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ABSTRACT 
Joint Visual Attention (JVA) has long been considered a critical 
component of successful collaborations, enabling coordination and 
construction of a shared knowledge space. However, recent studies 
challenge the notion that JVA alone ensures efective collaboration. 
To gain deeper insights into JVA’s infuence, we examine nonlin-
ear gaze coupling and gaze regularity in the collaborators’ visual 
attention. Specifcally, we analyze gaze data from 19 dyadic and 
triadic teams engaged in a co-located programming task using Re-
currence Quantifcation Analysis (RQA). Our results emphasize 
the signifcance of team-level gaze regularity for improving task 
performance - highlighting the importance of maintaining stable or 
sustained episodes of joint or individual attention, than disjointed 
patterns. Additionally, through regression analyses, we examine 
the predictive capacity of recurrence metrics for subjective traits 
such as social cohesion and social loafng, revealing unique inter-
personal and team dynamics behind productive collaborations. We 
elaborate on our fndings via qualitative anecdotes and discuss 
their implications in shaping real-time interventions for optimizing 
collaborative success. 
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• Human-centered computing → Empirical studies in collab-
orative and social computing; Computer supported cooperative 
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1 INTRODUCTION 
In today’s world, efective collaboration is crucial to tackle complex 
challenges and harness collective intelligence. Collaboration is also 
increasingly emphasized as a predictor of success in higher edu-
cation and the workforce [15, 35]. Collaborative Problem Solving 
(CPS), in particular, is when two or more people coordinate to fnd 
a solution to a problem [45]. Nevertheless, assessing the skills in-
volved in collaboration and CPS is difcult due to their complexity, 
involving cognitive and social processes among multiple people 
[21]. To accurately quantify and understand CPS, it is crucial to em-
ploy dynamic multimodal analytics capable of extracting valuable 
insights into the underlying processes driving successful teamwork. 

Furthermore, it is imperative to consider not only objective out-
comes such as task performance, but also the subjective qualities 
crucial for fruitful collaborations. These qualities encompass aspects 
such as interaction quality, social cohesion, and trust [52]. Social 
loafng is another factor that can afect group performance [67], a 
phenomenon where individuals exert less efort in a group setting 
than when working alone, leading to suboptimal team performance 
[3, 30]. Hence, further research is needed on the computational 
assessment of these traits and their potential interventions. 

Gaze-based measurement of CPS. Fortunately, an extensive 
body of research has investigated the feasibility of using data from 
various modalities (e.g., speech, gesture, eye gaze, physiology; see 
review [43]) to analyze CPS. Of these modalities, eye gaze has 
emerged as a promising data stream that is integral in developing 
the social cognition favorable for collaboration. It provides fne-
grained information about where collaborators are looking (e.g., 
areas of interest (AOI)), as well as indices of social visual attention 
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such as mutual gaze (when teammates look at each other). Conse-
quently, eye-tracking has been utilized in a number of studies on 
CPS, and eye gaze has been shown to predict important outcomes of 
CPS such as learning gains [39, 47] and task performance [8, 51], as 
well as CPS processes such as shared knowledge construction and 
negotiation [1, 59]. Visual attention was also the most impactful 
modality (among others) shared between the collaborators, and had 
the most infuence on team synchrony [37]. 

Moreover, eye gaze is important in CPS as it allows an individ-
ual to direct another’s visual attention and consequently commu-
nicate their intent, thoughts, and desires [18]. Upon perceiving 
the gaze direction of another individual, one can engage in Joint 
Visual Attention (JVA) which occurs when both their visual at-
tention aligns on a common object [49]. High levels of JVA have 
long been discussed as a crucial component to enabling successful 
collaborations [4, 7, 14, 42], improving the quality of interactions 
[27, 28, 38], and enhancing collaborative strength [27, 40]. Nonethe-
less, recent studies suggest it is insufcient for optimal team perfor-
mance [47, 56, 57]. Since collaborative strategies constantly evolve 
based on changing circumstances and team members’ strengths, the 
success of any team cannot be attributed to a single trait. We add 
to the literature by examining the specifc role of JVA in promoting 
collaborative success. We also investigate the relationship between 
dynamic gaze patterns and both objective task performance and 
subjective perceptions of collaboration-related qualities. 

Nonlinear Dynamics of Collaboration. Researchers have 
explored various analytical approaches to quantify gaze patterns 
from eye-tracking signals in collaborative tasks. One such technique 
is the gaze overlap percentage, which quantifes the time spent by 
the collaborators focusing on the same area [41]. Other works have 
examined leader-follower gaze patterns [23, 41, 44], such as the 
time delay between a target being referenced by one teammate and 
another teammate fxating on it. 

However, collaborating parties form highly intricate systems due 
to the dynamic interplay among multiple individuals, each with 
their own unique characteristics, behaviors, and perspectives, lead-
ing to nonlinear shifts in their interactions. To comprehensively 
capture these nonlinear patterns and structures, they should be 
studied by employing nonlinear tools such as Recurrence Quan-
tifcation Analysis (RQA). RQA quantifes repeating patterns of 
a dynamical system by comparing a time series trajectory to it-
self, exposing the underlying temporal dynamics [63]. It allows for 
studying features that would otherwise be hidden in an atemporal 
analysis that aggregates behavioral data over a time span [10]. 

Cross-RQA (CRQA) [63] is an extension of RQA that measures 
similarity between two diferent trajectories. It can reveal gaze cou-
pling and quantify JVA between two time-locked gaze signals and 
also identify revisitation states where an individual’s gaze revis-
its areas already visited by their partner. Multidimensional RQA 
(MdRQA) [61], another extension of RQA, measures the regularity 
of multiple time series within a single complex system, thereby 
quantifying how often a team returns to a previously maintained 
gaze pattern or confguration. These recurrent gaze confgurations 
may signify how team members divide attention and roles, indica-
tive of Individual Visual Attention (IVA), but may also suggest JVA 
when members share a gaze pattern. Overall, MdRQA captures the 
consistency in a team’s visual attention. 

CRQA and MdRQA, are widely utilized in time-series analy-
sis across various felds [2, 34, 69]. In a CPS task, Eloy et al. [17] 
applied MdRQA on multimodal data including speech, body move-
ments, and skin conductance, and found that higher team-level 
regularity led to an unpleasant collaboration experience, as it nega-
tively predicted emotional valence. These tools supply a suite of 
assumption-free nonlinear metrics which we use to analyze the 
dynamics of visual attention among dyadic and triadic teams. 

Recurrence Plots and Metrics. RQA visualizes repeating pat-
terns or regularities in a system using graphical representations 
known as recurrence plots. A cross-recurrence plot (CRP) visualizes 
the temporal structures by plotting the recurrence matrix with the 
gaze trajectories of two individuals on the x and y axes. A point in 
the matrix is recurrent if the gaze coordinates from the two signals 
fall within a radius r, measured by some distance metric such as 
Euclidean distance. The points, forming textures, reveal patterns 
in the signals’ interaction. Recurrent points on the main diagonal 
represent similar behaviors of the two signals at the same moment -
which in our case would mean that the collaborators are looking at 
the same area simultaneously. As one moves away from the diago-
nal, the delay between the coupling increases where one individual 
follows the other at a certain lag. In general, diagonal structures 
indicate gaze revisitations during the interaction, while horizontal 
and vertical structures show prolonged viewing of the same area, 
although it need not have occurred simultaneously. 

Recurrence metrics are computed by quantifying a CRP’s diago-
nal and vertical structures, such as recurrence rate, determinism, 
longest diagonal line, average diagonal line, entropy, laminarity, 
and trapping-time [63]. Recurrence rate (RR) measures the den-
sity of recurrent points, quantifying the similarity of the two gaze 
signals. Determinism (DET) measures the percentage of recurrent 
points forming diagonal lines or identical gaze scanpaths. Longest 
diagonal line (LDL) represents the longest uninterrupted period 
in sync, and average diagonal line (ADL) the average period in 
sync. Entropy (ENTR) measures the complexity of coupling, where 
entropy is low for identical diagonal lengths and high for random 
diagonal lengths. Laminarity (LAM) measures the percentage of 
recurrent points forming vertical lines, indicating long durations 
spent on one target area. Trapping time (TT) is the average duration 
spent on any specifc area, similar to the average vertical line (AVL). 

By contrast, MdRQA calculates a symmetric multidimensional 
recurrence plot (MdRP), combining two or more individuals’ gaze 
trajectories and analyzing their regularity as a single system, re-
sulting in a single time series forming both the � and � axes. Unlike 
CRP, recurrent points in MdRP denote instances where the system 
returns to the same gaze confguration, regardless of the similarity 
between each individual’s gaze. Beyond recurrence rate, most of 
the same metrics can be extracted from an MdRP as a CRP. MdRQA 
therefore uniquely quantifes team-level dynamics, while CRQA 
quantifes interpersonal dynamics. 

1.1 Related Work 
The temporal dimension is especially relevant in complex collabo-
rative environments, where gaze behavior is expected to dynami-
cally adapt to the changing requirements of the task at hand. Ac-
cordingly, researchers have leveraged RQA to investigate temporal 
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dynamics in eye gaze during CPS. Devlin et al. [14] found that 
high-performing dyads in a co-located collaborative task exhibited 
greater CRQA RR than low-performing dyads, suggesting that sus-
taining high levels of JVA is benefcial for team performance. In 
another co-located study, Villamor and Rodrigo [55] used CRQA 
to analyze gaze data from a pair programming task and found no 
signifcant diferences among the CRQA metrics for successful and 
unsuccessful pairs. However, they were able to predict team per-
formance using RR and DET as signifcant predictors when pretest 
programming scores were included in the regression model. 

Both studies, however, only examined cross-recurrence metrics 
(RR and DET), hence focusing only on the role of JVA in collabo-
ration and overlooking other important factors such as individual 
focus, which could imply task-splitting. Additionally, the dyads 
in both co-located studies worked on separate computers, and in 
Villamor and Rodrigo [55], verbal communication was discouraged 
in favor of a chat program. As such, these fndings may not be gen-
eralizable to naturalistic collaborations without such restrictions. 

Villamor et al. [56] later used additional CRQA metrics to iden-
tify collaboration patterns in an identical task. Their study demon-
strated lower CRQA measures in successful pairs, contradicting 
previous work [14]. Additionally, they found successful pairs had 
lower loci and sequence similarity, suggesting a lack of shared visual 
focus and indicating task-splitting. Limited subject understanding 
led unsuccessful pairs to fxate on items longer while trying to 
grasp its meaning, resulting in increased RR and LAM. Addition-
ally, the study’s use of chat windows as a communication method 
(verbal communication was discouraged due to the eye tracker’s 
inability to track gaze when dyads looked away from the screen to 
communicate) may have afected these results as the windows were 
in diferent locations, potentially contributing to lower RR among 
successful pairs who communicated more. Our work addresses this 
confound by employing wearable eye trackers. 

Gaze-based CRQA and speech data were examined by Schneider 
et al. [47] during a dyadic co-located collaborative task using wear-
able eye trackers. They found that JVA positively correlated with 
interaction quality, but this correlation decreased with increase 
in participants’ expertise. They also found that high coordination 
(JVA) within a dyad promoted learning gains, but only up to a 
certain threshold. Our study extends this work by additionally eval-
uating team-level gaze regularity (measured via MdRQA), which 
also contributes to a team’s likelihood of success. 

In a more closely related work, Moulder et al. [36] demonstrated 
that diferent RQA-based methods (RQA, CRQA, and MdRQA) on 
gaze signals show strong predictive capacity for a triadic team’s 
success during a remote CPS task. Vertical ENTR and diagonal 
ENTR consistently ranked among the top 50% in terms of feature 
importance for both logistic regression and random forest mod-
els, suggesting that increased uncertainty in gaze patterns or ex-
ploratory visual behavior, contributed to team success. Vrzakova 
et al. [59] also examined both CRQA and MdRQA metrics in a block 
programming task involving remotely-located triads who commu-
nicated through a video conferencing platform. They found that 
gaze-UI regularity predicted a team’s negotiation and coordination 
scores, and gaze-UI coupling predicted the participants’ ability to 
construct a shared knowledge space. 

While both studies ofer valuable perspectives on the dynam-
ics of remote collaboration, they had limitations stemming from 
the non-naturalistic collaborative environment and data loss from 
unconstrained head movements when using a screen-based eye 
tracker. Additionally, their use of categorical RQA with large AOIs 
may have increased false-positive recurrent points. Our study not 
only addresses these confounds but also examines collaboration 
dynamics among dyadic and triadic teams, regardless of task UI 
changes [59], making it a more generalizable fnding in terms of 
the CPS task and team size. In addition, we examine the relation-
ship between gaze dynamics and subjective traits, adding another 
dimension to our understanding of CPS. 

1.2 Research Questions, Novelty, and 
Contributions 

In this study, we delve into the intricate relationship between a 
team’s visual attention dynamics, their collaborative states, and 
task performance in order to assess their visual attention-based 
collaborative strategies. By utilizing metrics derived from CRQA 
and MdRQA, we analyze gaze coupling and gaze regularity from 
dyadic and triadic teams engaged in a group programming task. Our 
research stands out because it examines collaboration dynamics in 
a naturalistic, co-located environment using wearable eye trackers, 
enabling participants to engage freely in unconstrained interactions. 
To our knowledge, this is the frst study exploring collaboration 
dynamics by applying RQA to gaze data in such a context. 

We tackle three research questions in this work. First, how do non-
linear dynamics of visual attention relate to subjective collaborative 
traits (RQ1)? By examining this connection, our research seeks to 
illuminate the interplay between objective indicators (characterized 
by RQA metrics) and subjective facets of productive collaborations, 
thereby identifying which gaze patterns are positively or negatively 
associated with them. This understanding will serve as an early 
indicator of collaboration challenges. Second, what is the poten-
tial of gaze-based RQA metrics in predicting subjective collaborative 
outcomes? (RQ2)? By identifying these key metrics, we aspire to 
establish predictive models that inform real-time interventions, ulti-
mately leading to more efcient collaborations. The third and fnal 
research question, in what form do nonlinear patterns of visual atten-
tion infuence performance in collaborative tasks (RQ3)? Past work 
has yielded inconsistent fndings on the relationship between JVA 
and collaborative outcomes. By answering this question, we aim 
to clarify in what aspect does JVA afect collaborative success and 
whether there are other hidden dynamics at play, thereby providing 
valuable insights into efective collaboration strategies. 

Our contributions are threefold. We advance the understanding 
of nonlinear gaze dynamics in successful collaborations, identify 
key gaze-based RQA metrics for predicting subjective collabora-
tion qualities, and provide deeper insights into the dynamic roles 
that JVA and IVA play at the team-level in promoting successful 
collaborations. 

2 METHOD 
2.1 Participants 
The study included 44 participants (22 males, 21 females, and 1 non-
binary) associated with a university in the United States, including 
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26 undergraduates and 18 graduate students. Among them, 33 were 
between 18-24 years old, 9 were between 25-35 years old, and 1 
was between 36-46 years old. Participants were compensated $25 
per hour for their participation in the study. The IRB-approved 
study (IRB# 21-0371) lasted a maximum of 2.5 hours, during which 
participants completed a set of 5 activities in teams of two (n = 13 
teams) or three individuals (n = 6 teams). Team size was randomly 
determined based on session attendance, with groups comprising 
individuals of mixed genders. Out of 19 teams, 9 teams consisted of 
unacquainted participants, 7 teams of acquainted participants and 
3 triadic teams of 2 acquainted participants. 

2.2 Materials 
CPS can take many forms, including group programming [62, 68] 
which is efective in teaching introductory computer science [33, 
65]. Block programming tools like MakeCode [11] let users grasp 
programming concepts while controlling hardware sensors [13, 
22, 64]. In our work, MakeCode is used to control a sound sensor 
which can detect the presence and intensity of noise. The sound 
sensor is connected to a LED display that connects to the computer, 
and participants are able to display information from the sound 
sensor using the LED display. The MakeCode task included two 
components related to detecting and reporting on sound in the 
room. The frst component was a tutorial activity where partici-
pants were taught how to use the MakeCode environment and the 
corresponding hardware. The second component involved debug-
ging an existing program with the goal of displaying a sad face on 
the LED display anytime the sound in the room reached a particular 
threshold. There were two bugs: (a) an unreasonably high threshold 
value in the block code and (b) an issue with the hardware wiring. 

2.3 Experimental Procedure 
All participants completed consent forms upon arriving at the space 
and then went through an eye tracker calibration process with the 
Tobii Pro Glasses II [53]. Once all participants were calibrated, 
the eye trackers and additional recording devices (webcam and 
microphone) started their recordings. Participants completed a 
brief ice-breaker activity where they shared facts about themselves 
with the other participants. The team then began a series of 5 co-
located group tasks, each followed by a battery of self-report survey 
measures. The order of the tasks was fxed for all teams, and for 
the purpose of the present study, we focus on the completion of 
the MakeCode activity (fourth activity in the series, see Figure 1 
(left)). For this task, the researcher introduced the tutorial that the 
team then completed on how to use the MakeCode interface and 
hardware. The researcher then presented the team with adjusted 
hardware (i.e., one of the wires was unplugged out of view of the 
participants) and the main portion of the task involving debugging 
the program. Participants were given a maximum of 15 minutes to 
get the program to work. After 15 minutes, the researcher would 
stop the participants and prompt them to complete the correspond-
ing self-report surveys. 

2.4 Measures 
2.4.1 Task Performance Measures. The MakeCode task performance 
was objectively evaluated based on whether the team resolved the 

Figure 1: A triad doing the MakeCode task (left), and a snap-
shot of the MakeCode task used in Assisted Mapping with 
the AOIs highlighted (right). 

bug in the code (bug success) or rewired the hardware to fx the 
sound sensor issue (wiring success). The team received one point 
for each successful task and an overall score of two if they com-
pleted both, i.e., compiled their code so that the hardware depicted 
a sad face when the volume was above the threshold. If they had 
no success, they received an overall score of zero. 

2.4.2 Subjective Measures. The subjective assessments included 
scores on eight self-reported surveys, computed as a team aver-
age by taking the mean across every individual for a given team. 
The surveys include the social cohesion scale [46] to capture per-
ceptions of how well the group is getting along and feelings of 
belonging; positive interaction [58] to capture perceptions of how 
well the group was working together towards accomplishing the 
task; social loafng [31] to capture perceptions of self or others in 
the group not contributing towards the task; cognitive workload 
(NASA-TLX [24]) to capture perceptions of the mental demand and 
success of the task; psychological safety (Team Psychological Safety 
Scale [16]) for assessing trust in teams; pleasure and arousal (Self-
Assessment Manikin [6]) to capture ratings of positive/negative 
and sleepy/active feelings; and fnally, trust [32] to capture percep-
tions of cognitive and afective trust. These surveys were explicitly 
selected as they capture the range of social and cognitive processes 
involved in CPS [52]. Additionally, a programming rating measure 
was derived from participants’ self-reported prior computer pro-
gramming experience, using a 4-point scale ranging from "Never 
computer programmed" to "Expert computer programmer". 

2.4.3 Eye-Tracking Measures. The participants’ gaze data are cap-
tured from the wearable Tobii Pro Glasses II [53] eye tracker, with 
a sampling rate of 100Hz. The gaze coordinates are mapped onto a 
common reference frame to analyze visual attention amongst the 
team members. We used Tobii Pro Lab’s [54] Assisted Mapping 
feature, which automatically maps gaze data onto still images. We 
focus our analysis only on the visual attention directed towards the 
block programming interface, which is the most relevant and infor-
mative AOI for our study. Accordingly, all participants’ gaze data 
were mapped onto a snapshot of a computer depicting the Make-
Code window and its immediate surroundings (see Figure 1 (right)). 
Researchers manually corrected incorrect mappings. Furthermore, 
the mapped gaze coordinates are categorized into one of three pri-
mary AOIs: code, functions, and simulation (see Figure 1 (right)). A 
fourth AOI, labeled "other," is used when the gaze coordinates do 
not fall within any of the aforementioned three AOIs. 
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Figure 2: A correlation matrix depicting correlations between the subjective assessments and both CRQA metrics (left) and 
MdRQA metrics (right); with signifcant correlations starred (* corresponds to � ≤ 0.05, and ** corresponds to � ≤ 0.01). 

Data Preprocessing. The raw mapped gaze coordinates were 
cleaned and downsampled before being subjected to RQA. Due to 
our desire to maintain ecological validity, head movement was not 
restricted, resulting in expected data loss. On average, we observed 
a 29.2% (SD = 10.2) loss of data across teams. Consequently, the 
timestamps with missing gaze points for one participant (either due 
to the eye-tracking glasses failing to capture gaze or the participants 
not viewing the MakeCode window) were eliminated from the time 
series of all other participants in the team. This was done to ensure 
consistency in the time series while computing RQA, and therefore 
we have included the length of the time series as a covariate in our 
regression models. The cleaned gaze data was then downsampled 
from 100Hz to 10Hz to reduce noise in the raw signal and make 
it computationally inexpensive for RQA. We used raw gaze data 
rather than fxations to reduce data loss, following [59]. 

RQA Metrics and Parameters. In addition to the RQA metrics 
explained in Section 1, we also compute metrics such as Maximal 
Lag (Max Lag) and Lag Recurrence Rates (LagRR). Max Lag is the 
index of a diagonal (other than the main diagonal), with the highest 
density of recurrent points, whereas LagRR is a measure of the 
density of recurrent points within a specifed lag window from the 
main diagonal. We compute LagRR for a 2-second (LagRR-2) and a 
10-second window (LagRR-10) while operationalizing CRQA LagRR 
for the 2-second window to denote JVA, i.e., the gaze-coupling 
between two collaborators within a 2-second delay, based on prior 
work [47] and since past research has noted that 2 seconds is the 
delay between a listener following a speaker’s gaze [44]. We chose 
the 10-second window based on the eye tracker sampling rate, per 
recommendations by previous work [12]. 

We computed continuous input-based CRQA and MdRQA met-
rics in R using the crqa package [10] and the mdrqa package [60], 
respectively. We note that the mdrqa package additionally outputs 
a longest vertical line (LVL) metric and distinguishes ENTR as two 
individual measures: one for the diagonal (DENTR) and one for 
vertical lines (VENTR). We set the threshold radius for CRQA to 
be 35 pixels on the snapshot image, based on our expert judgment 
to balance between accounting for eye tracker measurement error 
while not categorizing false positive recurrent points. The threshold 

radius for MdRQA was fxed at 0.33 so that the average RR for all 
teams was ∼ 5%, as is the recommended practice for comparative 
recurrence analyses [60, 63]. Both CRQA and MdRQA employed Eu-
clidean distance as the distance metric, without any additional data 
embedding, following [25]. Lastly, we compute the CRQA metrics 
for triads as the pairwise metrics between all three team members 
and then average them for each team. 

3 RESULTS 
We delve into three research questions pertaining to the dynamics 
of visual attention in CPS, and present our fndings accordingly. 

RQ1: How do nonlinear dynamics of visual attention relate 
to subjective collaborative traits? To begin exploring the links 
between the nonlinear gaze dynamics and the outcome measures, 
we computed pairwise Pearson correlations between the subjective 
assessments listed in Section 2.4.2 and the CRQA/MdRQA metrics. 
These correlations are visualized as a correlation matrix in Figure 2, 
with CRQA correlations on the left and MdRQA correlations on the 
right. A signifcant positive correlation was observed between the 
cognitive workload measure and CRQA LDL (� = .54, p < 0.05). No 
other signifcant correlations were observed between the CRQA 
metrics and the subjective traits. With respect to the team-level 
MdRQA metrics, reported cognitive workload showed signifcant 
positive correlations with DENTR (� = .58, p < 0.01) and VENTR (� = 
.6, p < 0.01). Additionally, the pleasure metric negatively correlated 
with DENTR (� = -.53, p < 0.05) and VENTR (� = -.56, p < 0.05), 
while the arousal metric negatively correlated with VENTR (� = 
-.49, p < 0.05). Notably, social loafng was positively correlated with 
Max Lag (� = .5, p < 0.05). 

RQ2: What is the potential of gaze-based RQA metrics in 
predicting subjective collaborative outcomes? To comprehen-
sively test the efects of various RQA metrics, we performed a model 
selection procedure to identify the best ft linear regression model 
for each subjective outcome based on the Bayesian Information 
Criteria (BIC). BIC rates the estimated models based on the amount 
of explained variance in the dependent variable while penalizing 
complexity (number of additional parameters) in a model [48]. For 
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Table 1: Regression Models Predicting Subjective Assess-
ments of Collaborative Traits 

Subjective Trait Metric 1 Metric 2 Metric 3 Covariates 
Cognitive Workload CRQA LagRR-10 CRQA LDL MdRQA LVL Team Size Length 

Efect Size (p) -0.97 (0.007) 1.70 (0.004) -0.94 (0.013) 0.19 (0.554) 0.31 (0.126) 

Pleasure MdRQA DET CRQA LAM MdRQA DENTR Team Size Length 
Efect Size (p) 2.77 (0.003) -1.70 (0.005) -2.67 (0.006) -0.89 (0.063) 0.88 (0.043) 

Arousal CRQA LagRR-10 Team Size Length 
Efect Size (p) 0.31 (0.238) 0.52 (0.286) -0.40 (0.089) 

Social Loafng MdRQA Max Lag Team Size Length 
Efect Size (p) 0.56 (0.045) 0.44 (0.408) 0.07 (0.785) 

Positive Interaction MdRQA LagRR-10 Team Size Length 
Efect Size (p) 0.7 (0.037) 0.32 (0.563) -0.56 (0.050) 

Social Cohesion MdRQA DET CRQA ADL CRQA DET Team Size Length 
Efect Size (p) 1.20 (0.019) 4.33 (0.030) -5.68 (0.017) 0.23 (0.646) -0.22 (0.379) 

Trust MdRQA VENTR Team Size Length 
Efect Size (p) 1.1 (0.114) 0.71 (0.329) -1.14 (0.057) 

Psychological Safety MdRQA Max Lag Team Size Length 
Efect Size (p) -0.44 (0.117) -0.19 (0.721) -0.03 (0.899) 

each outcome variable, we ftted models of varying complexity in-
cluding each combination of one, two, or three recurrence metrics 
(CRQA or MdRQA) while controlling for the efects of team size 
and time series length as common covariates across all models. To 
identify the gaze dynamics that collectively contribute to collabora-
tive outcomes, for each dependent measure we selected the model 
with the lowest BIC and a BIC diference of no less than 3 from all 
other models [29]. We performed the Benjamini-Hochberg false 
discovery rate procedure to correct for multiple comparisons made 
during model selection [5]. Final models, presented with adjusted 
p-values in Table 1, had all variables individually z-scored such that 
the reported efect sizes are in terms of standard deviations. 

Reported cognitive workload was best explained by a 3-metric 
model with CRQA LagRR-10 (� = −0.97, � = 0.007), MdRQA LVL 
(� = −0.94, � = 0.013) in the negative direction and CRQA LDL 
(� = 1.70, � = 0.004) in the positive direction (�2 = 0.789; ���� = 
0.460). Perceived pleasure was best ft by a combination of MdRQA 
DET (� = 2.77, � < 0.003), MdRQA DENTR (� = −2.67, � = 0.006), 
and CRQA LAM (� = −1.70, � = 0.005) (�2 = 0.786; ���� = 
0.477). Similarly, social cohesion was best ft to MdRQA DET (� = 
1.20, � < 0.019), CRQA ADL (� = 4.33, � < 0.030), and CRQA 
DET (� = −5.68, � < 0.017), all showing signifcant efects (�2 = 
0.581; ���� = 0.676). Single-metric models were chosen for arousal 
(CRQA LagRR-10: � = 0.31, � < 0.238), trust (MdRQA VENTR: 
� = 1.10, � < 0.114), and psychological safety (MdRQA Max Lag: 
� = −0.44, � < 0.117), but none displayed signifcant efects. For 
social loafng, MdRQA Max Lag displayed a signifcant positive 
efect (� = 0.56, � < 0.045) (�2 = 0.285; ���� = 0.874). Lastly, 
positive interaction was best modeled by MdRQA LagRR-10 (� = 
0.70, � < 0.037) (�2 = 0.340; ���� = 0.860). 

RQ3: In what form do nonlinear patterns of visual atten-
tion infuence performance in collaborative tasks? To identify 
the type of gaze dynamic with the most impact on collaborative 
success, we looked at the potential of all CRQA and MdRQA metrics 
in predicting the objective task performance, which was coded as 0, 
1, or 2 based on the number of solved bugs. To appropriately model 
this 3-level outcome, ordinal logistic regression was performed to 
assess which recurrence measures best predict the odds of team 
success. The same model selection procedure as above was per-
formed, allowing for 1-3 RQA metrics to be included with team size, 
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time series length, and average programming rating measure as 
covariates. Odds of achieving partial or complete success versus no 
success in the task was best modeled by a single metric, MdRQA 
LVL: odds ratio = 173.37 (p < 0.001), meaning that a team is 173 
times more likely to obtain partial or complete success as MdRQA 
LVL increases by one standard deviation. Notably, a 0.1-second 
increase in the LVL measure was associated with a 26% higher 
likelihood of success, highlighting a major potential relationship 
with team performance. 

4 DISCUSSION 
The present study examined the relationship between nonlinear 
gaze dynamics and collaborative traits, evaluated the predictive 
capabilities of nonlinear gaze metrics, and delved into the specifc 
ways in which JVA and IVA contribute to collaborative success. 

A signifcant positive correlation between cognitive workload 
and CRQA LDL suggests that increased workload is associated with 
sustained gaze coupling periods or JVA, highlighting the need for 
shared understanding during demanding tasks [42]. The positive 
correlations with MdRQA VENTR and DENTR imply that team 
members exhibit more exploratory visual behavior during challeng-
ing tasks, possibly to gather more information and generate new 
ideas. Conversely, the negative association of CRQA LagRR-10 and 
MdRQA LVL in predicting workload indicates that increased gaze 
coordination and sustained team-level regularity suggest better 
cognitive resource management among team members, ultimately 
reducing overall workload. This multifaceted relationship provides 
valuable insights for optimizing team performance, emphasizing 
the importance of striking a balance between JVA, which fosters 
shared understanding, and IVA for efective task allocation and 
workload distribution. 

Moreover, we discovered a positive correlation between social 
loafng and MdRQA Max Lag, which also serves as the best predictor 
for this trait. MdRQA Max Lag represents the time delay between 
when the collaborators’ gaze patterns exhibit maximum regular-
ity or return to a previously established gaze confguration. This 
confguration could signify engagement in an individual task or a 
joint coordinated efort with team members. The fnding suggests a 
possible association that an increased delay corresponds to a higher 
likelihood of loafng behavior. Therefore, teams that can swiftly 
adapt and re-establish a shared or individual focus could potentially 
minimize loafng behavior, leading to improved collaboration out-
comes. This novel insight can be harnessed to develop monitoring 
strategies and real-time interventions for mitigating social loafng, 
ultimately enhancing team performance and productivity. 

Arousal exhibited a negative correlation with MdRQA DENTR, 
while pleasure showed negative correlations with both MdRQA 
DENTR and VENTR, indicating that as teams display more ex-
ploratory visual behavior (which, as mentioned earlier, signifes 
high workload), they experience reduced positive emotions and 
arousal. This observation could be attributed to the possibility that 
positive emotions and arousal primarily stem from more coordi-
nated eforts. Furthermore, along with MdRQA DENTR and CRQA 
LAM negatively predicting pleasure, MdRQA DET displayed a pos-
itive association, suggesting that teams with greater coordinated 
and predictable visual behavior will likely experience heightened 
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Figure 3: AOI-based color-coded cross-recurrence plots depicting gaze coupling (left) and Multi-dimensional recurrence plots 
depicting team-level gaze regularity (right) of a high-performing (Team 1) and a low-performing team (Team 2). The times 
when team 1 achieved wiring and bug success are denoted by the dashed and solid lines, respectively. 

pleasure. Conversely, as CRQA LAM refects collaborators remain-
ing focused (or stuck [56]) on a specifc region, an increase in this 
metric was associated with diminished pleasure. These fndings sug-
gest a link between coordinated attention allocation and positive 
emotions during collaborative tasks. 

A single metric, MdRQA LagRR-10, best predicted positive in-
teraction among collaborators, implying that teams maintaining 
high gaze regularity or consistent individual or joint gaze behavior 
within a 10-second lag may have better quality interactions. Social 
cohesion, on the other hand, was best predicted by a combination 
of MdRQA DET, CRQA ADL, and CRQA DET metrics. MdRQA DET 
represents the presence of predictable team regularity, while CRQA 
ADL signifes the stability of gaze coupling among team members. 
Their positive associations suggest that teams with more stable 
gaze coupling and predictable gaze regularity may likely experi-
ence better cohesion. The seemingly counter-intuitive combination 
of positive MdRQA DET and negative CRQA DET reveals a unique 
dynamic: predictability of team-level confgurations, rather than 
JVA, underlies social cohesion. As MdRQA accounts for both JVA 
and IVA, this suggests that team-level dynamics with IVA play a 
more signifcant role in social cohesion, than JVA. 

Stability in CPS. Lastly, ordinal logistic regression supported 
the predictive power of team-level gaze dynamics, specifcally 
MdRQA LVL, on task performance. The measure of LVL in an 
MdRP captures the longest span in which a team remained in the 
same confguration, essentially refecting the team’s stability. To 
form these vertical structures, team members can have close or 
distant gaze points, provided they collectively show minimal move-
ment from their positions. In the context of collaborative processes, 
this fnding is likely indicative of establishing roles or task-splitting 
among team members, showcasing team-level coordination and 
IVA. It can also represent sustained periods of joint attention, where 
team members align their attention and address complex aspects of 
the task. Fitted odds ratios reveal that for every 0.1 seconds a team 
remains in their longest confguration, they are 26% more likely to 
obtain partial or complete success. While our results reafrm the 
role of JVA in collaboration, they also emphasize the signifcance of 
maintaining a stable gaze confguration, accommodating either IVA 

or JVA. Particularly when compared to brief or fragmented manifes-
tations of solely JVA reported in prior work [47, 55]. Beyond gaze, 
verbal patterns may provide additional cues for role assignment, 
task clarifcation, and coordination. Teams with lower entropy (re-
fecting stability) in their communication sequences during CPS 
phase transitions have demonstrated better task performance [66]. 

This stability quantifes the degree of sustained investment by 
all team members and depicts a well-functioning team with a clear 
understanding of their objectives and roles. Team members may 
have developed trust and communication patterns that enable them 
to efectively allocate their attention and resources to maximize 
their collaborative success [9]. A team with high JVA collaboratively 
addressing a task may show sustained MdRQA LVL, refecting their 
cooperation. Conversely, another team focusing individually before 
regrouping might exhibit high LVL due to prolonged IVA, indicating 
their distinct approach. 

The team-level nature of MdRQA means that a team’s specifc 
confguration doesn’t matter, only the time spent in it. These re-
sults can be interpreted in light of multiple fndings in the team 
cognition and CPS literature that study teams as dynamical sys-
tems. Research has revealed that teams’ ability to adaptively and 
efciently transition through stable confgurations while minimiz-
ing transition time is associated with increased team efectiveness 
[19, 20]. Moreover, studies have characterized transitions between 
stable confgurations as times of team uncertainty, with efective 
teams minimizing time spent in transitional, or unstable confg-
urations [50]. Within CPS, stable confgurations are considered 
to represent distinct phases in the CPS process that contribute 
to team success [66]. Given these fndings, metrics like MdRQA 
LVL are highly adaptable to each team’s unique strategy and com-
position, imposing no assumptions or constraints on the form of 
collaboration while capturing its confgural stability. This maintains 
generalizability across tasks and individuals, supporting MdRQA’s 
viability for monitoring successful co-located collaborations. 

Qualitative Anecdotes to Visualize Findings. We present 
anecdotal evidence comparing a successful dyad (team 1 = wiring 
and bug success) and an unsuccessful dyad (team 2 = no success) by 
visualizing their gaze behavior via CRPs, MdRPs, and gaze-based 
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heat maps. Figure 3 shows a CRP’s recurrent points color-coded by 
the jointly focused AOI on the left and MdRPs on the right, with 
dashed and solid lines marking wiring and bug success, respectively. 
Though team 2 displayed more instances of gaze-coupling and JVA 
(RR = 0.5, LagRR-2 = 0.62) than team 1 (RR = 0.4, LagRR-2 = 0.47), 
they failed the task. Despite higher JVA, team 2’s lack of success may 
stem from their high CRQA LAM (69.4%) and TT (3.3), suggesting 
prolonged single-region focus due to limited subject understanding 
[26]. In contrast, team 1 had lower LAM (44.2%) and TT (2.6). This 
behavior, called ’staring but not seeing,’ is also noted in Villamor 
et al. [56]. Remarkably, both teams had almost similar programming 
ratings (team 1 = 1; team 2 = 0.5). 

Interestingly, an empty gap in team 1’s CRP below the inter-
section of the solid lines reveals no coupling right before solving 
the bug, suggesting a greater emphasis on IVA during that critical 
moment. Moreover, team 1 exhibited exploratory visual attention, 
including non-AOI regions (blue textures), before achieving bug 
success. Figure 4 also confrms team 1’s more varied gaze density 
distribution, refecting an exploratory approach, unlike team 2. This 
fnding underscores the need for a balanced and fexible approach, 
incorporating both gaze coupling and individual exploration in 
visual attention during collaboration. 

Figure 4: Heat-maps of a high-performing (Team 1; bug and 
wiring success) and a low-performing team (Team 2; no suc-
cess) depicting their visual attention throughout the task. 

Furthermore, team 1 displayed higher overall gaze regularity (RR 
= 7.1) than team 2 (RR = 4). This is evident in the MdRPs, where 
team 1 displays denser textures along the diagonal and towards 
the task’s end, as well as prior to resolving the hardware wiring 
issue. Team 2 showed regularity around the 4000�ℎ mark, but re-
current point density diminished towards the task’s end. These 
texture characteristics suggest that maintaining gaze confguration 
is crucial for task success, further corroborating our fndings. 

Team 1, who knew each other beforehand, exhibited higher trust 
and social cohesion (4.8 and 5, respectively) than team 2 (4.3 and 3.6, 
respectively), who met during the study, indicating more familiarity 
and bonding in team 1. They also had a lower workload rating (7.5) 
compared to team 2 (14.1). This interpersonal trust and rapport 
may have enhanced coordination and understanding of the task 
objectives for team 1, leading to more stable gaze confgurations 
and workload distribution. These fndings additionally underscore 
the vital role of team-level regularity and confrm MdRQA and its 
metrics as valuable tools for evaluating collaborative dynamics. 

4.1 Applications 
This work’s potential applications can impact various felds where 
efective collaboration is vital. In education, educators can use these 
fndings to create targeted training programs that teach students 
efective coordination to either jointly solve tasks or focus on indi-
vidual responsibilities, while stressing the importance of stability 
and fexibility in their approach. In professional settings, managers 
can leverage these insights, such as optimized workload distribu-
tion, to enhance team performance. This can be achieved through 
team-building exercises that focus on establishing trust and so-
cial cohesion. Additionally, this research could lead to real-time 
monitoring systems that detect potential issues like excessive team 
workloads and social loafng, allowing for timely interventions to 
maintain high-quality collaborative experiences. It can also guide 
when to avoid interventions, such as during sustained periods of 
JVA/IVA in teams. Exploring multimodal communication channels 
(e.g., speech and gestures) alongside gaze can ofer a deeper un-
derstanding of collaboration dynamics and inform more efective 
intervention designs. Beyond human collaboration, these fndings 
could also inform the development of intelligent collaborative tech-
nologies that better understand and adapt to human behavior. 

4.2 Limitations and Future Work 
This study had certain limitations that future research can ad-
dress. First, our sample size was moderate, with only 19 teams 
analyzed, which may constrain the robustness of our statistical anal-
ysis. Nonetheless, our qualitative observations further supported 
our fndings. Second, our dataset includes both dyadic and triadic 
teams, but we addressed this limitation by adding team size as a 
covariate in our analysis. Though team size didn’t signifcantly af-
fect results, suggesting our approach might be generalizable across 
team sizes, further research is required to confrm this. Moreover, 
the exploratory nature of our study, examining the interactions 
between various RQA metrics and multiple subjective and objec-
tive outcomes, may constrain the generalizability of our fndings. 
Though it is worth noting that this is the frst work to explore 
collaboration dynamics through eye gaze in a naturalistic context. 
Further research can beneft from a more targeted approach. Fi-
nally, another limitation is that we focused on a single task context, 
block programming in MakeCode. In future work, we’ll study gaze 
behavior in various CPS tasks alongside data streams like speech 
to see if MakeCode task patterns apply to other CPS contexts. 

5 CONCLUSION 
In conclusion, this study has ofered valuable insights into the com-
plex function of nonlinear visual attention dynamics, and the impor-
tance of team-level regularity, specifcally the regularity of JVA and 
IVA, in successful collaborations. By understanding these intricate 
visual attention strategies, we can better optimize teamwork across 
various domains and facilitate more efective collaboration. 
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