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Over the past decades, substantial endeavors have been dedicated to unraveling the intricacies inherent to
Resistance Spot Welding (RSW). However, a comprehensive and consensual understanding of the RSW process
physics is still lacking, including the exact number of physical phases behind the RSW process. For example, a
widely accepted model indicates that metal only starts melting after the peak of dynamic resistance, while the
latest research on welding uncoated materials challenges this by suggesting that melting begins around the
resistance peak. Furthermore, most of existing physical models only consider welding materials without coatings
in a controlled lab setting, whereas coated sheet metal is the norm in real production. Addressing these chal-
lenges, this paper introduces an enhanced model for RSW that considers the melting phase of the coating’s
InterDiffusion Layer (IDL) in Press Hardening Steels (PHS). This phase is believed to influence both welding
quality and the occurrence of expulsions. Additionally, the timing at which each phase starts has been deter-
mined by analyzing real-time, multi-variable sensing data from various welding scenarios, and a signal pro-
cessing technique has been devised to automatically identify when these phases begin. Leveraging this refined
process understanding and characterization, meaningful explainable features are extracted, and a data-driven
multilayer perceptron model is constructed for 1) predicting IDL thickness and 2) detecting expulsions upon
predicted IDL thickness. The experimental results validate that the proposed IDL-inclusive model advances
existing physical models for RSW and the IDL prediction improves the RSW defect detection and process
monitoring.

1. Introduction

RSW stands as a widely employed technique for joining, involving
the permanent fusion of two or more pieces of sheet metal. This tech-
nique, renowned as one of the oldest and most prevalent autonomous
manufacturing processes globally, finds its principal application pri-
marily in the automotive and aerospace sectors [1]. The RSW process
creates a permanent bond by clamping a sheet metal stack-up between
two electrodes. Through the passage of an electric current, the sheet
metal functions as a resistor within an electrical circuit, leading to
localized heating and subsequent liquefaction of the metal at the point of
contact with the electrodes. Once the current is stopped, the liquid metal
cools and solidifies, effectively creating a region of continuous metal
known as a nugget [2]. This nugget acts as a permanent fastener, akin to
a rivet, but requires no additional components or preprocessing and

adds no additional weight.

In comparison to traditional fastening methods, RSW faces a draw-
back in terms of consistency. RSW involves a complex interplay of
electrical, mechanical, thermal, and fluid mechanics, which are all
suspectable to process and material variations. Alongside the common
challenges encountered in other manufacturing processes, such as tool
wear and material fit-up conditions, minor changes in the chemical
composition and microstructure of metal sheets can wield huge impacts
on the final nugget quality [3]. The intricacies and variability intrinsic to
RSW lead to predicaments both in process planning and execution in a
real production line. Whenever manufacturers want to introduce even a
slightly altered welding condition compared to previously used ones, a
new set of process parameters would need to be formulated through trial
and error to attain the desired welding quality [4]. Furthermore, these
parameters are designed to optimize the likelihood of a successful weld,
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without guaranteeing it. The inherent process variability leads to un-
certainties in the final integrity of the nugget. Crucially, two primary
defects can manifest within a weld, and they prove difficult, if not
feasible, to be detected upon visual inspection. The first is an underde-
veloped weld nugget, resulting in a bonded stack-up lacking the strength
characteristic of a desired weld. The second is expulsion, wherein
molten metal is suddenly expelled away from the weld nugget, leading
to abnormal geometry and reduced nugget volume. Conventional means
of identifying these defects involve either destructive testing or expen-
sive ultrasonic sensing [5]. To enhance both process refinement and
quality assurance, substantial endeavors have been dedicated to
unraveling the intricacies inherent to the RSW process, leading to
continuously improved process characterization and modeling.

One of the most significant contributions to monitoring and eluci-
dating the RSW process was undertaken by Dickenson in the 1980s [6].
This model observed the time series data of the Dynamic Resistance (DR)
and correspondingly linked the shifting trends in the data to discrete
phases of the welding process. Each phase was subsequentially associ-
ated with a physical phenomenon capable of accounting for the
observed changes. Researchers further investigated this model and
Dickenson’s postulations through more advanced process sensing and
more comprehensive experimental studies. For example, experiments
using electrode displacement sensors unveiled that the material
dimensional changes exerted a more pronounced influence on the DR
trends than previously assumed [7]. Over time, efforts have been made
to extend the model’s applicability, for instance concerning coated
materials. Models developed with coated materials unveiled the exis-
tence of additional phases arising due to the incorporation of coatings
[8]. Despite a broadly accurate depiction of the process physics by these
models, there are still ongoing debates about when the individual
physical phase starts. For example, the Dickenson model asserted that
the metal begins melting strictly after the peak of the DR, which
encountered considerable debate. The latest study on uncoated material
welding indicates that melting occurs around the DR peak, while largely
maintaining consistency with the remaining aspects of the traditional
model [9]. Nonetheless, the state-of-the-art RSW models have two lim-
itations when considering their applicability for integration into a pro-
duction line. Firstly, these models have not been generalized to coated
materials that predominate modern manufacturing practices, more
specifically the specific phenomena and timing of the IDL-related phase.
Secondly, most models heavily rely on human subjective knowledge or
experiential insights to determine the initiation timing of distinct pro-
cess phases, and an automated methodology for segregating these pha-
ses is conspicuously absent. One solution to the second challenge
involves the utilization of advanced process sensing and characteriza-
tion techniques. With an abundant dataset of process sensing informa-
tion encompassing diverse welding scenarios, it becomes possible to
analyze big data in a cluster to uncover overarching patterns associated
with common phases shared in the diverse welding conditions and
transitions between subsequent phases.

Manufacturing process monitoring is a critical aspect of “Industry
4.0”, and it is often accompanied by advanced data analytics algorithms
to aid in real-time decision making, e.g., defect detection, quality pre-
diction, and process planning [10]. One of the main roadblocks to the
widespread adoption of this new paradigm is the required investment.
Alongside procuring and integrating the essential sensors into the ma-
chinery, the essential IT and OT requisites for aggregating data into
decision-making pipeline also present a considerable challenge [11].
Fortunately, many existing RSW production lines have already imple-
mented sensing technology and data storage/analytics platforms for
general in-line process monitoring. As a result, a substantial portion of
the initial capital investment has already been deployed, although vast
amounts of welding data remain underutilized within server facilities.
This renders RSW an advantageous entry point for manufacturers to
transition toward the pipeline of Industry 4.0, improved decision mak-
ing and quality assurance upon process sensing. The most prevalent type
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of process sensing in RSW is DR, due to its acute sensitivity to pertur-
bations occurring during the welding process. It effectively reflects the
thermal and electrical dynamics [12]. Additionally, capturing the me-
chanical and fluid dynamics, such as thermal strain and deformation,
can be inferred through the sensing of welding force and electrode
displacement [7].

Most physical RSW models provide qualitative understanding of the
underlying phenomena, i.e., uncovering complicated physical activities
during individual phases. These models are less capable of quantitative
welding quality prediction, e.g., nugget size prediction and expulsion
defect detection. Upon process sensing, Machine Learning (ML) tech-
niques are very promising at quantitative process modeling and pre-
dictive analysis. In general, there are two types of ML techniques for
RSW process modeling and quality prediction: advanced ML models that
can directly correlate raw sensing data into quality/defects; and stan-
dard ML models that rely on feature extraction from process sensing.
Related to the first approach, recurrent neural networks have been
investigated to predict the Heat Affected Zone (HAZ) from the DR and
welding power [13], an adaptive resonance theory neural network has
been developed to predict the nugget size, strength, and failure mode
upon voltage and current time series [14], and 1-D convolutional neural
networks have been studied to correlate nugget formation metrics from
the time series of the current, DR, Force, and Displacement [15]. The
challenge associated with this approach is that the rationale behind how
the algorithm arrives at its conclusions lacks transparency or explain-
ability. Manufacturers are typically hesitant to embrace control algo-
rithms that lack a clear and logical rationale for their production line
operations [16]. The second ML approach, using pre-defined features
related to identified physical phases as modeling inputs, is more
explainable. For example, DR features such as peaks have been used by a
neuro-fuzzy interface model for the prediction of weld strength [17],
random forest model to classify cold, expulsed, or acceptable welds [19],
and support vector regression for quality prediction [18]. More
advanced features, such as frequency-domain features and advanced
statistical features (e.g., skewness and kurtosis), have also been studied
for detecting sheet misalignments [20], predicting nugget size [21], and
detecting electrode wear [22]. However, the effectiveness of this ML
approach is greatly contingent on the inclusivity and thoroughness of
the features used, which are typically pre-defined upon physical
comprehension of the underlying process phenomena and characteris-
tics. Consequently, an enhanced understanding of the intricacies of the
Resistance Spot Welding (RSW) process translates to the acquisition of
more comprehensive and meaningful features. This, in turn, contributes
to bolstering the reliability and precision of process monitoring, defect
detection, and the evaluation of welding quality.

The contribution of this paper lies in three folds:

1) An enhanced RSW model is introduced to consider the melting and
removal of the coating’s IDL in PHS, which is hypothesized to in-
fluence both welding quality and the occurrence of expulsions. The
suggested 4 phases of the RSW process are defined as material
expansion, IDL removal, pre-molten joining, and nugget formation.
Key phase transition points have been determined by analyzing
multi-variable sensing data from various welding scenarios, and a
systematic method that combines data filtering, topographic prom-
inence, and logical rules has been developed to automatically iden-
tify when the suggested 4 phases begin.

Leveraging this refined process characterization, meaningful
explainable features are extracted from process sensing data, and a
data-driven multilayer perceptron model is constructed for corre-
lating the extracted features to predicting IDL thickness and detect-
ing expulsions.

2)

3

-

The following sections cover the development of each of these goals,
starting with a review of existing physical models and introducing the
advanced RSW model in Section 2. This is followed by the development
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Fig. 1. Illustration of physical mechanisms involved in RSW: (A) equivalent circuit diagram, (B) static model, (C) pressure diagram, and (Key) key to colors used in

welding illustrations.

of the methodologies required to automatically segregate these phases
and extract the features from the process monitoring data in Section 3.
This finally leads to the development of a multilayer perceptron for
correlating features to IDL thickness prediction and exposition detection
in Section 4 and experimental studies in Sections 5 and 6.

2. Advanced process characterization and physical models

The section starts with an overview of the fundamental physics that
underpin RSW, as well as presenting an overview of the most current
physical models, along with their capabilities and constraints. Subse-
quently, a particular area often overlooked in prevailing models, the
coating and IDL in sheet metal and its consequential effect on expul-
sions, is then discussed. Following this, the proposed model for RSW,
encompassing the IDL and comprising four distinctive phases, is
explained, specifically on the underlying physical mechanisms charac-
terizing each of these phases.

2.1. Present RSW models

RSW involves a complex interplay of electrical resistance, solid me-
chanics, and fluid dynamics. Explanatory models incorporating concepts
within each of these fields to form a complete picture. From an electrical
perspective, the RSW process can be conceptualized as a basic circuit
configuration, encompassing a voltage source and a sink, represented by
the two electrodes. These electrodes are separated by a series of resistive
elements in a stack-up, which include the metal, coating, IDL, and any
contaminants, that can be combined together to form the total DR,
shown on Fig. 1A. The resistance of each element is correlated by the
material thickness and resistivity [23]. During welding, the thickness

Resistance

vV

Time

V

Force & Displacement

will gen will generally first expand and then contract throughout the
process, while the resistivity of material increases as temperature in-
creases [24].

From the solid mechanics perspective, two primary forces are
involved in the process, the electrode clamping force and thermal
expansion force, as shown in Fig. 1B. Thermal expansion is the root
cause of the gradually increasing displacement between electrodes and
electrode force [25]. Both these elements increase with temperature,
while the modulus of elasticity has noticeable decreases when the metal
approaches the melting point, decreasing the expansion force [26,27].
After liquification, the process is governed by fluid dynamics. Given the
ongoing rise in temperature, the molten pool tries to expand in all di-
rections, yet it favors the path of the least resistance, as depicted in
Fig. 1C. As a result, the metal undergoes radial expansion in addition to
axial expansion, effectively diverting a portion of the force and material
away from the applied load [28].

The most prevalent and well-established model was proposed by
Dickenson et al. in the 1980’s [6]. Their analysis predominantly focused
on the DR change throughout the welding process, and led to the
proposition of five distinct stages, as shown in the left part of Fig. 2. The
first phase involves a breakdown of external contaminants that act as
resistive material within the process. The second phase corresponds to
material softening and compression, minimizing small gaps between
sheet metals and increasing contact area between electrodes and stack-
up. The third phase is characterized by an elevation in DR, caused by the
temperature rises in the bulk material. In the fourth phase, material
liquefaction initiates, further augmenting the contact area for current
conduction. Simultaneously, the sheet metal reaches a softened state,
reducing the distance between two electrodes under the applied elec-
trode force. The increasing contact area and decreasing electrode

Force
Displacement s

v

Time

Fig. 2. 5-Phase Dickenson model: (left) DR curve, (right) force and displacement curves.
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Fig. 3. Transformer DR curves (solid curve) vs. Sensor DR curves (dashed
curve). Original phase numbers of the Dickinson model shown in red vs. phase
numbers of the referenced 3-phase model shown in black. (For interpretation of
the references to color in this figure legend, the reader is referred to the web
version of this article.)

distance together reverse the increasing DR. The last phase is a contin-
uation of the downward trend, as the metal achieves full liquification
and the ultimate molten region forms toward the nugget.

Additional models based on the analysis of mechanical measure-
ments, i.e., electrode force and displacement, have been able to provide
additional insight into the process. As can be seen in the right part of
Fig. 2, the force and displacement exhibit a consistent upward trajectory
through the majority of the process, reaching equilibrium and subse-
quently declining during the liquification stage. This observation un-
derscores that the increase in resistance during early phases stems from
the thermal expansion of the material, while also confirming that plastic
deformation is a cause of the lowering resistance in later phases [7]. The
foundational concept of Dickenson model is robust, and the phases
preceding liquification have been thoroughly investigated and validated
[12]. However, it is important to note that this model is not fully perfect,
and there are some ongoing discussions regarding the precise timing of
liquification and the onset of nugget formation. Recent models have
suggested that the nugget formation can occur at any point during phase
4, rather than being strictly limited to strictly after the DR peak [9].

Despite advancements in understanding the RSW process, the
derived features derived from these models are still limited in scope.
These features primarily center on the peak DR during phase 4 and the
difference between the peak and concluding resistance. Furthermore,
these models confront two issues that prevent their application in pro-
duction. Firstly, these models have not been generalized to coated ma-
terials that predominate modern manufacturing practices. Secondly,
most of these works leverage lab-grade setups and directly measure the
DR through auxiliary sensors, e.g., Hall-Effect device or Rogowski coils.
In contrast, industrial RSW systems gauge the current through a sec-
ondary transformer, which renders the initial DR drop imperceptible
(see Fig. 3). This turns the original 5-Phase model to a 3-Phase model:
Thermal Expansion, Initial Liquification, and Nugget Formation. Since this

paper originated from RSW plant data analysis, for clarity, the rest of the
paper will refer to the Dickinson model as the 3-Phase model, with the
first phase corresponding to thermal expansion.

2.2. Metal coating and Interdiffusion layer for press hardening steels

As stated previously, most existing models primarily focus on un-
coated sheet metals due to the introduction of an additional variable that
proves challenging to control. Microscopic examination unveils non-
uniformity in the coating’s distribution across the sheet. In addition,
when the coated metal undergoes hot-pressing to fabricate individual
parts, an IDL forms between the coating and base sheet metal, as shown
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Fig. 4. Microscopy image of IDL in between base metal and coating.

on Fig. 4. The IDL is created when atoms from the base metal and coating
material are energized and transition across to the other side, generating
an additional metal alloy layer encompassing both the base metal and
coating material. In the case of Al—Si coated metals, the IDL would be
Fe—Al—Si [29]. This layer is formed somewhat unpredictably, owing to
variations within the chemical composition of the coating and base
material, alongside inconsistencies during the heating process. While
the IDL forms somewhat consistently across an individual surface, the
process uncertainties contribute to other sheets manifesting dissimilar
IDL thicknesses, even with constant process parameters.

These inconsistencies introduce an uncertainty factor into the
welding process, as IDL is not commonly measured on a large-scale
production scale due to time and cost constraints. However, IDL
wields substantial influence on welding quality. Notably, when
analyzing the instances of expulsions observed during the welds con-
ducted for this study, the IDL thickness exhibits the most distinct trend
when compared to the other two input welding parameters (i.e., welding
current and force), as illustrated in Fig. 5.

While larger welding currents and forces often correlates with a
higher expulsion rate, a notable observation is that the presence of a
larger IDL thickness almost guarantees expulsion, whereas an absence of
IDL significantly raises the likelihood of expulsion. This underscores the
critical role of IDL thickness knowledge for in-line decision-making
processes. The most direct application is that the IDL information can
enhance methods for detecting expulsions. Furthermore, it can facilitate
proactive process adjustments in the welding production line. If IDL
thickness is known prior to welding, the process parameters can be
adjusted to configurations that would be less likely to expulse.

2.3. Proposed 4-Phase IDL-inclusive model

To account for the melting phase of the coating’s IDL, a 4-Phase RSW
model is proposed. Compared to Dickinson’s 3-Phase model in Fig. 3,
this 4-Phase model includes an additional IDL removal phase. Fig. 6
illustrate the changes of DR, electrode displacement (positive values
indicating a widening between the electrodes and negative values
indicating a contraction between the electrodes), and electrode force
(the value of the force measured on the bottom electrode) during the 4
phases.

As previously stated, the initial drops in DR are not perceptible
through indirect measurement of DR, so the first 2 phases in the Dick-
enson and other existing models are removed from discussion in this
paper. In summary, the proposed RSW model comprises four primary
phases: material expansion, IDL removal, pre-molten joining, and nugget
formation. It’s vital to note that while this model delineates distinct
phases, these divisions solely highlight the prevailing mechanical aspect
within each phase. In reality, mechanical phenomena overlap between
phases, but the identification of dominant physics within each phase can
provide valuable insights.
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Fig. 6. The proposed 4-Phase IDL-inclusive model: (A) 4 phases for welding with IDL, (B) 4 phases for welding without IDL, (C)-(F): illustration of welding process

during corresponding phases.

The expansion phase, as shown in Fig. 6C, aligns with conventional
interpretation [6,7]. The DR curve shows constant growth attributed to
rising temperature and increasing distance between electrodes. The
displacement curve similarly rises, as a result of thermal expansion
separating the electrodes. Also, no element within the stack-up yields to
the force exerted by the electrodes, which induces a rise in the force, as
the thermal expansion induces thermal strain that presses against the
electrodes.

The IDL removal phase, as shown in Fig. 6D, shows distinct changes
in the DR and force curve. Although continued thermal expansion and
temperature elevation would typically cause an increase in resistivity,
the IDL functions as a resistive element within the circuit. Consequently,
its removal leads to an overall reduction in measured DR. The
displacement curve continues its ascent, albeit with a change in con-
cavity that signifies a deceleration in growth. This is because the base
metal constituting the primary element of expansion continues to heat
up and expand. The force undergoes a decline, usually followed by a
phase of oscillations. This pattern emerges because the IDL is in effect
expelled constantly, primarily from the surface, allowing it to burst
radially from the electrode. It is important to note that despite these
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force drops, the overall expansion force is still higher than the clamping
force. The expulsion of the IDL results in the loss of an expansion-
contributing component, but the base metal continues to expand. This
theory is supported by the observation related to welding metal without
IDL in Fig. 6B. Although the changes in DR concavity can be observed
and correlated with the proposed phases, the force drop, displacement
rate shift, and substantial resistance drop are absent.

Subsequent to the removal of the IDL, the exposed metal interfaces
directly with the electrodes and each other, as shown in Fig. 6E, in effect
adhering to the uncoated model. In this phase, the metal experiences
compression and shaping, effectively eliminating gaps and enlarging the
conductive area. This counteracts the impacts of thermal expansion and
the rising temperature. The displacement continues to rise, as the base
metal comes into direct contact with the electrodes, asserting itself
against the clamping force. This trend resonates within the force curve,
which ascends and then stabilizes. This plateau emerges due to the
temperature-induced reduction in the modulus of elasticity, and the
expansive force approaches its threshold before the onset of melting.

Finally, the liquification of metal starts and the nugget begins to
form, as shown in Fig. 6F. Although liquification and rising temperature
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of the metal increase the resistance, the pores and gaps between the two
sheets become filled, eliminating resistance-contributing elements.
Additionally, material compression takes effect, leading to a further
reduction in resistance. The liquification also allows expansion radially,
away from the displacement and force measurements. This causes a
continuous decrease in both measurements as the process comes to an
end.

3. Feature extraction from the IDL-inclusive model

While conventional physical models primarily leverage DR peaks for
quantifying weld quality and detecting defects, the proposed model fa-
cilitates the extraction of supplementary features, which more
comprehensively unveil process dynamics, thereby augmenting quan-
titative modeling and prediction capabilities. This section introduces a
systematic methodology that integrates data filtering, topographic
prominence analysis, and logical rules to autonomously segment the
phases. This allows a collection of meaningful features to be established
from the four phases, with the intention of establishing correlations with
IDL thickness.

3.1. Data filtering and phase determination

Moving RMS Filtering is commonly used in denoising RSW time se-
ries [17]. The number of neighbors used for this paper was chosen to be
2, creating a filtering window of 5. The selection of this particular value
was a deliberate compromise aimed at eliminating subtle fluctuations
while retaining more pronounced variations.

To detect the phase initiation times, a technique is needed to detect

Table 1

Logical rules for identifying force stabilization under different welding situa-
tions. Dotted red line is the registered dominant peak and solid blue line is the
peak as identified force stabilization.

Welding situation Force curve Logical rules

Force spike before
stabilization

RMS smoothing with integer
truncation

Large spike before
IDL removal

Ignore first peak

Stabilization after
expulsion

Only consider peaks before
max. Displacement

337
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signal peaks, and topographic prominence is such a method. Based on
geographic topography, this method can help differentiate noisy and
steady data by attributing a prominence value influenced by neigh-
boring data points [30]. Analogously, the prominence of a peak is the
shortest vertical distance a hiker would need to travel to reach the base
of a taller peak. The algorithm for finding the prominences goes as fol-
lows. First, all peaks in a time-series are identified. Then, each peak is
paired with all other peaks that exceed it. Then the minimum value along
the time-series between each pair is determined. The maximum of these
values is the bottom of the peak’s prominence. Extending the bottom of
the prominence outward horizontally until it intersects with an edge
determines its width. An example of this is shown on Fig. 7.

Drawing upon the fundamental physical mechanisms characterizing
individual phases, a set of pivotal features emerges for potential appli-
cation in the detection of phase transitions. Colloquially, the features are
maximum resistance, force stabilization, and maximum displacement.
Maximum resistance is a good indicator for transition from Phase 1 to
Phase 2, as the initiation of IDL removal starts lowering the entire DR
measurement. Force stabilization is particularly pronounced as the
process transitions to Phase 3, as the temperature-induced reduction in
the modulus of elasticity and the thermal expansion force approaches its
plateau as the base metal has full contact with electrodes. Maximum
displacement pinpoints the transition from Phase 3 to Phase 4, as the
liquification and material compression make the electrode displacement
continuously decrease. While maximum resistance and displacement are
relatively straightforward to identify, the accurate detection of force
stabilization is more challenging. This difficulty arises due to the
inherent noise and oscillations within the force curve, attributed to the
dynamic removal of IDL. Furthermore, the force curves exhibit diverse
signal characteristics across different welding conditions, thereby
amplifying the complexity of detecting force stabilization. In this paper,
an innovative set of logical rules has been devised to robustly discern
force stabilization and the onset of Phase 3. This approach has been
tailored to accommodate diverse welding conditions and various force
curve types, thus ensuring a dependable detection mechanism for force
stabilization.

Force stabilization can be understood as the moment when the force
starts to steadily rise and settles at a strong and stable level before metal
liquefaction. In optimal situations, the force peak aligns with the force
plateau situated midway through the welding process. Therefore, the
fundamental criterion for identifying force stabilization involves
locating the most prominent peaks of force curves. Due to the variability
in force curves, the initial rule may not hold for all welding scenarios, so
additional rules are needed. As the targeted plateau should exhibit a
substantial and level profile, the RMS filtering is applied to smooth raw
force curves. In addition, all values are truncated to integers, facilitating
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the elimination of minor irregularities that could trigger false peak
detection. Then all peaks within the filtered time series are found
through topographic prominence. To mitigate the impact of process
noise, peaks of a prominence value 1 are ignored. There are instances
where the initial force peak, indicating the culmination of thermal
expansion, may register as overly elevated and dominant. Hence, the
first force peak is excluded. Conversely, expulsion can cause chaotic
disruptions during the liquification phase that can also register as the
dominant peak. Consequently, any peaks emerging after the maximum
displacement, indicative of the commencement of phase 4, are further
excluded. These situations and logical rules for accurate identification of
force peak and stabilization are summarized in Table 1.

3.2. Feature extraction

Though these phase transition-related features encompass a wide
spectrum of process mechanics, they do not inherently establish a direct
correlation to the IDL removal: the peak resistance occurs prior to IDL
liquification while the force stabilization is after IDL removal. Intro-
ducing a feature that corresponds to this particular event enhances the
comprehensive depiction of the IDL removal process. For the sake of
simplicity in explanation and broad applicability across different weld
scenarios, a novel feature has been incorporated into the transition
features. This feature, informally denoted as a “Force Drop,” pertains to
the time during this phase when the force reaches its lowest value.

For brevity, the key feature times, revealed by the maximum resis-
tance, force drop, force stabilization, and maximum displacement, are
referred to points A, B, C, and D, respectively, as shown in Fig. 8. For
each point, the time and values of each of the measured curves (i.e., DR,
force, displacement) are defined as process features. Additionally, value
changes and rate of changes (RoC) between consecutive points are also
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included as process features, alongside the starting and ending values of
each measured curve. In the rare case where there is no detected force
stabilization (likely associated with welding without IDL), all singular
features related to Point C are ignored.

To assess the influence of incorporating these diverse features on
predicting IDL thickness, 4 different feature sets are defined and
compared. The first set uses only point A, maximum resistance, as it is
the most common feature in RSW time series analysis. The second set
adds Point D, maximum displacement, since this is a feature that is easy
to extract, explain, and occurs the farthest away from Point A. The third
set adds point C, force stabilization, which makes this set consist entirely
of the phase transition information. Finally, the fourth set uses all the
extracted features as previously discussed. The feature sets are sum-
marized in Table 2.

4. Data-driven correlation from physical features to IDL
thickness prediction

While physical models offer valuable insights into process dynamics
and enable the extraction of features for process characterization, they
lack the capacity for quantitative process modeling and prediction of
relevant variables (such as IDL thickness and expulsion in this study). In
contrast, data-driven Machine Learning (ML) techniques are better
suited for this purpose, as they quantitatively model the relationships
between meaningful physical features and variables of interest. In this
paper, a straightforward neural network architecture known as a
Multilayer Perceptron (MLP) [31], is investigated, motivated by the
MLP’s lower computational complexity and improved model general-
izability compared to more advanced ML techniques.

MLPs represent one of the earliest and extensively employed Neural
Network (NN) structures for establishing connections between discrete
inputs and outputs. The advantage of MLPs lies in their ability to capture
intricate, interlinked, and non-linear relationships using interconnected
“neurons” and activation functions. The neurons are stacked in hidden
layers between the input and outputs of the network. The number of
hidden layers and the number of neurons within those layers affect the
capacity of the network. The activation functions give the MLP non-
linearity. Common functions are Rectified Linear Unit (ReLU), sig-
moid, and hyperbolic tangent. The MLP model of a 3-layer (i.e., 1 input
layer, 1 hidden layer, and 1 output layer) perceptron can be expressed
as:

y =f(Wr*f(Wx)) (@)

Similar to the training in other ML techniques, the essence of the
MLP’s training is imparting the network with learning from labeled data.
This is handled through the application of a loss function, which

Table 2
Summary of all features extracted from the process measurement.
Feature Sets: 1 2 3 4
Time of: A
Value of Resistance at Time: A A c B
Value of Force at Time: D D C
Value of Displacement at Time: D
Resistance Difference:
Start—A
Resistance RoC of: Start—A
Start—A A—B
Force Difference of: Start—A A—C
A—D B—C
Force RoC of: A—End C—-D
D—End C—D
Displacement Difference of: D—End
D—End

Displacement RoC of:
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Table 3
Details of all welding trials performed in the experimental study.

Force Time Thickness IDL Current (kA)
(Ibs) (ms) (mm) (pm)
585 170 1 4 4.9, 5, 5.2(x3), 5.4(x4), 5.6, 6
(x2), 6.2, 6.4, 6.6, 6.8, 7(x2),
7.2-8.8 (0.2 inc), 9.1
7 5-7.2 (0.2 inc), 6.65, 7.5, 5.1, 5.4
13 5, 5.2, 5.4(x2), 5.5, 5.6, 5.8(x2),
6(x4), 6.2, 6.3, 6.4, 6.6, 6.9
31 5, 5.2, 5.4(x2), 5.5, 5.6(x3), 5.8
(x3), 6(x4), 6.2, 6.5
899 200 1.4 0 5,6.2,6.4,6.6,6.7,6.8,7(x3),7.2
(x4),7.4,7.7
10 6, 6.1, 6.2, 6.4(x3), 6.6(x4), 6.8,
7,7.2,7.4,7.5,7.6,7.8, 8, 8.3
13 5.7, 6(x2), 6.2(x4), 6.6, 6.65, 6.8
(x2),7,7.3
26 6, 6.2, 6.6, 6.7, 6.8(x2), 7(x4),
7.2(x4),7.4,7.7
1124 240 1.8 6 6-6.8(0.2 inc), 6.9, 7(x2), 7.2

(x2),7.4(x4),7.6,7.7,7.8, 8, 8.3
8 6.6-7.4(0.2 inc), 7.6(x2), 7.8, 7.9,
8(x2), 8.2(x2), 8.4(x4), 8.6, 8.9

13 6.5, 6.6, 6.8(x2), 7(x4), 7.2, 7.4,
7.6,7.8,8,8.3
27 6.6,6.8,7,7.2,7.4,7.6(x2),7.8

(x3), 7.9, 8(x), 8.2(x2), 8.4(x4),
8.6, 8.9

quantitatively evaluates the network’s performance by comparing the
network’s predictions to the ground truth values, colloquially known as
prediction error. In regression problems, Mean Squared Error (MSE) loss
is commonly used, whereas Cross Entropy (CE) loss is common for
classification problems [32]. In this way, training can be viewed as an
iterative optimization problem that determines what network weights
minimize the prediction error. This optimization problem is achieved
through determining the gradient of the network, which can be
numerically approximated by calculating the gradient of loss function
with respect to network weights through backpropagating the network
using a chain rule. The network gradients allow the weights to be
updated through gradient descent [33]:

WFn+l) _ W(n) _

i i

ax oL / ow™ @

A common issue in ML is the phenomenon of overfitting, where a
model over fits its predictions to the training data, at the cost of
adaptability to other data. Metaphorically, the model “memorizes” so-
lutions based on the training data, yet lacks the ability to “reason” ac-
curate outcomes for unseen data. To mitigate this issue, dropout layers
are implemented. During training, each neuron is assigned a predefined
probability of “dropping out,” rendering it inactive in shaping the final
prediction. This allows more nuanced features to not be outweighed by
more impactful ones and improves the model’s generalizability [34].

In this study, the network is structured as a 4-layer MLP: 1 input layer
with the number of input neurons equal to the number of physical fea-
tures (as defined in Table 2), 2 hidden layers encompass a number of
hidden neurons equivalent to twice the number of input neurons, and 1
output layer with one output neuron. This way of configuring hidden
layers is to accommodate varying input sizes, mitigating the risk of
overfitting for smaller feature sets or underperformance for larger ones.
The two hidden layers are augmented with a 0.3 dropout rate and
employ the ReLU activation function. MSE is used as the loss function for
IDL prediction and Binary Cross Entropy is used for the expulsion clas-
sification. The Adam optimizer is used to train the network with a
learning rate of 0.0001.
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Table 4
Number of input features considering different categorizations of measurements
and features.

Process measurement set Feature set (defined in Table 2)

1 2 3 4
DR 8 12 16 20
DR & F 13 20 27 34
DR, F, & disp. 18 28 38 48

5. Experimental setup and data collection

To validate the proposed IDL-inclusive physical model and evaluate
the efficacy of features extracted from this model in predicting IDL
thickness and detecting expulsions in a quantitative manner, a
comprehensive series of RSW experiments were conducted. These ex-
periments encompassed hundreds of RSW welds executed under diverse
welding conditions. The corresponding process measurement data,
including DR, electrode force, and displacement, were meticulously
recorded and collected for analysis.

The welds were manually performed using a Milco RSW gun driven
by a WTC medium frequency controller, which measured the secondary
welding current. The electrodes were C15000 CuZr button caps with a
face diameter of 6 mm. A Kistler strain gauge with 2 % error precision
was mounted on the lower electrode arm to measure the electrode force.
A Heidenhain linear encoder with an accuracy of +£5 pm was mounted
on the lower electrode arm to measure the electrode displacement. The
sheet metal used was Usibor® 1500, which had been coated with a 40-
pm layer of Aluminum Silicone. The experiments were performed under
3 unique sets of sheet thickness, welding force, and time, as shown in
Table 3. The welding forces used were 585 lbs, 899 lbs, and 1124 lbs
with welding times of 170 ms, 200 ms, and 240 ms. The sheet thick-
nesses (t) used were 1, 1.4, and 1.8 mm. These sheets were further
differentiated by sorting them based on their measured IDL thickness.
These sheets were then welded under varying currents, as detailed in
Table 3. The initial configuration involved aligning two sheets to create
a stack-up. Subsequently, three spot welds were executed, commencing
from the center and progressing to one on each side of the initial weld. A
total number of 627 welds were collected. Throughout the welding
process, if any noticeable expulsion occurred and was observed, the
respective weld was designated as having experienced expulsion. Elec-
trodes were dressed between each trial.

For each experiment, features were automatically extracted from
process measurements in the way described in Section 3.2. To evaluate
the significance of the supplementary insights gained from distinct
process measurements, the data was categorized into measurement
subsets. The first set includes only the DR measurement, the second
incorporates the force (F) measurement, and the final set adds
displacement (Disp.) measurement. This categorization was paired with
the feature sets described in Section 3.2 to create 12 different sets of
input features to be used in the MLP for IDL thickness prediction. It
should be noted that welding current and force are included in all sets of
input features. The total numbers of input features for the 12 sets are
shown in Table 4.

To validate the hypothesis that IDL thickness significantly influences
the probability of expulsion, three distinct input sets are assessed in
conjunction with a binary classifier trained to forecast expulsion oc-
currences. The initial input set comprises solely of the input current and
force. The second input set incorporates the input current, force, and the
measured (ground truth) IDL thickness. Finally, the third input set in-
tegrates the input current, force, and the predicted IDL thickness as
determined by the previously discussed trained MLP. The first set es-
tablishes a baseline, and any enhancements by the other two sets in
predictive accuracy would predominantly emphasize the critical role of
IDL in impacting process stability and expulsion.
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Fig. 9. Detected phase transition points for welds under three different welding parameters. Blue line represents maximum resistance, green line is force stabili-
zation, and red line is maximum displacement. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of

this article.)
6. Results and discussions

The session will evaluate the performance and robustness of the
developed method for automatic detection of the proposed 4 phases,
when handling various welding scenarios. Then, the results of IDL
thickness prediction based on features derived from the IDL-inclusive 4-
phase model and quantitative MLP modeling are presented. Last, dis-
cussions on the influence of IDL on expulsion occurrences are expanded.

6.1. Automatic phase detection

The developed automatic phase detection method, a systematic so-
lution of data filtering, topographic prominence, and logical rules, are in
general able to accurately identification the key phase transition points
in most welding scenarios. Examples of the method’s performance in
processing normal welds are shown on Fig. 9.

While the second and third phase transition points accurately reflect
the transitions from IDL removal to pre-molten joining and nugget for-
mation, the first detected phase transition point (maximum resistance)
does not truly reflect the end of thermal expansion. As can be seen in
Fig. 10, the detected phase transition point occurs slightly before the
true end of the thermal expansion phase.

The actual shift from Phase 1 to 2 is represented by a change in the
curvature of the displacement curve and a decline in the force curve,
when the metal starts undergoing partial plastic deformation. This
phenomenon is discernible from the force curve displaying a slight
leveling, indicating a deceleration in the expansion force. The automatic
identification of this phase transition would commence by searching for
the initial decrease in force following the peak resistance point. How-
ever, this process would necessitate additional fuzzy logical rules,
introducing more computational complexity and uncertainty. Consid-
ering a trade-off between phase detection accuracy and computational
complexity, peak resistance is an intuitive and ideal feature than can
generally capture the transition from thermal expansion phase to IDL
removal phase.

The transition point from Phase 2 to Phase 3, force stabilization as
explained in Section 3.1, needed additional logical rules to handle
various welding scenarios. Overall, this goal is accomplished, with ex-
amples related to welding scenarios listed in Table 1 shown in Fig. 11.

The developed phase transition detection method can possibly fail
under expulsion cases, where the maximum displacement occurs after
the expulsion occurrence, as illustrated in Fig. 12 that shows two
expulsed welds with no IDL. In the left weld, the detected phase

transition points accurately matched the anticipated points in time. As
there is no IDL to remove, the shift from Phase 1 to 2 (green line) is set at
time 0, according to the logical rules developed in Section 3.1.
Conversely, in the right weld, a wrong shift from Phase 1 to 2 is labeled.
This misdetection is caused by the maximum displacement occurring
after an expulsion. This welding scenario is somewhat uncommon, and it
happens if a minor expulsion occurs early in the process. In normal
welds, the maximum displacement occurs when liquid dynamics
become the dominant factor in the process, and expulsions typically
occur at or after that moment. In this way, the red line should ideally be
just behind the first expulsion, which would also stop the detection of
force stabilization, bringing it in line with the left weld. While this could
be likely done by adding more logical rules, the additional rules may
open more room for detection exceptions and mistakes. Consequently,
due to the potential risk of disrupting the phase detection in the majority
of welding scenarios, the precise identification of this infrequent weld-
ing case is not pursued.

6.2. IDL thickness prediction

IDL thickness is predicted using the different sets of features
extracted from the IDL-inclusive physical model through MLP-based
modeling. The performance of IDL thickness prediction is shown in
Table 5, evaluated in the coefficient of determination (R?) by comparing
the predicted to true thickness. Predictions pertaining to different
feature sets (noted as FS, defined in Table 2) and process measurement
sets (noted as PMS, defined in Table 4) are also compared in Table 5.
Among the 627 welds, an 80/20 split ratio was used in creating training
and validation data subsets. The validation results shown in Table 5 are
generated through 5-fold validation for individual combinations of
measurement sets and feature sets. These combinations were tested 4
times, a total of 20 training cycles, to mitigate randomness in the per-
formance. The mean and standard deviation of these 20 cycles are
presented.

Regarding the PMS, it’s evident that the inclusion of displacement
measurement contributes a substantial amount of information for
improved IDL prediction. This is evident from the consistent perfor-
mance across all four FS when displacement data is included, in contrast
to the more diverse outcomes observed with other PMS. This outcome is
logical, given that displacement measurement directly reflects part
thickness, which as previously mentioned is notably influenced by the
initial thickness of the material stack-up. These results also highlight the
significance of the features derived from the IDL-inclusive 4-phase
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Fig. 10. Detected phase transition points and true transition from Phase 1 to 2 (dotted magenta line). (For interpretation of the references to color in this figure

legend, the reader is referred to the web version of this article.)

model. Specifically, all experiments employing FS 3 (derived upon force
stabilization) and FS 4 (derived upon force drop) attained R? values
exceeding 0.9. The inclusion of the force drop shows the more signifi-
cant performance increase. This is attributed to the fact that force drop
directly measures the removal of the IDL, in contrast to other features
that capture aspects before or after the IDL removal in the process.

The plots of predicted vs. true IDL thickness for using only DR
measurement (i.e., the first row of Table 5) are shown in Fig. 13. Simply
comparing the R? indicates that inclusion of more physical features re-
veals more information of the process dynamics and hence improves the
prediction performance.

Upon observing the prediction versus true graphs, it became evident
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that all networks exhibited similar performance for low IDL thicknesses.
However, certain problematic welds introduced bias to the results.
Notably, these issues were prominent in the 13-pm IDL thickness range,
where the networks tended to overestimate, and in the 26 to 31-pm
range, where the networks tended to underestimate. This discrepancy is
primarily attributed to the networks estimating values around the mean
of the available data. Importantly, the lack of welds with IDL thicknesses
falling between 13 and 26 pm compelled the networks to conjecture
about such values rather than relying on learned patterns. The efficacy
of the networks hinges on how they handle these unusual welds. Less
proficient networks distributed their predictions more broadly, whereas
more adept networks clustered their predictions around the actual
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Fig. 11. Phase detection results for various welding scenarios listed in Table 1.
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Fig. 12. Phase transition detection of expulsed weld with no IDL.
Table 5

IDL thickness prediction using different feature sets (FS) and process measurement sets (PMS). Performances are evaluated in R? and 5-fold validation. The best

performance for each PMS is highlighted in bold.

FSPMS Training Validation

1 2 3 4 1 2 3 4
DR 0.782 + 0.037 0.869 + 0.023 0.901 + 0.028 0.939 + 0.014 0.849 + 0.019 0.890 + 0.024 0.909 + 0.029 0.943 + 0.018
DR & F 0.875 + 0.025 0.925 + 0.020 0.951 £ 0.012 0.974 + 0.003 0.902 £ 0.034 0.916 + 0.023 0.926 + 0.029 0.948 + 0.024
DR, F, & disp. 0.939 + 0.010 0.964 + 0.011 0.972 + 0.017 0.981 + 0.005 0.940 + 0.036 0.947 £ 0.015 0.957 + 0.015 0.965 + 0.013

value, despite some predictions being significantly inaccurate. Incor-
porating additional process-related information does have the potential
to mitigate this problem, as evidenced by the comparison between the
results of FS 4 and FS 1, where the predictions become more clustered
for the same IDL thickness. However, a more foundational solution
would involve collecting more data that covers the range of missing IDL
thicknesses.

6.3. Expulsion detection upon inclusion of IDL

As anticipated in Section 2.3, it was hypothesized that IDL thickness

significantly influences the occurrence of expulsions. However, this
relationship is not linear, as indicated by the non-linear pattern in Fig. 5.
By quantifying the complex interplay between expulsion occurrence,
IDL thickness, and welding process parameters (such as welding current
and force) through data-driven modeling, it becomes feasible to utilize a
few sample welds from a new batch of sheet metals to accurately predict
the likelihood of expulsions under various process conditions. This
predictive capability can then be harnessed to optimize the welding
process settings for that specific batch of material, ultimately reducing
the occurrence of expulsions. In this study, the expulsions in welds are
classified using three different input combinations: process settings only,
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True IDL Thickness (um)

Predicted IDL Thickness (um)

Fig. 13. Predicted vs. true IDL thickness when only DR measurement is
applied. (1)-(4) represent 4 feature sets, defined in Table 2.

Table 6
Training and validation performance of MLP-based expulsion classification, with
different sets of inputs. Results come out of a 5-fold validation.

Inputs Current & Current, force, & true Current, force, &
force IDL thickness predicted IDL thickness
Training 0.589 + 0.754 + 0.071 0.767 + 0.055
accuracy 0.044
Validation 0.699 + 0.838 + 0.040 0.835 + 0.035
accuracy 0.072
Validation 0.715 + 0.917 + 0.035 0.916 + 0.047
precision 0.184
Validation 0.588 + 0.842 + 0.045 0.819 + 0.094
recall 0.154
Validation F1 0.642 + 0.877 + 0.034 0.862 + 0.066
0.160

process settings combined with ground truth IDL thickness, and process
settings combined with predicted IDL thickness obtained using the
methodology outlined in Section 6.2. The latter two combinations are
compared to assess the equivalence of information between predicted
and true IDL thickness, as well as the effectiveness of predicted IDL
thickness in predicting expulsion likelihood. These models were trained
with the same training/validation split of the 627 welds with 5-fold
validation 4 times to mitigate randomness. The results of the expul-
sion classification using these three input combinations are presented in
Table 6.

The inclusion of both the true and predicted IDL thickness yields a
notable enhancement in the networks’ capability to forecast expulsions,

Current & Force

32.09%

26.86% 73.14%

—

Predicted Expulsion

0 1 0

Current, Force, &
True IDL

78.26%
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resulting in a substantial 13 % increase in classification accuracy. It is
intriguing to note that the network utilizing the predicted IDL thickness
performs only slightly inferior to the network using the true IDL thick-
ness. This suggests that even a rough estimate of the IDL thickness can
furnish valuable insights for predicting the occurrence of expulsions.

Observing the confusion matrices, as depicted in Fig. 14, reveals that
all networks tend to generate false positives, where normal welds are
identified as expulsed welds. This could be attributed to the fact that
expulsed welds can transpire in process settings where normal welds are
also formed, as illustrated by the overlapping distributions between
normal and expulsed welds in Fig. 5. Without supplementary informa-
tion, such as in-situ measurements, the networks could become
perplexed. Additionally, it’s noteworthy that predictions based on both
true and predicted IDL have significantly diminish false negatives,
where expulsed welds are identified as normal welds. This suggests that
incorporating IDL can substantially enhance the performance of iden-
tifying problematic welds. This aligns with the assertion made in section
2.3, highlighting the strong role of IDL thickness as an indicator for the
likelihood of expulsion.

7. Conclusions

In this paper, an IDL-inclusive 4-phase physical RSW model is
introduced. Compared to existing RSW models, the proposed model
accounts for the unique phase and phenomena related to the IDL layer,
which is crucial for predicting both IDL thickness and the likelihood of
expulsion. Together, the redefined 4 phases of the RSW process are
material expansion, IDL removal, pre-molten joining, and nugget for-
mation. To automatically detect phase transitions based on in-situ pro-
cess sensing (i.e., DR, electrode force, and displacement), a systematic
approach that combines data filtering, topographic prominence, and
logical rules is developed. Subsequently, features related to key phase
transition points are defined and extracted from the process sensing, and
are then quantitatively correlated with IDL thickness and expulsion
occurrences through an MLP to create an interpretable data-driven
model for process prediction. The importance and practicality of these
features, particularly the force drop feature associated with the sug-
gested IDL removal phase, are confirmed by the improved prediction
performance. The impact of IDL thickness on expulsion likelihood is
hypothesized, demonstrated by an improvement in expulsion detection
accuracy from 70 % to 84 %. By further looking into the expulsion
detection accuracies, it’s found that utilizing process settings and IDL
thickness predictions can significantly decrease the occurrence of false
positive classifications in expulsion prediction, from over 26 % to below
7 %.

The success of the prediction networks for IDL thickness and expul-
sion demonstrates the feasibility of an explainable in-line monitoring
system for detecting sheet metal stack-ups prone to expulsion. By
knowing the IDL ahead of time or estimating it from a few sample welds

Current, Force, &
Predicted IDL

21.74%

77.82% 22.18%

93.50%

1 0 1

True Expulsion

Fig. 14. Predicted vs. true expulsion confusion matrices for all input combinations: O represents normal welds and 1 represents expulsed welds.
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in a new batch of sheet metals, expulsion likelihood can be predicted
under various process conditions for that specific material batch. These
predictions can guide the optimization of welding process settings to
minimize problematic welds.

It is important to underscore that phase transitions can be identified
using all three process measurements (DR, force, and displacement),
which simplifies data processing and feature extraction. However, due
to limited sensing capabilities in many existing welding plants, often
only DR can be measured. To enhance the practical applicability of these
methods, future work will focus on developing a methodology to detect
phase transitions and extract characteristic features solely using the DR
measurement.
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