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Abstract
A complete canonical formulation of general covariance makes it possible to
construct new modified theories of gravity that are not of higher-curvature
form, as shown here in a spherically symmetric setting. The usual uniqueness
theorems are evaded by using a crucial and novel ingredient, allowing for fun-
damental fields of gravity distinct from an emergent space-time metric that
provides a geometrical structure to all solutions. As specific examples, there
are new expansion-shear couplings in cosmological models, a form of modi-
fied Newtonian dynamics can appear in a space-time covariant theory without
introducing extra fields, and related effects help to make effective models of
canonical quantum gravity fully consistent with general covariance.

Keywords: modified gravity, canonical formulation, emergent line element

1. Introduction

General relativity and possible modifications or alternatives, such as quantum gravity correc-
tions, can, to a large extent, be derived from the symmetries of space-time. In the usual formu-
lation based on space-time tensors and Riemannian geometry, the gravitational action must be
invariant under coordinate changes and, since it depends on the space-time metric (or altern-
ative geometrical objects such as tetrads or connections), is therefore given by a curvature
or torsion invariant. In general relativity, the relevant invariant is proportional to the space-
time Ricci scalar plus, perhaps, a cosmological constant. Einstein’s field equation then follows
from the variational principle. If higher-order derivatives are included in an effective action
that may describe certain quantum effects, higher-curvature actions are obtained in which the
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Ricci scalar R may be replaced by a non-linear function f (R), and invariants constructed from
multiple factors of the full Riemann or torsion tensors are also possible.

For certain aspects of quantum gravity, a canonical formulation is useful because the under-
lying phase-space structure allows one to look for quantum representations on a Hibert space.
Canonical formulations distinguish between configuration degrees of freedom and their velo-
cities, which are turned into momenta as independent phase-space variables. At this basic step,
therefore, symmetries such as space-time covariance may not be explicitly realized, but once
all dynamical equations have been solved, the solutions are equivalent to those of general
relativity and are therefore covariant. The dynamical equations contain, as usual, equations of
motion of second order in time derivatives of the metric (or of first order of the configuration
variables and momenta), but also constraints that are of at most first order in time derivatives
(or contain only spatial derivatives of the canonical fields). Both types of equations follow
from specific components of the Einstein tensor, and they can be independently derived in the
canonical formulation.

Early, classic work [1–4] has shown that the constraints are the relevant part of these
equations when it comes to symmetries: When the constraints are solved, a condition referred
to in this context as going ‘on-shell,’ general covariance can be recovered in the canonical
theory from flow equations generated by the constraints. The constraints generate evolution
equations as well as gauge transformations by their Hamiltonian vector fields, which on shell
are equivalent to space-time coordinate changes. However, the tensorial and canonical formu-
lations are not equivalent off-shell, which may be relevant in particular for an understanding
of possible quantum effects that could modify the classical constraint functions in different
ways.

Here, we analyze this question in the simpler context of modified gravity and in a reduction
to spherically symmetric models. As we will demonstrate, novel covariant theories of mod-
ified gravity are then possible, with interesting new phenomena. For instance, there are new
types of dynamical signature change [5], and previously constructed models of non-singular
black holes [6, 7] can be rederived as special cases. These results help to clarify possible
modified-gravity effects implied by canonical quantum gravity. The resulting theories may be
of interest also for purely classical questions, for instance by providing new covariant equations
for phenomenological applications that cannot be obtained from traditional versions of modi-
fied gravity.

Physically, new theories of modified gravity are possible in a canonical formulation because
setting up a canonical theory of gravity requires weaker assumptions than what is used to spe-
cify an action. Any tensorial formulation of gravity by an action principle has to start with
a fundamental space-time tensor, usually the metric, on which the Lagrangian depends and
which defines the integration measure for the action. A canonical formulation of gravity, by
contrast, can be given with fewer assumptions because it only requires suitable spatial tensors
with a phase-space structure, and only spatial integrations in the Hamiltonian and diffeomorph-
ism constraints. Unlike in a tensorial formulation, in which general covariance is built into the
formalism by making use of the tensor transformation law in space-time, general covariance
in a canonical formulation is a derived concept that must be demonstrated by an analysis of
Poisson brackets and gauge flows of the constraints. While this property makes it harder to
construct covariant theories of gravity in purely canonical form, it also provides an opening to
new theories of modified gravity because a canonical formulation starts with weaker require-
ments on the fundamental fields.

In particular, we will see that it is possible to relax the usual identity between the fun-
damental canonical configuration field and the induced spatial metric of the corresponding
space-time geometry. This identity is realized in all higher-curvature formulations of modified
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gravity, but it is not necessary in a broader setting of modified canonical gravity. In these new
theories, the space-time metric, or even its spatial part, is not fundamental but rather emergent.
Even if it does not agree with a canonical configuration variable, the emergent spatial metric
qab is uniquely determined by the structure function of the Poisson bracket of two Hamiltonian
constraints.

Moreover, the canonical realization of general covariance works by reconstructing space-
time transformations from deformations of spatial hypersurfaces in normal and tangential dir-
ections. In a canonical formulation of a theory defined by an action principle directly for the
space-time metric or tetrad, such as general relativity or some higher-curvature theory, the nor-
mal direction, just as the induced spatial metric on a hypersurface, is uniquely determined by
the fundamental space-time metric. If one tries to construct consistent gravity theories purely
in a canonical setting, the normal direction is defined more abstractly through the rules by
which general covariance is implemented canonically, related to the algebraic form of differ-
ent Poisson brackets of the constraints that define the theory. In the absence of a fundamental
space-time metric, it turns out, this definition of the normal direction na is no longer unique
and may allow inequivalent realizations of a geometrical space-time structure. Each realiz-
ation results in a consistent and covariant gravitational theory with an emergent space-time
metric subject to the full set of coordinate transformations, defined by the usual combina-
tion gab = qab− nanb where both objects on the right are now emergent, qab from the structure
function and na from what has been specified as the Hamiltonian constraint. But different real-
izations imply inequivalent emergent space-time metrics not mutually related by coordinate
changes. In practice, different choices of normal directions can be parameterized by repla-
cing the original constraints of canonical general relativity with suitable linear combinations
subject to phase-space dependent coefficients.

Such linear combinations therefore present a new, previously unrecognized approach to
modified gravity. This outcome is surprising because one usually thinks of the constraints as
generators of some algebraic structure, which should be invariant under linear combinations
of the generators. However, equipping solutions with a geometrical structure via the emergent
spatial metric and normal direction is an additional ingredient that may well be (and, as we will
show explicitly, is) sensitive to which linear combinations of algebraic generators are distin-
guished as the specific Hamiltonian and diffeomorphism constraint whose gauge transforma-
tions correspond to normal and tangential directions of spatial hypersurfaces. The well-known
structure function in the Poisson bracket of two Hamiltonian constraints then determines the
emergent space-time metric which, subject to strong consistency conditions, also depends on
which linear combination of the generators is singled out as the Hamiltonian constraint.

Since the foundation of our new theories of emergent modified gravity depends crucially
on these canonical structures and properties of hypersurface deformations, we will begin with
a detailed review of relevant properties in the next section. The resulting new spherically sym-
metric theories, along with some solutions, will then be evaluated for new physics effects, con-
sidering expansion and shear terms in cosmological models as well as regimes of intermediate-
strength gravity. Some of the new terms could be implied by various ingredients of quantum
gravity, but a purely classical interpretation is also possible in which novel covariant modific-
ations can be made available for phenomenological studies. The main motivation of emergent
modified gravity then consists in the observation that the space-time metric need not be one of
the fundamental fields in an action principle while maintaining the symmetry condition of gen-
eral covariance. From the perspective of effective field theory, any new terms made possible
by this more general viewpoint should then be included in physical evaluations, especially in
tests of strong-field gravity.
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Figure 1. Deformations of constant-time spatial slices in Minkowski space-time are
equivalent to Poincaré transformations. Spatial slices of constant t and t′, related by
a Lorentz boost, define different hyperplanes in Minkowski space-time. Their unit nor-
mals n⃗ and n⃗ ′, respectively, are defined by the indefinite Minkowski scalar product. A
boost can be described geometrically by a deformation of the initial slice by a position-
dependent deformation of length N(x) in the normal direction, introducing the lapse
function N(x). Similarly, spatial translations and rotations are determined by a shift
vector field w⃗ tangential to a spatial hypersurface. Combining a pair of hypersurface
deformations in the two possible orderings implies a commutator that is equivalent to
the algebraic Lie bracket in the Poincaré algebra. The example shown here represents a
geometrical version of the time deformation T(N), which leads to the commutator (3)
for linear N(x) and a Euclidean spatial metric in the case of special relativity.

2. Hypersurface deformations

Following [4], the gauge symmetries of the canonical formulation of general relativity can be
identified with hypersurface deformations of constant-time spatial slices in space-time, operat-
ing in normal and tangential directions. Since a coordinate transformation in general changes
the notion of constant-time slices, hypersurface deformations are related to coordinate trans-
formations. In practice, indeed, standard methods to analyze solutions of general relativity
may refer to coordinate transformations or to choosing a slicing of space-time into a collection
of spatial hypersurfaces without making much of a conceptual distinction. However, while a
coordinate choice in particular of time defines a slicing through constant-time hypersurfaces,
the deformation of a hypersurface in its normal direction is, in general, not the same as a
coordinate change in the time direction. For a given geometrical structure of space-time, it is
not difficult to translate these two notions into each other. But the construction of new gravit-
ational theories is more involved because a pre-existing space-time structure cannot be taken
for granted.

In the simpler case of special relativity, in which the Minkowski space-time metric is con-
stant in Cartesian coordinates and only linear transformations are considered, the symmetries
of the Poincaré algebra can be shown to be equivalent to hypersurface deformations, as illus-
trated in figure 1. But the relationship between hypersurface deformations and space-time
transformations is more complicated if one goes beyond this setting by allowing for non-
Cartesian coordinates or space-time curvature. At first sight, the transition to general relativity
looks simple: Hypersurface deformations can easily be generalized to non-planar spatial hyper-
surfaces in curved space-time and their deformations along normal and tangential directions.
As illustrated in figure 2, given a background space-time metric in which these deformations
take place, one can compute geometrical commutators of pairs of such deformations. Using
S(w⃗) to denote an infinitesimal spatial deformation by a shift vector field w⃗ tangential to a
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Figure 2. Normal deformations of spatial hypersurfaces in curved space-time. Applying
a pair of normal deformations with lapse functions N1 and N2, respectively, in the two
different orderings implies a non-zero spatial deformation tangential to the final hyper-
surface of the form (3). The normal angle is shown based on local Minkowski geo-
metry, following figure 1. In general relativity, the functions N(x) need not be linear,
and induced spatial metrics on hypersurfaces may be curved. The displacement vector
w⃗ then depends on the spatial metric through the gradients of N1 and N2 in (3).

hypersurface, and T(N) to denote a timelike deformation along the unit normal by a lapse
function N, the well-known result is given by the equations [1–3]

[S(w⃗1) ,S(w⃗2)] = S(Lw⃗1w⃗2) (1)

[T(N) ,S(w⃗)] =−T(Lw⃗N) (2)

[T(N1) ,T(N2)] = S(N1∇N2 −N2∇N1) (3)

where Lw⃗ is the standard directional or Lie derivative along the vector field w⃗.
While the last equation, (3), looks quite simple, it complicates the underlying mathematical

structure because, unlike the Lie derivatives in the first two equations, the gradient ∇N of a
function N requires a metric. Such a metric is available, given by the spatial metric

qab = gab+ nanb (4)

induced by the space-time metric gab on an embedded hypersurface with unit normal na. But
its presence in (3) means that the commutator not only depends on the generating functions
N and w⃗ that define hypersurface deformations, but also on the geometry on the hypersurface.
In the physics literature, such a bracket is usually referred to as ‘open’ or one with ‘structure
functions.’ To close the brackets, we have to be able to apply commutators multiple times,
which, since the spatial metric appears in S on the right-hand side of (3), requires that N and
w⃗ should be allowed to depend on the metric, in addition to their dependence on coordinates.
With this additional dependence, the set of generators is larger than what the four space-time
directions would initially indicate. (Mathematically, the metric dependence can be formulated
by using the notion of algebroids, in which (1)–(3) are realized as brackets on sections of a
fiber bundle over a suitable space of metrics. However, as shown recently [8] in an application
of general mathematical results to the case of hypersurface deformations, the corresponding
bracket, placed in the language of BRST/BFV gauge generators, cannot be Lie but is L∞.)

For our new results, the appearance of the spatial metric in the structure function of an
algebraic bracket turns out to be a crucial ingredient. If we start from scratch in order to define
a canonical theory by finding expressions for S(w⃗) and T(N) in agreement with (1)–(3), we will
have to assume a certain phase space on which these expressions are defined, using Poisson
brackets to compute a realization of the required commutators. However, since the spatial met-
ric appears in the structure function of any set of generators that has the form of (1)–(3), we
do not have to make assumptions about which phase-space function can play the role of a

5



Class. Quantum Grav. 41 (2024) 095008 M Bojowald and E I Duque

spatial metric. The geometrical structure of solutions, if it exists given consistency conditions
described below, is therefore a derived concept in canonical gravity and need not be presup-
posed. This conclusion would not be possible if the generators had formed a Lie algebra with
structure constants.

In practice, we usually do not try to invent completely new constraints that could have a
chance of obeying (1)–(3). We rather start with the known classical constraints of a gravity
theory in canonical form, and try to modify them so as to preserve as much of the structure
of their Poisson brackets. This condition together with other requirements of general covari-
ance is very restrictive, as shown for instance in several discussions related to models of loop
quantum gravity [9–11] which, as we will describe below, did not even include all the required
covariance conditions. In these examples, themainmodification consisted in a non-polynomial
dependence of the Hamiltonian constraint or the generator T(N) on the classical expression for
extrinsic curvature. While partial realizations of such modified covariant models were possible
in vacuum spherical symmetry, an extension to models with local degrees of freedom, such as
spherical symmetry with scalar matter or polarized Gowdy models, turned out to be difficult.

A different way of modifying canonical gravity has been implicitly suggested by recent
work on spherically symmetric models [6, 7, 12, 13], building on the older [14] and [11].
The constructions in [6, 7] used different ingredients not considered in what follows, such as
non-bijective canonical transformations, but the crucial step, as we will demonstrate, was an
apparently innocuous application of linear combinations of the original constraints with phase-
space dependent coefficients. Such coefficients, or equivalently a phase-space dependence of
N or w⃗ in T(N) and S(w⃗), changes the brackets (1)–(3). For instance, if N1 and N2 depend on
the phase-space degree of freedom q that classically represents the spatial metric, the Poisson
bracket {T(N1),T(N2)} contains terms of the form T(∂N/∂q) in contrast to (3). Such terms
vanish on-shell, but they are relevant for the off-shell brackets and possible space-time geomet-
ries that could be reconstructed from them. If there is a contribution from T to the right-hand
side of (3), the bracket does not have the form required for hypersurface deformations, even if
it is still closed (and therefore anomaly-free in the sense of gauge transformations). However, it
may be possible to remove such terms by further modifications of the generators, in particular
replacing the T(N) that one identifies with the Hamiltonian constraint with a linear combina-
tion of the original T(N) and S(w⃗), both with phase-space dependent coefficients. The form (3)
may then be recovered, although in general the structure function does not equal the original
phase-space degree of freedom q (or its inverse).

Crucially, unlike in an algebraic bracket in which T(N) is just one of the generators, the
canonical reconstruction of a space-time geometry depends on which expression T(N) one
considers to represent normal deformations. Singling out a specific T(N) with phase-space
dependent N as the Hamiltonian constraint, or a specific linear combination of both T(N) and
S(w⃗) with phase-space dependent coefficients, defines the normal direction of hypersurfaces.
The choice can therefore have an effect on the resulting reconstructed space-time geometry.
Similarly, if the structure function in (3) is modified, the geometry of hypersurface deforma-
tions implies that the inverse of the new structure function has to be identified with the spatial
metric of a reconstructed space-time line element. Physical evaluations of versions of T(N)
with different dependencies of N on the spatial metric are not guaranteed to be equivalent to
one another because they imply different space-time metrics from the canonical ingredients,
given by the definition of a normal direction through the choice of T(N) and the spatial metric
derived from the structure function in (3). Since the space-time line element is derived in this
situation and does not agree with the original phase-space degrees of freedom, we refer to it
as an emergent line element.
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This new and unexpected feature makes it possible to look for novel theories of modified
gravity that are not of the form of higher-curvature or other action-based theories. Instead of
starting with a space-time tensorial object such as a metric or connection and then looking
for invariant action functionals depending on these basic fields, emergent modified gravity
starts with a phase space suitable for gravitational fields and derives a compatible object for
space-time geometry as well as its dynamics. This object may depend non-trivially on the
basic fields, generalizing the usual construction method based on action principles. In what
follows, we confirm this expectation by an explicit construction in the setting of spherically
symmetric gravity, highlighting consistency conditions that make it possible to construct an
emergent line element invariant under the full set of coordinate transformations. Our examples
will reveal new effects in cosmological models as well as modified Newtonian gravity in a
covariant theory.

3. Covariance and emergent line elements

Spherically symmetric gravity can be described by line elements

ds2 =−N(t,x)2 dt2 +
e2 (t,x)

2

e1 (t,x)
(dx+w(t,x)dt)2 + e1 (t,x)dΩ

2 (5)

where e1 > 0, e2, N and w are functions of the time coordinate t and the radial coordinate
x but do not depend on the polar angles ϑ and φ that appear in dΩ2 = dϑ2 + sin2ϑdφ2. The
momenta k1 and k2, canonically conjugate to e1 and e2, respectively, also depend only on t and
x. Explicit phase-space expressions classically realizing T(N) and S(w) as functions of ei and
ki are given by [15]

T [N] =
ˆ

dx N

(

− e2k22
2
√
e1

− 2k2
√
e1k1 −

√
e1e ′1e

′

2

2e22
+

√
e1e ′ ′1
2e2

+
(e ′1)

2

8
√
e1e2

− e2
2
√
e1

)

(6)

and

S [w] =
ˆ

dx w(k ′2e2 − k1e
′

1) (7)

(using units in which Newton’s constant equals one). Their Poisson brackets obey (3) provided
N andw do not depend on ei and ki. Equations of motion generated by these constraints identify
k1 and k2 with suitable components of extrinsic curvature, but this relationship is in general
modified when new expressions for T[N] and S[w] are used.

Motivated by the discussion of the previous section, we now implement a specific linear
transformation of the classical generators T(N) and S(w), represented by (6) and (7), by repla-
cing them with T(N ′) and S(w ′) with N ′ = αN and w ′ = βN+w, where α and β are allowed
to depend on (ei,ki). (Without loss of generality, we will assume that the original N and w are
not phase-space dependent.) In terms of the old N and w, the new combined generator

T(N ′)+ S(w ′) = [T(αN)+ S(βN)] + S(w) (8)

contains an unchanged spatial deformation S(w), but the previous normal deformation T(N)
is replaced by T ′(N) = T(αN)+ S(βN). If it is possible to reconstruct a generally covariant
space-time geometry from the new normal direction and the resulting structure function, it will
be different from the classical line element defined by (5) even though it will be a gravitational
theory for the same fields e1, e2 and N.
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In order to make sure that the transformed generators still define a space-time geometry
suitable for a gravitational theory, such that solutions are generally covariant in the usual sense
and can be described by invariant line elements familiar from Riemannian geometry, we must
show that T(N ′) and S(w ′) still have Poisson brackets of the form (1)–(3). Any extra terms from
phase-space derivatives of α and β must therefore combine in the correct way for the right-
hand sides of (1)–(3) to appear. If this is the case, there may still be deviations in the precise
coefficients, in particular in (3) where a different structure function may appear instead of
the inverse spatial metric of (5) used in the gradient. Therefore, traditional uniqueness results
going back to [1] need not apply, opening up the possibility of newmodified theories of gravity.
However, a modified gravity theory of classical type, described by a line element, must still
be generally covariant. The final task of showing that a modified theory is well-defined then
consists in demonstrating that its gauge transformations, generated by T(N ′) and S(w ′), are
equivalent to coordinate changes in an emergent line element distinct from (but depending on)
the fundamental canonical fields.

These tasks, computing the Poisson brackets and checking gauge transformations, are
lengthy exercises, but they are unambiguous because the expressions for T and S are expli-
citly known. (See [16] for more details.) The result is that the theory may indeed be modified
in new ways, but with restrictions that limit the initial freedom of two functions, α and β. The
covariance condition requires

α(e1,k2) =
√

1− sλ(e1)
2 k22 (9)

where s=±1 is a sign choice andλ a free function of e1. (We are dropping a possiblemultiplier
of the square root that would be allowed to depend only on e1. The same multiplier would
appear in β and simply rescale T(N ′).) The second function, β, is then completely determined
and equals

β (e1,k2) =
√
e1

2e22

∂e1
∂x

sλ(e1)
2 k2

√

1− sλ(e1)
2 k22

. (10)

Given these functions, the Poisson-bracket version of (3) produces an expression related
to S(w⃗), but its coefficients do not exactly equal those in (3), where ∇N= qxx∂N/∂x and
qxx = e1/e22 from (5) in spherical symmetry. It rather equals a similar expression in which the
inverse of

qemxx =

(

1+
1
4e22

sλ(e1)
2

1− sλ(e1)
2 k22

(

∂e1
∂x

)2
)

−1
e22
e1

(11)

replaces qxx. We thus derived an emergent metric, (11), distinct from the classical field qxx,
for which a detailed analysis building on [11] shows that its coordinate transformations are
consistent with gauge transformations generated by T(N ′) and S(w ′). (The field qxx can no
longer be interpreted as a metric or some other space-time tensor because its gauge transform-
ations do not imply the tensor transformation law. There is a single metric in our modified
gravity theories, given by qemxx , which are therefore not of bimetric form.) If α and β do not
obey (9) and (10), there is no emergent metric that obeys this condition, and the theory cannot
be covariant or geometrical.

These results already demonstrate that we have arrived at a new class of modified gravity
theories. They clearly have general relativity as a limit λ→ 0, and have solutions with nearly
standard behavior in regimes in which λ or its multipliers in (9), (10) and (11), such as k2,
are small. The fact that the emergent metric of a covariant line element for solutions of these
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theories does not agree with the basic field qxx = e22 /e1 in the constraints implies that such
theories cannot follow from a space-time action principle of the usual form: The latter would
require a space-time metric in order to define the integration measure. But since the correct
metric is emergent and not fundamental, the variation of the metric has to be done with respect
to the fundamental fields rather than the metric to obtain the equations of motion. Since this
procedure cannot provide the expression for the emergent metric which is not known a priori,
there is no fundamental action principle. This observation also demonstrates the more gen-
eral nature of emergent modified gravity compared with conventional modifications: In the
latter case, the spatial metric would, by assumption, be given by the fundamental fields, such
as qxx = e22 /e1 in triad variables. A direct comparison with (11) shows that this assumption
is compatible only with the case of λ= 0, ruling out any modifications of the kind studied
here. However, this outcome is a consequence only of the assumption that fundamental fields
directly determine the spatial metric. It is not implied by general covariance of the resulting
gravitational theory.

If the emergent metric were known, we could use it for the integration measure, while the
equations of motion are obtained by varying with respect to the fundamental fields. But to
the best of our knowledge, the emergent metric cannot be obtained from purely variational
arguments. The fundamental fields (e1 and e2) are distinct from the emergent metric (qemxx ), just
as the physical significance of matter, given by the stress-energy tensor, is distinct from the
fundamental fields that define it. Yet, the field equations as well as covariance transformations
are completely determined by the constraints and their canonical structure, derivable from
Poisson brackets. These properties are in contrast to standard modified gravity theories, such
as f (R) or TeVeS, which modify the dynamics but not the structure of space-time because they
all assume that the metric is a fundamental field by necessity.

Any new class of modified gravity theories implies a wealth of applications, in comparis-
ons with observations or as models of various effects of quantum gravity. In particular, new
effects are not necessarily restricted to large curvature. We will present a few examples in what
follows.

4. Applications

We first briefly mention two implications of our modifications that depend on characteristic
details of the function (9) and the metric (11), and suggest how emergent modified gravity
may differ from standard modifications. These features depend on the sign factor s. If s= 1,
the function (11) cannot be negative and may directly be used as an inverse spatial metric. For
s=−1, however, there may be solutions for which (11) changes sign and becomes negative
for certain ranges of x. This possibility has been demonstrated explicitly in [5]. The sign then
implies signature change, derived dynamically from a covariant theory of gravity. This pos-
sibility cannot appear if the structure of space-time is presupposed before an action principle
is defined.

If s= 1, the functional form (9) together with reality conditions implies that the curvature
component k2 must be bounded. While this outcome may also be obtained for certain solutions
of higher-curvature theories, such as [17], here it is generic for all solutions provided s= 1. We
can relate this result to a recent construction [6, 7] of modified spherically symmetric solutions
that turns out to be a special case of our new class. If we choose λ(e1) = λ constant in addition
to s= 1, we can apply the canonical transformation

k2 =
sin(λk ′2)

λ
, e2 =

e ′2
cos(λk ′2)

(12)
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and obtain α= cos(λk2). In this form, the example of covariant modified gravity had been
used in [6, 7] in order to construct a non-singular black-hole model, but the origin of the
modification remained unclear. Initially it seemed that it may be a consequence of the non-
invertible canonical transformation (12), but this possibility had already been ruled out in [18]
in a discussion of the earlier [19]. Our results clarify that the modification of gravity in the
model of [6, 7] is indeed genuine and relies not on a canonical transformation but rather on a
linear, phase-space dependent transformations of generators that redefines the normal direction
of hypersurface deformations, compared with the classical geometry.

4.1. General modifications

More generally, we may try to modify the classical expression of T(N) before we apply a lin-
ear transformation (8). For instance, as suggested in models of loop quantum gravity [9, 20],
we could replace the quadratic dependence on curvature components in T(N) by non-classical
polynomials or even non-polynomial functions, motivated by quantum-gravity considerations.
(In the canonical setting, higher-order expressions of curvature, given by momentum com-
ponents, do not imply higher time derivatives, unlike space-time tensorial higher-curvature
actions.) On its own, such a modification cannot easily be reconciled with general covariance
[11], but the combination with a suitable linear transformation (8) turns out to help. Again,
this is possible only thanks to the underlying geometrical behavior of normal directions and
emergent metrics, because from a purely algebraic perspective the linear transformation would
not be able to adjust gauge transformations so as to agree with coordinate changes of an emer-
gent line element. The main outcome, see again [16] for details, is that the emergent metric
component (11) can be generalized to

qemxx (e1,e2,k2) =

(

f(e1)+
λ̄2

4e22

(

∂e1
∂x

)2
)

−1
1

cos2
(

λ̄k2
)

e22
e1

(13)

with a new free function f(e1), while λ̄ is now constant. (This constant is indirectly related
to the previous λ(e1) by a canonical transformation of the phase-space functions [16]. If the
expression on the right is not positive definite, the spatial metric is given by its absolute value
and the sign determines the signature of space-time.) The emergent spatial metric (13) is real-
ized by a Hamiltonian constraint of the form

T [N] =−1
2

ˆ

dxN
√
e1

(

e2f0 + e2

(

2
df
de1

+
fα2

e1

)

sin2
(

λ̄k2
)

λ̄2
+ 4fk1

sin
(

2λ̄k2
)

2λ̄
(14)

− (e ′1)
2

e2

(

α2

4e1
cos2

(

λ̄k2
)

− k1
2e2

λ̄sin
(

2λ̄k2
)

)

+

(

e ′1e
′

2

e22
− e ′ ′1
e2

)

cos2
(

λ̄k2
)

)

.

Only terms up to second order in spatial derivatives have been considered in the derivation. For
higher derivative orders, there may be additional modified theories for instance of Horndeski
type [21–23]. The modifications studied here imply second-order field equations, by construc-
tion, but they are not included in Horndeski-type theories because their emergent space-time
metric differs from the fundamental fields. Indeed, the crucial Horndeski term of the form
(∇µϕ)(∇νϕ)∇µ∇νϕ with a scalar field ϕ does not appear in T[N]. In a dilaton interpretation,
the role of ϕ could be played by e1 here, but the terms included do not have a sufficient number
of derivatives for a dilaton-Horndeski theory [24].

10
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The free functions f 0 and α2 both depend on e1 and play different roles. The function f 0
generalizes the classical dilaton potential and can also be used to include a cosmological con-
stant. The function α2 is restricted by the condition that it approaches the value one in the
correct low-curvature limit and has no classical analog. It is similar to α-parameters derived
for modified canonical theories in [25], which can be obtained here in the limit λ̄= 0. Since
α2 ̸= 1 changes the relative weights between the two k-terms in T[N], one depending only on k2
and one linear in k1, this function may also be interpreted as a modification of Hǒrava–Lifshitz
type [26], but one that preserves general covariance through the emergent line element. Like
the previous (11), the right-hand side of (13) is not guaranteed to be positive for all admiss-
ible choices of f. We restrict attention here to the case in which the right-hand side of (13) is
positive, as required for a spatial metric. The more general case and the related phenomenon
of signature change are discussed in [16].

Given the free functions, the resulting modified theories can be analyzed in different ways,
depending on physical applications. In order to facilitate intuitive interpretations, we first
continue with the general theory but rewrite the expressions of the emergent metric and the
Hamiltonian constraint in terms of time derivatives of e1 and e2 replacing the momenta k1 and
k2 upon using equations of motion. For simplicity, we assume a vanishing shift function. The
relevant equations of motion are

ė1
N

= 2
√
e1

(

f+
λ̄2 (e ′1)

2

4e22

)

sin
(

2λ̄k2
)

2λ̄
(15)

and

ė2
N

=
√
e1

(

2e2
df
de1

− λ̄2

(

e ′1e
′

2

e22
− e ′ ′1
e2

))

sin
(

2λ̄k2
)

2λ̄

+ 2k1
√
e1

(

f+ λ̄2 (e
′

1)
2

4e22

)

cos
(

2λ̄k2
)

+
e2
2
α2

e1

ė1
N
. (16)

The first equation, upon using

cos2
(

λ̄k2
)

=
1
2

(

1+
√

1− sin2
(

2λ̄k2
)

)

, (17)

can directly be used to write the emergent radial metric as

qemxx =






f + λ̄2 (e

′

1)
2

4e22
+

√

√

√

√

(

f+
λ̄2 (e ′1)

2

4e22

)2

− λ̄2 ė
2
1/N

2

e1







−1

2e22
e1

. (18)

In this form, the metric depends not only on the gravitational configuration variables, e1 and
e2, but also on their first-order space and time derivatives.

The coefficients in T[N] are then given in terms of

sin
(

2λ̄k2
)

2λ̄
=

ė1/N

2
√
e1
(

f+ 1
4 λ̄

2 (e ′1)
2 e−2

2

) (19)

11
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and

cos
(

2λ̄k2
)

=

√

e1
(

f+ 1
4 λ̄

2 (e ′1)
2 e−2

2

)2
− λ̄2ė21/N

2

√
e1
(

f+ 1
4 λ̄

2 (e ′1)
2 e−2

2

) (20)

as well as k1 derived from ė2. The resulting expressions are long, but it is instructive to consider
the simpler leading-order corrections in λ̄2. For small λ̄, we have

sin
(

2λ̄k2
)

2λ̄
≈ ė1

2
√
e1Nf

(

1− (e ′1)
2

4e22 f
λ̄2

)

(21)

and hence

cos
(

2λ̄k2
)

≈ 1− ė21
2e1N2f 2

λ̄2 (22)

cos
(

λ̄k2
)

≈ 1− λ̄2ė21
8e1N2f 2

(23)

sin
(

λ̄k2
)

λ̄
≈ ė1

2
√
e1Nf

(

1+ λ̄2

(

ė21
8e1N2f 2

− (e ′1)
2

4e22 f

))

(24)

and the emergent radial metric

qemxx =

(

1− 1
4
λ̄2f−1

(

(e ′1)
2

e22
− ė21
e1N2f

))

e22
fe1

. (25)

In this form, the leading correction to the radial metric can be written as

− 1
4e1f

gabf (∂ae1)(∂be1) (26)

with a classical-type 2-dimensional metric gf in which N is replaced by
√
fN, such that it

implies a formal line element

̸ds2 = gf,abdx
adxb =−fN2dt2 +

e22
e1

dx2 . (27)

(The notation ̸d indicates that this formal line element does not obey a covariance condition.
It is merely used to summarize common coefficients in the object gf.)

From the 2-dimensional perspective, e1 is a dilaton field that provides derivative terms to
the emergent metric. From the equation of motion for ė2, we obtain

ė1e2
N

dlog f
de1

+
ė1e2α2

2Ne1
− ė2
N

+
λ̄2

8e21e
2
2 f

3N3

(

− 4ė1f
2N2e21e

′

1e
′

2e1fN
2(e ′1)

2

×
(

−4e1ė1e2
df
de1

+ 2e1ė2f−α2ė1e2f

)

+ 2ė1e2

(

ė1e2

(

2e1ė1e2
df
de1

− 2e1ė2f +α2ė1e2f

)

+ 2e21f
2N2e ′ ′1

)

)

=−2k1
√
e1f (28)
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which determines k1 as a function of e1, e2 and their derivatives. Together with the trigono-
metric expressions for k2 in terms of these variables, we obtain the Hamiltonian

T[N] =−1
2

ˆ

dxN
√
e1

[

e2f0 −
(e ′1)

2

e2

α2

4e1
+
e ′1e

′

2

e22
− e ′ ′1
e2

+
ė1

4e1N2f

(

4ė2 −
ė1
e1
e2α2 − 2

ė1
e1
e2

dlog f
dloge1

)

+
λ̄2ė1

16N4f 4

(

f
ė21
e21

(

8ė2 − 3α2
ė1
e1
e2

)

+
ė1
e1
e2

(

4fN2 (e
′

1)
2

e22
− 6

ė21
e1

)

df
de1

+ f 2N2

(

4
ė1
e1

e ′1e
′

2

e22
+

(e ′1)
2

e1e22

(

α2
ė1
e1
e2 − 4ė2

)

− 4
ė1
e1

e ′ ′1
e2

)

)]

. (29)

The corresponding Lagrangian equals

L[N] =
ˆ

dx(−k1ė1 − k2ė2)− T[N]

=−1
2

ˆ

dxN
√
e1

[

1
4
α2
e2
e21
gabf (∂ae1)(∂be1)−

1
e1
gabf (∂ae1)(∂be2)

− e2ė21
2e1N2f 2

df
de1

+
e ′ ′1
e2

− e2f0

+
λ̄2

16f

(

ė1(α2ė1e2 − 4ė2e1)

e31fN
2

gabf (∂ae1)(∂be1)+ 4
ė21

e21fN
2
gabf (∂ae1)(∂be2)

+
8
3e21

ė31ė2
f 2N4

+
ė21

e1fN2
e2

(

4
(e ′1)

2

e22
− 2

ė21
e1fN2

)

dlog f
de1

− 4
ė21

e1fN2

e ′ ′1
e2

)]

. (30)

Also here, the formal metric coefficients gf from (27) can be used to combine some but
not all of the spatial and temporal derivative terms. As a characteristic of emergent modified
gravity, the actual space-time metric gem or its spatial part qem are not directly recognizable
as a coefficient in the Lagrangian. The extension of the Lagrangian to an action with a well-
defined space-time integration is therefore not obvious. In this sense, emergent modified grav-
ity is different from Horndeski-type theories [21–23], which also lead to second-order field
equations but use the space-time metric as one of the fundamental fields. In a comparison with
2-dimensional Horndeski theories [24], the field e1 here would be interpreted as a scalar or
dilaton fields.

4.2. Anisotropic models

For anisotropic spatially homogeneous solutions of Kantowski–Sachs type, we assume that
qemxx = a1(t)2 and e1 = a2(t)2 are functions only of proper time, such that N= 1. Solving (25)
for e2, we obtain

e2 =
a1a2

√
f

√

1+ λ̄2ȧ22/f
≈ a1a2

√

f

(

1− 1
2
λ̄2 ȧ

2
2

f

)

. (31)
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For f = 1 and α2 = 1, the Hamiltonian constraint then takes the form

T [1]
ℓ0a1a22

=−1
2
f0 −

ȧ1
a1

ȧ2
a2

− 1
2
ȧ22
a22

(32)

+ λ̄2a22

(

1
4
f0
ȧ22
a22

− 3
2
ȧ1
a1

ȧ32
a32

+
3
4
ȧ42
a42

+
ȧ22
a22

(

ȧ2
a2

)

•
)

where we divided by a volume factor V0/(4π) = ℓ0a1a22 with the coordinate length ℓ0 =
´

dx
of a radial interval used to specify the homogeneous geometry. Once the constraint is imposed,
any dependence on ℓ0 disappears.

This equation, which amounts to an anisotropic version of the Friedmann equation when
the constraint T[1] = 0 is imposed, shows several crucial features: First, there may be higher-
derivative couplings (through the last term) for the coefficient a2 of an emergent metric, even
though the underlying canonical equations of motion for e1, e2 and their momenta are first-
order. Secondly, if there is a cosmological constant, which would contribute a constant term
to f 0, it contributes to λ̄-corrections through a coupling term to the expansion rates. Finally,
λ̄-corrections necessarily depend on the size a2 of the spherical orbits through the coefficient
λ̄2a22. In homogeneous models of loop quantum cosmology, an attempt has often been made
to avoid this feature by using a non-constant λ∝ a−1

2 instead of a constant λ̄ (translated to
the present notation) but, as shown by emergent modified gravity, in covariant theories this
dependence can only be obtained by a canonical transformation from the models studied here,
at the expense of introducing extra terms in the constraint that again lead to a dependence
of λ-corrections on the size a2. Possible covariant corrections share this feature with correc-
tions from quantum fluctuation terms, in which case the dependence can be interpreted as a
gravitational analog of the Casimir effect [27].

If we define expansion and shear through

θ =
ȧ1
a1

+ 2
ȧ2
a2

, σ =
2
3

(

ȧ1
a1

− ȧ2
a2

)

(33)

the constraint takes the form

T [1]
ℓ0a1a22

=−1
2
f0 −

1
6
θ2 − 3

8
σ2 + λ̄2a22

(

1
4
f0

(

1
3
θ− 1

2
σ

)2

− 3
4

(

1
81

θ4 +
1
27

θ3σ− 1
3
θ2σ2 +

1
4
θσ3 − 5

16
σ4

)

+

(

1
9
θ2 − 1

3
θσ+

1
4
σ2

)(

1
3
θ̇− 1

2
σ̇

))

. (34)

A Friedmann-type equation derived from these models therefore has additional coupling terms
between expansion and shear, as well as their time derivatives, but only in λ̄-corrections. If
α2 ̸= 1, an additional term

(α2 − 1)
ȧ22
a22

= (α2 − 1)

(

1
8
θ2 − 1

3
θσ+

1
4
σ2

)

(35)

appears, which contributes another expansion-shear coupling independent of λ̄. A larger set
of additional terms is implied if f ̸= 1 is non-constant, since this function then changes the
relationship between e2 and a1 as well as a2. A large number of possible modifications of
Friedmann-type equations can therefore be obtained in covariant form.
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4.3. MONDified gravity

The identification of the new concept of a well-defined emergent metric allows us to look
for new physical effects. The prime example found so far [28] is an application to MOND
(MOdified Newtonian Dynamics, [29, 30]) which we briefly review here for the sake of com-
pleteness. We have to solve field equations implied by the canonical theory, in particular the
constraints T(N) = 0 and S(w) = 0. We may also pick conditions on some of the fields in
order to choose a specific set of solutions, such as static ones in which k1 = 0 and k2 = 0. The
higher-order modifications of the k2-dependence that may have been introduced in T(N) then
disappear, at least in simple cases. (There are parameter choices in the higher-order modific-
ations that imply additional non-k2-dependent terms in T(N), but we will not consider them
here.) Moreover, for solutions of the constraints (as opposed to their off-shell gauge beha-
vior that is important for demonstrating general covariance of the modified theories) the linear
transformation (8) does not make a difference.We therefore obtain the classical static solutions
for the non-zero e1 and e2 as well as N, just as they appear in the Schwarzschild line element.
However, these e1 and e2 now have to be inserted in the emergent line element

ds2em =−N(t,x)2 dt2 + qemxx (e1,e2,k2)(dx+w(t,x)dt)2 + e1 (t,x)dΩ
2 (36)

with radial metric component (13), implying new and characteristic physical effects.
The emergent metric directly appears in the normalization condition ||p2||=−m2 for the

4-momentum of a test particle of mass m moving in our space-time, from which an effect-
ive potential can be derived as usual. Using the standard conserved quantities L (angular
momentum) and E (energy) along a timelike geodesic, normalization implies

−1= qemxx

(

dx
dτ

)2

+
L2

m2x2
− E2

m2N2
(37)

with the lapse functionN of the space-timemetric. This equation can be rewritten as an energy-
balance law,

0=
1
2
m

(

dx
dτ

)2

+
qxxem
2

(

m+
L2

mx2
− E2

mN2

)

(38)

with a kinetic radial energy and an effective potential. Classsically, with (5) in Schwarzschild
form and qxx = e1/e22 = 1− 2M/xwith the black-hole massM, the x-dependence of the effect-
ive potential directly implies Newton’s potential.

In an emergent metric of the form (11), this potential may be multiplied by higher-order
terms in 1/x because 1

4e
−2
2 (∂e1/∂x)2 ≈ 1− 2M/x, depending on the function λ(e1). Such

terms would be relevant only at small radii close to the Schwarzschild radius. Themore general
version (13), however, contains a different function, f(e1), that implies additive corrections to
Newton’s potential. In particular, it is possible to find covariant modifications of spherically
symmetric general relativity in which f(e1) has a logarithmic contribution. Fundamentally, this
is exactly what is expected from fluctuation or renormalization effects in a quantum version
of gravity, as in the explicit example of [31]. Such terms would be relevant on intermediate
scales far from the horizon of a black hole, for instance in the entire matter distribution around
a galactic black hole. In particular, exploiting the free parameters in modification functions
such as f(e1), it is not difficult to derive MOND-like effects [29, 30] in the generally covariant
setting of emergent modified gravity, based on the emergent metric (13), in a fully covariant
manner and without the need for extra fields [28].

A final observation demonstrates how the new effects of emergent modified gravity are
intimately related to space-time structure. A specific example of a modification function f(e1)
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that leads to MOND-like effects is given by f(e1) = 1− λ̄2 log(e1/c0) with a new constant c0
that could, for instance, result from renormalization. Using this function in (13) would imply a
logarithmic contribution to an effective Newton potential. However, the right-hand side of (13)
is then no longer positive for large e1 or large radii, depending on the value of c0. Unless the
function f(e1) turns over to a different, non-logarithmic behavior at large radii, such mod-
els therefore describe large-scale signature change together with intermediate MOND effects.
(See [5] for a detailed analysis of a related example.) Signature change of this form can be
compatible with observations provided c0 is sufficiently large, but it does affect the global
space-time model implied by a specific version of emergent modified gravity.

5. Conclusions

At present, possible modifications in emergent modified gravity appear to be far from unique,
unless a specific quantum-gravity derivation is used. This situation is comparable to the large
class of higher-curvature or other modified-gravity theories, that must be further restricted
by fundamental considerations or phenomenology. Just like the well-known cases, our new
theories produce computable theories in which many different effects can be derived by the
usual space-time analysis, using the existence of a generally covariant emergent line element.

So far, MOND-like scenarios have been worked out in some detail, which may be used to
derive further constraints on the free functions. In addition to the effective potential, stand-
ard methods produce, for instance, results about lightlike geodesics and small corrections to
deflection angles. Combining several of these effects, free parameters can be constrained by
a detailed analysis. For now, it is important to see that it is possible to obtain MOND-like
intermediate-scale effects in a generally covariant theory without introducing new degrees of
freedom, as required in other examples [32, 33]. Gravitational waves as perturbations around
our emergent background line elements may also be used as alternatives to higher-curvature
theories unburdened by the usual instabilities from higher-derivative terms, providing new
options to compare general relativity with other theories in strong-field regimes. New effects
of emergent modified gravity are characterized by the form of the emergent line element, in
which, even in a static Schwarzschild-like background solution without extra fields, the dx2

and dt2 terms in the line element (5) are modified in different ways, the former according
to (13).

Finally, there is an interesting connection with quantum-gravity effects such as higher-
order contributions of extrinsic curvature to the Hamiltonian constraint because the same
mechanism of modified gravity that may give rise to MOND-like effects through (13) also
shows how obstructions to general covariance found previously [11] in models of canonical
quantum gravity may be circumvented within the general class of modified theories described
by Hamiltonian constraints of the form (14). Even though MOND-like and quantum grav-
ity phenomena usually happen on vastly different scales, they may all benefit from a deeper
understanding of hypersurface deformation structures.

An important question is whether emergent modified gravity can be extended non-trivially
beyond vacuum spherical symmetry. Extensions to various matter couplings such as scalar
fields [34, 35] and perfect fluids [36] within spherical symmetry have already been found.Work
in progress shows that an extension beyond spherical symmetry is possible for cylindrically
symmetric models, which are more general than spherically symmetric ones in that they allow
local gravitational degrees of freedom. It is therefore possible to describe gravitational waves
in this setting. Moreover, the underlying equations used in [16] to derive modified Hamiltonian
constraints and the emergent metric are based on properties of hypersurface deformations. The
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general equations are availablewithout symmetry restrictions, but it remains to be seenwhether
they have interesting solutions.
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