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We show exactly that standard “invariants” advocated to define topology for noninteracting systems
deviate strongly from the Hall conductance whenever the excitation spectrum contains zeros of the single-
particle Green’s function, G, as in general strongly correlated systems. Namely, we show that if the
chemical potential sits atop the valence band, the “invariant” changes without even accessing the
conduction band but by simply traversing the band of zeros that might lie between the two bands. Since
such a process does not change the many-body ground state, the Hall conductance remains fixed. This
disconnect with the Hall conductance arises from the replacement of the Hamiltonian, hðkÞ, with G−1 in
the current operator, thereby laying plain why perturbative arguments fail.
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The stability of a gapped ground state against smooth
deformations of the Hamiltonian that do not close a spectral
gap is the cornerstone of topology. Such stability is
captured by quantized invariants. Key invariants that arise
in topological systems are the Chern numbers. While they
appear as coefficients of the Chern-Simons Lagrangian,
they have physical import as well. For example, the first
Chern number, C1, is the coefficient,

σH ¼ C1

e2

h
; ð1Þ

of the Hall conductance [1,2]. As a topological invariant,
C1 can only change if the chemical potential crosses a band
or more generally, if there are zero-energy excitations,
measured with respect to the chemical potential. Any
movement of the chemical potential within a spectral
gap amounts to an adiabatic change of the system
Hamiltonian, and so cannot change C1.We will take such
a change to be the paradigmatic definition of an infinitesi-
mal deformation.
For computational purposes, it has become common to

formulate Chern numbers in terms of single-particle
Green’s functions. Consider the commonly conceived
invariantN3 [3,4] for the two-dimensional quantum anoma-
lous Hall (QAH) insulator (also named N2 in Refs. [5,6])

N3 ¼
ϵαβγ
6

tr
Z

∞

−∞
dω

Z
d2k
ð2πÞ2G

−1
∂kαGG

−1
∂kβGG

−1
∂kγG;

ð2Þ

where Gðω;kÞ is the zero temperature (single-particle)
Green’s function in momentum space, α, β, and γ take
values 0, 1, and 2, such that k0 ¼ ω, and k1, k2 are

components of the crystal momentum, and tr denotes the
trace over the fermionic degrees of freedom of G. For
noninteracting electrons, N3 reduces to the first Chern
number C1, or, equivalently, the Thouless-Kohmoto-
Nightingale-den Nijs (TKNN) [1] invariant. That N3 is
invariant to small deformations of the Hamiltonian follows
from substituting the infinitesimal,

δðG∂kαG−1Þ ¼ δG∂kαG
−1 − G∂kαðG−1δGG−1Þ

¼ −Gð∂kαG−1ÞδGG−1 − ∂kαðδGÞG−1; ð3Þ

into the variation of N3 which leads to a recasting of the
resultant integrand as a total derivative. As the integral of a
total derivative, δN3 will naturally vanish for δG contin-
uously connected to zero (i.e., for small deformations).
Consequently, N3 is invariant to infinitesimal changes in
the underlying Hamiltonian provided periodic boundary
conditions are imposed.
The utility of Eq. (2) is that only the Green’s function is

required to evaluate N3, rather than the full spectrum of the
eigenstates as is typically needed to compute the Berry
curvature or the TKNN invariant [1]. Consequently, one
may hope that Eq. (2) naturally applies to interacting
systems. However, when interactions are present, the
Green’s function can vanish [7] along a connected surface
in momentum space for frequencies within the gap. This
defines the Luttinger surface, which is a Mott fixed point
under local perturbations [8,9]. What happens to N3 when
the chemical potential crosses such a surface? If the ground
state evolves continuously and the gap does not close, then
the topological invariants of the ground state cannot
change. That is, C1 should remain fixed. However, it is
known [3,4] that N3 is sensitive to a zero or an edge state
(pole in the propagator) crossing the chemical potential. It
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is this sensitivity that underlies a recent claim that zeros are
topological in the context of doped Mott insulators [10]. In
particular for models of fractional quantum Hall effect
(FQHE), it has been shown thatN3 is in general not equal to
the C1 [11]. Even more, pairs of fractional quantum Hall
states with different Chern numbers (and hence different
ground state topology) can be shown to have equal values
of N3. However, to our knowledge, the precise relationship
between N3 and C1 as a function of chemical potential has
not been established for an interacting system.
It is this loophole that we address in this paper. For the

Hatsugai-Kohmoto model [12,13] with a topological non-
trivial ground state, we use the exact Green’s function to
show that even without closing the gap, N3 changes when a
band of zeros crosses the chemical potential. By definition,
such a change constitutes an infinitesimal variation that
does not close an energy gap, and hence there should be no
change in topological invariants characterizing the ground
state. Consequently, we demonstrate explicitly that N3 in
Eq. (2) and C1 are disconnected should zeros appear in the
Green’s function. In general for interacting systems,
although N3 is a topological property of the single-particle
Green’s function, it does not necessarily encode a topo-
logical invariant of the ground state in contrast to previous
claims [3,4,10].
The computation of N3 requires knowledge of the full

single-particle Green’s function. To this end, we adopt a
model that affords an exact treatment of interaction and
topology for the QAH effect [14]. For a square lattice with
the orbitals positioned at lattice sites, the noninteracting
part of a twofold (spinful) Chern insulator can be written as

H0 ¼
X
k

c†khðkÞck ¼
X
k

c†k

�
hQAHðkÞ 0

0 hQAHðkÞ
�
ck;

ð4Þ

where c† ¼ fc†O1;↑
c†O2;↑

; c†O1;↓
c†O2;↓

g is a four-component
spinor, and O1=2 stands for different orbitals or sublattices,

respectively. hQAHðkÞ ¼  dðkÞ ·  σ describes a 2 × 2 QAH

Hamiltonian for each spin, e.g.,  dðkÞ ¼ ðsin kx; sin ky;
m − cos kx − cos kyÞ. This noninteracting Hamiltonian
can be diagonalized under a unitary transformation into
hðkÞ ¼ VðkÞdiagðε−;k; ε−;k; εþ;k; εþ;kÞV†ðkÞ where upper
(þ) and lower (−) bands are given by

ε�;k ¼ �j  dðkÞj ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2xðkÞ þ d2yðkÞ þ d2zðkÞ

q
: ð5Þ

Electrons with opposite spin have the same dispersion and
chirality. This momentum space basis is not destroyed
under the local-in-momentum Hatsugai-Kohmoto (HK)
interaction that includes Mottness [8,12,14–16]

HQAH−HK ¼
X
k;σ

½ðεþ;k−μÞnþ;k;σ þðε−;k−μÞn−;k;σ�

þU
X
k

ðnþ;k;↑þn−;k;↑Þðnþ;k;↓þn−;k;↓Þ: ð6Þ

The interaction term is rotational symmetric under the
unitary transform VðkÞ since nþ;k;σ þ n−;k;σ is a trace in
either the orbital or band basis. The exact Green’s function
in the band basis,

G�;k;σðωÞ ¼
hð1 − nþ;k;σ̄Þð1 − n−;k;σ̄Þi

ωþ μ − ε�;k

þ hnþ;k;σ̄ þ n−;k;σ̄ − 2nþ;k;σ̄n−;k;σ̄i
ωþ μ − ðε�;k þ UÞ

þ hnþ;k;σ̄n−;k;σ̄i
ωþ μ − ðε�;k þ 2UÞ ; ð7Þ

has 6 poles at any given momentum. However, only some
of them have a nonvanishing weight in the insulating state
for U ≫ W, whereW ¼ 2maxkj  dðkÞj is the bandwidth. At
quarter filling, the degenerate ε− band is singly occupied,
thus hn−;k;↑i ¼ hn−;k;↓i ¼ 1=2. The εþ band remains
empty for both spin, hnþ;k;σi ¼ 0 and hnþ;k;σ̄n−;k;σ̄i ¼ 0.
Thus, the poles at ε�;k − μþ 2U have zero weight while
the poles at ε�;k − μþ U and ε�;k − μ both have 1=2
weight.
At half filling and U ≫ W, the ground state always

occupies both ε� with the same spin, hn−;k;σi ¼ hnþ;k;σi ¼
1=2 and hnþ;k;σn−;k;σi ¼ 1

2
. Thus the poles at ε�;k − μþ U

have zero weight. The remaining 4 poles all have the same
weight of 1=2, generating the zero branches located at the
poles of the self-energy,

Σ�;k;σðωÞ ¼ U þ U2

ωþ μ − ε�;k − U
: ð8Þ

The position of the 4 poles relative to the chemical potential
defines the electron filling. In the case of half filling, the
lower two poles located at ε�;k − μ lie below the chemical
potential, while ε�;k − μþ 2U lies above, thereby main-
taining the gapped Mott state.
According to a previous analysis [14] on the topology of

this model, we know that both the QAH-HK and QAH-
Hubbard models predict a topologically trivial phase at half
filling when the interactions dominate. There is a topo-
logical phase transition from half filling to quarter filling,
leading to a topological Mott insulator at quarter filling
with C1 ¼ 1, which is half the Chern number of the
noninteracting insulator at half filling.
At any filling with a gap, such as half filling whereU sets

the gap scale, we can shift the chemical potential μ inside
this gap without affecting the many-body ground state.
As this constitutes an infinitesimal variation of the
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Hamiltonian, there should be no change in the topology.
However, this shift of μ drastically changes the value of N3

due to the location of zeroes, as shown in Fig. 1. At half
filling, hn�;k;σ̄i ¼ 1=2 for both of the spin as well as the
upperðþÞ and lowerð−Þ topological bands. All the spinful
bands of zeroes or poles below the chemical potential
contribute a �2 to N3 as labeled in Fig. 1. The zero bands
locate at ε�;k − μþU. If the branches of the zeros
are located on the same side of the chemical potential
[Fig. 1(a)], N3 ¼ 0. In the vicinity of the symmetry point,
μ ¼ U, the chemical potential is located between the two
zero branches [Fig. 1(b)], giving rise to a nonzero
N3 ¼ −2. When the chemical potential passes through
the zeroes band [Fig. 1(c)], N3 diverges as if the system is
in a metallic state.
This seems to give rise to a contradiction if we expect N3

to be proportional to the Chern number (equivalently, the
Hall conductance). That is, there seems to be a change in
the topological invariant without changing the many-body
ground state. A similar change in the Luttinger count has
been noted previously [18,19], because moving the chemi-
cal potential in the gap changes the positions of the zeros
but ultimately cannot change the filling. It is for this reason

that it has been correctly argued that the Luttinger count,
which counts zeros and poles, does not enumerate the
charge density in generic interacting systems. Similarly, we
have shown here explicitly that N3 is counting both zeros
and poles of the Green’s function and hence does not
enumerate the Chern number in general. This derivation
could also apply to the quantum spin Hall (QSH) system
[20–22] with strong interactions where a similar interac-
tion-induced topological phase is observed [13].
To address this conundrum, we compute the Hall

conductance directly and establish when it is permissible
for it to be recast as N3. The advantage of the HK model is
that the interactions preserve the center of mass and U does
not have any dependence on momentum. Thus, the current
operator in the orbital basis

JðqÞ ¼ 1ffiffiffiffi
V

p
X
k

c†k−q=2
∂hðkÞ
∂k

ckþq=2 ð9Þ

can be taken to be unchanged from its noninteracting form
(see Appendix), where hðkÞ is the 4 × 4 noninteracting
Hamiltonian defined in Eq. (4).We substitute this current
operator into the Kubo formula [23] and obtain the current-
current response function at finite temperature

Rαβðq; τÞ ¼ hT½Jαðq; τÞJβð−q; 0Þ�i

¼ 1

V

X
k;k0

∂habðkÞ
∂kα

∂hcdðk0Þ
∂k0β

× hT½c†k−q=2;aðτÞckþq=2;bðτÞc†k0þq=2;cck0−q=2;d�i;
ð10Þ

where α and β represent real-space directions and a, b, c, d
are orbital and spin indices. Since the HK interaction does
not mix momentum, the 4-fermion correlation function can
be calculated according to Wick’s theorem [9]. We find that

hT½c†k−q=2;aðτÞckþq=2;bðτÞc†k0þq=2;cck0−q=2;d�i
¼ hc†k−q=2;aðτÞck0−q=2;dihckþq=2;bðτÞc†k0þq=2;ci: ð11Þ

The Fourier transform of the current-current response
function gives jαðq;ωÞ ¼ Rαβðq;ωÞAβðq;ωÞ. The conduc-
tivity is thus given via analytical continuation σαβðωÞ ¼
limq→0ð1=iωÞRαβðq; iνr → ωþ iηÞ with

Rαβðq; iνrÞ ¼
kBT
V

X
k;n

Tr

�
∂hðkÞ
∂kα

Gðkþ q=2;ωnÞ
∂hðkÞ
∂kβ

Gðk − q=2;ωn − νrÞ
�
: ð12Þ

FIG. 1. The pole structure for the Green’s function from Eq. (7)
at half filling withU ≫ W. The solid lines represent the poles, the
dashed line represents the zeroes. The numbers next to the curves
are the corresponding contribution to N3 of that particular band.
Note that all three of these configurations represent the same
gapped half filling ground state, while the N3 for each setup is
N3 ¼ 0;−2, or undefined. Here we use the Haldane model [17] as
an example for Eq. (6) with an HK interaction to construct the
band dispersion.
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For a noninteracting system, hðkÞ in Eq. (10) can be
replaced by G−1, which will bring the Hall conductance
into the form of N3. However, for an interacting system, no
such correspondence can be made; in general

∂G−1ðkÞ
∂kα

¼ ∂hðkÞ
∂kα

þ ∂ΣðkÞ
∂kα

; ð13Þ

because the presence of the self-energy in the Green’s
function introduces added momentum dependence. A
nontrivial ΣðkÞ with a band of poles [yielding the band
of zeros in the Green’s function as shown in Fig. 1(b)] gives
rise to the nonzero contribution to N3. Also, ΣðkÞ diverges
at the Luttinger surface, accounting for the undefined N3 in
Fig. 1(c). Hence, for any interacting model with a pole in its
self-energy, replacing hðkÞ with G−1 fails. As a conse-
quence, there will be a general disconnect between N3 with
the Hall conductance whenever zeros exist. A recent
derivation of the Hall conductance using diagrammatic
perturbation theory (which inherently assumes adiabatic
continuity with the noninteracting limit) purports to derive
an equivalence between N3 and C1 [24]. As zeros in the
Green’s function indicate that the self-energy diverges, no
such adiabatic continuity exists and hence any correspon-
dence between N3 and C1 fails based on perturbative
arguments. This is consistent with two prior results. First,
the breakdown of Luttinger’s theorem for interacting
systems has been tied to the nonexistence of the Lut-
tinger-Ward functional on account of poles in the self
energy [19]. Second, the disconnect between N3 and C1 for
fractional quantum Hall states—which are not perturba-
tively connected to non-interacting topological phases—
was pointed out in Ref. [11] and also in the context of
Weyl-Mott insulators [25]. Consequently, anytime there is a
breakdown of perturbation theory, N3 and C1 cannot be
directly related.
In all such cases, the Hall conductance must be com-

puted directly from the Kubo formula, or, equivalently, by
integrating the Berry curvature as a function of twisted
boundary conditions [2]. We illustrate this here with a
computation of the Hall conductance directly from Eq. (7).
The full details are provided in the Appendix. We define the
Chern number of the ground state according to Eq. (1),
where the ground state is taken to be the zero-temperature
limit of a thermal state to account for the spin degeneracy.
At quarter filling, the Hall conductance C1 ¼ 1 is halved
compared with the noninteracting twofold QAH result
C1 ¼ 2. At half filling, the Hall conductance remains zero
as long as no pole of the Green’s function crosses the
chemical potential. To illustrate the deviation of N3 from
the Hall conductance C1, we plot their values as a function
of the chemical potential μ in Fig. 2. Besides the conflict
between a nonzero N3 and a vanishing C1 at half filling, we
observe an additional difference by a factor of 2 at quarter
filling between them. This difference of factor is similar to

the deviation betweenN3 andC1 in FQHE [2,11] caused by
the ground state degeneracy. Thus, neither the trivial phase
at half filling nor the topological phase at quarter filling
could be captured accurately by N3. This invariant fails to
capture properties of the ground state that are robust to
perturbations of the Hamiltonian, both qualitatively and
quantitatively. We have thus shown that the deviation of N3

from C1 stems from poles in the self-energy or equivalently
zeros of the single-particle Green’s function. A similar
problem occurs for the Luttinger count,

n ¼ 2

Z
ReGðp;ω¼0Þ>0

ddp
ð2πÞd ; ð14Þ

which makes no distinction between the mechanisms for
ReGðp;ωÞ crossing the real axis. There is now ample
evidence [18,19,26] that it is zeros that disconnect the
Luttinger count from the physical particle density. At play
here is a similar trend: any movement of the chemical
potential within the gap changes the Luttinger count, but
ultimately should not change the physical charge density.
This is not surprising as the Luttinger count is reducible to
the analogous expression for N3 with just a single product
∂G−1G, thereby defining N1 [4]. It was shown in Ref. [27]
that two 1þ 1-dimensional interacting systems with
unequalN1 could nevertheless possess topologically equiv-
alent ground states. Taken together, we see that all
generalized invariants of the form Nl are disconnected
from the physics of the many-body ground state because of
the zeros of the single-particle Green’s function. For both
N1 and N3, this discrepancy arises precisely when the
single-particle Green’s function fails to accurately capture
properties of the many-body ground state; the emergence of

FIG. 2. The change of N3 (solid black line) according to Eq. (2)
and C1 (dashed red line) according to Eq. (12) for a QAH-HK
model with U ≫ W as a function of the chemical potential μ. The
fillings are labeled at the top. Inside the red regions, bothN3 orC1

are undefined due to the crossing of poles (metallic state); inside
the yellow regions, N3 is undefined due to the crossing of zeros.
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Green’s function zeros signifies the importance of multi-
particle spectral weight. The charge density and Hall
conductance, being properties of the ground state and
not properties of single-particle excitation, encode physics
beyond the single-particle Green’s function. Finally, we
note that Refs. [4,10] showed that at the interface between
two systems across which N3 jumps by ΔN3 with no other
differing topological invariant, there will be ΔN3 zeros in
the boundary Green’s function. While this result is certainly
correct and encodes topological properties of the single-
particle Green’s function, our work here calls into question
the significance of this result for ground-state topological
properties. In particular, we have shown here that N3 can
jump at an interface where the chemical potential changes
smoothly while remaining in the bulk gap. Although the
single-particle Green’s function will develop boundary
zeros, we have shown that robust observables computed
from the many-body ground state cannot change across the
interface. In order to reconcile these observations, what is
needed is an analysis of higher-order correlation functions
to reinstate the connection between ground state topology
and robust observables [28].
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Appendix A: Current operator of the HK model.—
Here we provide a detailed derivation of the current
operator of the HK model. We start with a generalized
form of the HK Hamiltonian in a band basis:

H ¼ H0 þHI

¼
X
k;σ

c†k;aσh
ab
σ ðkÞck;bσ

þ
X
k

AabcdðkÞc†k;a↑ck;b↑c†k;c↓ck;d↓; ðA1Þ

where hσðkÞ is the 2 × 2 QAH Hamiltonian for each
spin, a, b, c, d are orbital indices which take value from
O1 or O2. The current satisfies the continuity equation,

∂ρðxÞ
∂t

þ ∇ · JðxÞ ¼ 0: ðA2Þ

The density operator for origin-localized orbitals can be
Fourier transformed into

ρðqÞ ¼ 1ffiffiffiffi
V

p
X
k;a;σ

c†k;aσckþq;aσ: ðA3Þ

The continuity equation then yields

q · JðqÞ ¼ ½ρðqÞ; H� ¼ ½ρðqÞ; H0� þ ½ρðqÞ; HI�; ðA4Þ

where the first term is the noninteracting current
operator Eq. (9). We focus on the contribution from the
second term. According to the general Fermion
commutation relation

X
k0;e

½c†k0;eσck0þq;eσ; c
†
k;aσck;bσ�

¼ c†k−q;aσck;bσ − c†k;aσckþq;bσ

¼ −q ·∇kc
†
k;aσck;bσ − c†k;aσq ·∇kck;bσ

¼ −q ·∇kðc†k;aσck;bσÞ; ðA5Þ

where we have expanded the operator to linear order in
q and neglected higher order terms Oðq2Þ since we will
take the q → 0 limit in the Kubo formula. The
commutator between the density operator and the
interaction is

X
k

AabcdðkÞ
X
k0;e;σ

½c†k0;eσck0þq;eσ; c
†
k;a↑ck;b↑c

†
k;c↓ck;d↓�

¼ −
X
k

AabcdðkÞ
�
q ·∇kðc†k;a↑ck;b↑Þc†k;c↓ck;d↓

þc†k;a↑ck;b↑q ·∇kðc†k;c↓ck;d↓Þ
�

¼ −
X
k

AabcdðkÞq ·∇kðc†k;a↑ck;b↑c†k;c↓ck;d↓Þ

¼
X
k

q · ð∇kAabcdðkÞÞc†k;a↑ck;b↑c†k;c↓ck;d↓; ðA6Þ

where at the last step we integrated by part using the
fact that the Brillouin zone is compact. Thus there is no
contribution to Jðq → 0Þ as long as ∇kAabcdðkÞ ¼ 0.
This is true for the interaction term we used in Eq. (6)
where AabcdðkÞ ¼ Uδabδcd. Thus, we can use Eq. (9) for
the current operator for the purposes of computing
response functions in the q → 0 limit.

Appendix B: Hall conductance of the QAH-HK
model.—Equation (12) can be directly used to calculate
the Hall conductance with the exact Green’s function
Eq. (7) using numerical integration techniques. Here we
will follow the derivation by Bernevig [29] by
introducing a flat-band limit in order to analytically
compute the Hall conductivity for the QAH-HK model.
We place all the occupied energy at μ −U < εG < μ,
whereas all the unoccupied states at energy εE > μ,
while keeping the eigenstates of the system unmodified.
The Hall conductance [Eq. (12)] is invariant under this
deformation since the deformation of the dispersion is
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smooth. We also take the β → ∞ limit to achieve the
zero temperature result.
The noninteracting Hamiltonian for each spin can be

written as the sum over the projectors PGðkÞ ¼P
i∈G ji; kihi; kj onto the occupied states and the projectors

PEðkÞ ¼
P

j∈E jj; kihj; kj the empty states,

hσ ¼ εGPG þ εEPE: ðB1Þ

We emphasize that the filled bands are defined according to
the interacting system. Thus the projection operators
depend on the filling. The current is thus

∂hσðkÞ
∂kα

¼ εG
∂PG

∂kα
þ εE

∂PE

∂kα
¼ ðεG − εEÞ

∂PG

∂kα
: ðB2Þ

In the flat band limit, the form of the Green’s function
depends on the filling. We enumerate the possibilities here:
(1) At quarter filling, as analyzed above, either spin of the
two degenerate ε− bands is occupied, thus dimPG ¼ 2 and
it projects onto the ε− bands

PGh ¼ PGVdiagðεG; εG; εE; εEÞV†

¼ PGVdiagðεG; εG; 0; 0ÞV†: ðB3Þ

The εþ bands remain empty for both spin, dimPE ¼ 2 and
it projects onto the εþ bands.

PEh ¼ PEVdiagðεG; εG; εE; εEÞV†

¼ PEVdiagð0; 0; εE; εEÞV†: ðB4Þ

The exact Green’s function in the original basis is obtained
by performing the unitary transform on Eq. (7)

Gðk;ωÞ ¼ VdiagðG−;k;↑; G−;k;↓; Gþ;k;↑; Gþ;k;↓ÞV†: ðB5Þ

The projection operator PG (PE) thus projects onto the first
two (last two) elements of the diagonal matrix, leaving

PGGðk;ωÞ ¼ VdiagðG−;k;↑; G−;k;↓; 0; 0ÞV†

¼ G−;k;σPG; ðB6Þ

PEGðk;ωÞ ¼ Vdiagð0; 0; Gþ;k;↑; Gþ;k;↓ÞV†

¼ Gþ;k;σPE: ðB7Þ

Thus the exact Green’s function at quarter filling in the
orbital basis could be written as

Gðk;ωÞ ¼
� 1

2

ωþ μ − εG
þ

1
2

ωþ μ − U − εG

�
PG

þ 1

ωþ μ − εE
PE: ðB8Þ

(2) At half filling, since U is much greater than the
bandwidth, the ground state always singly occupies both
ε� bands, this means that both εþ and ε− are flattened to εG.
This flattening process does not affect the Hall conductance
even if zero bands are crossing the chemical potential. PG
projects onto all four bands and PE ¼ 0 vanishes. The exact
Green’s function in the original basis reads

Gðk;ωÞ ¼
� 1

2

ωþ μ − εG
þ

1
2

ωþ μ − 2U − εG

�
PG: ðB9Þ

With these projection operators, the current-current corre-
lator becomes

Rαβðq; iνrÞ ¼
1

Vβ

X
k;n

ðεG − εEÞ2Tr
�
∂PG

∂kα
Gðkþ q=2;ωnÞ

∂PG

∂kβ
Gðk − q=2;ωn − νrÞ

�
: ðB10Þ

One quick inspection of this expression tells us that at half
filling, this response function has to be 0. The derivative on
PG always vanishes as PG ¼ I. Tuning the chemical
potential without crossing the poles does not break this
0 value. The Hall conductance at half-filling configuration
shall always vanish.
At quarter filling, we adopt the projection operator

identities

ð∂αPGÞPGð∂βPGÞPG ¼ ð∂αPGÞPEð∂βPGÞPE ¼ 0; ðB11Þ

ð∂αPGÞPGð∂βPGÞPE ¼ ð∂αPGÞð∂βPGÞPE; ðB12Þ

ð∂αPGÞPEð∂βPGÞPG ¼ ð∂αPGÞð∂βPGÞPG: ðB13Þ

Together with the contour integration method to perform
the summation over the Matsubara frequencies ωn, we find
that

RαβðiνrÞ ¼
1

2V

X
k

ðεG − εEÞ2

× Tr

�ð∂αPGÞð∂βPGÞPE

εG − εE − iνr
þ ð∂αPGÞð∂βPGÞPG

εG − εE þ iνr

�
:

ðB14Þ

The dependence on U is fully removed since the poles at
εG þ U always lie on the same side as εE relative to
the chemical potential. We may complete the integral in the
lower half plane without enclosing any poles. Taking the
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antisymmetric part between α and β and performing the
analytic continuation on Matsubara frequencies iνr → ω
leads to

Rαβðω → 0Þ ¼ 1

2V

X
k;n

ðεG − εEÞ2Tr
�
2ωð∂αPGÞð∂βPGÞPG

ðεG − εEÞ2 − ω2

�

¼ ω

V

X
k;n

Tr½ð∂αPGÞð∂βPGÞPG�: ðB15Þ

This response function is exactly half of the noninteracting
value due to the halved weight in the noninteracting
Green’s function. By substituting the wave function for-
malism for the projection operator PG ¼ P

i∈G ji; kihi; kj,
we conclude that the Hall conductance, in units of ðe2=hÞ,
is half of the Berry curvature of the filled noninteracting
band, which means C1 ¼ 1

2
Cnoninteracting
1 ¼ 1.

Appendix C: Ferromagnetic ground state.—The
ground state of the HK model is known to possess a
large degeneracy due to the spin degrees of freedom
[12,15]. This degeneracy can be removed by applying an
infinitesimal Zeeman field that picks one certain
direction for the ferromagnetic ground state [9,13,14].
By applying an infinitesimal magnetic field along the z
direction, the Green’s function is modified at all
energies. The locations of the poles do not move, but
the weight of the Hubbard band poles is now unity, and
the bands are fully spin polarized. At quarter and half
filling, the system remains insulating, and the exact
Green’s function in the band basis [30]

G�;k;↑ðωÞ ¼
1

ωþ μ − ε�
; ðC1Þ

G�;k;↓ðωÞ ¼
1

ωþ μ − hnk↑iU − ε�
; ðC2Þ

where nk↑ ¼ nþ;k↑ þ n−;k↑ is the total number of filled
electrons in the spin-up bands. The system is now
equivalent to two separate QAH systems. In the limit of
U ≫ W, only the spin-up bands will be occupied. Thus
the ground state is a spin-polarized QAH state. The Hall
conductance is unchanged since the Zeeman field is an
infinitesimal perturbation. However, since the Zeeman
field removes the zeros, it drastically changes N3 even
for values of the chemical potential far from the zero
bands. At quarter filling, N3 goes from 2 to 1, while at
half filling N3 ¼ 0 for all values of the chemical
potential. This shows that N3 is not a property of the
ground state manifold but instead depends on the
properties of the Green’s function at all energies. This is
in contrast to the Hall conductance which is related to a
zero frequency response function.
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