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Inertial sensing and computer vision are promising alternatives to traditional optical motion tracking, but until
now these data sources have been explored either in isolation or fused via unconstrained optimization, which
may not take full advantage of their complementary strengths. By adding physiological plausibility and
dynamical robustness to a proposed solution, biomechanical modeling may enable better fusion than uncon-
strained optimization. To test this hypothesis, we fused video and inertial sensing data via dynamic optimization
with a nine degree-of-freedom model and investigated when this approach outperforms video-only, inertial-
sensing-only, and unconstrained-fusion methods. We used both experimental and synthetic data that mimicked
different ranges of video and inertial measurement unit (IMU) data noise. Fusion with a dynamically constrained
model significantly improved estimation of lower-extremity kinematics over the video-only approach and esti-
mation of joint centers over the IMU-only approach. It consistently outperformed single-modality approaches
across different noise profiles. When the quality of video data was high and that of inertial data was low,
dynamically constrained fusion improved estimation of joint kinematics and joint centers over unconstrained
fusion, while unconstrained fusion was advantageous in the opposite scenario. These findings indicate that
complementary modalities and techniques can improve motion tracking by clinically meaningful margins and
that data quality and computational complexity must be considered when selecting the most appropriate method
for a particular application.

robotics applications, adoption of vision-based methods in human
movement sciences lags behind due to accuracy limitations (Seethapathi

1. Introduction

Accessible motion tracking could transform rehabilitation research
and therapy. The traditional marker-based approach is limited to
specialized laboratories equipped with expensive optical motion
tracking systems that require infrared cameras and trained personnel.
Inertial sensing and computer vision approaches applied to standard
red-green-blue (RGB) videos offer greater flexibility, given their low cost
and portability, but collective understanding of the strengths and
weaknesses of kinematics estimation algorithms associated with each
technology is still evolving (Table 1). Additionally, efforts to merge the
strengths of these complementary technologies are sparse.

Vision-based methods using RGB cameras are successful in camera-
dense environments, but occlusion continues to pose challenges in
reduced-camera settings (Joo et al., 2019). Although now widely used in

et al., 2019). Computer vison models are data-driven and typically not
constrained to satisfy physiological constraints. Biomechanical
modeling has been considered as a possible approach for improving the
accuracy of computer vision approaches and making them more acces-
sible to the biomechanics community (Kanko et al., 2021; Strutzen-
berger et al., 2021; Uhlrich et al., 2022). Although comparisons with
marker-based data suggest that the accuracy of these methods ranges
widely between 3-20°, depending on the degree-of-freedom, no study to
date has systematically discerned how this accuracy compares to alter-
native approaches and to what degree the incorporation of biome-
chanical models improves results.

Similarly, converting multimodal time series data from inertial
measurement units (IMU) into accurate joint kinematics remains
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Table 1
Qualitative comparison of state-of-the-art IMU and video-based motion capture techniques for measuring joint kinematics.
Modality Method Example Articles Advantages Disadvantages
IMUs Sensor-Fusion Filters (e.g., Mahony, 2008. Computationally efficient; Open-source Magnetometers are often unreliable;

EKF, Madgwick, Mahoney) Madgwick, 2010.

Magnetometer-free approaches are

Sabatini, 2011. inaccurate
Joukov et al.,
2014..
Al Borno, 2022.
Deep Learning (e.g., CNNs,  Huang, 2018. Implicitly learns noise; Open-source Training data are not sufficiently
LSTMs, Transformers) Rapp, 2021. representative of pathologies and
Mundt, 2020-21. activities
Yi, 2021-22.
Biomechanical Modeling: Roetenberg, 2013.  Predicts GRFs, joint loads, and muscle forces Requires drift correction using
Static Optimization Karatsidis, 2016- additional sensors; Computational cost;
19. Closed-source
Biomechanical Modeling: Dorschky, 2019. Predicts GRFs, joint loads, and muscle forces Requires drift correction via limiting

Direct Collocation

assumptions; Computational cost;
Closed-source

Videos Deep learning & Kanazawa, 2018. Computationally efficient; Open-source Data-driven: training data not

Unconstrained Iskakov, 2019.

representative of clinical populations;

Optimization Zhang et al., 2020. Sensitive to occlusions
Kocabas et al.,
2020-21.
Deep Learning & Kanko, 2021. Predicts GRFs, joint loads, and muscle forces; Open-source Data-driven: training data not
Biomechanical Modeling Strutzenberger, representative of clinical populations;
2021. Computational cost
Uhlrich, 2022.
IMUs & Deep Learning & Halilaj, 2021. Computationally efficient; Merges complementary modalities; No Poor initial estimations from video are
Videos Unconstrained integration of inertial data necessary propagated in the optimization
Optimization
Deep Learning Proposed Method Predicts GRFs, joint loads, and muscle forces; Merges complementary ~ Currently, 2-D proof of concept with 3-
& Dynamically modalities while satisfying the laws of physics; No integration of D validity remaining to be tested;
Constrained Optimization inertial data necessary; Accurate with noisy IMU data Computational cost
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Fig. 1. Biomechanical Model and Dynamically Constrained Fusion Overview. Red-green-blue (RGB) video and inertial measurement unit (IMU) data are fused
into a single optimal control trajectory tracking problem, where the state of a planar musculoskeletal model is optimized to produce joint center trajectories and
inertial profiles that match the experimental data. A nine degree-of-freedom (two translational, seven rotational) model is actuated by seven joint torques, four
ground contact forces, and two residual forces accounting for dynamic inconsistencies due to modeling simplifications. The model fuses data from eight anatomical
keypoints acquired from three-dimensional triangulation of computer vision keypoints extracted from RGB video data and seven inertial measurement units placed
on each rigid body segment. Direct collocation is used to minimize a cost functional with keypoint and IMU tracking error costs and an effort cost for regulating the
joint torques and residual forces. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

challenging due to the many possible sources of uncertainty, including
bias noise, thermo-mechanical white noise, flicker noise, temperature
effects, calibration errors, and soft-tissue artifacts (Park & Gao, 2008;
Picerno, 2017). Traditional sensor fusion filters used to mitigate drift
(Madgwick, 2010; Mahony et al., 2008; Sabatini, 2011) typically rely on

magnetometers, which are susceptible to ferromagnetic interference (de
Vries et al., 2009). The results of sensor-fusion filters have been refined
with biomechanical models (Al Borno et al., 2022), but whether findings
will translate to natural environments remains uncertain because
marker-based motion capture has been used for sensor-to-body
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Fig. 2. Experimental Data and the Resulting Markerless Kinematics. (a) We used walking data from 5 subjects recorded with marker-based motion capture,
inertial measurement units (IMU), and four videos. The IMU data had a signal-to-noise ratio (SNR) of 13.2 dB, while the video-based keypoints (i.e., joint center
positions) had a root-mean-squared error (RMSE) of 3.4 cm. (b) Dynamically constrained fusion of IMU and video data via a biomechanical model and direct
collocation (Cnstr Fusion, in solid magenta) improved kinematic predictions over competing markerless motion capture approaches (shown for a single female
subject). (c) Although estimation of kinetics was not a study goal, constrained fusion estimated ground reaction forces (middle) and flexion moments (left) relatively
well (Winter, 1987). Residual forces (right) are non-physical forces that account for discrepancies between the model and reality when modeling assumptions cause
inconsistencies between the biomechanical model and the subject’s true multibody dynamics. (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

calibration and the effect of soft-tissue motion has been mostly elimi-
nated by attaching IMUs to solid marker cluster plates, allowing the
IMUs to move rigidly with the marker clusters. Deep learning has been
proposed as an alternative (Mundt et al., 2020; Rapp et al., 2021) but has
been limited by datasets that are not representative of all activities and
clinical populations. Constrained optimization via biomechanical
modeling, both static and dynamic, has also been used for estimation of
both kinematics and kinetics. Static-optimization approaches rely on
zero-velocity detection algorithms from joint constraints, external con-
tacts, and additional sensors (e.g., GPS, RF-based local positioning
sensors, barometers) to correct the position of the model at each step
(Karatsidis et al., 2019; Roetenberg et al., 2013), while dynamic opti-
mization approaches currently require that the motion be periodic
(Dorschky et al., 2019), both of which limit ease of implementation and
generalizability.

IMU and vision data have complementary strengths that can be
leveraged to overcome their individual limitations, but it is unclear if

fusion via a dynamically constrained biomechanical model would
improve estimation of kinematics over unconstrained optimization
(Halilaj et al., 2021). Inertial sensing can compensate for occlusions in
videos, videos can compensate for drift in inertial data, and biome-
chanical models can add physiological plausibility and dynamical
robustness. Here we fuse video and IMU data via dynamic optimization
of a nine degree-of-freedom (DOF) model (Fig. 1) and investigate the
circumstances under which this approach outperforms (1) standard
computer vision techniques using video data, (2) dynamic optimization
of a biomechanical model using IMU data, and (3) fusion of IMU and
video data via unconstrained optimization (i.e., without a biomechan-
ical model). In addition to comparing these methods using experimental
data, we quantified their sensitivity to IMU and video data noise by
scaling each subject’s unique noise background. We hypothesized that
fusion of video and IMU data with biomechanically constrained opti-
mization would improve estimation of kinematics over the alternatives
for all of the noise profiles. We have shared a MATLAB library to
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encourage testing of these techniques with additional data and the
exploration of new scientific questions.'

2. Methods
2.1. Biomechanical model

To test our leading hypothesis, we used a planar nine DOF biome-
chanical model that consisted of seven rigid body segments (Fig. 1). One
segment represented the head, arms, and torso and three segments
represented each leg. Body-segment lengths, masses, and mass moment
of inertias were estimated by scaling a three-dimensional musculoskel-
etal model based on 21 cadavers and 24 young adults (Delp et al., 1990,
2007) with marker-based motion capture data. The model state, z,
contained nine generalized coordinates, ¢, and their generalized veloc-
ities, v, consisting of the horizontal and vertical sagittal plane translation
of the pelvis, x and y, and the sagittal plane rotation (flexion-extension
angles) of the pelvis, hip joints, knee joints, and ankle joints, g, qin, qin,
qik> qrks Glas Gras respeCtiVEIY:

- |9 gn coords
v gen velocities |’

T
q= [xvys qtvqllnqrhvq1k~,qm7qlavqm] .

The model control vector, u, contained joint torques, 7, contact
forces, F, and residual forces accounting for dynamic inconsistencies
due to modeling simplifications, R (Fig. 2c). Residual forces are artificial
forces applied at the pelvis of the model to help position and orient it in
space when real forces alone are insufficient due to modeling
simplifications:

T jointtorques
u = | F contactforces
R residual forces

T =[T,, T, Tons Ties Ty Tias Tral”
T
F = [Fy,Fyy,Fr, Fy

R=[R.,R]".

We used Autolev (Symbolic Dynamics Inc; Sunnyvale, CA) and
Kane’s equations of motion to derive symbolic expressions for the nine
equations of motion in their explicit form and implemented them in
MATLAB (Mathworks, Inc; Natick, MA):

4 :f (zv u)
2.2. Experimental data

To test the four markerless approaches for predicting joint kine-
matics, we used overground walking data from five subjects (4 male; 1
female) from Total Capture (Fig. 2a), a publicly available dataset
commonly used to benchmark computer vison methods for motion
tracking (Trumble et al., 2017). Motion was captured in a 4 x 6 meter
area with eight high definition (HD) RGB video cameras at 60 Hz, seven
Xsens IMUs (Xsens; Enschede, The Netherlands) positioned on the
pelvis, left and right thigh, left and right shank, left and right foot at
1000 Hz, and a marker-based motion capture system (Vicon Industries,
Inc; Hauppauge, NY) at 100 Hz. Sagittal-plane projections of the video
and IMU data were used as inputs for the biomechanical model.

! The code associated with this study is available via SimTK and GitHub.
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2.3. Kinematics Estimation: Vision-Only

We extracted two-dimensional (2-D) keypoints (i.e., joint centers)
and the confidence score associated with each keypoint from each RGB
video camera using the Cascaded Pyramid Network (CPN) (Chen et al.,
2018). We triangulated the keypoints by using a direct linear trans-
formation algorithm to extract three-dimensional (3-D) keypoints
(Hartley & Sturm, 1997). Contributions from each video were weighted
by the confidence score associated with the corresponding 2-D keypoint.
We computed kinematics by minimizing the error between the trian-
gulated keypoints derived from video data and the joint centers of the
biomechanical model.

2.4. Kinematics Estimation: Dynamically constrained fusion

Our proposed approach fuses RGB video and IMU data by finding the
model states, z(t), and controls, u(t), over time, such that the simulated
keypoint locations and body segment accelerations and angular veloc-
ities from the model state match those obtained from experimental video
and IMU data. This was done by formulating the following optimal
control problem and solving it via direct collocation:
minimize

J(z(1),z (1),u(t))
2(1)u(r)
subject to z" = f(z,u)
X, Sx <Xy
up, <u <uyg.

The cost functional J(z(t),z (t),«(t) ) is minimized with respect to a
bounded state and control and a constraint on the first derivative of the
state vector from the explicit form of the equations of motion. The cost
functional includes a tracking term for both the keypoints and the in-
ertial data, Jyqk, as well as an effort term for both the joint torque ac-
tuators and the residual forces, Jefor:

J = J/mck + Je//ona

Tlkeypoint

_ keypoint state’\ 2 Keypoint__ state’?
Jrak = 2 [(xi - X ) +()i Vi )

i=1

oy MU ? IMU : MU 2
i state o Jstate state
+ ]Z] g -5 T Y + (“’j o ) :
Riorques Nyesiduals
_ 2 2
Jeﬁ‘nrz - (Tk) + (Rm) .
k=1 m=1

We transcribed the large-scale, sparse nonlinear optimization prob-
lem via direct collocation using the OptimTraj library for MATLAB
(Kelly, 2017).

2.5. Kinematics Estimation: IMU-Only

To perform dynamic optimization with IMU data alone, we took the
same steps as in the dynamically constrained fusion approach (2.4) but
removed the keypoint terms from within the Jy4. portion of the cost. We
followed a previously proposed method and applied the assumption that
motion was periodic to overcome the drift resulting from integrating
noisy IMU data (Dorschky et al., 2019). This involved segmenting the
walking data into individual gait cycles and using the mean gait cycle as
the input to the Jyq4 term.

2.6. Kinematics Estimation: Unconstrained fusion

For fusion of IMU and video data via unconstrained optimization, we
formulated a simplified optimization problem where J 4 from the IMU
and vision optimization was minimized, excluding Jef,,; and constraints
on system dynamics and model controls (Halilaj et al., 2021). Here, the
optimal set of kinematics was determined by minimizing the error
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Table 2
Sources of uncertainty for each modeled IMU signal-to-noise ratio (SNR).
Misplacement Misalignment Soft-Tissue Motion IMU SNR
(cm) (deg) (cm) (dB)
0.5 1 0.5 26.7
2.5 5 1.0 17.7
5.0 10 5.0 10.1

between the experimental IMU and video data and the synthetic IMU
and keypoint profiles projected from the subject’s current state.

2.7. Synthetic data generation

In addition to building simulations with the experimentally captured
data, we generated synthetic data to investigate how each of the four
approaches responded to changes in noise magnitude. We first estimated
the naturally occurring noise background, ¢, from the experimental
data. Ground-truth-trajectories for each joint center’s position and each
body segment’s accelerations and angular velocities were calculated via
marker-based motion capture data and analytic equations formed in
Autolev, as noted above. Noise was defined as the difference between
the ground-truth trajectories and IMU-based (angular velocity and linear
acceleration) or video-based (joint center position) trajectories. We then
multiplied this experimental noise background by a scale factor, S, to
achieve synthetic data with new noise magnitudes, without editing the
shape of the experimentally observed noise distribution:
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Using marker-based motion capture as the ground truth, the mean +
standard deviation keypoint root-mean-square error (RMSE) for the five
subjects was 3.5 + 0.2 cm. We scaled the naturally occurring noise
background, ¢, for each subject to RMSEs of 6.0, 3.5, and 1.0 cm by
adjusting only the scale of the noise background while maintaining its
original distribution. These new noise background magnitudes repre-
sented low, medium, and high accuracy conditions, based on single-view
and multi-view RGB camera approaches (Iskakov et al., 2019; Kadkho-
damohammadi & Padoy, 2019; Kanazawa et al., 2018; Kocabas et al.,
2020). An RMSE of 6.0 cm corresponds to single-view approaches such
as the Human Mesh Recovery (HMR) (Kanazawa et al., 2018) and Video
Inference for Body Pose And Shape Estimation (VIBE) (Kocabas et al.,
2020). An RMSE of 3.5 cm corresponds to multi-camera algebraic
triangulation approaches such as the one used in this study. An RMSE of
1.0 cm corresponds to multi-camera methods incorporating learnable
triangulation, which has acheived state-of-the-art accuracy in computer
vision literature (Iskakov et al., 2019; Kadkhodamohammadi & Padoy,
2019). The IMU data had a mean + standard deviation signal-to-noise
ratio (SNR) of 13.2 + 0.4 dB.

To generate the IMU synthetic data, we scaled the naturally occur-
ring noise background for each subject to SNRs of 10, 17.5, and 25 dB,
which represented low, medium, and high IMU accuracy conditions.

12

10 r _* A

MPJ Center Position RMSE (cm)

= =

2] o N

T T |
\‘*

Per Joint Center Position RMSE (cm)
a

il 0l

Ankle Toe

“( A0 A0 0000

Head Hip Knee

Fig. 3. Comparison of Markerless Approaches. Fusion approaches result in lower mean per joint (MPJ) flexion angle root-mean-square errors (RMSEs) (top left)
than the vision-only approach and lower MPJ center position RMSEs (top right) than the IMU-only approach when tested on experimental data from the Total
Capture dataset. Each symbol (top plots) represents a unique subject. Fusion methods resulted in better accuracy than single modality methods by maintaining
consistent accuracy with respect to both joint angles and joint center positions across all individual joints. (*p < 0.05).
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Fig. 4. Sensitivity of Fusion Approaches to Noise. Dynamically constrained fusion was advantageous at lower IMU accuracies and higher keypoint accuracies,
whereas unconstrained fusion was advantageous at higher IMU accuracies and lower keypoint accuracies. This phenomenon occurs due to the sometimes com-
plementary, but sometimes redundant nature of IMU data and modeling constraints since both provide information on the first and second order derivatives of the
body segment motions. Mean + standard deviation is plotted here with *p < 0.05.

These conditions corresponded to IMU data influenced by electrical
noise in the form of white noise, scale factor noise, and bias nose (Park &
Gao, 2008), a range of commonly occurring static misplacement and
misorientation errors (Tan et al., 2019), and a range of previously
established soft-tissue motion magnitudes naturally occurring during
walking (Fiorentino et al., 2017). To determine appropriate magnitudes
to which the experimental IMU noise backgrounds would be scaled, we
simulated combinations of misplacement, misorientation, and soft-
tissue motion artifacts by formulating analytic equations for each
body segment’s accelerations and angular velocity in Autolev:

ay, ay , W7 = f(¢17 emisplacememy emi:alignmenl7 erissue) )

Clissue ™ W(P» 02)'

We added error terms while deriving the body segment inertial
profiles to model the static misplacement, emipiacemens; the static
misalignment, emiqignmens, and the variable misplacement due to soft-
tissue motion, egsq.. We calculated the noise background magnitudes
corresponding to these errors as the difference between the inertial
profiles of the body segments derived with and without incorporating
the sources of error, and then scaled the error terms to represent the
range of expected naturally occurring noise magnitudes (Table 2). We
sampled ey, from a normal distribution with p and ¢ equivalent to the

mean and standard deviation of soft-tissue motion magnitudes measured
with X-rays (Fiorentino et al., 2017).

2.8. Performance evaluation

We computed mean per joint position error and joint angle error
between the simulation results and ground-truth marker-based motion
capture data for each optimization approach and noise profile. We used
a one-way repeated measures analysis of variance (RM-ANOVA) and
Tukey’s Honest Significant Difference (HSD) for post-hoc analysis to test
the leading hypothesis that dynamically constrained fusion would result
in lower kinematic errors compared to the other three approaches. The
test was carried out for two primary kinematic outcomes: the mean full-
body RMSEs for joint angles and joint center positions. A two-way RM-
ANOVA followed by an HSD test within noise conditions was used to test
the second hypothesis that dynamically constrained fusion would
outperform the other three methods when the data were characterized
by different noise profiles. The two-way RM-ANOVA considered both
the four competing methods and the nine repeated combinations of IMU
and video data noise profiles. Results are presented as mean =+ standard
deviation of the per-joint RMSE compared to marker-based motion
capture. An Anderson-Darling test for normality was used to confirm
that the data were normally distributed (Yap & Sim, 2011).
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version of this article.)
3. Results
3.1. Comparison of modeling approaches

Dynamically constrained fusion performed better than single-
modality methods, but similarly to unconstrained fusion, when using
the experimental data (Fig. 2b; Fig. 3). It improved the mean per joint
(MPJ) flexion angle RMSE by 6.0° &+ 1.2° (p < 0.0001) over the vision-
only approach and the MPJ center position RMSE by 4.5 + 2.8 cm (p =
0.0018) over the IMU-only approach. Joint flexion angle estimates with
the vision-only approach were the least accurate of the four approaches,
with RMSEs of 5.1° + 1.7° for hip flexion, 9.7° + 3.2° for knee flexion,
and 16.0° + 1.2° for ankle dorsiflexion. Similarly, estimation of joint
center positions with the IMU-only approach were the least accurate of
the four approaches, producing errors ranging from 5.6 &+ 2.4 cm at the
hip to 6.8 & 3.3 cm at the ankle. The two fusion approaches performed
similarly to each other and better than single modality approaches by
maintaining accuracy with respect to both joint angles and positions.
However, dynamically constrained fusion facilitated improvements over
unconstrained fusion in estimates of ankle flexion by 3.3° + 1.3° (p =
0.0076).

3.2. Sensitivity to noise

Dynamically constrained fusion performed better than uncon-
strained fusion when the accuracy of IMU data was low and the accuracy

of the video data was high, whereas unconstrained fusion performed
better in the opposite scenario (Fig. 4). When the IMU data were of low
quality (SNR of 10 dB) and the predicted keypoints from video data were
of high quality (RMSE of 1.0 cm), constrained fusion improved the MPJ
flexion angle RMSE by 3.7° + 1.2° (p < 0.0001) and the MPJ center
position RMSE by 1.9 & 0.5 cm (p < 0.0001) over unconstrained fusion.
When the IMU data were of high quality (SNR of 25 dB) and the pre-
dicted keypoints were of low quality (RMSE of 6.0 cm), unconstrained
fusion improved the MPJ flexion angle RMSE by 3.0° + 1.4° (p =
0.0049) and the MPJ center position RMSE by 1.2 4+ 0.7 cm (p = 0.0183)
over constrained fusion. However, when the quality of IMU data and
predicted keypoints was scaled up and down simultaneously, differences
between the fusion techniques were not significant.

Single-modality approaches generally performed worse than fusion
approaches across the varied data qualities, with some exceptions
(Fig. 5). The vision-only approach resulted in significantly worse joint
angle estimates than the fusion approaches at every condition except
when very low IMU data quality (SNR of 10 dB) was paired with very
high keypoint data quality (RMSE of 1 cm). At this condition, vision-only
matched constrained fusion (p = 0.8071) with an MPJ flexion angle
RMSE of 3.3° &+ 0.5°. The IMU-only approach resulted in significantly
worse MPJ center position RMSEs compared to the fusion approaches at
five out of the nine conditions, mainly due to position drift that accu-
mulates over the duration of the IMU-only simulations (Fig. 6). How-
ever, at combinations of medium to excellent IMU data accuracy (17.5-
25 dB) and poor to medium keypoint data accuracy (6.0-3.5 cm), the
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Fig. 6. Error Accumulation of the IMU-Only Method. Observing the full
body joint center position error over the gait cycle reveals that dynamically
constrained fusion and the other techniques eventually reach an equilibrium
error, while IMU-only dynamic optimization continues to accumulate error
throughout the simulation duration regardless of the starting IMU data accu-
racy or the level of denoising. All other approaches can also be run for any
arbitrary amount of time, but IMU-only is restricted to complete gait cycles if
the periodicity assumption is implemented to reduce drift. However, the rate of
error accumulation can be reduced by averaging over multiple periodic
gait cycles.

IMU-only approach performed equivalently to fusion methods.
4. Discussion

The complementary strengths of wearable sensing, computer vision,
and biomechanical modeling could enhance our ability to capture mo-
tion and study gait with greater flexibility and cost-effectiveness than
current marker-based approaches. Here, we proposed to fuse RGB video
and inertial data with a biomechanical model that simultaneously tracks
video and IMU data and investigated when this method improves esti-
mation of kinematics over single-modality methods and unconstrained
fusion. We found that fusion of video and inertial data improves kine-
matics over single-modality methods by achieving high accuracy for
both joint angles and joint center positions across all of the tested video
and IMU noise backgrounds. We also found that dynamically con-
strained fusion with a biomechanical model is advantageous over un-
constrained fusion when the quality of inertial sensing data is low and
the quality of computer vision models is high, whereas unconstrained
fusion is advantageous in the opposite case. When the inertial and vision
data noise is equally low or equally high, both types of fusion work
equally well, but unconstrained is more computationally efficient.

When interpreting these findings, it is important to consider some of
the  study’s limitations. Biomechanical = modeling  sim-
plifications—reducing degrees of freedom, modeling the head, arms,
and torso as a single rigid body, and connecting bones to joints by their
end points—can affect the results of simulations. Yet, this simplified
approach provides baseline insight on how physics-based modeling can
contribute to improvement of IMU-video fusion. Our proof-of-concept
study provided a strong premise to continue to invest effort in this di-
rection and expand to 3-D models but do so with better awareness of the
scenarios under which such computationally expensive approaches are
beneficial. We expect that models with greater complexities and con-
straints, like OpenSim, will amplify but not overturn the conclusions
drawn here. Furthermore, we created synthetic data for testing each
approach across different noise magnitudes by simply scaling the noise
backgrounds inherent to the experimental IMU and video data. We find
this approach elegant and the assumption that the noise distribution
remains constant across noise magnitudes more reasonable than making

Journal of Biomechanics 155 (2023) 111617

assumptions about that distribution (e.g., Gaussian, uniform), but a
validation of the synthetically scaled noise profiles could be used to test
that hypothesis in the future. Another limitation is that only walking was
considered here. It remains to be determined if the reported findings
hold across other activities. As a final note, the video and IMU data may
be weighed differently in the cost function based on prior knowledge of
their noise profiles, which we did not do. A sensitivity analysis of
weights assigned to each modality, however, revealed that this fine-
tuning process does not change the results sufficiently to overturn our
primary conclusions (Supplementary Fig. 1).

The finding that fusion of RGB video and IMU data is advantageous
to single-modality approaches is consistent with findings from other
disciplines, despite the lack of exploration in biomechanics. State esti-
mation and simultaneous localization and mapping (SLAM) in autono-
mous robot navigation is commonly achieved by fusing IMU and video
data with extended Kalman filters (Smith et al., 1990) and modified
particle filters (Montemerlo et al., 2002). Currently, this fusion method
provides the most viable alternative to GPS and lidar-based odometry in
aerial navigation (Scaramuzza & Zhang, 2020). IMUs overcome visual
SLAM limitations like occlusion, motion blur, lack of visible textures,
and inaccurate velocity and acceleration estimates, while videos help
enable real-time IMU drift correction (Mirzaei & Roumeliotis, 2008;
Nikolic et al., 2014). The complementary nature of videos and IMUs
explains why fusion methods consistently outperformed single-modality
methods across the entire range of tested noise conditions and why they
should be adopted in biomechanics as they are in robot state estimation.
In biomechanics, fusion can also help overcome soft-tissue motion ar-
tifacts since computer-vision methods detect joint centers where skin
motion is small, whereas IMUs sense inertial changes at the middle of
body segments where skin motion is non-negligible. However, while
fusion is generally better, attention must be paid to both data quality and
computational cost to select the most appropriate fusion approach for a
particular application.

The overlap between biomechanical models and IMUs causes the
unconstrained and biomechanically constrained fusion approaches to
diverge under specific noise conditions. Biomechanical models provide
mathematical expressions relating applied forces to rigid-body velocities
and accelerations. IMUs provide experimental measurements of rigid-
body angular velocities and accelerations. When IMU data are inaccu-
rate, adding a model is beneficial because the underlying optimizer can
leverage model physics to reduce dependence on suboptimal IMU data.
However, when the IMU data are more accurate than the model due to
modeling simplifications, adding the model becomes detrimental.
Because IMU data quality is limited by miscalibration errors and soft-
tissue artifacts, among other sources of noise, the incorporation of a
biomechanical model will likely remain beneficial for natural environ-
ment applications of fusion methods. Furthermore, incorporation of a
model is likely to benefit measurements of faster activities associated
with larger skin deformations.

As the prevalence of health monitoring in natural environments in-
creases, so will the frequency with which patients and clinicians are
charged with setting up lightweight and portable health-monitoring
systems. Markerless motion capture methods must therefore be robust
to the IMU and camera noise resulting from suboptimal setups by non-
experts. Since fusion of complementary modalities has proven to be
more robust to noisy data than single modality methods, we recommend
greater emphasis be placed on thoroughly exploring and benchmarking
data fusion approaches for biomechanical applications. Our work pro-
vides a preliminary comparison of emerging techniques that could make
motion capture more accessible. Our findings could help researchers and
clinicians make more informed decisions, weighing the required accu-
racy for a given application against sensor density and computational
complexity. Our published code provides an opportunity to further
verify our conclusions with real video and IMU data from different
laboratories.
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