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Competing generalized Wigner crystal states in moiré heterostructures
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We present a comprehensive study of generalized Wigner crystals across various filling factors for system
sizes up to 162 holes employing Hartree-Fock theory and explicitly correlated wave function approaches. While
we find broad agreement with the behavior observed in experiments and classical Monte Carlo simulations,
we highlight the fact that the Hartree-Fock energy landscape appears to be remarkably complex, exhibiting
many competing states, both ordered and disordered, separated by energies of a fraction of ~1 meV /hole. We
demonstrate which of the located states are metastable by performing a stability analysis at the Hartree-Fock
level. Correlated wave function methods furthermore reveal small correlation energies that are nevertheless large
enough to tip the balance of state ordering found within Hartree-Fock theory.
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I. INTRODUCTION

The interest in a novel class of physical systems—so-called
moiré systems—has recently gained tremendous momentum
in the condensed-matter physics and materials science com-
munities [1]. These systems are created from two-dimensional
layers stacked with a small misalignment such that a charac-
teristic long wavelength moiré pattern forms. The associated
moiré period parametrizes the kinetic and interaction energy
scales in the stacked system, providing a control knob to
alter the electronic Hamiltonian. In particular, the interac-
tion strength between charges can be tuned by changing the
twist angle or the layer constituents, rendering such systems
a versatile platform for studying strong-correlation physics.
Experiments on moiré superlattices have revealed a rich phase
diagram of strongly correlated electronic states, including
Mott insulators, generalized Wigner crystals (GWCs), stripe
phases, and liquid crystals by varying the interaction strength
together with the electron filling factor [2-7].

Despite the large moiré unit cell, the low-energy physics
can be described by an emergent single-particle Hamiltonian
(i.e., the continuum model) sharing the periodicity of the
moiré superlattice. We focus on transition metal dichalco-
genide (TMD) heterobilayers, where carriers near the Fermi
level are localized in one layer only and experience a periodic
moiré potential due to the spatial variation in the valence-
band maximum of the other layer [8]. Since the valence-band
extrema located at the K and K’ momentum points are de-
coupled and exhibit a large spin splitting caused by spin-orbit
interactions, spin indices are locked with valley degrees of
freedom, giving rise to an effective twofold spin degeneracy
in the continuum model [9].
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The accurate description of strongly correlated states, how-
ever, requires the treatment of many-body interactions. A
natural approach is to incorporate long-range Coulomb in-
teractions into the continuum model description (i.e., the
interacting continuum model) [10-12]. This framework re-
sembles that of the two-dimensional electron gas (2DEG) with
a pinning moiré potential, which may harbor exotic physics
arising from Coulomb frustration [13] and glassy dynam-
ics [14] in addition to well-known 2DEG phenomena such as
standard Wigner crystallization [15-17].

Previous theoretical work on GWCs has employed Hartree-
Fock (HF) [12,18-21], density functional theory (DFT) [22],
classical and quantum Monte Carlo (MC) [22-25], and exact
diagonalization (ED) [26,27] to probe the ground state phase
diagram. While classical MC is reasonable deep within the
crystalline regime, a comprehensive picture requires a quan-
tum treatment beyond mean-field theory to capture strong
correlation effects. Such studies have largely focused on the
magnetic behavior at filling factors v = 1/3,2/3, and 1. Es-
sentially no work has been done to characterize charge order
across all relevant filling factors using explicitly quantum
mechanical approaches in large systems.

In this paper, we present a comprehensive quantum me-
chanical study of GWCs in hole-doped TMD heterobilayers
at ten distinct filling factors up to v = 1. We first characterize
the quantum energy landscape of HF solutions for systems up
to 162 holes, establishing that multiple metastable states (as
defined by a positive-definite spectrum of the HF Hessian ma-
trix) generically exist, which is suggestive of glassy behavior
in the system. The states are nearly degenerate in energy and
may exhibit ordered or disordered configurations. Next, we
verify that the complexity in the HF energy landscape persists
upon incorporating electron correlation effects via correlated
wave function approaches. Correlation energies were found
to be small yet sufficiently large to alter the energetic or-
dering of the states revealed by Hartree-Fock theory. Most
notably, our results suggest that quantum fluctuations can
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stabilize partially crystalline ground states. We demonstrate
that such approaches—which have reasonable scalings with
system size—may be used to accurately estimate the corre-
lation energies of GWC states. Hartree atomic units are used
throughout the text unless stated otherwise.

II. MODEL AND METHODS

A. Interacting continuum model

The low-energy physics of TMD heterobilayers is de-
scribed by a continuum model constructed from the topmost
valence band [9]. Carriers near the Fermi level are localized
in one layer only, with the effect of the other layer appearing
through local variations in the band gap that correspond to
moiré length-scale variations in the local atomic registry [8].
This manifests in the carriers experiencing a moiré potential
A(F) that is periodic with respect to the superlattice, giving
rise to the single-particle moiré Hamiltonian [9]

. v?
hi = ——
2m*
where m* is the carrier effective mass. To the lowest order in
a harmonic expansion, we have
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where V), is the potential strength, ¢ characterizes the shape
of A(7) in the moiré€ unit cell, and g; are the moiré reciprocal
lattice vectors in the first shell which satisfy C; symmetry.
The emergence of A(F) leads to zone folding of the mono-
layer Brillouin zones, yielding smaller moiré Brillouin zones
(mBZs) that host flat bands. V,,, and ¢ are intrinsic material
properties that can be obtained from fitting to ab initio band
structures [9,10].

Taking the carriers to be holes, we set m* = —0.45m, (m,
is the bare electron mass), V,, = —15 meV, and ¢ = 45° for
WSe,/WS,. At zero twist, the 4% lattice mismatch between
the WSe, and WS, monolayers produces a moiré superlat-
tice with a lattice constant of L,, = 8.3 nm [10]. Spin-valley
locking [9] implies an effective twofold degeneracy in the
model, thus we identify the filling factor v = 2 (two carriers
per moiré unit cell) as “full filling.” We only examine v <
1 since interactions renormalize bands more strongly with
higher charge densities, leading to remote band mixing that
demands caution with respect to the single-band continuum
model for v > 1[27].

The interacting continuum model is obtained by adding
Coulomb interactions:

H—Nﬁ Ly 3
—Zz+§ZF 3)

Here, we used a conventional 1/e screened Coulomb potential
with € the effective dielectric constant, although the effects of
gate screening [18,25,27] and a Rytova-Keldysh-type screen-
ing [28,29] can also be considered. (See Appendix F for a
discussion). We take € = 7 to reflect the dielectric environ-
ment of hexagonal boron nitride (hBN) encapsulating layers
often used in experiments Refs. [3-5,30].

B. Generalized Hartree-Fock approximation

Our paper employs the generalized Hartree-Fock approx-
imation, where spin orbitals {x;(#)} comprising the Slater
determinant |Wyp) possess both spin-up and spin-down char-
acter, i.e., they retain a two-component spinor structure

mﬁ)=[%f?} @
Xi ()

where x7(7) are spatial orbitals in the spin-o sector. By
variationally minimizing the HF energy Exr = (Wug| H |WhE)
with respect to the orbitals {x;}, we obtain a set of integro-
differential equations that can be self-consistently solved for
the optimal {x;}. We represented the x/ in a plane-wave basis
and performed supercell calculations at the I point of the
mBZ. By imposing periodic boundary conditions (BCs) only
over the supercell, we can naturally obtain solutions that are
expected to break the superlattice translational symmetry at
fractional filling factors [3,5,7,24,25,27]. At each filling fac-
tor, we found at least one HF solution starting from solutions
of the continuum model with matrix elements in the mixed-
spin sectors of the initial density matrix P (i.e., PT¥ and P'1)
drawn from a standard Gaussian distribution A/(0, 1), nor-
malized by 103 x max |P|. This “noisy” continuum model
guess served to unbias solutions away from collinearity. In
addition, we selectively located other solutions via physically
motivated initial guesses and determined the stability of each
state by diagonalizing the HF Hessian matrix. We considered
systems with up to 162 holes and, where possible, performed
finite-size analyses as detailed below. Further computational
details are available in Appendix C.

C. Estimating the charge gap
The charge gap A, is defined as

A= 1\/11—1>I<1>o Ac(N), Q)

AN)=EWN+1)+EWN—-1)—-2ENN) (6
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= —FEga + Ep, 0

where E (N) is the total energy of a N-particle system, Ega =
E(N)— E(N + 1) is the electron affinity, and Ep = E(N —
1) — E(N) is the ionization potential. Assuming that the or-
bitals in the N and N £ 1 ground states are identical within
Hartree-Fock theory, Koopman’s theorem [31] allows us to
identify

Ega = —eLumo,  Erp = —¢nomo., (8)

where e .umo (énomo) is the lowest unoccupied (highest occu-
pied) molecular orbital. This gives

A(N) ~ eLumo — EHOMO- ©)]

In the thermodynamic limit, the approximation in (9)
should become an exact equality since the addition or re-
moval of a single particle will have minimal effect on the
ground state orbitals. Evaluating (9) instead of (6) furthermore
has the advantage of ensuring A, > 0 while being compu-
tationally cheaper since it only requires one self-consistent

245113-2



COMPETING GENERALIZED WIGNER CRYSTAL STATES ...

PHYSICAL REVIEW B 108, 245113 (2023)

loop. However, finite-size errors inevitably arise in practical
calculations performed on a finite number N of particles.
While periodic boundary conditions help to reduce finite-size
effects, non-negligible errors originating from spurious “self-
interactions” between particles and their periodic images still
remain—especially for singular long-ranged potentials such
as the Coulomb interaction [32].

These contributions can be mitigated by employing correc-
tions involving the triangular lattice Madelung energy, given
by [33]

g o 3020034

2e /Tt F ’
where € and ry are the effective dielectric constant and the

Wigner-Seitz radius, respectively. For a N-particle system, the
Madelung-corrected charge gap is [32,34]

Ac(N) = Ac(N) + 2|eul, 11

(10)

which improves the scaling in the finite-size errors from
ON~12) to O(N~3/%) [35]. Given the above considerations,
we estimated A, in the thermodynamic limit by first com-
puting the Madelung-corrected charge gap (11) using (9),
then extrapolating—where appropriate—A.(N) to N — oo
assuming the extrapolation formula

2
N3/2
with y being a parameter to be fitted. [llustrative examples are
provided in Appendix E.

AN) = + Ac(00), 12)

D. Correlated methods

To go beyond mean-field theory and incorporate electron
correlation effects, we leveraged several state-of-the-art ap-
proaches infrequently used in the study of moiré systems. We
investigated systems smaller than our largest HF calculations
yet too large to examine by ED—a compromise between
system sizes where finite-size errors obscure true correlation
effects and computational costs limit the availability of refer-
ence solutions for comparison. To find (near) exact energies
from our distinct HF solutions, we employed the heat-bath
configuration interaction (HCI) [36,37] and coupled-cluster
singles-doubles (CCSD) plus its improvement with pertur-
bative triples [CCSD(T)] approaches [38—40]. Note that the
scaling of CCSD and perhaps CCSD(T) enables their ap-
plication to the largest systems we examined, making them
attractive tools for future investigations of correlation effects
in moir¢€ systems [41]. A brief discussion of these approaches
can be found in Appendix B.

III. RESULTS

A. Hartree-Fock survey across v

We first present a survey of the behavior of HF solutions
across v for the interacting continuum model. The system
sizes we considered are such that the GWCs are commensu-
rate with the supercell and are listed in Table 1. All solutions
discussed in this section were initiated from the continuum
model guess as described previously and found to be stable.

Figure 1(a) shows charge gaps A, obtained. At v =
1/4, 1/3, 1/2, 2/3, 3/4, and 1 where there are sufficient

TABLE I. The filling factors and system sizes studied with HF.

Filling factor v System size N

1/7 7,28
1/4 4,16, 36, 49, 64, 81

1/3 3,12,27, 48,75, 108
2/5 10, 40

1/2 8, 18, 32, 50, 72, 98, 162
3/5 15, 60
2/3 6,24, 54, 96, 150
3/4 12,27, 48,75, 108, 147
6/7 42, 168

1 9,16, 36, 64, 81, 144

data points, we performed the extrapolation as detailed in
Sec. IIC. Atv =1/7, 2/5, 3/5, and 6/7 where there are only
two data points, we estimated A.(co) using A (N) computed
with the largest system size. A large enough N 3% was used
such that all A.(N) are converged to <0.5 meV. At each v,
we also only considered A, obtained from ordered solutions
if they were found; the charge gaps otherwise originate from
disordered solutions. Larger values of A, can occur in ordered
solutions [indicated at v = 1/2 in Fig. 1(a)], but require tuning
of the initial guess to find.

We plot A, normalized by the moiré scale interaction
strength U,, = 1/€L,,. As in previous experiments [3,7] and
theoretical work [27], we observed an asymmetry in A, about
v = 1/2 at the level of Hartree-Fock theory. The charge gaps
for v < 1/2 are larger than for v > 1/2 due to the larger
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FIG. 1. Charge gaps A, relative to the moiré scale interaction
strength U,, = 1/€L,, at various fractional filling factors v, where
L,, is the moiré superlattice constant. The inset shows experimen-
tal measurements of the 2s exciton resonance energy E, used to
probe the charge gap in untwisted WSe, /WS, heterobilayers [3]. All
solutions depicted were obtained using the continuum model guess
as discussed in the main text, except for the red cross which marks
A, /U, calculated from the ordered stripe solution.
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low

FIG. 2. The charge density p(7) at filling factors v < 1 obtained from the unpolarized continuum model guess. The densities are plotted
over the supercell and the grid lines show the moiré unit cell boundaries. The indices ny, n, € Z* represent a point 7 = nlzm,l + nzl_jm,z in the
supercell, where L,, ; are the primitive moiré lattice vectors. Disordered configurations were generally observed across v; ordered phases were
seenatv =1/7,1/3,2/3,and 1. At v = 1/2, the continuum model guess yielded a disordered phase in contrast to the ordered phase obtained

from the stripe guess [Fig. 4(a)].

Coulomb-to-kinetic-energy ratio at lower average charge den-
sities, which is reminiscent of the low-density behavior in the
2DEG.

Compared to the exact diagonalization results of Morales-
Durén et al. [27] obtained with small system sizes (N < 16
for v < 1), we found larger charge gaps and more stable
GWCGCs. Our (L, m*,V,) parameter values give W,,/V,, =
0.16, where W,, = 1/m*L? is the moiré scale kinetic energy.
While they predicted metallic phases across fractional filling
factors at this value of W,,/V,,, we found insulating states with
larger A./U, values than those computed in their insulating
states. The discrepancy with the charge gaps reported in [27]
appears not to arise entirely due to the use of Hartree-Fock,
but due to differences in the model (i.e., whether a projection
onto continuum model orbitals was involved), the system size,
the basis set size, and the manner in which the charge gap was
calculated [e.g., via (6) or (9)] as well. Replicating the ED
calculations of [27], we found a closing of the gap computed
using (6) towards metallic behavior with increasing W,,/V,,
(i.e., decreasing V,,,) compared to the values reported in Fig. 1.

Across all v, the HF solutions initialized from the con-
tinuum model guess consist of localized charge densities,
predominantly of a disordered nature. Figures 2 and 3 show
the largest basis set charge densities across filling factors and
their fast Fourier transforms (FFTs). The extraction of FFT

peak locations from Fig. 3 is detailed in Appendix D. The Cs
symmetry of the moiré superlattice is generally preserved in
Fourier space, implying that the charge densities also obey it
(with v = 2/5 perhaps the exception). The superlattice trans-
lational symmetry, on the contrary, can be broken.

The ordered phases we observed occur at v =
1/7,1/3,2/3, and 1, which exhibit triangular lattice and
honeycomb charge orders as seen in experiment [5] and
previous theoretical work [7,27,42]. Atv = 1/3 and 2/3, FFT
peaks at k where |£|/ |G| = 1 /~/3 are observed, reflecting a
unit cell defined by the vectors

Ly =2Lu1 — Lo, Ly=Lyy+Lao, (13)
where L, ; are the primitive moiré lattice vectors. Such a cell
is constructed from occupied (vacant) moir€ sites for v = 1/3
(2/3). At v = 1/7, FFT peaks occur at k where |/2|/|c‘;m| =
1/ V7, indicating a unit cell defined by the vectors

Ly =3Lu1 — Lz, Ly =Ly +2La,. (14)
In contrast to the case with v = 1/3 and 2/3, the v = 1/7 and
6/7 charge densities we obtained are not dual [43] to each
other in Fig. 2 and can also be distinguished in Fourier space
(Fig. 3). This is likely because our solution at v = 6/7 is one
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FIG. 3. Fast Fourier transform of the charge densities in Fig. 2 with the average density subtracted, i.e., | p(l;)l = |FFT{p(7) — (p)}|. The
indices «;, k, € Z represent a point g = « G, + k,G, in reciprocal space, where G; are the primitive reciprocal lattice vectors associated with

the supercell.

of several local minima with similar configurations that are
close in energy.

Disordered states at other filling factors also resemble MC
predictions, e.g., the “columnar dimer crystal” at v =2/5
[Fig. 1(b)] [25]. Notably, our survey revealed a disordered
(labyrinthine) stripe configuration at v = 1/2, in contrast to
the ordered stripe phase often discussed in the literature [44].
The fragility of the ordered stripe state has been noted exper-
imentally by Li et al. [5], who highlight the sensitivity of this
phase to lattice strain and local inhomogeneities. In the ab-
sence of such experimental considerations, however, we posit
that our disordered solution is one of several nearly degenerate
local minima (i.e., stable solutions) that differ slightly in their
real-space configurations. As discussed further below, we can
also find low-lying ordered states at filling fractions where the
continuum model guess yields disordered configurations. This
is accomplished through selecting physically motivated initial
guesses.

B. Nearly degenerate solutions at v = 1/2

We now focus on v = 1/2 to probe the existence of nearly
degenerate yet distinct HF solutions by supplying different
initial guesses. In an attempt to recover the ordered stripe
state, we explicitly constructed a polarized ordered stripe
guess in addition to the continuum model guess employed
earlier. We first present results obtained with N = 18 and
Noasis = 211 before discussing larger system and basis set size
studies.

Figures 4(a)—4(c) show the charge configurations obtained
from each initialization. Unsurprisingly, the solution from the
ordered stripe guess is also an ordered stripe configuration
[Fig. 4(a)], whereas the continuum model guess yielded a
disordered (labyrinthine) stripe state [Fig. 4(b)]. Both solu-
tions were verified to be stable in the charge sector. Although
several other HF states were discovered throughout our inves-
tigation, we only present one additional solution [Fig. 4(c)]

that displays an inhomogeneous density across the honey-
comb lattice and is unstable (i.e., a saddle point) at the HF
level. These solutions can be clearly distinguished in Fourier
space [Figs. 5(a)-5(c)]—markedly, the ordered stripe phase
exhibits peaks that obey C, symmetry instead of the Cs
symmetry of the moiré superlattice. The finite-size HF ener-

gies per particle for these states are €ogered = —41.233 meV,
Ordered Disordered Partially
stripe stripe pinned
high
low

FIG. 4. The charge density p(7) at v = 1/2. (a)—(c) HF solutions.
(d)—(f) CCSD solutions. Comparing the top and bottom rows, we ob-
served that quantum fluctuations induced by correlation delocalizes
p(7). Note that p(¥) in (a) and (d) are relatively shifted by L,,, while
(e) and (f) are relatively rotated by 60°.
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FIG. 5. Fourier-space plots of the charge densities obtained at
v = 1/2. (a)—(f) FFT of the corresponding densities in Fig. 4. (g)—(i)
FFT peaks extracted from (a)—(c), plotted directly in reciprocal space
k= (ky, k). Large dots denote where the FFT signal is maximum
and G,, are the primitive moiré reciprocal vectors.

—41.465 meV, and &parally =

inned

spectively. Taken together, our resglts suggest the existence of
arough energy landscape with many close-lying local minima
surrounding the ordered phase, which is reminiscent of a
glassy system.

The existence of competing states is furthermore revealed
by the convergence of energies with system size. Figure 6
illustrates the convergence of the energy difference per par-

Edisordered = —41.114 meV, re-

=

> 0.2
£

~§ A N=18
AR RPN N=50
2 r/,/’/ \\\

Z |7 - N=098
[(§) oS

\* - - =

I 0.0 R - N=162
g R ninininining 4

o

3

W _0.11

20 25 3.0 3.5 4.0
2|Gmax/Gm|

FIG. 6. Convergence of the energy difference between the or-
dered and disordered (labyrinthine) stripe phases with system and
basis set size. The quantity 2|6m.(lx /éml is a measure of the basis set
size, where |Gmax| is the maximum momentum included in our plane
wave basis set. (For reference, Ny,sis = 211 for N = 18 corresponds
to 2|émax / éml ~ 2.5.) As N increases, the ordered stripe configura-
tion becomes lower in energy but the difference |€ogered — Edisordered |
decreases.

HF vHCI vHCI+PT2 CCSD CCSD(T)
0119
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-0.6!
0.8 -0.741 -0.763
-0.828
-0.904
Ordered Disordered Partially
stripe stripe pinned

FIG. 7. Energy per particle ¢ relative to the HF ordered stripe
solution, denoted with &.¢. We use VHCI to denote only the varia-
tional component of HCI, while vHCI + PT2 denotes the full HCI
algorithm. The energy differences are <1 meV across all methods.
Whereas the energetic ordering found by HF disagrees with cor-
related approaches, all correlated approaches yield orderings and
energies in remarkable agreement with each other.

ticle e = E(N)/N between the ordered and disordered stripe
phases with system and basis set size. For the largest Npasis,
while the ordered stripe evolves to be the lower energy state
as N increases, the two phases also become more nearly de-
generate.

C. Further study with correlated methods

To investigate the effect of quantum fluctuations at v =
1/2, we performed correlated calculations starting from the
mean-field solutions found previously. Again considering
the case N = 18 and Nyusis = 211, we leveraged only spin-
collinear variants of HCI, CCSD, and CCSD(T) since the HF
solutions we obtained were spin collinear. We will use “vHCI”
and “vHCI 4 PT2” to distinguish between the variational
component of HCI and the full algorithm (variational plus
perturbative components).

Our results show that the complexity of the energy land-
scape persists even after introducing electron correlation.
Figure 7 illustrates the small energy scales associated with the
solutions: both the correlation energy and energy differences
between the three solutions are < 1 meV. For reference, the
relevant energy scales characterizing our system are U, ~
Vi ~ O(10) meV and W,, ~ O(1) meV. Similar energies
obtained across VHCI, vHCI+PT2, CCSD, and CCSD(T)
moreover provide confidence that these values are nearly
exact. The three correlated solutions remain distinct, which
suggests that the metastability associated with the stable HF
solutions is retained. Each approach also qualitatively pre-
dicts charge densities that agree with each other and HF:
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Figs. 4(d)—4(f) and 5(d)-5(f) demonstrate how quantum fluc-
tuations delocalize the charge density but still preserve the
essential Fourier-space structure from HF.

Nevertheless, energetic corrections arising from correla-
tion effects are nontrivial. The minuscule correlation energy
is sufficient to alter the energetic ordering of states from HF,
despite indicating that a single Slater determinant is adequate
in providing a quantitative description of each state. For ex-
ample, while HF predicts the lowest energy state (among our
isolated solutions) to be the disordered stripe, all correlated
methods predict it to be the partially pinned solution instead—
albeit it was unstable at the HF level.

IV. CONCLUSIONS

We have numerically studied GWCs in hole-doped TMD
heterobilayers at various fractional filling factors using
Hartree-Fock and correlated theories. As a concrete exam-
ple, we focused on the untwisted WSe, /WS, heterobilayer
embedded in a hBN dielectric environment, which is an ex-
perimentally popular system for probing GWCs. Our results
show qualitative agreement with experiment in the asymmetry
of charge gaps about v = 1/2 and in the charge orderings
observed, particularly at v = 1/3,2/3, and 1. We moreover
discovered multiple potentially disordered solutions that sug-
gest the existence of a rugged energy manifold of nearly
degenerate states. To probe this further, we focused on the
v = 1/2 case and found that the energy differences between
distinct solutions are <1 meV at the mean-field level and
beyond. Correlation energies are nevertheless nontrivial as
demonstrated by a reversal in the energetic ordering of states
between HF and correlated methods. Due to quantum fluc-
tuations introduced by such approaches, HF charge densities
become more delocalized while still retaining the essential HF
features. In addition, we show for relatively small system sizes
that fluctuations can stabilize partially pinned states relative to
disordered stripe configurations [45-50]. Future work will be
devoted to characterizing these states. Our observations reveal
the complexity of the moiré energy landscape—defined by
several close-lying metastable states— - in both mean-field and
correlated theories.
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APPENDIX A: MODEL DETAILS

The interacting continuum model is described by the
Hamiltonian

-2l

M

N
} zzj elr, . (AD

_r]

where m* is the carrier effective mass, A is the moiré po-
tential, and € 1s the effective dielectric constant. In our
calculations, we instead work with a scaled Hamiltonian A’
defined by

R V2 1
H:E{—T—I—A(ri)}—i—zg 7 (A2)
A =aH, AN =oaA, 7 =87, (A3)

2 *
o=, p=", (A4)

m* €

which effectively maps the interacting continuum model to a
2DEG in the scaled moiré potential A’ [11]. This form al-
lows the interacting continuum model to be treated with DFT
employing exchange-correlation functionals derived from the
2DEG. Note that if |¥') is an eigenstate of H” with energy E’,
then

(A5)
= H|V) = |\11 ),

i.e., |¥') is also an eigenstate of the original Hamiltonian A
with energy E = E’/a. Thus, we divided energies obtained
from the scaled Hamiltonian by « to recover energies associ-
ated with the physical moiré system.

APPENDIX B: CORRELATED METHODS

Any antisymmetric N-particle state | ) can be represented
in the basis consisting of a reference Slater determinant | )
and all of its excitations, i.e.,

W) =|cot+ ) claja+ Yy casaaa; + - | 1®),
s
(B1)

where ¢ c”jb . are coefficients and &}L (a;) are creation (an-

mhllatlon) operators defined over the orbital basis set {¢;}
from which |®) is constructed [31]. This representation be-
comes exact as the orbital basis approaches completeness. In
principle, the coefficients can be determined through exact
diagonalization, but the problem quickly becomes intractable
as the Hilbert space scales exponentially with system size.
Correlated wave function methods thus seek to approximate
(B1) starting from some known reference |®)—often ob-
tained from Hartree-Fock theory (hence by correlation, we
refer to contributions beyond Hartree-Fock). HCI [36,37] and
coupled-cluster (CC) theories [38—40] are two such methods
that we employ in our paper.

245113-7



UNG, LEE, AND REICHMAN

PHYSICAL REVIEW B 108, 245113 (2023)

1. Heat-bath configuration interaction

Given a Hamiltonian A, HCI finds an approximation to
the ground state | W) consisting of a selected set of the most
important determinants only. This is achieved in two stages:
first, a variational wave function is constructed from a set
of chosen determinants; second, perturbative corrections to
the variational energy determine additional determinants to be
added. The selection of determinants in each stage is tuned by
two parameters, €; and €;, which control the tradeoff between
speed and accuracy. We use vHCI and vHCI + PT2 to de-
note the variational stage and its correction with perturbation
theory (i.e., the full HCI algorithm), respectively.

VHCI consists of iteratively expanding the selected space
(which usually only includes the Hartree-Fock determinant
initially) while minimizing the selected-space energy. At
each iteration, new determinants |®;) connected to the cur-
rent space by nonzero Hamiltonian matrix elements H;; =
(D] H|® ;) are added according to the importance measure

(@) )—maX(I ijCil)s (B2)

where {c;} are determinant coefficients. The variational stage
is summarized as follows [36].

(1) Diagonalize the Hamiltonian in the selected space. Let
{c;} denote the determinant coefficients of the lowest eigen-
vector.

(2) Generate all exterior determinants {|®})} that satisfy
|H;jcj| > €; for at least one determinant |®;) in the current
space. Add these determinants to the selected space.

(3) Repeat steps 1 and 2 until the number of new determi-
nants generated is <1% of the number of determinants in the
selected space.

The generation of {|®;)} in step 2 is achieved via
deterministic heat-bath sampling. Starting from a refer-
ence determinant |®;), only determinants |®;) connected
to |®;) through matrix elements (]| A |® ;) that satisfy
| (D] H|® j) | > € are sampled. The threshold € here is cho-
sen to be € = € /|c;|. Duplicates are removed as the sampling
algorithm is applied to each determinant in the current space.

Once the variational wave function |Wo) = ), ¢c; |®;) is
obtained, the partitioning of the Hamiltonian used in the per-
turbative stage is defined as

A=H+V,
=Y Hij|®;) (®;|, Ho|Wo) =Eo|Wp). (B3
ij

The second order correction to the energy is thus

2
AEzZZM» (B4)

EO_Ea

where the sum is over new determinants {|®/)} that give the
matrix elements H,; = (P H |®;) and E, = H,,. Since (B4)
is expensive to evaluate, VHCI + PT2 approximates AE,
using only terms in the sum that satisfy |H,;c;| > €, i.e.,

ENZ

l \HmCz|>€2 H’”Cl) (B5)
Ey — '

Similar to vHCI, the set {|®/)} is generated by applying the
heat-bath sampling algorithm to each determinant in |W,)
using a threshold of € = €;/|c¢;|.

2. Coupled-cluster theory
CC theory [51] assumes an ansatz for the N-particle ground
state of the form
[Wee) = e W) (B6)

where |W,) is a reference Slater determinant (often taken
to be the Hartree-Fock solution). The cluster operator T is
given by

T=T+1+--+1y, (B7)
Zz“ala,, (BS)
Z t,fa*&,;a,aj, (B9)

l<j

a<b

where T} are cluster operators associated with i-particle excita-
tions and ff, tl“b, ... are cluster amplitudes to be determined.
These amphtudes together with the CC energy can be com-
puted through a projection of the Schrodinger equation onto

|Wy) and its excitations:

(Wol e (H — E)e” |Wo) =0, (B10)
(Wolala,e T (H — E)e’ |Wo) =0, (B11)

(ol alalapane™ (H — Ede’ |Wo) =0,
(B12)

The resulting set of coupled polynomial equations (i.e., the
coupled-cluster equations) can be solved (often iteratively) for
the energy and amplitudes.

Note that [Wcc) with T untruncated is simply a nonlinear
reparametrization of (B1), i.e., it is equivalent to exact di-
agonalization. The power of the CC approach, however, lies
in the truncated form of the ansatz. The exponential form
allows higher order excitations of |W,) to be included in the
ansatz despite truncating 7. One of the most widely used
variants is the truncation 7' = T} + T3, known as CCSD. The
accuracy of CCSD can be naively improved by including 73,
but this approach is often too costly. A more feasible way to
improve CCSD solutions is to include contributions from 73
perturbatively, leading to the CCSD(T) method, which is often
called the “gold standard” of quantum chemistry.

APPENDIX C: COMPUTATIONAL DETAILS

1. Generalized Hartree-Fock

The spinor structure of generalized Hartree-Fock (GHF)
orbitals breaks $? and S, symmetry, hence |Wgyr) is not
constrained to be an eigenstate of $? and §.. Sacrificing sym-
metries of the exact solution provides the additional flexibility
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FIG. 8. Peaks extracted from Fig. 3. We use the term “primary” to describe peaks with the largest magnitudes, while “secondary” describes
any feature of secondary importance. G,, denotes the primitive moiré reciprocal vector.

necessary to obtain the true variational minimum, which can
be advantageous in studying magnetically frustrated systems
that require a non-spin-collinear description [52]. As previ-
ous work [27] on TMD heterobilayers has suggested GWC
ground states with noncollinear spins at some fractional filling
factors, GHF is an appropriate mean-field method for our
problem.

We performed all GHF calculations using a development
version of Q-CHEM [53]. Solutions were optimized through
a hybrid scheme of first using the Direct Inversion in the
Iterative Subspace (DIIS) method [54,55] for O(1) itera-
tions before switching to the Geometric Direct Minimization
(GDM) algorithm [56]. This approach combines DIIS’s ability
to efficiently converge to the global minimum during the early
iterations together with GDM’s ability to traverse challeng-
ing energy landscape features and robustly arrive at a local
minimum. We executed supercell calculations composed of
/Neell X ~/Neep unit cells at the I point of the mBZ, which is
analogous to performing unit cell calculations at Ny = Ny k
points adequately sampled from the mBZ. Periodic bound-
ary conditions are only imposed across the supercell, which
allow us to naturally obtain solutions where discrete transla-
tional symmetry on the moiré superlattice is broken. To break
C; symmetry, however, requires explicit encoding of the bro-
ken symmetry in the initial guess.

For our survey of GHF solutions across filling factors in
Fig. 1 in the main text and Figs. 2, 3, and 8, we started
with a “noisy” spin-unpolarized initial guess constructed from
continuum model orbitals, i.e., eigenstates of (1) in the main
text (henceforth referred to as the “continuum model guess”).
By “noisy,” we mean that matrix elements of the spin 1
and | 1 blocks of the density matrix P are randomly sampled
from the standard Gaussian distribution A/ (0, 1), normalized
by 1073 x max |P|. At v = 1/2, we additionally considered a
spin-polarized stripe guess constructed from orthogonal Bloch

orbitals of the form

N
Yr(F) o Y e i), (C1)
i=1

where N is the particle number, ¢;(7) are Gaussians centered
at stripe lattice sites R;, and k are crystal momenta that (i) are
restricted to the first Brillouin zone defined by the reciprocal
space of the stripe lattice and (ii) satisfy the periodic boundary
conditions imposed on the supercell.

To evaluate the basis set convergence of solutions, we
performed a series of calculations with increasing basis set
size Npysis starting from a small Nl‘)‘;;'i‘s. The converged solution
at each Ny,si5 Was input as the initial guess for the next calcu-
lation using a larger Ny,sis, Where the Ng‘;flz solutions were first
ensured to be stable.

2. Stability analysis

The self-consistent procedure used in GHF only guaran-
tees solutions to be stationary points. To determine whether
they are local minima or saddle points, we inspect the lowest
eigenvalues of the electronic Hessian following the approach
of [57]. Diagonalization is executed via a finite-difference
implementation of the Davidson method, where for a vector
v in the subspace, the Hessian-vector product is computed as

;
VE(C,) — VE(C_)} . )

28

VE is the analytic energy gradient, while C. are the GHF
solution coefficient matrices perturbed in opposite directions
determined by the finite step size £. If the solution is deemed
unstable, we can displace the solution along the lowest
eigenvector and use this as an initial guess in a new GHF
calculation.

HD%[
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3. Spin-collinearity test

We evaluated the spin collinearity of our GHF solutions
following the approach of [58]. A wave function |¥) is con-
sidered to be collinear if it is an eigenstate of an axial spin

A

operator S, = ¢ - § associated with some Cartesian coordi-

nate, where & € R? is a unit vector and S = (S’x, S’y, S'z) is the
usual many-body spin vector operator. In other words, |¥) is
collinear if it satisfies the relation

Sc W) =s. V),
50 € (=N/2, =N/2+1,... . NJ2— 1,N/2}.  (C3)

The collinearity test for a state consists of computing the
quantities u and &y, defined as

1= {8 = (8% (C4)

g0 = 1S = 1S, (8)), (SN, (C5)

where || - || denotes the Euclidean norm. The conditions for
collinearity are thus

(1) =0,

(2) e € {—N/2,—-N/2+1,...,N/2 —1,N/2}.

Condition (i) is obvious since it can easily be proved that
w = 0 if and only if |W) is an eigenstate of S.. Condition (ii)
is less straightforward and we refer the reader to [58] for its
justification. In practice, we deem p < 10~* as describing a
collinear state.

4. Correlated methods

We performed correlated calculations using only spin-
collinear variants of HCI, CCSD, and CCSD (T). CCSD and
CCSD(T) calculations were carried out using PYSCF [59-61],
whereas HCI calculations with ~©O(10°) determinants and pa-
rameters €1, €; &~ 1077 were executed using a locally modified
version of DICE [36,37,62].

Recall that our HF calculations utilized a complex plane
wave basis {¢/°»7} which yields two-electron integral tensors
(pq|rs) possessing a fourfold symmetry, i.e.,

(pqlrs) = (rsIpq) = (srlqp) = (gplsr). (Co)

Quantum chemistry codes including PYSCF, however, often
assume the basis sets to be real and hence (pg|rs) to be
eightfold symmetric, i.e.,

(pqlrs) = (rqlps) = (pslrq) = (rs|pq)
= (gplsr) = (splqr) = {qrlsp) = (srlgp). (C7)

Thus, to interface with such codes, we applied a unitary trans-
formation to rotate the plane wave basis into a real-valued
basis composed of sines and cosines (up to a normalization

factor):
iG, 7 o7
{eia ;] > ﬁ[ws o rﬂ (©8)

e ' sin (Gp -7

|1 —i
il e

The resulting two-electron integral tensor has eightfold sym-
metry recovered.

40
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FIG. 9. Illustration of our FFT secondary peak extraction by (i)
removing the primary peaks at the moiré reciprocal lattice sites,
(ii) applying a Gaussian blur filter to smooth out | ,o(l;)l near the
secondary peaks, and (iii) extracting the locations where | ,o(l?)| is
above some threshold value directly or via k-means clustering.

APPENDIX D: FFT OF THE CHARGE DENSITY

Prior to computing the FFT of the charge densities p(¥)
in Fig. 2, we subtracted the average density (p) to remove
the k = 0 Fourier component. To yield better insight into
the periodic structure of the charge densities in Fig. 2, we
extracted the locations where the FFT signal was maxi-
mum (i.e., primary) and where the signal was submaximum
(i.e., secondary). The results are shown in Fig. 8. At v =
1/7, 1/3, 2/3, 6/7, and 1, the FFT exhibits clean peaks
that can be easily extracted. At v =1/4, 2/5, 1/2, 3/5,
and 3/4, however, in addition to the clear peaks located at
the moiré reciprocal lattice sites, the FFT displays secondary
disperse features in reciprocal space associated with charge
delocalization in real space. We estimated the locations of pos-
sible secondary peaks suppressed by the disperse features but
nonetheless can still be gauged by eye. An example is shown
for v = 1/4 in Fig. 9(a), where we first removed the primary
peaks at the moiré reciprocal lattice sites before applying a
Gaussian blur filter to smooth out | ,o(lz)| near the secondary
peaks. The locations (marked by the red dots) where |,o(l?)| is
above some threshold value are then extracted. In cases where
there are clusters of similar |,o(l?)| above the threshold value,
as for v = 3/4 in Fig. 9(b), we identified the cluster center by
k-means clustering.

APPENDIX E: FINITE-SIZE EFFECTS

For a N-particle system, the Madelung-corrected total en-
ergy per particle e(N) = E(N)/N and charge gap A.(N) =
E(N+ 1)+ E(N — 1) —2E(N) are computed as [32,34]

E(N) = e(N) + e, (E1)

A(N) = A(N) +2leml, (E2)

which improves the scaling in the finite-size errors from
OWNN"2) to O(N~") for € [32] and to O(N—3/?) for A, [35].
Our extrapolations of & and A. to N — oo thus assume
OWN~") and O(N—3/?) scalings, respectively. As illustrative
examples, Fig. 10 shows the convergence of & and A, with
N at v=1/3,1/2,3/4, and 1. It should be noted that the
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FIG. 10. Convergence of the Madelung-corrected total energy per particle & and charge gap A, with system size N. The values at v = 1/3
and 1 were derived from ordered phases, while those at v = 1/2 and 3/4 were derived from disordered phases, as depicted in panels (a)—(d).

values at v = 1/3 and 1 were derived from ordered phases,
while those at v =1/2 and 3/4 were derived from disor-
dered phases, as depicted in Figs. 10(a)-10(d). This likely
contributes to the more monotonic convergence in & and A,
atv = 1/3 and 1 compared to v = 1/2 and 3/4. For the latter
case, the greater variation may be associated with disordered
configurations that differ slightly from one another. The vari-
ation in & as a function of N is also generally smaller than
in A,.

Furthermore, a manifestation of finite-size effects was ob-
served in the spin collinearity of solutions initialized from
the continuum model guess, as shown in Fig. 11. While
only collinear polarized solutions were realized for the largest
system size studied at each v, the smallest system may be
noncollinear. This suggests that—at least at the Hartree-Fock
level—the spin properties of low-lying states may be sensitive
to finite-size effects. However, we note that our initial guess
was occasionally found to be insufficient in biasing solutions
away from ferromagnetic behavior; lower energy solutions
may indeed be noncollinear. As the primary goal of this paper
is to examine charge orders, we do not believe any of our main
conclusions are affected.

APPENDIX F: SCREENED COULOMB POTENTIAL

In experiments on TMD moiré systems that we con-
sider, the setup often involves encapsulating the moiré system
between dielectric materials and metallic gates (Fig. 12).
The encapsulating material and gates alter the electrostatic

environment for a charge in the TMD layer, resulting in
a screened Coulomb interaction between in-plane charges.
Here, we derive a screened Coulomb potential that is a
generalization of the double gate-screened [27,41,63] and
Rytova-Keldysh [28,29] potentials considered in moiré and
TMD materials, respectively.

Regarding the setup in Fig. 12, our task is to find the
electric potential ¢,(7;7') at a point 7 = (x, y, z) due to a
charge g located at 7' = (0, 0, '), where z,7 € [—1/2,1/2].
Let ¢; and €; denote the potential and dielectric constant in
layer i, respectively. Specializing to the case where €| = €3,
the electrostatic equations to solve are

V2 @i (77) =0, (F1)

VZ =02/ 47Tq - -/
2 (R 7)) = _?5(’ —7), (F2)
V2 375 7) = 0, (F3)

with BCs (dropping the 7’ parameter for notational clarity)

5,4 =0 F4
@1 </05 5) — Y ( )
(7-3)=e(r3) ®
?1 0,2 = ¢ ,0,2 )
l [
@2(;07_§> :¢3<IB’_§)’ (F6)
d
@3 <ﬁ’ _E = Ov (F7)
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FIG. 11. The quantities u and gy of GHF solutions initialized
from the unpolarized continuum model guess. While the smallest
N-particle system we studied at each v may not be collinear, the
largest N-particle system is always collinear. This suggests that the
emergence of noncollinear solutions could be an artifact of finite-size
effects. In the order of increasing v, the smallest (largest) N we
considered were 7 (28), 4 (81), 3 (108), 10 (40), 8 (162), 15 (60),
6 (150), 12 (147), 42 (168), and 9 (144).
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FIG. 12. The setup for deriving the screened Coulomb potential.
p € R? is a vector in the xy plane. Furthermore, we assume
d < I so we can treat the layers as possessing infinite extent
in the xy plane. Fourier transforming (F1)—(F3) in g, we obtain
a system of second order partial differential equations (PDEs)

92 N N
gk = Koi(k, z) =0, (F10)
92 N N 4
Sl = Pokn) = -5 =), (FLD)
Z €2
92 N -
G20k = Kesk.2) = 0. (F12)

Let us define the operator £ = % — k2. Since ¢2(/€, 7) is
the solution to an inhomogeneous PDE with inhomogeneous
BCs, we can write it as

02(k, 2) = B2 (k, 2) + G(k, 2), (F13)
where ¢2(/2,z) is the solution to the homogeneous PDE
E(p(l?,z):O with inhomogeneous BCs, while Gk, z)
is the solution to the inhomogeneous PDE E(p(E, 7) =
—(4rq/€)8(z — 7') with homogeneous BCs. The screened
potential we obtain from solving the system of PDEs
is given by

Pk, 7)) = a({ek@”ﬂ) sinh [k(% + z)] + e Ke=l/2 ginh [k(é - z)] } [E—z{] — cosh [k(d — )]} — sinh [k(d — 1)]}
1

+ {ek<“/2> sinh [k(é — z):| + e KEH/2) ginh [k(é + zﬂ } [?{1 — cosh [k(d — 1)]} + sinh [k(d — 1)]}),
1

(F14)
e P .1 (6—2 + 1)2 inh (kd) — (6—2 - 1)2 inh [k(d — 20)] — 2 (6—2)2 — 1| sinh (k1) R (F15)
T eksinh (k) | \ g s €1 s €1 s ’
GlE, 57" = ———L__{cosh[k(z +2)] — cosh [k(|z — 2| — 1)) (F16)
)= e (kl){cos z+2)] —cosh [k(]z — Z'| = )]}

1. Double gate-screened potential

In the limit €; = €;, the BCs match those of the double gate-screened potential and so we recover this solution. Setting €; = €,

in (F14)~(F16),

Pr(k,z;7) = E<{ek(z+l/2) sinh [k(% + z>] + e K12 ginh [k(é — z>j| }{1 — cosh [k(d — 1)] — sinh [k(d — )]}

+ {ek<z—’/2> sinh [k(% - z>:| + e D) ¢inh [k(% + z>:| }{1 — cosh [k(d — )] + sinh [k(d — 1)]}), (F17)

245113-12



COMPETING GENERALIZED WIGNER CRYSTAL STATES ... PHYSICAL REVIEW B 108, 245113 (2023)

g 44 sinh (kd)) ™! (F18)
0= Sin
€k sinh (kl) ’

Gk, z;7') = —h—q{cosh [k(z 4 2)] — cosh [k(|lz — 2| = I)1} (F19)

o €k sinh (k) '
Since Coulomb interactions in the GWC states occur over the length scale of the moiré lattice constant L,, > [, we are
interested only in the asymptotic behavior of ¢,(7;7’) for distances p > . Using the fact that k o 1/p <« 1/I in this case, it
is sufficient for us to know the Fourier component (pz(/;, z;7') for kI < 1. It then follows that k|z|, k|Z/| < 1 and k|]z — Z/| = 0

since —1/2 < z, 7' < 1/2. Taylor expanding @, and G to first order in k/ and making the approximation z & 7’ [note that we still
have k|z| ~ O(kl)], we obtain

@2(75, z) ~ B{2kl(1 — cosh kd) + (ki)? sinh kd — 4(kz)* sinh kd}

_ _eks’;ﬁ {2(1 — coshkd) + kI sinh kd — 4(’:[)2 sinh kd}, (F20)
Gk, 2) ~ —2:—:[2 UZf - %kl:|, (F21)

= <,02(l€, )~ —ﬁ {2(1 — cosh kd) + kl sinh kd — 4(]2)2 sinh kd + 4 (kkzl)z sinh kd — kI sinh kd}
= 2% (%) (F22)

2. Rytova-Keldysh potential

In the limit d — oo, the BCs are similar to the setup in [28] and we recover Eq. (5) therein. We first shift our coordinates
z—z—1/2and 7 — 7/ — /2 in (F14)—(F16) to match the coordinate system of [28]

ok, z:7) = E{{ekz sinh (kz') — e *“~D sinh [k(7 — 1)]}[2—2{1 — cosh [k(d — 1)]} — sinh [k(d — 1)]}
1

+ {e % sinh (kZ') — €D sinh [k(Z — D]} |:§—2{1 — cosh [k(d — 1)]} + sinh [k(d — z)]] } (F23)
1
47 € 2 € 2 &\’ -
g = —.—q{<—2 + 1) sinh (kd) — <—2 - 1) sinh [k(d — 21)] — 2[<—2> - 1] sinh (kl)} , (F24)
€1ksinh (kl) | \ €; €1 €1
e 27[51 r_ _ )
Gk, z;7") = K sinh D) (kl){COSh [k(z + 7 — )] — cosh [k(|z — 2| = D]}. (F25)

Applying the hyperbolic relations

cosh [k(d — I)] = cosh (kd) cosh (kl) — sinh (kd) sinh (kl), (F26)
sinh [k(d — )] = sinh (kd) cosh (kl) — cosh (kd) sinh (k[), (F27)
sinh [k(d — 21)] = sinh (kd) cosh (2kl) — cosh (kd) sinh (2kl), (F28)
and rewriting in terms of
-1
_e/a-l (F29)
/e + 1
we have upon taking d — oo
o T A 2nq 1+8 o u /
Pk 5T~ s e cosh [k 42— D] = cosh [k(z = )]
+ 8[coshk(z — 2)] — e ¥ cosh [k(z + 7 — D]}, (E30)

P " T .o P 2rq —k|z—7/| 28 / kl /
= ok, ;7)) =0k, 7))+ Gk, 2,7 ) = 1 +—e 82{5COSh[k(Z—Z)]+e cosh[k(z + 7 — D]};. (F31)
R _
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