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A B S T R A C T   

Over the past decades, substantial endeavors have been dedicated to unraveling the intricacies inherent to 
Resistance Spot Welding (RSW). However, a comprehensive and consensual understanding of the RSW process 
physics is still lacking, including the exact number of physical phases behind the RSW process. For example, a 
widely accepted model indicates that metal only starts melting after the peak of dynamic resistance, while the 
latest research on welding uncoated materials challenges this by suggesting that melting begins around the 
resistance peak. Furthermore, most of existing physical models only consider welding materials without coatings 
in a controlled lab setting, whereas coated sheet metal is the norm in real production. Addressing these chal
lenges, this paper introduces an enhanced model for RSW that considers the melting phase of the coating’s 
InterDiffusion Layer (IDL) in Press Hardening Steels (PHS). This phase is believed to influence both welding 
quality and the occurrence of expulsions. Additionally, the timing at which each phase starts has been deter
mined by analyzing real-time, multi-variable sensing data from various welding scenarios, and a signal pro
cessing technique has been devised to automatically identify when these phases begin. Leveraging this refined 
process understanding and characterization, meaningful explainable features are extracted, and a data-driven 
multilayer perceptron model is constructed for 1) predicting IDL thickness and 2) detecting expulsions upon 
predicted IDL thickness. The experimental results validate that the proposed IDL-inclusive model advances 
existing physical models for RSW and the IDL prediction improves the RSW defect detection and process 
monitoring.   

1. Introduction 

RSW stands as a widely employed technique for joining, involving 
the permanent fusion of two or more pieces of sheet metal. This tech
nique, renowned as one of the oldest and most prevalent autonomous 
manufacturing processes globally, finds its principal application pri
marily in the automotive and aerospace sectors [1]. The RSW process 
creates a permanent bond by clamping a sheet metal stack-up between 
two electrodes. Through the passage of an electric current, the sheet 
metal functions as a resistor within an electrical circuit, leading to 
localized heating and subsequent liquefaction of the metal at the point of 
contact with the electrodes. Once the current is stopped, the liquid metal 
cools and solidifies, effectively creating a region of continuous metal 
known as a nugget [2]. This nugget acts as a permanent fastener, akin to 
a rivet, but requires no additional components or preprocessing and 

adds no additional weight. 
In comparison to traditional fastening methods, RSW faces a draw

back in terms of consistency. RSW involves a complex interplay of 
electrical, mechanical, thermal, and fluid mechanics, which are all 
suspectable to process and material variations. Alongside the common 
challenges encountered in other manufacturing processes, such as tool 
wear and material fit-up conditions, minor changes in the chemical 
composition and microstructure of metal sheets can wield huge impacts 
on the final nugget quality [3]. The intricacies and variability intrinsic to 
RSW lead to predicaments both in process planning and execution in a 
real production line. Whenever manufacturers want to introduce even a 
slightly altered welding condition compared to previously used ones, a 
new set of process parameters would need to be formulated through trial 
and error to attain the desired welding quality [4]. Furthermore, these 
parameters are designed to optimize the likelihood of a successful weld, 
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without guaranteeing it. The inherent process variability leads to un
certainties in the final integrity of the nugget. Crucially, two primary 
defects can manifest within a weld, and they prove difficult, if not 
feasible, to be detected upon visual inspection. The first is an underde
veloped weld nugget, resulting in a bonded stack-up lacking the strength 
characteristic of a desired weld. The second is expulsion, wherein 
molten metal is suddenly expelled away from the weld nugget, leading 
to abnormal geometry and reduced nugget volume. Conventional means 
of identifying these defects involve either destructive testing or expen
sive ultrasonic sensing [5]. To enhance both process refinement and 
quality assurance, substantial endeavors have been dedicated to 
unraveling the intricacies inherent to the RSW process, leading to 
continuously improved process characterization and modeling. 

One of the most significant contributions to monitoring and eluci
dating the RSW process was undertaken by Dickenson in the 1980s [6]. 
This model observed the time series data of the Dynamic Resistance (DR) 
and correspondingly linked the shifting trends in the data to discrete 
phases of the welding process. Each phase was subsequentially associ
ated with a physical phenomenon capable of accounting for the 
observed changes. Researchers further investigated this model and 
Dickenson’s postulations through more advanced process sensing and 
more comprehensive experimental studies. For example, experiments 
using electrode displacement sensors unveiled that the material 
dimensional changes exerted a more pronounced influence on the DR 
trends than previously assumed [7]. Over time, efforts have been made 
to extend the model’s applicability, for instance concerning coated 
materials. Models developed with coated materials unveiled the exis
tence of additional phases arising due to the incorporation of coatings 
[8]. Despite a broadly accurate depiction of the process physics by these 
models, there are still ongoing debates about when the individual 
physical phase starts. For example, the Dickenson model asserted that 
the metal begins melting strictly after the peak of the DR, which 
encountered considerable debate. The latest study on uncoated material 
welding indicates that melting occurs around the DR peak, while largely 
maintaining consistency with the remaining aspects of the traditional 
model [9]. Nonetheless, the state-of-the-art RSW models have two lim
itations when considering their applicability for integration into a pro
duction line. Firstly, these models have not been generalized to coated 
materials that predominate modern manufacturing practices, more 
specifically the specific phenomena and timing of the IDL-related phase. 
Secondly, most models heavily rely on human subjective knowledge or 
experiential insights to determine the initiation timing of distinct pro
cess phases, and an automated methodology for segregating these pha
ses is conspicuously absent. One solution to the second challenge 
involves the utilization of advanced process sensing and characteriza
tion techniques. With an abundant dataset of process sensing informa
tion encompassing diverse welding scenarios, it becomes possible to 
analyze big data in a cluster to uncover overarching patterns associated 
with common phases shared in the diverse welding conditions and 
transitions between subsequent phases. 

Manufacturing process monitoring is a critical aspect of “Industry 
4.0”, and it is often accompanied by advanced data analytics algorithms 
to aid in real-time decision making, e.g., defect detection, quality pre
diction, and process planning [10]. One of the main roadblocks to the 
widespread adoption of this new paradigm is the required investment. 
Alongside procuring and integrating the essential sensors into the ma
chinery, the essential IT and OT requisites for aggregating data into 
decision-making pipeline also present a considerable challenge [11]. 
Fortunately, many existing RSW production lines have already imple
mented sensing technology and data storage/analytics platforms for 
general in-line process monitoring. As a result, a substantial portion of 
the initial capital investment has already been deployed, although vast 
amounts of welding data remain underutilized within server facilities. 
This renders RSW an advantageous entry point for manufacturers to 
transition toward the pipeline of Industry 4.0, improved decision mak
ing and quality assurance upon process sensing. The most prevalent type 

of process sensing in RSW is DR, due to its acute sensitivity to pertur
bations occurring during the welding process. It effectively reflects the 
thermal and electrical dynamics [12]. Additionally, capturing the me
chanical and fluid dynamics, such as thermal strain and deformation, 
can be inferred through the sensing of welding force and electrode 
displacement [7]. 

Most physical RSW models provide qualitative understanding of the 
underlying phenomena, i.e., uncovering complicated physical activities 
during individual phases. These models are less capable of quantitative 
welding quality prediction, e.g., nugget size prediction and expulsion 
defect detection. Upon process sensing, Machine Learning (ML) tech
niques are very promising at quantitative process modeling and pre
dictive analysis. In general, there are two types of ML techniques for 
RSW process modeling and quality prediction: advanced ML models that 
can directly correlate raw sensing data into quality/defects; and stan
dard ML models that rely on feature extraction from process sensing. 
Related to the first approach, recurrent neural networks have been 
investigated to predict the Heat Affected Zone (HAZ) from the DR and 
welding power [13], an adaptive resonance theory neural network has 
been developed to predict the nugget size, strength, and failure mode 
upon voltage and current time series [14], and 1-D convolutional neural 
networks have been studied to correlate nugget formation metrics from 
the time series of the current, DR, Force, and Displacement [15]. The 
challenge associated with this approach is that the rationale behind how 
the algorithm arrives at its conclusions lacks transparency or explain
ability. Manufacturers are typically hesitant to embrace control algo
rithms that lack a clear and logical rationale for their production line 
operations [16]. The second ML approach, using pre-defined features 
related to identified physical phases as modeling inputs, is more 
explainable. For example, DR features such as peaks have been used by a 
neuro-fuzzy interface model for the prediction of weld strength [17], 
random forest model to classify cold, expulsed, or acceptable welds [19], 
and support vector regression for quality prediction [18]. More 
advanced features, such as frequency-domain features and advanced 
statistical features (e.g., skewness and kurtosis), have also been studied 
for detecting sheet misalignments [20], predicting nugget size [21], and 
detecting electrode wear [22]. However, the effectiveness of this ML 
approach is greatly contingent on the inclusivity and thoroughness of 
the features used, which are typically pre-defined upon physical 
comprehension of the underlying process phenomena and characteris
tics. Consequently, an enhanced understanding of the intricacies of the 
Resistance Spot Welding (RSW) process translates to the acquisition of 
more comprehensive and meaningful features. This, in turn, contributes 
to bolstering the reliability and precision of process monitoring, defect 
detection, and the evaluation of welding quality. 

The contribution of this paper lies in three folds:  

1) An enhanced RSW model is introduced to consider the melting and 
removal of the coating’s IDL in PHS, which is hypothesized to in
fluence both welding quality and the occurrence of expulsions. The 
suggested 4 phases of the RSW process are defined as material 
expansion, IDL removal, pre-molten joining, and nugget formation.  

2) Key phase transition points have been determined by analyzing 
multi-variable sensing data from various welding scenarios, and a 
systematic method that combines data filtering, topographic prom
inence, and logical rules has been developed to automatically iden
tify when the suggested 4 phases begin.  

3) Leveraging this refined process characterization, meaningful 
explainable features are extracted from process sensing data, and a 
data-driven multilayer perceptron model is constructed for corre
lating the extracted features to predicting IDL thickness and detect
ing expulsions. 

The following sections cover the development of each of these goals, 
starting with a review of existing physical models and introducing the 
advanced RSW model in Section 2. This is followed by the development 
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of the methodologies required to automatically segregate these phases 
and extract the features from the process monitoring data in Section 3. 
This finally leads to the development of a multilayer perceptron for 
correlating features to IDL thickness prediction and exposition detection 
in Section 4 and experimental studies in Sections 5 and 6. 

2. Advanced process characterization and physical models 

The section starts with an overview of the fundamental physics that 
underpin RSW, as well as presenting an overview of the most current 
physical models, along with their capabilities and constraints. Subse
quently, a particular area often overlooked in prevailing models, the 
coating and IDL in sheet metal and its consequential effect on expul
sions, is then discussed. Following this, the proposed model for RSW, 
encompassing the IDL and comprising four distinctive phases, is 
explained, specifically on the underlying physical mechanisms charac
terizing each of these phases. 

2.1. Present RSW models 

RSW involves a complex interplay of electrical resistance, solid me
chanics, and fluid dynamics. Explanatory models incorporating concepts 
within each of these fields to form a complete picture. From an electrical 
perspective, the RSW process can be conceptualized as a basic circuit 
configuration, encompassing a voltage source and a sink, represented by 
the two electrodes. These electrodes are separated by a series of resistive 
elements in a stack-up, which include the metal, coating, IDL, and any 
contaminants, that can be combined together to form the total DR, 
shown on Fig. 1A. The resistance of each element is correlated by the 
material thickness and resistivity [23]. During welding, the thickness 

will gen will generally first expand and then contract throughout the 
process, while the resistivity of material increases as temperature in
creases [24]. 

From the solid mechanics perspective, two primary forces are 
involved in the process, the electrode clamping force and thermal 
expansion force, as shown in Fig. 1B. Thermal expansion is the root 
cause of the gradually increasing displacement between electrodes and 
electrode force [25]. Both these elements increase with temperature, 
while the modulus of elasticity has noticeable decreases when the metal 
approaches the melting point, decreasing the expansion force [26,27]. 
After liquification, the process is governed by fluid dynamics. Given the 
ongoing rise in temperature, the molten pool tries to expand in all di
rections, yet it favors the path of the least resistance, as depicted in 
Fig. 1C. As a result, the metal undergoes radial expansion in addition to 
axial expansion, effectively diverting a portion of the force and material 
away from the applied load [28]. 

The most prevalent and well-established model was proposed by 
Dickenson et al. in the 1980’s [6]. Their analysis predominantly focused 
on the DR change throughout the welding process, and led to the 
proposition of five distinct stages, as shown in the left part of Fig. 2. The 
first phase involves a breakdown of external contaminants that act as 
resistive material within the process. The second phase corresponds to 
material softening and compression, minimizing small gaps between 
sheet metals and increasing contact area between electrodes and stack- 
up. The third phase is characterized by an elevation in DR, caused by the 
temperature rises in the bulk material. In the fourth phase, material 
liquefaction initiates, further augmenting the contact area for current 
conduction. Simultaneously, the sheet metal reaches a softened state, 
reducing the distance between two electrodes under the applied elec
trode force. The increasing contact area and decreasing electrode 

Fig. 1. Illustration of physical mechanisms involved in RSW: (A) equivalent circuit diagram, (B) static model, (C) pressure diagram, and (Key) key to colors used in 
welding illustrations. 

Fig. 2. 5-Phase Dickenson model: (left) DR curve, (right) force and displacement curves.  
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distance together reverse the increasing DR. The last phase is a contin
uation of the downward trend, as the metal achieves full liquification 
and the ultimate molten region forms toward the nugget. 

Additional models based on the analysis of mechanical measure
ments, i.e., electrode force and displacement, have been able to provide 
additional insight into the process. As can be seen in the right part of 
Fig. 2, the force and displacement exhibit a consistent upward trajectory 
through the majority of the process, reaching equilibrium and subse
quently declining during the liquification stage. This observation un
derscores that the increase in resistance during early phases stems from 
the thermal expansion of the material, while also confirming that plastic 
deformation is a cause of the lowering resistance in later phases [7]. The 
foundational concept of Dickenson model is robust, and the phases 
preceding liquification have been thoroughly investigated and validated 
[12]. However, it is important to note that this model is not fully perfect, 
and there are some ongoing discussions regarding the precise timing of 
liquification and the onset of nugget formation. Recent models have 
suggested that the nugget formation can occur at any point during phase 
4, rather than being strictly limited to strictly after the DR peak [9]. 

Despite advancements in understanding the RSW process, the 
derived features derived from these models are still limited in scope. 
These features primarily center on the peak DR during phase 4 and the 
difference between the peak and concluding resistance. Furthermore, 
these models confront two issues that prevent their application in pro
duction. Firstly, these models have not been generalized to coated ma
terials that predominate modern manufacturing practices. Secondly, 
most of these works leverage lab-grade setups and directly measure the 
DR through auxiliary sensors, e.g., Hall-Effect device or Rogowski coils. 
In contrast, industrial RSW systems gauge the current through a sec
ondary transformer, which renders the initial DR drop imperceptible 
(see Fig. 3). This turns the original 5-Phase model to a 3-Phase model: 
Thermal Expansion, Initial Liquification, and Nugget Formation. Since this 
paper originated from RSW plant data analysis, for clarity, the rest of the 
paper will refer to the Dickinson model as the 3-Phase model, with the 
first phase corresponding to thermal expansion. 

2.2. Metal coating and Interdiffusion layer for press hardening steels 

As stated previously, most existing models primarily focus on un
coated sheet metals due to the introduction of an additional variable that 
proves challenging to control. Microscopic examination unveils non- 
uniformity in the coating’s distribution across the sheet. In addition, 
when the coated metal undergoes hot-pressing to fabricate individual 
parts, an IDL forms between the coating and base sheet metal, as shown 

on Fig. 4. The IDL is created when atoms from the base metal and coating 
material are energized and transition across to the other side, generating 
an additional metal alloy layer encompassing both the base metal and 
coating material. In the case of Al–Si coated metals, the IDL would be 
Fe–Al–Si [29]. This layer is formed somewhat unpredictably, owing to 
variations within the chemical composition of the coating and base 
material, alongside inconsistencies during the heating process. While 
the IDL forms somewhat consistently across an individual surface, the 
process uncertainties contribute to other sheets manifesting dissimilar 
IDL thicknesses, even with constant process parameters. 

These inconsistencies introduce an uncertainty factor into the 
welding process, as IDL is not commonly measured on a large-scale 
production scale due to time and cost constraints. However, IDL 
wields substantial influence on welding quality. Notably, when 
analyzing the instances of expulsions observed during the welds con
ducted for this study, the IDL thickness exhibits the most distinct trend 
when compared to the other two input welding parameters (i.e., welding 
current and force), as illustrated in Fig. 5. 

While larger welding currents and forces often correlates with a 
higher expulsion rate, a notable observation is that the presence of a 
larger IDL thickness almost guarantees expulsion, whereas an absence of 
IDL significantly raises the likelihood of expulsion. This underscores the 
critical role of IDL thickness knowledge for in-line decision-making 
processes. The most direct application is that the IDL information can 
enhance methods for detecting expulsions. Furthermore, it can facilitate 
proactive process adjustments in the welding production line. If IDL 
thickness is known prior to welding, the process parameters can be 
adjusted to configurations that would be less likely to expulse. 

2.3. Proposed 4-Phase IDL-inclusive model 

To account for the melting phase of the coating’s IDL, a 4-Phase RSW 
model is proposed. Compared to Dickinson’s 3-Phase model in Fig. 3, 
this 4-Phase model includes an additional IDL removal phase. Fig. 6 
illustrate the changes of DR, electrode displacement (positive values 
indicating a widening between the electrodes and negative values 
indicating a contraction between the electrodes), and electrode force 
(the value of the force measured on the bottom electrode) during the 4 
phases. 

As previously stated, the initial drops in DR are not perceptible 
through indirect measurement of DR, so the first 2 phases in the Dick
enson and other existing models are removed from discussion in this 
paper. In summary, the proposed RSW model comprises four primary 
phases: material expansion, IDL removal, pre-molten joining, and nugget 
formation. It’s vital to note that while this model delineates distinct 
phases, these divisions solely highlight the prevailing mechanical aspect 
within each phase. In reality, mechanical phenomena overlap between 
phases, but the identification of dominant physics within each phase can 
provide valuable insights. 

Fig. 3. Transformer DR curves (solid curve) vs. Sensor DR curves (dashed 
curve). Original phase numbers of the Dickinson model shown in red vs. phase 
numbers of the referenced 3-phase model shown in black. (For interpretation of 
the references to color in this figure legend, the reader is referred to the web 
version of this article.) 

Fig. 4. Microscopy image of IDL in between base metal and coating.  
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The expansion phase, as shown in Fig. 6C, aligns with conventional 
interpretation [6,7]. The DR curve shows constant growth attributed to 
rising temperature and increasing distance between electrodes. The 
displacement curve similarly rises, as a result of thermal expansion 
separating the electrodes. Also, no element within the stack-up yields to 
the force exerted by the electrodes, which induces a rise in the force, as 
the thermal expansion induces thermal strain that presses against the 
electrodes. 

The IDL removal phase, as shown in Fig. 6D, shows distinct changes 
in the DR and force curve. Although continued thermal expansion and 
temperature elevation would typically cause an increase in resistivity, 
the IDL functions as a resistive element within the circuit. Consequently, 
its removal leads to an overall reduction in measured DR. The 
displacement curve continues its ascent, albeit with a change in con
cavity that signifies a deceleration in growth. This is because the base 
metal constituting the primary element of expansion continues to heat 
up and expand. The force undergoes a decline, usually followed by a 
phase of oscillations. This pattern emerges because the IDL is in effect 
expelled constantly, primarily from the surface, allowing it to burst 
radially from the electrode. It is important to note that despite these 

force drops, the overall expansion force is still higher than the clamping 
force. The expulsion of the IDL results in the loss of an expansion- 
contributing component, but the base metal continues to expand. This 
theory is supported by the observation related to welding metal without 
IDL in Fig. 6B. Although the changes in DR concavity can be observed 
and correlated with the proposed phases, the force drop, displacement 
rate shift, and substantial resistance drop are absent. 

Subsequent to the removal of the IDL, the exposed metal interfaces 
directly with the electrodes and each other, as shown in Fig. 6E, in effect 
adhering to the uncoated model. In this phase, the metal experiences 
compression and shaping, effectively eliminating gaps and enlarging the 
conductive area. This counteracts the impacts of thermal expansion and 
the rising temperature. The displacement continues to rise, as the base 
metal comes into direct contact with the electrodes, asserting itself 
against the clamping force. This trend resonates within the force curve, 
which ascends and then stabilizes. This plateau emerges due to the 
temperature-induced reduction in the modulus of elasticity, and the 
expansive force approaches its threshold before the onset of melting. 

Finally, the liquification of metal starts and the nugget begins to 
form, as shown in Fig. 6F. Although liquification and rising temperature 

Fig. 5. Histograms of normal (blue) and expulsion (red) welds vs. IDL thickness, welding current, and force. Magenta colors represent the overlapping between 
normal and expulsed welds. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. The proposed 4-Phase IDL-inclusive model: (A) 4 phases for welding with IDL, (B) 4 phases for welding without IDL, (C)-(F): illustration of welding process 
during corresponding phases. 
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of the metal increase the resistance, the pores and gaps between the two 
sheets become filled, eliminating resistance-contributing elements. 
Additionally, material compression takes effect, leading to a further 
reduction in resistance. The liquification also allows expansion radially, 
away from the displacement and force measurements. This causes a 
continuous decrease in both measurements as the process comes to an 
end. 

3. Feature extraction from the IDL-inclusive model 

While conventional physical models primarily leverage DR peaks for 
quantifying weld quality and detecting defects, the proposed model fa
cilitates the extraction of supplementary features, which more 
comprehensively unveil process dynamics, thereby augmenting quan
titative modeling and prediction capabilities. This section introduces a 
systematic methodology that integrates data filtering, topographic 
prominence analysis, and logical rules to autonomously segment the 
phases. This allows a collection of meaningful features to be established 
from the four phases, with the intention of establishing correlations with 
IDL thickness. 

3.1. Data filtering and phase determination 

Moving RMS Filtering is commonly used in denoising RSW time se
ries [17]. The number of neighbors used for this paper was chosen to be 
2, creating a filtering window of 5. The selection of this particular value 
was a deliberate compromise aimed at eliminating subtle fluctuations 
while retaining more pronounced variations. 

To detect the phase initiation times, a technique is needed to detect 

signal peaks, and topographic prominence is such a method. Based on 
geographic topography, this method can help differentiate noisy and 
steady data by attributing a prominence value influenced by neigh
boring data points [30]. Analogously, the prominence of a peak is the 
shortest vertical distance a hiker would need to travel to reach the base 
of a taller peak. The algorithm for finding the prominences goes as fol
lows. First, all peaks in a time-series are identified. Then, each peak is 
paired with all other peaks that exceed it. Then the minimum value along 
the time-series between each pair is determined. The maximum of these 
values is the bottom of the peak’s prominence. Extending the bottom of 
the prominence outward horizontally until it intersects with an edge 
determines its width. An example of this is shown on Fig. 7. 

Drawing upon the fundamental physical mechanisms characterizing 
individual phases, a set of pivotal features emerges for potential appli
cation in the detection of phase transitions. Colloquially, the features are 
maximum resistance, force stabilization, and maximum displacement. 
Maximum resistance is a good indicator for transition from Phase 1 to 
Phase 2, as the initiation of IDL removal starts lowering the entire DR 
measurement. Force stabilization is particularly pronounced as the 
process transitions to Phase 3, as the temperature-induced reduction in 
the modulus of elasticity and the thermal expansion force approaches its 
plateau as the base metal has full contact with electrodes. Maximum 
displacement pinpoints the transition from Phase 3 to Phase 4, as the 
liquification and material compression make the electrode displacement 
continuously decrease. While maximum resistance and displacement are 
relatively straightforward to identify, the accurate detection of force 
stabilization is more challenging. This difficulty arises due to the 
inherent noise and oscillations within the force curve, attributed to the 
dynamic removal of IDL. Furthermore, the force curves exhibit diverse 
signal characteristics across different welding conditions, thereby 
amplifying the complexity of detecting force stabilization. In this paper, 
an innovative set of logical rules has been devised to robustly discern 
force stabilization and the onset of Phase 3. This approach has been 
tailored to accommodate diverse welding conditions and various force 
curve types, thus ensuring a dependable detection mechanism for force 
stabilization. 

Force stabilization can be understood as the moment when the force 
starts to steadily rise and settles at a strong and stable level before metal 
liquefaction. In optimal situations, the force peak aligns with the force 
plateau situated midway through the welding process. Therefore, the 
fundamental criterion for identifying force stabilization involves 
locating the most prominent peaks of force curves. Due to the variability 
in force curves, the initial rule may not hold for all welding scenarios, so 
additional rules are needed. As the targeted plateau should exhibit a 
substantial and level profile, the RMS filtering is applied to smooth raw 
force curves. In addition, all values are truncated to integers, facilitating 

Fig. 7. Illustration of topographic prominence: (A) heights of peaks and valleys denoted in a time series; (B) pairing of peaks with numbers indicate the lowest value 
between the “To” and “From” peaks. X denotes that the “To” peak is not higher than the “From” peak. Highlighted cells denote the maximum value of that row; (C) 
the processed time series will all prominences denoted. 

Table 1 
Logical rules for identifying force stabilization under different welding situa
tions. Dotted red line is the registered dominant peak and solid blue line is the 
peak as identified force stabilization.  

Welding situation Force curve Logical rules 

Force spike before 
stabilization 

RMS smoothing with integer 
truncation 

Large spike before 
IDL removal 

Ignore first peak 

Stabilization after 
expulsion 

Only consider peaks before 
max. Displacement  
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the elimination of minor irregularities that could trigger false peak 
detection. Then all peaks within the filtered time series are found 
through topographic prominence. To mitigate the impact of process 
noise, peaks of a prominence value 1 are ignored. There are instances 
where the initial force peak, indicating the culmination of thermal 
expansion, may register as overly elevated and dominant. Hence, the 
first force peak is excluded. Conversely, expulsion can cause chaotic 
disruptions during the liquification phase that can also register as the 
dominant peak. Consequently, any peaks emerging after the maximum 
displacement, indicative of the commencement of phase 4, are further 
excluded. These situations and logical rules for accurate identification of 
force peak and stabilization are summarized in Table 1. 

3.2. Feature extraction 

Though these phase transition-related features encompass a wide 
spectrum of process mechanics, they do not inherently establish a direct 
correlation to the IDL removal: the peak resistance occurs prior to IDL 
liquification while the force stabilization is after IDL removal. Intro
ducing a feature that corresponds to this particular event enhances the 
comprehensive depiction of the IDL removal process. For the sake of 
simplicity in explanation and broad applicability across different weld 
scenarios, a novel feature has been incorporated into the transition 
features. This feature, informally denoted as a “Force Drop,” pertains to 
the time during this phase when the force reaches its lowest value. 

For brevity, the key feature times, revealed by the maximum resis
tance, force drop, force stabilization, and maximum displacement, are 
referred to points A, B, C, and D, respectively, as shown in Fig. 8. For 
each point, the time and values of each of the measured curves (i.e., DR, 
force, displacement) are defined as process features. Additionally, value 
changes and rate of changes (RoC) between consecutive points are also 

included as process features, alongside the starting and ending values of 
each measured curve. In the rare case where there is no detected force 
stabilization (likely associated with welding without IDL), all singular 
features related to Point C are ignored. 

To assess the influence of incorporating these diverse features on 
predicting IDL thickness, 4 different feature sets are defined and 
compared. The first set uses only point A, maximum resistance, as it is 
the most common feature in RSW time series analysis. The second set 
adds Point D, maximum displacement, since this is a feature that is easy 
to extract, explain, and occurs the farthest away from Point A. The third 
set adds point C, force stabilization, which makes this set consist entirely 
of the phase transition information. Finally, the fourth set uses all the 
extracted features as previously discussed. The feature sets are sum
marized in Table 2. 

4. Data-driven correlation from physical features to IDL 
thickness prediction 

While physical models offer valuable insights into process dynamics 
and enable the extraction of features for process characterization, they 
lack the capacity for quantitative process modeling and prediction of 
relevant variables (such as IDL thickness and expulsion in this study). In 
contrast, data-driven Machine Learning (ML) techniques are better 
suited for this purpose, as they quantitatively model the relationships 
between meaningful physical features and variables of interest. In this 
paper, a straightforward neural network architecture known as a 
Multilayer Perceptron (MLP) [31], is investigated, motivated by the 
MLP’s lower computational complexity and improved model general
izability compared to more advanced ML techniques. 

MLPs represent one of the earliest and extensively employed Neural 
Network (NN) structures for establishing connections between discrete 
inputs and outputs. The advantage of MLPs lies in their ability to capture 
intricate, interlinked, and non-linear relationships using interconnected 
“neurons” and activation functions. The neurons are stacked in hidden 
layers between the input and outputs of the network. The number of 
hidden layers and the number of neurons within those layers affect the 
capacity of the network. The activation functions give the MLP non- 
linearity. Common functions are Rectified Linear Unit (ReLU), sig
moid, and hyperbolic tangent. The MLP model of a 3-layer (i.e., 1 input 
layer, 1 hidden layer, and 1 output layer) perceptron can be expressed 
as: 

y = f (W2*f (W1x) ) (1) 

Similar to the training in other ML techniques, the essence of the 
MLP’s training is imparting the network with learning from labeled data. 
This is handled through the application of a loss function, which 

Fig. 8. Typical weld with marked extracted features and the force peak.  

Table 2 
Summary of all features extracted from the process measurement. 

Feature Sets: 1 2 3 4

Time of:

A

A

D

A

C

D

A

B

C

D

Value of Resistance at Time:

Value of Force at Time:

Value of Displacement at Time:

Resistance Difference:

Start→A

A→End

Start→A

A→D

D→End

Start→A

A→C

C→D

D→End

Start→A

A→B

B→C

C→D

D→End

Resistance RoC of:

Force Difference of:

Force RoC of:

Displacement Difference of:

Displacement RoC of:
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quantitatively evaluates the network’s performance by comparing the 
network’s predictions to the ground truth values, colloquially known as 
prediction error. In regression problems, Mean Squared Error (MSE) loss 
is commonly used, whereas Cross Entropy (CE) loss is common for 
classification problems [32]. In this way, training can be viewed as an 
iterative optimization problem that determines what network weights 
minimize the prediction error. This optimization problem is achieved 
through determining the gradient of the network, which can be 
numerically approximated by calculating the gradient of loss function 
with respect to network weights through backpropagating the network 
using a chain rule. The network gradients allow the weights to be 
updated through gradient descent [33]: 

W(n+1)

i = W(n)

i − α × ∂L
/

∂W(n)

i (2) 

A common issue in ML is the phenomenon of overfitting, where a 
model over fits its predictions to the training data, at the cost of 
adaptability to other data. Metaphorically, the model “memorizes” so
lutions based on the training data, yet lacks the ability to “reason” ac
curate outcomes for unseen data. To mitigate this issue, dropout layers 
are implemented. During training, each neuron is assigned a predefined 
probability of “dropping out,” rendering it inactive in shaping the final 
prediction. This allows more nuanced features to not be outweighed by 
more impactful ones and improves the model’s generalizability [34]. 

In this study, the network is structured as a 4-layer MLP: 1 input layer 
with the number of input neurons equal to the number of physical fea
tures (as defined in Table 2), 2 hidden layers encompass a number of 
hidden neurons equivalent to twice the number of input neurons, and 1 
output layer with one output neuron. This way of configuring hidden 
layers is to accommodate varying input sizes, mitigating the risk of 
overfitting for smaller feature sets or underperformance for larger ones. 
The two hidden layers are augmented with a 0.3 dropout rate and 
employ the ReLU activation function. MSE is used as the loss function for 
IDL prediction and Binary Cross Entropy is used for the expulsion clas
sification. The Adam optimizer is used to train the network with a 
learning rate of 0.0001. 

5. Experimental setup and data collection 

To validate the proposed IDL-inclusive physical model and evaluate 
the efficacy of features extracted from this model in predicting IDL 
thickness and detecting expulsions in a quantitative manner, a 
comprehensive series of RSW experiments were conducted. These ex
periments encompassed hundreds of RSW welds executed under diverse 
welding conditions. The corresponding process measurement data, 
including DR, electrode force, and displacement, were meticulously 
recorded and collected for analysis. 

The welds were manually performed using a Milco RSW gun driven 
by a WTC medium frequency controller, which measured the secondary 
welding current. The electrodes were C15000 CuZr button caps with a 
face diameter of 6 mm. A Kistler strain gauge with 2 % error precision 
was mounted on the lower electrode arm to measure the electrode force. 
A Heidenhain linear encoder with an accuracy of ±5 μm was mounted 
on the lower electrode arm to measure the electrode displacement. The 
sheet metal used was Usibor® 1500, which had been coated with a 40- 
μm layer of Aluminum Silicone. The experiments were performed under 
3 unique sets of sheet thickness, welding force, and time, as shown in 
Table 3. The welding forces used were 585 lbs, 899 lbs, and 1124 lbs 
with welding times of 170 ms, 200 ms, and 240 ms. The sheet thick
nesses (t) used were 1, 1.4, and 1.8 mm. These sheets were further 
differentiated by sorting them based on their measured IDL thickness. 
These sheets were then welded under varying currents, as detailed in 
Table 3. The initial configuration involved aligning two sheets to create 
a stack-up. Subsequently, three spot welds were executed, commencing 
from the center and progressing to one on each side of the initial weld. A 
total number of 627 welds were collected. Throughout the welding 
process, if any noticeable expulsion occurred and was observed, the 
respective weld was designated as having experienced expulsion. Elec
trodes were dressed between each trial. 

For each experiment, features were automatically extracted from 
process measurements in the way described in Section 3.2. To evaluate 
the significance of the supplementary insights gained from distinct 
process measurements, the data was categorized into measurement 
subsets. The first set includes only the DR measurement, the second 
incorporates the force (F) measurement, and the final set adds 
displacement (Disp.) measurement. This categorization was paired with 
the feature sets described in Section 3.2 to create 12 different sets of 
input features to be used in the MLP for IDL thickness prediction. It 
should be noted that welding current and force are included in all sets of 
input features. The total numbers of input features for the 12 sets are 
shown in Table 4. 

To validate the hypothesis that IDL thickness significantly influences 
the probability of expulsion, three distinct input sets are assessed in 
conjunction with a binary classifier trained to forecast expulsion oc
currences. The initial input set comprises solely of the input current and 
force. The second input set incorporates the input current, force, and the 
measured (ground truth) IDL thickness. Finally, the third input set in
tegrates the input current, force, and the predicted IDL thickness as 
determined by the previously discussed trained MLP. The first set es
tablishes a baseline, and any enhancements by the other two sets in 
predictive accuracy would predominantly emphasize the critical role of 
IDL in impacting process stability and expulsion. 

Table 3 
Details of all welding trials performed in the experimental study.  

Force 
(lbs) 

Time 
(ms) 

Thickness 
(mm) 

IDL 
(μm) 

Current (kA)  

585  170  1  4 4.9, 5, 5.2(×3), 5.4(×4), 5.6, 6 
(×2), 6.2, 6.4, 6.6, 6.8, 7(×2), 
7.2–8.8 (0.2 inc), 9.1  

7 5–7.2 (0.2 inc), 6.65, 7.5, 5.1, 5.4  
13 5, 5.2, 5.4(×2), 5.5, 5.6, 5.8(×2), 

6(×4), 6.2, 6.3, 6.4, 6.6, 6.9  
31 5, 5.2, 5.4(×2), 5.5, 5.6(×3), 5.8 

(×3), 6(×4), 6.2, 6.5  
899  200  1.4  0 5, 6.2, 6.4, 6.6, 6.7, 6.8, 7(×3), 7.2 

(×4), 7.4, 7.7  
10 6, 6.1, 6.2, 6.4(×3), 6.6(×4), 6.8, 

7, 7.2, 7.4, 7.5, 7.6, 7.8, 8, 8.3  
13 5.7, 6(×2), 6.2(×4), 6.6, 6.65, 6.8 

(×2), 7, 7.3  
26 6, 6.2, 6.6, 6.7, 6.8(×2), 7(×4), 

7.2(×4), 7.4, 7.7  
1124  240  1.8  6 6–6.8(0.2 inc), 6.9, 7(×2), 7.2 

(×2), 7.4(×4), 7.6, 7.7, 7.8, 8, 8.3  
8 6.6–7.4(0.2 inc), 7.6(×2), 7.8, 7.9, 

8(×2), 8.2(×2), 8.4(×4), 8.6, 8.9  
13 6.5, 6.6, 6.8(×2), 7(×4), 7.2, 7.4, 

7.6, 7.8, 8, 8.3  
27 6.6, 6.8, 7, 7.2, 7.4, 7.6(×2), 7.8 

(×3), 7.9, 8(×), 8.2(×2), 8.4(×4), 
8.6, 8.9  

Table 4 
Number of input features considering different categorizations of measurements 
and features.  

Process measurement set Feature set (defined in Table 2) 

1 2 3 4 

DR  8  12  16  20 
DR & F  13  20  27  34 
DR, F, & disp.  18  28  38  48  
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6. Results and discussions 

The session will evaluate the performance and robustness of the 
developed method for automatic detection of the proposed 4 phases, 
when handling various welding scenarios. Then, the results of IDL 
thickness prediction based on features derived from the IDL-inclusive 4- 
phase model and quantitative MLP modeling are presented. Last, dis
cussions on the influence of IDL on expulsion occurrences are expanded. 

6.1. Automatic phase detection 

The developed automatic phase detection method, a systematic so
lution of data filtering, topographic prominence, and logical rules, are in 
general able to accurately identification the key phase transition points 
in most welding scenarios. Examples of the method’s performance in 
processing normal welds are shown on Fig. 9. 

While the second and third phase transition points accurately reflect 
the transitions from IDL removal to pre-molten joining and nugget for
mation, the first detected phase transition point (maximum resistance) 
does not truly reflect the end of thermal expansion. As can be seen in 
Fig. 10, the detected phase transition point occurs slightly before the 
true end of the thermal expansion phase. 

The actual shift from Phase 1 to 2 is represented by a change in the 
curvature of the displacement curve and a decline in the force curve, 
when the metal starts undergoing partial plastic deformation. This 
phenomenon is discernible from the force curve displaying a slight 
leveling, indicating a deceleration in the expansion force. The automatic 
identification of this phase transition would commence by searching for 
the initial decrease in force following the peak resistance point. How
ever, this process would necessitate additional fuzzy logical rules, 
introducing more computational complexity and uncertainty. Consid
ering a trade-off between phase detection accuracy and computational 
complexity, peak resistance is an intuitive and ideal feature than can 
generally capture the transition from thermal expansion phase to IDL 
removal phase. 

The transition point from Phase 2 to Phase 3, force stabilization as 
explained in Section 3.1, needed additional logical rules to handle 
various welding scenarios. Overall, this goal is accomplished, with ex
amples related to welding scenarios listed in Table 1 shown in Fig. 11. 

The developed phase transition detection method can possibly fail 
under expulsion cases, where the maximum displacement occurs after 
the expulsion occurrence, as illustrated in Fig. 12 that shows two 
expulsed welds with no IDL. In the left weld, the detected phase 

transition points accurately matched the anticipated points in time. As 
there is no IDL to remove, the shift from Phase 1 to 2 (green line) is set at 
time 0, according to the logical rules developed in Section 3.1. 
Conversely, in the right weld, a wrong shift from Phase 1 to 2 is labeled. 
This misdetection is caused by the maximum displacement occurring 
after an expulsion. This welding scenario is somewhat uncommon, and it 
happens if a minor expulsion occurs early in the process. In normal 
welds, the maximum displacement occurs when liquid dynamics 
become the dominant factor in the process, and expulsions typically 
occur at or after that moment. In this way, the red line should ideally be 
just behind the first expulsion, which would also stop the detection of 
force stabilization, bringing it in line with the left weld. While this could 
be likely done by adding more logical rules, the additional rules may 
open more room for detection exceptions and mistakes. Consequently, 
due to the potential risk of disrupting the phase detection in the majority 
of welding scenarios, the precise identification of this infrequent weld
ing case is not pursued. 

6.2. IDL thickness prediction 

IDL thickness is predicted using the different sets of features 
extracted from the IDL-inclusive physical model through MLP-based 
modeling. The performance of IDL thickness prediction is shown in 
Table 5, evaluated in the coefficient of determination (R2) by comparing 
the predicted to true thickness. Predictions pertaining to different 
feature sets (noted as FS, defined in Table 2) and process measurement 
sets (noted as PMS, defined in Table 4) are also compared in Table 5. 
Among the 627 welds, an 80/20 split ratio was used in creating training 
and validation data subsets. The validation results shown in Table 5 are 
generated through 5-fold validation for individual combinations of 
measurement sets and feature sets. These combinations were tested 4 
times, a total of 20 training cycles, to mitigate randomness in the per
formance. The mean and standard deviation of these 20 cycles are 
presented. 

Regarding the PMS, it’s evident that the inclusion of displacement 
measurement contributes a substantial amount of information for 
improved IDL prediction. This is evident from the consistent perfor
mance across all four FS when displacement data is included, in contrast 
to the more diverse outcomes observed with other PMS. This outcome is 
logical, given that displacement measurement directly reflects part 
thickness, which as previously mentioned is notably influenced by the 
initial thickness of the material stack-up. These results also highlight the 
significance of the features derived from the IDL-inclusive 4-phase 

Fig. 9. Detected phase transition points for welds under three different welding parameters. Blue line represents maximum resistance, green line is force stabili
zation, and red line is maximum displacement. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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model. Specifically, all experiments employing FS 3 (derived upon force 
stabilization) and FS 4 (derived upon force drop) attained R2 values 
exceeding 0.9. The inclusion of the force drop shows the more signifi
cant performance increase. This is attributed to the fact that force drop 
directly measures the removal of the IDL, in contrast to other features 
that capture aspects before or after the IDL removal in the process. 

The plots of predicted vs. true IDL thickness for using only DR 
measurement (i.e., the first row of Table 5) are shown in Fig. 13. Simply 
comparing the R2 indicates that inclusion of more physical features re
veals more information of the process dynamics and hence improves the 
prediction performance. 

Upon observing the prediction versus true graphs, it became evident 

that all networks exhibited similar performance for low IDL thicknesses. 
However, certain problematic welds introduced bias to the results. 
Notably, these issues were prominent in the 13-μm IDL thickness range, 
where the networks tended to overestimate, and in the 26 to 31-μm 
range, where the networks tended to underestimate. This discrepancy is 
primarily attributed to the networks estimating values around the mean 
of the available data. Importantly, the lack of welds with IDL thicknesses 
falling between 13 and 26 μm compelled the networks to conjecture 
about such values rather than relying on learned patterns. The efficacy 
of the networks hinges on how they handle these unusual welds. Less 
proficient networks distributed their predictions more broadly, whereas 
more adept networks clustered their predictions around the actual 

Fig. 10. Detected phase transition points and true transition from Phase 1 to 2 (dotted magenta line). (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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value, despite some predictions being significantly inaccurate. Incor
porating additional process-related information does have the potential 
to mitigate this problem, as evidenced by the comparison between the 
results of FS 4 and FS 1, where the predictions become more clustered 
for the same IDL thickness. However, a more foundational solution 
would involve collecting more data that covers the range of missing IDL 
thicknesses. 

6.3. Expulsion detection upon inclusion of IDL 

As anticipated in Section 2.3, it was hypothesized that IDL thickness 

significantly influences the occurrence of expulsions. However, this 
relationship is not linear, as indicated by the non-linear pattern in Fig. 5. 
By quantifying the complex interplay between expulsion occurrence, 
IDL thickness, and welding process parameters (such as welding current 
and force) through data-driven modeling, it becomes feasible to utilize a 
few sample welds from a new batch of sheet metals to accurately predict 
the likelihood of expulsions under various process conditions. This 
predictive capability can then be harnessed to optimize the welding 
process settings for that specific batch of material, ultimately reducing 
the occurrence of expulsions. In this study, the expulsions in welds are 
classified using three different input combinations: process settings only, 

Fig. 11. Phase detection results for various welding scenarios listed in Table 1.  

Fig. 12. Phase transition detection of expulsed weld with no IDL.  

Table 5 
IDL thickness prediction using different feature sets (FS) and process measurement sets (PMS). Performances are evaluated in R2 and 5-fold validation. The best 
performance for each PMS is highlighted in bold.  

FSPMS Training Validation 

1 2 3 4 1 2 3 4 

DR 0.782 ± 0.037 0.869 ± 0.023 0.901 ± 0.028 0.939 ± 0.014 0.849 ± 0.019 0.890 ± 0.024 0.909 ± 0.029 0.943 ± 0.018 
DR & F 0.875 ± 0.025 0.925 ± 0.020 0.951 ± 0.012 0.974 ± 0.003 0.902 ± 0.034 0.916 ± 0.023 0.926 ± 0.029 0.948 ± 0.024 
DR, F, & disp. 0.939 ± 0.010 0.964 ± 0.011 0.972 ± 0.017 0.981 ± 0.005 0.940 ± 0.036 0.947 ± 0.015 0.957 ± 0.015 0.965 ± 0.013  
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process settings combined with ground truth IDL thickness, and process 
settings combined with predicted IDL thickness obtained using the 
methodology outlined in Section 6.2. The latter two combinations are 
compared to assess the equivalence of information between predicted 
and true IDL thickness, as well as the effectiveness of predicted IDL 
thickness in predicting expulsion likelihood. These models were trained 
with the same training/validation split of the 627 welds with 5-fold 
validation 4 times to mitigate randomness. The results of the expul
sion classification using these three input combinations are presented in 
Table 6. 

The inclusion of both the true and predicted IDL thickness yields a 
notable enhancement in the networks’ capability to forecast expulsions, 

resulting in a substantial 13 % increase in classification accuracy. It is 
intriguing to note that the network utilizing the predicted IDL thickness 
performs only slightly inferior to the network using the true IDL thick
ness. This suggests that even a rough estimate of the IDL thickness can 
furnish valuable insights for predicting the occurrence of expulsions. 

Observing the confusion matrices, as depicted in Fig. 14, reveals that 
all networks tend to generate false positives, where normal welds are 
identified as expulsed welds. This could be attributed to the fact that 
expulsed welds can transpire in process settings where normal welds are 
also formed, as illustrated by the overlapping distributions between 
normal and expulsed welds in Fig. 5. Without supplementary informa
tion, such as in-situ measurements, the networks could become 
perplexed. Additionally, it’s noteworthy that predictions based on both 
true and predicted IDL have significantly diminish false negatives, 
where expulsed welds are identified as normal welds. This suggests that 
incorporating IDL can substantially enhance the performance of iden
tifying problematic welds. This aligns with the assertion made in section 
2.3, highlighting the strong role of IDL thickness as an indicator for the 
likelihood of expulsion. 

7. Conclusions 

In this paper, an IDL-inclusive 4-phase physical RSW model is 
introduced. Compared to existing RSW models, the proposed model 
accounts for the unique phase and phenomena related to the IDL layer, 
which is crucial for predicting both IDL thickness and the likelihood of 
expulsion. Together, the redefined 4 phases of the RSW process are 
material expansion, IDL removal, pre-molten joining, and nugget for
mation. To automatically detect phase transitions based on in-situ pro
cess sensing (i.e., DR, electrode force, and displacement), a systematic 
approach that combines data filtering, topographic prominence, and 
logical rules is developed. Subsequently, features related to key phase 
transition points are defined and extracted from the process sensing, and 
are then quantitatively correlated with IDL thickness and expulsion 
occurrences through an MLP to create an interpretable data-driven 
model for process prediction. The importance and practicality of these 
features, particularly the force drop feature associated with the sug
gested IDL removal phase, are confirmed by the improved prediction 
performance. The impact of IDL thickness on expulsion likelihood is 
hypothesized, demonstrated by an improvement in expulsion detection 
accuracy from 70 % to 84 %. By further looking into the expulsion 
detection accuracies, it’s found that utilizing process settings and IDL 
thickness predictions can significantly decrease the occurrence of false 
positive classifications in expulsion prediction, from over 26 % to below 
7 %. 

The success of the prediction networks for IDL thickness and expul
sion demonstrates the feasibility of an explainable in-line monitoring 
system for detecting sheet metal stack-ups prone to expulsion. By 
knowing the IDL ahead of time or estimating it from a few sample welds 

Fig. 13. Predicted vs. true IDL thickness when only DR measurement is 
applied. (1)–(4) represent 4 feature sets, defined in Table 2. 

Table 6 
Training and validation performance of MLP-based expulsion classification, with 
different sets of inputs. Results come out of a 5-fold validation.  

Inputs Current & 
force 

Current, force, & true 
IDL thickness 

Current, force, & 
predicted IDL thickness 

Training 
accuracy 

0.589 ±
0.044 

0.754 ± 0.071 0.767 ± 0.055 

Validation 
accuracy 

0.699 ±
0.072 

0.838 ± 0.040 0.835 ± 0.035 

Validation 
precision 

0.715 ±
0.184 

0.917 ± 0.035 0.916 ± 0.047 

Validation 
recall 

0.588 ±
0.154 

0.842 ± 0.045 0.819 ± 0.094 

Validation F1 0.642 ±
0.160 

0.877 ± 0.034 0.862 ± 0.066  

Fig. 14. Predicted vs. true expulsion confusion matrices for all input combinations: 0 represents normal welds and 1 represents expulsed welds.  
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in a new batch of sheet metals, expulsion likelihood can be predicted 
under various process conditions for that specific material batch. These 
predictions can guide the optimization of welding process settings to 
minimize problematic welds. 

It is important to underscore that phase transitions can be identified 
using all three process measurements (DR, force, and displacement), 
which simplifies data processing and feature extraction. However, due 
to limited sensing capabilities in many existing welding plants, often 
only DR can be measured. To enhance the practical applicability of these 
methods, future work will focus on developing a methodology to detect 
phase transitions and extract characteristic features solely using the DR 
measurement. 
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