods using experimental 
data, we quantified their sensitivity to IMU and video data noise by 
scaling each subject’s unique noise background. We hypothesized that 
fusion of video and IMU data with biomechanically constrained opti
mization would improve estimation of kinematics over the alternatives 
for all of the noise profiles. We have shared a MATLAB library to 

Fig. 2. Experimental Data and the Resulting Markerless Kinematics. (a) We used walking data from 5 subjects recorded with marker-based motion capture, 
inertial measurement units (IMU), and four videos. The IMU data had a signal-to-noise ratio (SNR) of 13.2 dB, while the video-based keypoints (i.e., joint center 
positions) had a root-mean-squared error (RMSE) of 3.4 cm. (b) Dynamically constrained fusion of IMU and video data via a biomechanical model and direct 
collocation (Cnstr Fusion, in solid magenta) improved kinematic predictions over competing markerless motion capture approaches (shown for a single female 
subject). (c) Although estimation of kinetics was not a study goal, constrained fusion estimated ground reaction forces (middle) and flexion moments (left) relatively 
well (Winter, 1987). Residual forces (right) are non-physical forces that account for discrepancies between the model and reality when modeling assumptions cause 
inconsistencies between the biomechanical model and the subject’s true multibody dynamics. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 

O. Pearl et al.                                                                                                                                                                                                                                    



Journal of Biomechanics 155 (2023) 111617

4

encourage testing of these techniques with additional data and the 
exploration of new scientific questions.1 

2. Methods 

2.1. Biomechanical model 

To test our leading hypothesis, we used a planar nine DOF biome
chanical model that consisted of seven rigid body segments (Fig. 1). One 
segment represented the head, arms, and torso and three segments 
represented each leg. Body-segment lengths, masses, and mass moment 
of inertias were estimated by scaling a three-dimensional musculoskel
etal model based on 21 cadavers and 24 young adults (Delp et al., 1990, 
2007) with marker-based motion capture data. The model state, z, 
contained nine generalized coordinates, q, and their generalized veloc
ities, v, consisting of the horizontal and vertical sagittal plane translation 
of the pelvis, x and y, and the sagittal plane rotation (flexion–extension 
angles) of the pelvis, hip joints, knee joints, and ankle joints, qt , qlh, qrh, 
qlk, qrk, qla, qra, respectively: 

z =

[
q gen coords
v gen velocities

]

,

q = [x, y, qt, qlh, qrh, qlk, qrk, qla, qra]
T
.

The model control vector, u, contained joint torques, T, contact 
forces, F, and residual forces accounting for dynamic inconsistencies 
due to modeling simplifications, R (Fig. 2c). Residual forces are artificial 
forces applied at the pelvis of the model to help position and orient it in 
space when real forces alone are insufficient due to modeling 
simplifications: 

u =

⎡

⎣
T joint torques
F contact forces
R residual forces

⎤

⎦,

T = [Tt, Tlh, Trh, Tlk, Trk, Tla, Tra]
T
,

F =
[
Flx, Fly, Frx, Fry

]T
,

R =
[
Rx, Ry

]T
.

We used Autolev (Symbolic Dynamics Inc; Sunnyvale, CA) and 
Kane’s equations of motion to derive symbolic expressions for the nine 
equations of motion in their explicit form and implemented them in 
MATLAB (Mathworks, Inc; Natick, MA): 

z’ = f (z, u)

2.2. Experimental data 

To test the four markerless approaches for predicting joint kine
matics, we used overground walking data from five subjects (4 male; 1 
female) from Total Capture (Fig. 2a), a publicly available dataset 
commonly used to benchmark computer vison methods for motion 
tracking (Trumble et al., 2017). Motion was captured in a 4 × 6 meter 
area with eight high definition (HD) RGB video cameras at 60 Hz, seven 
Xsens IMUs (Xsens; Enschede, The Netherlands) positioned on the 
pelvis, left and right thigh, left and right shank, left and right foot at 
1000 Hz, and a marker-based motion capture system (Vicon Industries, 
Inc; Hauppauge, NY) at 100 Hz. Sagittal-plane projections of the video 
and IMU data were used as inputs for the biomechanical model. 

2.3. Kinematics Estimation: Vision-Only 

We extracted two-dimensional (2-D) keypoints (i.e., joint centers) 
and the confidence score associated with each keypoint from each RGB 
video camera using the Cascaded Pyramid Network (CPN) (Chen et al., 
2018). We triangulated the keypoints by using a direct linear trans
formation algorithm to extract three-dimensional (3-D) keypoints 
(Hartley & Sturm, 1997). Contributions from each video were weighted 
by the confidence score associated with the corresponding 2-D keypoint. 
We computed kinematics by minimizing the error between the trian
gulated keypoints derived from video data and the joint centers of the 
biomechanical model. 

2.4. Kinematics Estimation: Dynamically constrained fusion 

Our proposed approach fuses RGB video and IMU data by finding the 
model states, z(t), and controls, u(t), over time, such that the simulated 
keypoint locations and body segment accelerations and angular veloc
ities from the model state match those obtained from experimental video 
and IMU data. This was done by formulating the following optimal 
control problem and solving it via direct collocation: 

minimize
z(t),u(t)

J(z(t), z’(t), u(t) )

subject to z’ = f (z, u)

xL ≤ x ≤ xU
uL ≤ u ≤ uU.

The cost functional J(z(t), z′

(t), u(t) ) is minimized with respect to a 
bounded state and control and a constraint on the first derivative of the 
state vector from the explicit form of the equations of motion. The cost 
functional includes a tracking term for both the keypoints and the in
ertial data, Jtrack, as well as an effort term for both the joint torque ac
tuators and the residual forces, Jeffort: 

J = Jtrack + Jeffort,

Jtrack =
∑nkeypoint

i = 1

[(
xkeypoint

i − xstate
i

)2
+

(
ykeypoint

i − ystate
i

)2
]

+
∑nIMU

j = 1

[(

ẍIMU
j − ẍstate

j

)2

+

(

ÿIMU
j − ÿstate

j

)2

+
(

ωIMU
j − ωstate

j

)2
]

,

Jeffort =
∑ntorques

k=1
(Tk)

2
+

∑nresiduals

m=1
(Rm)

2
.

We transcribed the large-scale, sparse nonlinear optimization prob
lem via direct collocation using the OptimTraj library for MATLAB 
(Kelly, 2017). 

2.5. Kinematics Estimation: IMU-Only 

To perform dynamic optimization with IMU data alone, we took the 
same steps as in the dynamically constrained fusion approach (2.4) but 
removed the keypoint terms from within the Jtrack portion of the cost. We 
followed a previously proposed method and applied the assumption that 
motion was periodic to overcome the drift resulting from integrating 
noisy IMU data (Dorschky et al., 2019). This involved segmenting the 
walking data into individual gait cycles and using the mean gait cycle as 
the input to the Jtrack term. 

2.6. Kinematics Estimation: Unconstrained fusion 

For fusion of IMU and video data via unconstrained optimization, we 
formulated a simplified optimization problem where Jtrack from the IMU 
and vision optimization was minimized, excluding Jeffort and constraints 
on system dynamics and model controls (Halilaj et al., 2021). Here, the 
optimal set of kinematics was determined by minimizing the error 1 The code associated with this study is available via SimTK and GitHub. 
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between the experimental IMU and video data and the synthetic IMU 
and keypoint profiles projected from the subject’s current state. 

2.7. Synthetic data generation 

In addition to building simulations with the experimentally captured 
data, we generated synthetic data to investigate how each of the four 
approaches responded to changes in noise magnitude. We first estimated 
the naturally occurring noise background, φ, from the experimental 
data. Ground-truth-trajectories for each joint center’s position and each 
body segment’s accelerations and angular velocities were calculated via 
marker-based motion capture data and analytic equations formed in 
Autolev, as noted above. Noise was defined as the difference between 
the ground-truth trajectories and IMU-based (angular velocity and linear 
acceleration) or video-based (joint center position) trajectories. We then 
multiplied this experimental noise background by a scale factor, S, to 
achieve synthetic data with new noise magnitudes, without editing the 
shape of the experimentally observed noise distribution: 

φ = dataexp − datamocap,

datasynth = Sφ + datamocap.

Using marker-based motion capture as the ground truth, the mean ±
standard deviation keypoint root-mean-square error (RMSE) for the five 
subjects was 3.5 ± 0.2 cm. We scaled the naturally occurring noise 
background, φ, for each subject to RMSEs of 6.0, 3.5, and 1.0 cm by 
adjusting only the scale of the noise background while maintaining its 
original distribution. These new noise background magnitudes repre
sented low, medium, and high accuracy conditions, based on single-view 
and multi-view RGB camera approaches (Iskakov et al., 2019; Kadkho
damohammadi & Padoy, 2019; Kanazawa et al., 2018; Kocabas et al., 
2020). An RMSE of 6.0 cm corresponds to single-view approaches such 
as the Human Mesh Recovery (HMR) (Kanazawa et al., 2018) and Video 
Inference for Body Pose And Shape Estimation (VIBE) (Kocabas et al., 
2020). An RMSE of 3.5 cm corresponds to multi-camera algebraic 
triangulation approaches such as the one used in this study. An RMSE of 
1.0 cm corresponds to multi-camera methods incorporating learnable 
triangulation, which has acheived state-of-the-art accuracy in computer 
vision literature (Iskakov et al., 2019; Kadkhodamohammadi & Padoy, 
2019). The IMU data had a mean ± standard deviation signal-to-noise 
ratio (SNR) of 13.2 ± 0.4 dB. 

To generate the IMU synthetic data, we scaled the naturally occur
ring noise background for each subject to SNRs of 10, 17.5, and 25 dB, 
which represented low, medium, and high IMU accuracy conditions. 

Table 2 
Sources of uncertainty for each modeled IMU signal-to-noise ratio (SNR).  

Misplacement 
(cm) 

Misalignment 
(deg) 

Soft-Tissue Motion 
(cm) 

IMU SNR 
(dB)  

0.5 1  0.5  26.7  
2.5 5  1.0  17.7  
5.0 10  5.0  10.1  

Fig. 3. Comparison of Markerless Approaches. Fusion approaches result in lower mean per joint (MPJ) flexion angle root-mean-square errors (RMSEs) (top left) 
than the vision-only approach and lower MPJ center position RMSEs (top right) than the IMU-only approach when tested on experimental data from the Total 
Capture dataset. Each symbol (top plots) represents a unique subject. Fusion methods resulted in better accuracy than single modality methods by maintaining 
consistent accuracy with respect to both joint angles and joint center positions across all individual joints. (*p < 0.05). 
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These conditions corresponded to IMU data influenced by electrical 
noise in the form of white noise, scale factor noise, and bias nose (Park & 
Gao, 2008), a range of commonly occurring static misplacement and 
misorientation errors (Tan et al., 2019), and a range of previously 
established soft-tissue motion magnitudes naturally occurring during 
walking (Fiorentino et al., 2017). To determine appropriate magnitudes 
to which the experimental IMU noise backgrounds would be scaled, we 
simulated combinations of misplacement, misorientation, and soft- 
tissue motion artifacts by formulating analytic equations for each 
body segment’s accelerations and angular velocity in Autolev: 

ax, ay, ωz = f
(
q, emisplacement, emisalignment, etissue

)
,

etissue ∼ N
(
μ, σ2)

.

We added error terms while deriving the body segment inertial 
profiles to model the static misplacement, emisplacement , the static 
misalignment, emisalignment, and the variable misplacement due to soft- 
tissue motion, etissue. We calculated the noise background magnitudes 
corresponding to these errors as the difference between the inertial 
profiles of the body segments derived with and without incorporating 
the sources of error, and then scaled the error terms to represent the 
range of expected naturally occurring noise magnitudes (Table 2). We 
sampled etissue from a normal distribution with μ and σ equivalent to the 

mean and standard deviation of soft-tissue motion magnitudes measured 
with X-rays (Fiorentino et al., 2017). 

2.8. Performance evaluation 

We computed mean per joint position error and joint angle error 
between the simulation results and ground-truth marker-based motion 
capture data for each optimization approach and noise profile. We used 
a one-way repeated measures analysis of variance (RM-ANOVA) and 
Tukey’s Honest Significant Difference (HSD) for post-hoc analysis to test 
the leading hypothesis that dynamically constrained fusion would result 
in lower kinematic errors compared to the other three approaches. The 
test was carried out for two primary kinematic outcomes: the mean full- 
body RMSEs for joint angles and joint center positions. A two-way RM- 
ANOVA followed by an HSD test within noise conditions was used to test 
the second hypothesis that dynamically constrained fusion would 
outperform the other three methods when the data were characterized 
by different noise profiles. The two-way RM-ANOVA considered both 
the four competing methods and the nine repeated combinations of IMU 
and video data noise profiles. Results are presented as mean ± standard 
deviation of the per-joint RMSE compared to marker-based motion 
capture. An Anderson-Darling test for normality was used to confirm 
that the data were normally distributed (Yap & Sim, 2011). 

Fig. 4. Sensitivity of Fusion Approaches to Noise. Dynamically constrained fusion was advantageous at lower IMU accuracies and higher keypoint accuracies, 
whereas unconstrained fusion was advantageous at higher IMU accuracies and lower keypoint accuracies. This phenomenon occurs due to the sometimes com
plementary, but sometimes redundant nature of IMU data and modeling constraints since both provide information on the first and second order derivatives of the 
body segment motions. Mean ± standard deviation is plotted here with *p < 0.05. 
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3. Results 

3.1. Comparison of modeling approaches 

Dynamically constrained fusion performed better than single- 
modality methods, but similarly to unconstrained fusion, when using 
the experimental data (Fig. 2b; Fig. 3). It improved the mean per joint 
(MPJ) flexion angle RMSE by 6.0◦ ± 1.2◦ (p < 0.0001) over the vision- 
only approach and the MPJ center position RMSE by 4.5 ± 2.8 cm (p =
0.0018) over the IMU-only approach. Joint flexion angle estimates with 
the vision-only approach were the least accurate of the four approaches, 
with RMSEs of 5.1◦ ± 1.7◦ for hip flexion, 9.7◦ ± 3.2◦ for knee flexion, 
and 16.0◦ ± 1.2◦ for ankle dorsiflexion. Similarly, estimation of joint 
center positions with the IMU-only approach were the least accurate of 
the four approaches, producing errors ranging from 5.6 ± 2.4 cm at the 
hip to 6.8 ± 3.3 cm at the ankle. The two fusion approaches performed 
similarly to each other and better than single modality approaches by 
maintaining accuracy with respect to both joint angles and positions. 
However, dynamically constrained fusion facilitated improvements over 
unconstrained fusion in estimates of ankle flexion by 3.3◦ ± 1.3◦ (p =
0.0076). 

3.2. Sensitivity to noise 

Dynamically constrained fusion performed better than uncon
strained fusion when the accuracy of IMU data was low and the accuracy 

of the video data was high, whereas unconstrained fusion performed 
better in the opposite scenario (Fig. 4). When the IMU data were of low 
quality (SNR of 10 dB) and the predicted keypoints from video data were 
of high quality (RMSE of 1.0 cm), constrained fusion improved the MPJ 
flexion angle RMSE by 3.7◦ ± 1.2◦ (p < 0.0001) and the MPJ center 
position RMSE by 1.9 ± 0.5 cm (p < 0.0001) over unconstrained fusion. 
When the IMU data were of high quality (SNR of 25 dB) and the pre
dicted keypoints were of low quality (RMSE of 6.0 cm), unconstrained 
fusion improved the MPJ flexion angle RMSE by 3.0◦ ± 1.4◦ (p =

0.0049) and the MPJ center position RMSE by 1.2 ± 0.7 cm (p = 0.0183) 
over constrained fusion. However, when the quality of IMU data and 
predicted keypoints was scaled up and down simultaneously, differences 
between the fusion techniques were not significant. 

Single-modality approaches generally performed worse than fusion 
approaches across the varied data qualities, with some exceptions 
(Fig. 5). The vision-only approach resulted in significantly worse joint 
angle estimates than the fusion approaches at every condition except 
when very low IMU data quality (SNR of 10 dB) was paired with very 
high keypoint data quality (RMSE of 1 cm). At this condition, vision-only 
matched constrained fusion (p = 0.8071) with an MPJ flexion angle 
RMSE of 3.3◦ ± 0.5◦. The IMU-only approach resulted in significantly 
worse MPJ center position RMSEs compared to the fusion approaches at 
five out of the nine conditions, mainly due to position drift that accu
mulates over the duration of the IMU-only simulations (Fig. 6). How
ever, at combinations of medium to excellent IMU data accuracy (17.5- 
25 dB) and poor to medium keypoint data accuracy (6.0-3.5 cm), the 

Fig. 5. Sensitivity of Markerless Approaches to Noise. Fusion approaches improve estimation of kinematics over single modality approaches across almost the 
entire noise spectrum, with few exceptions. Vision-only is consistently outperformed with respect to joint angles, while IMU-only is consistently outperformed with 
respect to joint center positions. The mean ± standard deviation MPJ flexion angle RMSE (top) and MPJ center position RMSE (bottom) show the difference in 
kinematics predictions across each noise condition for all four techniques (*p < 0.05). The circles indicate which method performed best in each condition, with the 
color of the circle matching a particular method (blue is vision-only, red is IMU-only, gray is unconstrained fusion, and purple is constrained fusion). In the case of 
multiple circles, two or more methods performed equivalently. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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IMU-only approach performed equivalently to fusion methods. 

4. Discussion 

The complementary strengths of wearable sensing, computer vision, 
and biomechanical modeling could enhance our ability to capture mo
tion and study gait with greater flexibility and cost-effectiveness than 
current marker-based approaches. Here, we proposed to fuse RGB video 
and inertial data with a biomechanical model that simultaneously tracks 
video and IMU data and investigated when this method improves esti
mation of kinematics over single-modality methods and unconstrained 
fusion. We found that fusion of video and inertial data improves kine
matics over single-modality methods by achieving high accuracy for 
both joint angles and joint center positions across all of the tested video 
and IMU noise backgrounds. We also found that dynamically con
strained fusion with a biomechanical model is advantageous over un
constrained fusion when the quality of inertial sensing data is low and 
the quality of computer vision models is high, whereas unconstrained 
fusion is advantageous in the opposite case. When the inertial and vision 
data noise is equally low or equally high, both types of fusion work 
equally well, but unconstrained is more computationally efficient. 

When interpreting these findings, it is important to consider some of 
the study’s limitations. Biomechanical modeling sim
plifications—reducing degrees of freedom, modeling the head, arms, 
and torso as a single rigid body, and connecting bones to joints by their 
end points—can affect the results of simulations. Yet, this simplified 
approach provides baseline insight on how physics-based modeling can 
contribute to improvement of IMU-video fusion. Our proof-of-concept 
study provided a strong premise to continue to invest effort in this di
rection and expand to 3-D models but do so with better awareness of the 
scenarios under which such computationally expensive approaches are 
beneficial. We expect that models with greater complexities and con
straints, like OpenSim, will amplify but not overturn the conclusions 
drawn here. Furthermore, we created synthetic data for testing each 
approach across different noise magnitudes by simply scaling the noise 
backgrounds inherent to the experimental IMU and video data. We find 
this approach elegant and the assumption that the noise distribution 
remains constant across noise magnitudes more reasonable than making 

assumptions about that distribution (e.g., Gaussian, uniform), but a 
validation of the synthetically scaled noise profiles could be used to test 
that hypothesis in the future. Another limitation is that only walking was 
considered here. It remains to be determined if the reported findings 
hold across other activities. As a final note, the video and IMU data may 
be weighed differently in the cost function based on prior knowledge of 
their noise profiles, which we did not do. A sensitivity analysis of 
weights assigned to each modality, however, revealed that this fine
tuning process does not change the results sufficiently to overturn our 
primary conclusions (Supplementary Fig. 1). 

The finding that fusion of RGB video and IMU data is advantageous 
to single-modality approaches is consistent with findings from other 
disciplines, despite the lack of exploration in biomechanics. State esti
mation and simultaneous localization and mapping (SLAM) in autono
mous robot navigation is commonly achieved by fusing IMU and video 
data with extended Kalman filters (Smith et al., 1990) and modified 
particle filters (Montemerlo et al., 2002). Currently, this fusion method 
provides the most viable alternative to GPS and lidar-based odometry in 
aerial navigation (Scaramuzza & Zhang, 2020). IMUs overcome visual 
SLAM limitations like occlusion, motion blur, lack of visible textures, 
and inaccurate velocity and acceleration estimates, while videos help 
enable real-time IMU drift correction (Mirzaei & Roumeliotis, 2008; 
Nikolic et al., 2014). The complementary nature of videos and IMUs 
explains why fusion methods consistently outperformed single-modality 
methods across the entire range of tested noise conditions and why they 
should be adopted in biomechanics as they are in robot state estimation. 
In biomechanics, fusion can also help overcome soft-tissue motion ar
tifacts since computer-vision methods detect joint centers where skin 
motion is small, whereas IMUs sense inertial changes at the middle of 
body segments where skin motion is non-negligible. However, while 
fusion is generally better, attention must be paid to both data quality and 
computational cost to select the most appropriate fusion approach for a 
particular application. 

The overlap between biomechanical models and IMUs causes the 
unconstrained and biomechanically constrained fusion approaches to 
diverge under specific noise conditions. Biomechanical models provide 
mathematical expressions relating applied forces to rigid-body velocities 
and accelerations. IMUs provide experimental measurements of rigid- 
body angular velocities and accelerations. When IMU data are inaccu
rate, adding a model is beneficial because the underlying optimizer can 
leverage model physics to reduce dependence on suboptimal IMU data. 
However, when the IMU data are more accurate than the model due to 
modeling simplifications, adding the model becomes detrimental. 
Because IMU data quality is limited by miscalibration errors and soft- 
tissue artifacts, among other sources of noise, the incorporation of a 
biomechanical model will likely remain beneficial for natural environ
ment applications of fusion methods. Furthermore, incorporation of a 
model is likely to benefit measurements of faster activities associated 
with larger skin deformations. 

As the prevalence of health monitoring in natural environments in
creases, so will the frequency with which patients and clinicians are 
charged with setting up lightweight and portable health-monitoring 
systems. Markerless motion capture methods must therefore be robust 
to the IMU and camera noise resulting from suboptimal setups by non
experts. Since fusion of complementary modalities has proven to be 
more robust to noisy data than single modality methods, we recommend 
greater emphasis be placed on thoroughly exploring and benchmarking 
data fusion approaches for biomechanical applications. Our work pro
vides a preliminary comparison of emerging techniques that could make 
motion capture more accessible. Our findings could help researchers and 
clinicians make more informed decisions, weighing the required accu
racy for a given application against sensor density and computational 
complexity. Our published code provides an opportunity to further 
verify our conclusions with real video and IMU data from different 
laboratories.1 

Fig. 6. Error Accumulation of the IMU-Only Method. Observing the full 
body joint center position error over the gait cycle reveals that dynamically 
constrained fusion and the other techniques eventually reach an equilibrium 
error, while IMU-only dynamic optimization continues to accumulate error 
throughout the simulation duration regardless of the starting IMU data accu
racy or the level of denoising. All other approaches can also be run for any 
arbitrary amount of time, but IMU-only is restricted to complete gait cycles if 
the periodicity assumption is implemented to reduce drift. However, the rate of 
error accumulation can be reduced by averaging over multiple periodic 
gait cycles. 
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