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Abstract

Human—computer conversation has long been
an interest of artificial intelligence and natu-
ral language processing research. Recent years
have seen a dramatic improvement in quality
for both task-oriented and open-domain dia-
logue systems, and an increasing amount of
research in the area. The goal of this work is
threefold: (1) to provide an overview of recent
advances in the field of open-domain dialogue,
(2) to summarize issues related to ethics, bias,
and fairness that the field has identified as well
as typical errors of dialogue systems, and (3) to
outline important future challenges. We hope
that this work will be of interest to both new
and experienced researchers in the area.

1 Introduction

Being an empathetic, entertaining, and knowledge-
able dialogue partner can be difficult even for hu-
mans. Unsurprisingly, the task of dialogue genera-
tion, i.e., creating a system that is able to hold an
intelligent conversation in a way a human would,
constitutes a hard challenge for the natural lan-
guage processing (NLP) community. In recent
years, partially due to the development of powerful
natural language understanding (NLU) and natural
language generation (NLG) models (Radford et al.,
2018; Devlin et al., 2019), the quality of dialogue
systems has been improving.

Systems fall into two broad categories, depend-
ing on if they support task-oriented or open-domain
dialogues. Task-oriented dialogue systems are built
for specific purposes, such as booking a flight, and
the topic of conversation is limited to the domain
of interest. While a narrow scope reduces the com-
plexity of the task, the fact that misunderstand-
ings can have severe consequences adds to it: ex-
act understanding of the user’s intentions is cru-
cial. In contrast, open-domain dialogue systems
have the ability to talk about a wide variety of
arbitrary topics. Thus, conversations with open-
domain dialogue systems more closely resemble

Utterance Fluent Meaningful Engaging
I have never been to Italy. v

Mulan I yesterday v

I saw Mulan yesterday. v v

1 saw Mulan yesterday and it v v v

was great — have you seen it?

Table 1: Possible responses of an open-domain dialogue
system to Have you recently seen a good movie?

human-human conversations. Users often do not
have any specific goal beyond enjoying the con-
versation. Over the last few years — boosted by
the development of deep learning models for text
— the NLP community has seen rapid advances in
the area of dialogue generation. A consequence
of this success, as well as of the general growth
of the NLP community, has been an abundance of
publications on the topic: 275 submissions made
Dialogue Systems the fourth largest track at ACL
2021 in terms of submitted papers.’

To assist researchers in keeping up with the fast
progress and to provide a starting point for newcom-
ers, we aim at providing a comprehensive overview
of what we as a field currently can do (existing re-
search), what we yet cannot do (common errors of
dialogue systems) or believe must not do (problems
related to ethics, bias, and fairness), and what we
should do (open challenges for open-domain dia-
logue generation). Our work complements Serban
et al. (2015), Finch and Choi (2020), and Huang
et al. (2020) — surveys of dialogue datasets, evalu-
ation techniques, and model architectures, respec-
tively, by providing a holistic view of the field.

2 Open-domain Dialogue Generation

We use the following definition for open-domain
dialogue generation, the task of a social chatbot or
socialbot: Given zero or more previous dialogue

"These numbers are based on statistics presented during
the opening session of ACL-IJCNLP 2021.
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turns between itself and one or more other partic-
ipants, a system must output a fluent, engaging,
and meaningful natural language response. Table
1 shows example outputs of low and high quality.
In general, the conversation should continue un-
til all human participants signal that it should end.
An open-domain dialogue further does not have to
have an explicit goal, i.e., it does not have to center
around a task to solve. The conversation can further
shift between topics or domains, e.g., from movies
to politics to sports. While an ideal open-domain
dialogue system would also handle task-oriented
parts of the conversation, this is not yet common
practice. Thus, we consider open-domain and task-
oriented dialogue to be mutually exclusive for the
purpose of this survey.

Task evaluation. Evaluation strategies can be
sorted into two broad categories: automatic met-
rics and human evaluation. Automatic metrics are
cheap, but do not always correlate well with human
judgments (Liu et al., 2016). Common metrics for
generative systems are perplexity (Vinyals and Le,
2015), BLEU (Papineni et al., 2002; Ghazvininejad
et al., 2017), or DIST-n (Li et al., 2016a). For re-
trieval systems, recall at position k in n candidates
(R,,@Fk), mean average precision (MAP), mean re-
ciprocal rank (MRR) and precision at position 1
(P@1) are used (Wu et al., 2017).

Human evaluation is expensive, but done fre-
quently, due to a lack of good automatic alterna-
tives (Shang et al., 2015; Ram et al., 2018b). For
instance, Deriu et al. (2020) propose to evaluate
models by determining from which point in a con-
versation on one can tell they are not human.

A detailed description of open-domain dialogue
evaluation goes beyond the scope of this paper. We
refer the interested reader to a recent survey on the
subject by Finch and Choi (2020).

3 Open-domain Dialogue Datasets

English datasets. The Twitter dataset (Ritter
et al., 2010) consists of roughly 1.3 million Twitter
conversations with 2 to 243 posts each. Sordoni
et al. (2015) generalize it to the Twitter Triples
Corpus, which contains context—-message—response
triples. The context represents previous dialogue
turns, and the response is the user’s reply to the
message. Adiwardana et al. (2020) mine the
Meena dataset, which consists of about 867 mil-
lion context—reply pairs from public posts. Each
context consists of all previous utterances in the

conversation that a reply is participating in.

The PersonaChat dataset (Zhang et al., 2018b)
consists of chats and personas which are collections
of five or more sentences that describe a person-
ality. The dataset also contains revised personas,
which are rewritten versions meant to prevent mod-
els from using simple word overlap to learn a per-
sona. The chats are dialogues between two workers
who each emulate one persona. The Target Guided
Conversation Dataset (Tang et al., 2019) is derived
from the PersonaChat corpus and leverages key-
words for transitions between turns. The persona
information is removed, and a rule-based keyword
extractor is used to find keywords. This dataset
allows for models to proactively guide the user to-
wards a target topic. Similar to the PersonaChat
dataset, the Wizard of Wikipedia dataset (Dinan
et al., 2019) consists of dialogues between two
crowdworkers: now, one worker is a "wizard" and
the other an "apprentice". The wizard is given text
about a topic from Wikipedia, and the two are told
to converse about it. The wizard labels each of
their utterances with a sentence in the article that
provides the knowledge used. The dataset is meant
to aid creating dialogue systems that are able to use
knowledge in retrieving or generating responses.

OpenDialKG (Moon et al., 2019) is created by
asking two workers to converse about a topic using
facts from a KG. One worker is given an entity
and told to start a conversation about it. The sec-
ond worker is given facts and told to respond using
the most natural and relevant-sounding fact. As
the conversation evolves, KG entities are surfaced
to allow workers to use them in their responses.
Another grounded dataset is the CMU Document
Grounded Dataset (Zhou et al., 2018). The au-
thors give workers a Wikipedia article on a movie,
and ask them to converse about it for at least 12
turns. 2 experimental scenarios are considered: in
the first, only one worker is given the article, and
is told to convince the other person to watch it;
in the second, both workers are given the article,
and they are instructed to talk about the content.
In a similar vein, Qin et al. (2019) create a large
corpus of grounded conversations by scraping com-
ments between users on Reddit. They consider
threads where users are discussing entities found
in a linked web document. Due to the common use
of anchors to relevant information in the URLs of
linked documents, the authors use this dataset to
train systems which can take advantage of machine
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reading comprehension models. The Topical-Chat
Corpus (Gopalakrishnan et al., 2019) is a grounded
corpus built using 300 entities across 8 topics. Two
workers are given reading sets, which are a collec-
tion of crowdsourced fun facts, Washington Post
articles, and condensed Wikipedia lead sections.
Different reading set configurations allow for a po-
tentially asymmetrical amount of information to be
given to each person. Conversations are required
to have a minimum of 20 turns, and workers are
asked to annotate the sentiment of their utterances,
where they found the information they spoke about,
and the quality of their partner’s utterances. The
DailyDialog dataset (Li et al., 2017b) is created
by scraping text from conversations held on an En-
glish learning website. Each utterance is labeled
with a dialogue act and an emotion.

The EmpatheticDialogues dataset (Rashkin et al.,
2019) contains conversations grounded in situation
descriptions. To get these situation descriptions,
crowdworkers are asked to write about an emo-
tional situation. Subsequently, two workers are
paired up and given a situation to roleplay. The
goal of the dataset is to help to train systems that
can identify user emotion from dialogue text. Li
et al. (2020c) also give workers roles in order to
create the AntiScam dataset. It consists of dia-
logues between crowdworkers, where one worker
is assigned the role of an attacker and the other
the role of a user. In their conversations, the at-
tacker poses as an Amazon customer service agent
and attempts to collect the user’s information. The
Persuasion for Social Good dataset (Wang et al.,
2020b) contains conversations between two crowd-
workers, one of whom is trying to convince the
other to donate to a specific charity. 300 of these
conversations are annotated with one of ten persua-
sion strategies, or marked as a non-strategy. The
objective of collecting this data is to improve the
persuasiveness of dialogue agents.

Chinese datasets. Song et al. (2020) introduce
the Key-value Profile Identification dataset (KvPI).
This data comes from the Sina Weibo social net-
work and consists of text in Mandarin Chinese.
KvPI contains post—response pairs, along with
three attributes describing the poster (gender, lo-
cation, and constellation). Each post-response
pair is annotated as either entailing, contradicting,
or being irrelevant to an attribute. This dataset
is designed to investigate how to automatically
detect consistency between dialogue posts and

the dialogue agent’s profile. The Weibo dataset
(Wang et al., 2013) is a standard open-domain dia-
logue generation corpus. Similar to the aforemen-
tioned ones it is collected from Sina Weibo. It
contains about 0.6 million query-response pairs.
Also from Weibo, Shang et al. (2015) create the
Short Text Conversation Corpus. Utterance pairs
are matching posts and their replies. PersonalDia-
log (Zheng et al., 2019) was also collected from
Weibo. Multi-turn conversations were created by
taking user posts and their comments, and each
utterance is connected with a specific person, who
is represented by a key-value dictionary of traits.
This dataset allows to incorporate personality in-
formation into generated responses. The PChat-
bot dataset is collected by Qian et al. (2021) from
Weibo posts and Chinese judicial forums. It is com-
posed of almost 200 million dialogue pairs. Each
utterance is linked to an anonymized user ID. One
potential use for this dataset is to have a model
learn to respond differently to users depending on
their dialogue history.

Wu et al. (2017) present the Douban dataset,
which consists of conversations between two peo-
ple on the Douban social network. All but the
last utterance of each conversation are considered
the context and the last utterance is considered
an appropriate response. The Douban dataset fur-
ther contains an additional test set that consists
of contexts from Douban posts paired with final
utterances from the Weibo that are labeled by hu-
mans as positive or negative matches based on the
context. The E-commerce dataset (Zhang et al.,
2018c¢) consists of conversations between Chinese
customers and customer service staff. As in the
Douban dataset, the last utterance is considered a
positive response for the rest of the conversation.
Negative responses are retrieved from other conver-
sations in an automated fashion. The E-commerce
and Douban datasets can be used for training and
testing retrieval-based multi-turn dialogue systems.

DuConv (Wu et al., 2019) is a KG-based dataset.
A KG is created from information about movies
and their characters. To create conversations, first
a "conversation path" is created by finding a path
between two sampled entries in the KG. Then, two
crowdsource workers are given roles — leader and
follower — and asked to converse. The leader has
access to the conversation path and the KG, and
the follower only has access to the leader’s utter-
ances. The conversation continues until the leader
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reaches the conversation goal. DyKgChat (Tuan
et al., 2019) was created by scraping conversations
from two TV shows, one in Chinese, and one in
English. Additionally, manually created KGs are
provided to cover entities from the shows.

Finally, Chen and Kan (2013) collect NUS SMS,
consisting of over 70,000 SMS messages in both
Chinese and English.

Multilingual and multimodal datasets. Open-
domain dialogue datasets in languages besides En-
glish and Chinese are difficult to find. A Korean
dataset has been created by Kim et al. (2021) by
translating the English Wizard of Wikipedia dataset
(Dinan et al., 2019). To the best of our knowledge,
the only multilingual dataset is XPersona (Lin et al.,
2020a), an extension of the English PersonaChat
dataset (Zhang et al., 2018b) to Chinese, French,
Indonesian, Italian, Korean, and Japanese. It is cre-
ated by first automatically translating the training,
development and test data. The latter two splits
are then manually corrected, while the training set
only receives semi-manual cleaning. The authors
use this dataset to evaluate approaches based on
multilingual models and automatic translation.

Multimodal datasets also exist: Image-Chat by
Shuster et al. (2020) consists of images together
with English dialogues. Each dialogue is linked to a
pair of styles or emotions portrayed in the dialogue.
The images are of everyday things, such as food or
landscapes. The dialogues are from conversations
between two crowd workers who are asked to dis-
cuss the image and each given a style or emotion to
portray in their discussion. This dataset aims at cre-
ating dialogue systems that can speak in different
styles and express varying emotions. Meng et al.
(2020) present OpenViDial, which consists of dia-
logues and their visual contexts from movies and
TV series. MMChat (Zheng et al., 2021a) contains
Chinese conversations about images, which have
been scraped from Weibo.

We refer interested readers to Serban et al. (2015)
for more information on corpora; for a table with
all datasets mentioned here see Appendix A.

4 Open-domain Dialogue Systems

We sort approaches into three categories: (1) re-
trieval systems, which get their responses from a
dataset; (2) generative systems, which generate re-
sponses automatically; and (3) comprehensive sys-
tems, which consist of a dialogue manager (DM),

at least one system from the aforementioned cate-
gories, and optionally other functional modules.

4.1 Retrieval Systems

Retrieval systems first obtain a candidate response
set from a large repertoire of options and then de-
termine how well each candidate suits the dialogue
context. Models can be arbitrarily complex and op-
erate on a single-turn (Wang et al., 2013) or multi-
turn (Wu et al., 2017) basis. As retrieval systems
do not have a generative component and their out-
puts originate from human conversations, they are
generally fluent and understandable. They are also
relatively safe, as many types of harmful responses
can be filtered. However, retrieval systems are lim-
ited in their ability to converse about topics not
covered in the provided responses.

Non-neural approaches exist, such as support-
vector machine (SVM)-based ones (Wang et al.,
2013; Jietal., 2014). More recently, neural models
which compute the matching score between can-
didate responses and dialogue contexts have been
developed. Initially, feed-forward networks have
been employed (Lu and Li, 2013). Wang et al.
(2015) extend prior approaches by representing
both a candidate response and the context as depen-
dency trees and extracting features from those rep-
resentations, before obtaining their score via a deep
feed-forward network. Later work has used a com-
bination of convolutional neural network (CNN)
and recurrent neural network (RNN) layers to de-
termine the matching scores of possible responses,
sometimes in combination with an attention mech-
anism (Yan et al., 2016; Zhou et al., 2016; Wu
et al., 2017; Zhang et al., 2018c; Tao et al., 2019).
Lu et al. (2019) add spatio-temporal features to
their model. The multi-hop selector network by
Yuan et al. (2019) looks for the relevant context in
a multi-turn dialogue, and uses the context utter-
ances determined to be relevant when retrieving a
response. The dually interactive matching network
(Gu et al., 2019b) retrieves responses based on per-
sonas. It extends Li et al. (2016b) to the previously
proposed interactive matching network (Gu et al.,
2019a).

Retrieval systems can also be based on trans-
formers (Vaswani et al., 2017). The transformer
memory network, for instance, takes knowledge
from the Wizard of Wikipedia dataset to retrieve
more knowledge-focused responses (Dinan et al.,
2019). Whang et al. (2020) go one step further and
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use pretrained transformer models, namely BERT
(Devlin et al., 2019) and ELECTRA (Clark et al.,
2020), for matching. With this, they follow earlier
work on response retrieval for domain-specific dia-
logue systems. They further add multi-task training.
Gao et al. (2020) propose a DialoGPT (Zhang et al.,
2020c)-based model to rank retrieved responses.

Lin et al. (2020b) propose to train retrieval mod-
els using a ranking loss and so-called grey-scale
data: they construct training examples from ground-
truth, generated, and random responses.

4.2 Generative Systems

Generative systems generate responses freely, i.e.,
they are not limited to a predefined set of utter-
ances. Their responses are not guaranteed to be
well-formed. However, in contrast to retrieval sys-
tems, they are not restricted to talking about topics
within a predefined set of responses.

The arguably first generative dialogue system
has been ELIZA (Weizenbaum, 1966). ELIZA is
rule-based and plays the role of a therapist. Parry,
in contrast, is designed to act like a psychology
patient (Colby, 1975). Later, ALICE has been
created by Wallace (1995) as a proof of concept for
the Artificial Intelligence Markup Language.

The large majority of generative systems are neu-
ral sequence-to-sequence (seq2seq) models. The
first such models have been created by Shang et al.
(2015) and, concurrently, Vinyals and Le (2015).
Their systems are LSTM-based seq2seq models.
Parthasarathi and Pineau (2018) add two knowl-
edge sources to an LSTM seq2seq model: the
NELL knowledge base (Carlson et al., 2010) and
Wikipedia summaries (Scheepers, 2017). Li et al.
(2016b) propose a persona-based LSTM encoder-
decoder. They represent personas via sentences,
with a persona vector being the combination of the
sentences. Similarly, Zhang et al. (2018b) condi-
tion a dialogue system on profile sentences and also
build profiles of its users, allowing it to better tailor
its responses to individuals.

Luo et al. (2018)’s LSTM seq2seq model is
able to learn utterance-level semantic dependen-
cies, which makes responses more coherent and
fluent. Furthermore, Li et al. (2020b) propose two
additions to a standard LSTM model: a rank-aware
calibrator network, used to construct contrastive op-
timization objectives, and a knowledge inference
component, which learns keywords in order to help
the model use more informative words during gen-

eration. Zhang et al. (2020a) use a GRU-based
response generation model along with a deep ut-
terance aggregation model to generate a context
vector from previous turns.

Ghazvininejad et al. (2017) leverage a facts
dataset to inject knowledge into a GRU seq2seq
model, which helps the model generate more
knowledgeable responses. A collection of synonym
sets was used by Hsueh and Ma (2020) to help
address the problem of social chatbots repeatedly
responding with similarly worded sentences.

A variational hierarchical recurrent encoder-
decoder (VHRED) for open-domain dialogue gen-
eration is proposed by Serban et al. (2017). This
model uses latent stochastic variables to model hi-
erarchical structure between dialogue turns, and
feeds that information into an RNN. Subsequently,
Zhao and Kawahara (2020) introduce a VHRED
with a linear Gaussian prior.

Transformer-based models include generative
variants of the transformer memory network (Di-
nan et al., 2019). Further, Keskar et al. (2019) train
a conditional transformer language model, which
accepts various control codes as part of the in-
put. These control codes allow the control of style,
content, and other behaviors without requiring the
model to be retrained. Meena (Adiwardana et al.,
2020) is a transformer-based seq2seq model trained
on large amounts of real chat data. Know-EDG (Li
et al., 2020a) conists of a knowledge-enhanced con-
text encoder and an emotion identifier linear layer
in front of a transformer model. The input from the
emotion identifier allows the model to alter its gen-
erated responses based on the emotion its dialogue
partner is expressing. Zheng et al. (2021b) add
style embeddings to a transformer-based system to
alter its dialogue style. Dziri et al. (2021) tackle
the problem of factually untrue responses with a
generate-then-refine strategy: generated responses
are corrected with the help of a knowledge graph.

A mixture between a retrieval and a generative
system is the RetrieveNRefine model (Weston et al.,
2018). It first employs a key-value memory net-
work to retrieve a good dialogue response, which
is then refined by an LSTM seq2seq model.

Only recently, multimodal dialogue models,
which combine language and image processing
components have been developed (Shuster et al.,
2020). Shuster et al. (2021) explore the integration
of large pretrained transformer models for text into
such systems.
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4.3 Comprehensive Systems

Comprehensive systems consist of multiple com-
ponents together with a DM. They are typically
not trained in an end-to-end fashion. The DM se-
lects one or more of the available — in some cases
highly specialized — response generators to produce
a response for a given context.

Xiaolce (Zhou et al., 2020) is a comprehensive
system which consists of 3 layers: The user expe-
rience layer connects the system to social media
and chat services. The conversation engine layer
contains a core chat module, a skills module, a DM,
and an empathetic computing module. Finally, the
data layer contains profile information on Xiaolce
and users, knowledge graphs (KGs), topic indices,
and other information. Adapter-Bot (Madotto et al.,
2020) employs a DM which is based on BERT (De-
vlin et al., 2019), a backbone conversational model
based on DialoGPT (Zhang et al., 2020c), and a
series of additional smaller modules.

Alexa Prize competition. The Amazon Alexa
Prize (AP) is an annual competition, with the grand
challenge of designing a system capable of hold-
ing an open-domain conversation for 20 minutes
(Ram et al., 2018a). Contestants develop live sys-
tems which are randomly selected to converse with
Alexa users. Once the conversation is finished,
users are requested to give a rating, which is the
main metric used for evaluation. The teams with
the highest rating move on to the finals, where ex-
pert judges decide the winner.

Sounding Board (Fang et al., 2017), which won
the inaugural AP in 2017, is a comprehensive dia-
logue system which is comprised of an NLU mod-
ule, a DM, topic-specific modules with rule-based
mini-skills, and an NLG component. The NLU
module uses a series of text classifiers to extract
the user’s primary intent. The DM receives that
information and, using a hierarchical rule-based
architecture, decides which of the mini-skills to
use when generating dialogue acts and content to
pass to the NLG module. The NLG module builds
a response in a rule-based fashion. Gunrock (Chen
et al., 2018), the winner of the 2018 AP, differs
from Sounding Board in the techniques used for
each piece. The NLU module contains multiple
submodules, including a noun phrase extractor, a
topic model, and a sentiment analyzer. The infor-
mation from these submodules is passed to the DM,
which selects a topic and activates the correspond-
ing submodules. The information from the NLU

module and the topic submodule is then passed to
the NLG module, which builds a response using
templates. Gunrock 2.0 entered the 2019 AP (Liang
et al., 2020), and differs from its predecessor by
relying more on neural models. However, the 2019
AP was won by Emora (Finch et al., 2020). In addi-
tion to mentioning facts, Emora also supports talk-
ing about experiences and opinions. Besides the
winning system, finalists of the 2019 AP include
Chirpy Cardinal (Paranjape et al., 2020), which em-
ploys generators based on GPT-2 (Radford et al.,
2019), and Alquist (Pichl et al., 2020), which relies
on conversation graphs to dynamically use knowl-
edge in its responses. Many design choices were
common among other contenders. For NLU, sys-
tems often use dialogue act, topic, and intent clas-
sifiers. Systems also rely heavily on named en-
tity recognition and entity linking, such as Tartan
(Chen et al., 2020), whose response generators use
a knowledge base for slot filling. Other systems em-
ploy a mixture of strategies to generate responses,
such as Athena (Harrison et al., 2020), which at-
tempts to switch between rule-based, knowledge-
based, and retrieval-based modules on-the-fly, as
well as DREAM (Kuratov et al., 2020), which em-
ploys candidate and response annotators before
serving a final response. Other contenders include
Audrey (Hong et al., 2020), which focuses on emo-
tion and personality, Zotbot (Schallock et al., 2020),
which incorporates a commonsense-reasoning ele-
ment, and Bernard (Majumder et al., 2020), which
is built around non-deterministic finite automata.

S Training and Data Augmentation

Retrieval-based systems are commonly trained with
a cross-entropy loss (Zhang et al., 2018c; Lu et al.,
2019), comparing a prediction against the gold stan-
dard from a training set. As an alternative, using
a ranking loss, where a model is trained on distin-
guishing suitable from unsuitable responses, has
been proposed (Lin et al., 2020b). In comprehen-
sive systems, the individual components are usually
trained separately.

Several algorithms to train generative systems
have been proposed. Given a training set D =
{(Rl, Cq, Bl), ceey (RN7 Cy, BN)} with N ex-
amples consisting of context C;, background in-
formation B;, and response R;, models are most
commonly trained using maximum likelihood esti-
mation (Shang et al., 2015; Vinyals and Le, 2015).
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The goal is to minimize the loss

N

L =-) logP(Ri[C;, By). (1)
=1

However, it has been shown that this encourages
boring responses (Li et al., 2016a). As a remedy,
several ways to weight training examples have been
proposed (Shang et al., 2018; Li et al., 2020b).
With that, the loss changes to

N
L=— Z wiIOgP(RZ“CZ‘, Bi)7 (2)
i=1

where w; is the weight corresponding to example
1. Further, Zhao and Kawahara (2020) address the
concern that generally multiple responses are pos-
sible. They propose multi-referenced training and
automatically create M different responses R;p,
for each original R;. Their loss is

M
L=- Z % Z 10gP(Rim|Ci, Bi).  (3)

=1 m=1

Contrastive learning (Hadsell et al., 2006; Gutmann
and Hyvérinen, 2012; Cai et al., 2020a) — where
a model is trained to assign higher and, respec-
tively, lower conditional probabilities to positive
and negative samples than a reference model — and
curriculum learning — during which examples are
presented to a model in a specific order — have
also been employed (Cai et al., 2020c). Finally,
dialogue systems can also be trained via reinforce-
ment learning (Li et al., 2016c; Zhang et al., 2018a;
Sankar and Ravi, 2019) or adversarial learning (Li
etal., 2017a).

Pretraining. Large pretrained models such as
BERT (Devlin et al., 2019) or GPT and its suc-
cessors (Radford et al., 2018, 2019; Brown et al.,
2020) have improved the state of the art for a vari-
ety of NLP tasks. Pretraining has also been used
for open-domain dialogue generation. Two dif-
ferent strategies exist: One option is to pretrain a
model on large unlabeled corpora to then finetune
it on dialogue data. Liu et al. (2020c), for instance,
initialize parts of their generative system with a pre-
trained BERT model, and Gu et al. (2020) finetune
BERT for multi-turn response selection in retrieval-
based chatbots. Shi et al. (2020) introduce an En-
glish language-learning chatbot based on GPT-2.
Boyd et al. (2020) condition a GPT-2 model for dia-
logue generation on several previous conversations

of a single individual to get it to use that individ-
ual’s style. Further, plug and play language models
consist of pretrained language models in combina-
tion with one or more simple attribute classifiers,
which control various aspects of its behavior, such
as style or dialogue content (Dathathri et al., 2020).

The second option is to pretrain a model on large
dialogue corpora, such that it can then be finetuned
on out-of-domain dialogue data. DialoGPT (Zhang
et al., 2020c) is such a model. Its architecture re-
sembles GPT, i.e., it is a transformer (Vaswani et al.,
2017) language model. For training, specifically
collected Reddit data is used. Like GPT, DialoGPT
is publicly available. The authors also experiment
with GPT-2 as a basis for DialoGPT and, similar
to the work mentioned in the last paragraph, find
pretraining on raw text to be beneficial. ConveRT
(Henderson et al., 2020) is another model which is
pretrained on dialogue data: pretraining is done on
a response selection task using Reddit.

Data augmentation. Data augmentation, i.e., the
creation of artificial training examples, can help in
the low-resource setting. Zhang et al. (2020b) aug-
ment paired dialogue data using unlabeled data
in the form of unpaired dialogue data. A dia-
logue pair consists of a social media post and a
corresponding response. Their method starts by
randomly selecting a sentence from the unpaired
dataset. Then, posts that are semantically similar to
the randomly selected sentence are retrieved from
the paired dataset. Next, responses corresponding
to the posts are collected from the paired dataset.
Finally, sentences that are semantically similar to
the responses are pulled from the unpaired data.
Each of these newly pulled sentences are matched
with the original randomly selected sentence, to
create a set of candidate pairs. Those candidate
pairs are then ranked, and the top-ranked pairs are
saved for later use.

Other approaches differ from the aforementioned
in that they do not require unlabeled data. Li et al.
(2019) propose a conditional variational autoen-
coder as a generative data augmentation model.
They combine this with a discriminator, which de-
cides whether the generated responses are suitable
for a given query. Cai et al. (2020b) design a data
augmentation and instance weighting model which
is trained using gradient descent and the model’s
performance on development examples.
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6 Common Errors of Dialogue Systems

We now discuss errors common across multiple
systems, considering mistakes at the turn level, the
conversation level, and the system level.

Turn level. At the turn level, errors consist
mostly of system responses being either ungram-
matical or nonsensical. Both types of problems are
more common in generative systems, as those com-
mit errors seen in other NLG tasks, such as highly
repetitive, nonsensical, or insignificant replies (Li
et al., 2016a; See and Manning, 2021). Models
which are motivated by semantic similarity may
resort to constantly echoing the user, rather than
returning a coherent response (Ritter et al., 2011;
Fedorenko et al., 2018).

Conversation level. Problems arising at the con-
versation level are arguably more substantial than
those at the turn level. Potential solutions will most
likely rely heavily on advancements in other areas
of NLP, such as reasoning and information extrac-
tion. A common issue consists of replies being flu-
ent, but either not relevant in the overall context of
the conversation or too generic (Adiwardana et al.,
2020). Off-topic replies can often be attributed to
a failure to recognize entities or previous dialogue
acts. Another common problem are answers that
are inconsistent across turns (Nie et al., 2021).

System level. At the system level, researchers
and model developers face the difficulty of incor-
porating world knowledge and common sense into
models (Wang et al., 2020a), as models still fre-
quently generate responses that are factually incor-
rect (Mielke et al., 2020; Santhanam et al., 2021).
There exists a trade-off between the range of topics
a system can cover and the depth of knowledge it
can leverage for any individual topic. Currently,
especially comprehensive systems frequently rely
heavily on curated content and static, handwritten
conversation paths to talk intelligently and deeply
about specific topics. However, the more a system
relies on handwritten paths, the more brittle it be-
comes. Similarly, curated content is impossible to
scale to a truly open-domain setting. Conversely,
leaning more towards dynamically structured con-
versations gives models more flexibility and allows
them to cover a wider range of topics, but often
results in less meaningful responses.

7 Ethics, Bias, and Fairness

The NLP research community is becoming increas-
ingly aware of the ethical challenges around the
systems we are building, and the area of dialogue
generation is no exception to this. We now summa-
rize prior work around safety and unwanted biases.

Safety. Dialogue systems should avoid being un-
intentionally offensive or harming the user (Hen-
derson et al., 2018). Therefore, attempts have been
made to detect sensitive language around religion,
race, violence, or contentious news as well as pro-
fanity (Tripathi et al., 2019). However, how to
respond when sensitive topics are being identified
is still an open question. As some of these topics
shape our identities and our lives, an ideal system
might not completely avoid them, and the best re-
sponse strategy depends on the objectives of the
system. When GPT-3 (Brown et al., 2020) and
Blender (Roller et al., 2021) detect toxic language
in a user utterance, they stop producing output (Xu
et al., 2020). While this is an ad-hoc solution, in
the long term, a graceful reaction could potentially
carry the conversation to healthier places as shown
by Wright et al. (2017).

Dinan et al. (2021) identify three potentially dan-
gerous behaviors a dialogue system can exhibit:
First, it can act as an instigator and provoke the
user using negative language, as has infamously
happened with the Microsoft Tay chatbot. Second,
even if a system exclusively uses non-harmful lan-
guage, it can cause harm to the user by being a
so-called yea-sayer, i.e., by being overly eager to
agree with the user on wrong or inappropriate state-
ments (Lee et al., 2019; Baheti et al., 2021). Third,
a dialogue system can unintentionally impose as
an expert and provide harmful advice.

Biases. An abundance of recent work has shown
that NLP models are learning undesirable biases
from the data they are being trained on (Bolukbasi
et al., 2016; Bordia and Bowman, 2019; Bartl et al.,
2020; Shah et al., 2020). Dialogue systems are
no exception to this: Liu et al. (2020a) investigate
fairness in dialogue models and find that dialogue
models exhibit significant prejudice against some
genders and races. They propose two debiasing
methods based on data augmentation and word
embeddings regularization. Dinan et al. (2020b)
point out that there are three types of gender bias
in chat bots: the first one being due to the gender
of the person that speakers are talking about, the
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second being due to the gender of the speaker, and
the last being due to the gender of the addressee.
Liu et al. (2020b) aim at mitigating the former
via adversarial learning. Similarly, Dinan et al.
(2020a) propose to reduce gender bias via data
augmentation, targeted data collection, and bias-
controlled training.

Barikeri et al. (2021) introduce RedditBias, a
dataset grounded in conversations from Reddit,
which enables the measurement and mitigation of
gender, race, religion, and queerness bias, and use
it to explore DialoGPT with and without debiasing.

8 Open Challenges for Future Research

Model evaluation and analysis. Surveying re-
search on open-domain dialogue generation (cf.
Section 4) as well as research on system evalua-
tion (Finch and Choi, 2020), it is clear that a good
automatic metric (or even manual evaluation strat-
egy) has not yet been found. What the field needs
are metrics that (1) evaluate different aspects of
dialogue systems (cf. Table 1), (2) do not require
references, since no reasonable set of references
can contain all possibly suitable responses, and
(3) correlate strongly with human judgments. One
possible way to move the field towards the devel-
opment of new evaluation strategies could be the
establishment of a shared task on open-domain
dialogue generation metrics, similar to the WMT
metrics shared task (Ma et al., 2019).
Furthermore, while entire surveys are neces-
sary to summarize work on the analysis of BERT
(Rogers et al., 2020), we still know little about what
dialogue systems, including DialoGPT (Zhang
et al., 2020c), learn from their training data. Prior
work on the analysis of dialogue models (with the
exception of still non-exhaustive investigations of
their biases) is limited; e.g., Saleh et al. (2020). We
argue that learning more about dialogue models,
which are likely to directly interact with users, is
crucial. We should investigate the following: (1)
What world knowledge do models acquire during
training? (2) What linguistic knowledge do dia-
logue models learn? (3) Which potentially harmful
biases do models learn from real-world data?

Multi-party dialogue. How to extend systems to
handle multi-party dialogue, as posed by Seering
et al. (2019), remains an underexplored area of
research. Having such systems will potentially
contribute to creating richer social interactions in
both online and offline communities. It will further

increase our understanding of the dynamics behind
turn taking (Bohus and Horvitz, 2011).

Multilingual dialogue. Section 3 makes it ob-
vious that open-domain dialogue datasets mostly
exist for two high-resource languages: English and
Chinese. Work on other languages is limited (e.g.,
Lin et al. (2020a)). We argue that, in order to speed
up research on other languages, the field needs
to develop datasets with the following properties:
(1) datasets should be created for a diverse set of
potentially low-resource languages and (2) the cre-
ated datasets should not be translations of existing
datasets. The latter is necessary since it has been
shown for other NLP tasks that translated datasets
show different properties from those natively col-
lected in a language (Artetxe et al., 2020).

9 Conclusion

Recent years have seen a drastic improvement in
the quality of open-domain dialogue systems as
well as in the amount of research in the area. There-
fore, we first presented an overview of the state of
the field of NLP for open-domain dialogue. Then,
we outlined important future challenges: better
model evaluation and analysis, multi-party dia-
logue, and multilingual dialogue.
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A Overview of Existing Datasets

Dataset Name |Paper |Language |Method |Source
KvPI Song et al. (2020) zh Scraped Weibo
PChatbot Qian et al. (2021) zh Scraped Weibo, Judicial
Douban Wu et al. (2017) zh Scraped Douban, Weibo
E-commerce Zhang et al. (2018c) zh Scraped Taobao
Weibo Wang et al. (2013) zh Scraped Weibo
PersonalDialog Zheng et al. (2019) zh Scraped Weibo
DuConv Wu et al. (2019) zh Human-Human -

Short Text Conversation Shang et al. (2015) zh Scraped Weibo
Switchboard Godfrey et al. (1992) en Human-Human -

Twitter Dataset Ritter et al. (2010) en Scraped Twitter
Twitter Triples Sordoni et al. (2015) en Scraped Twitter
Reddit Dataset Al-Rfou et al. (2016) en Scraped Reddit
PersonaChat Zhang et al. (2018b) en Human-Human -

Wizard of Wikipedia Dinan et al. (2019) en Human-Human -
EmphateticDialogues Rashkin et al. (2019) en Human-Human -

Meena Adiwardana et al. (2020) en Scraped Social Media
AntiScam Li et al. (2020c) en Human-Human -
Dailydialogue Lietal. (2017b) en Scraped -
Persuasion for Social Good Wang et al. (2020b) en Human-Human -

CMU Document Grounded Dataset |Zhou et al. (2018) en Human-Human -

Grounded Conversation Dataset Qin et al. (2019) en Scraped Reddit
Topical Chats Gopalakrishnan et al. (2019)|en Human-Human -
OpenDialKG Moon et al. (2019) en Human-Human -

Target Guided Conversation Dataset|Tang et al. (2019) en Human-Human -
Image-Chat Shuster et al. (2020) en Human-Human -
OpenViDial Meng et al. (2020) en Scraped Movies/TV
MMChat Zheng et al. (2021a) en Sraped Weibo
NUS SMS Chen and Kan (2013) en,zh Human-Human SMS
Korean Wizard of Wikipedia Kim et al. (2021) ko MT Human-Human |-

XPersona Lin et al. (2020a) zh,fr,ind,it,ko,ja|MT Human-Human |-

Table 2: Overview of existing dialogue datasets. Human—Human denotes datasets where two people converse with

each other. Scraped marks datasets which are gathered from an existing online resource.
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