
DiSProD: Differentiable Symbolic Propagation of Distributions for Planning
Palash Chatterjee , Ashutosh Chapagain , Weizhe Chen and Roni Khardon

Department of Computer Science, Luddy School of Informatics, Computing, and Engineering, Indiana
University, Bloomington, Indiana, USA

{palchatt, aschap, chenweiz, rkhardon}@iu.edu

Abstract
The paper introduces DiSProD, an online plan-
ner developed for environments with probabilistic
transitions in continuous state and action spaces.
DiSProD builds a symbolic graph that captures
the distribution of future trajectories, conditioned
on a given policy, using independence assump-
tions and approximate propagation of distributions.
The symbolic graph provides a differentiable rep-
resentation of the policy’s value, enabling effi-
cient gradient-based optimization for long-horizon
search. The propagation of approximate distribu-
tions can be seen as an aggregation of many tra-
jectories, making it well-suited for dealing with
sparse rewards and stochastic environments. An
extensive experimental evaluation compares DiS-
ProD to state-of-the-art planners in discrete-time
planning and real-time control of robotic systems.
The proposed method improves over existing plan-
ners in handling stochastic environments, sensitiv-
ity to search depth, sparsity of rewards, and large
action spaces. Additional real-world experiments
demonstrate that DiSProD can control ground ve-
hicles and surface vessels to successfully navigate
around obstacles.

1 Introduction
Planning is one of the key problems in artificial intelli-
gence (AI), as it enables intelligent agents to make informed
decisions and achieve their objectives in complex and dy-
namic environments. This is especially important when the
environment is inherently stochastic or when the dynamics
model used by the planning algorithm is imperfect. As a re-
sult, research on planning with stochastic transitions has been
multifaceted, encompassing symbolic task-level planning in
discrete spaces [Kolobov et al., 2012; Keller and Helmert,
2013; Cui et al., 2019], robotic motion planning in continuous
spaces [Kurniawati et al., 2011; Van Den Berg et al., 2012;
Agha-Mohammadi et al., 2014], integrated task and motion
planning [Kaelbling and Lozano-Pérez, 2013; Vega-Brown
and Roy, 2018; Garrett et al., 2021] and model-based rein-
forcement learning [Chua et al., 2018; Hafner et al., 2020;
Curi et al., 2020].

Markov Decision Processes (MDPs) provide the theoreti-
cal foundation for planning under uncertainty, but scalability
remains a challenge, and approximation is often necessary.

Many approaches have been proposed in the literature, in-
cluding searching in action space, searching in state space,
approaches using Monte-Carlo simulation, and approaches
using differentiation. Several gradient-based planners have
been proposed, but they are not easily usable as domain in-
dependent planners due to scalability [Deisenroth and Ras-
mussen, 2011], or restriction to deterministic environments
[Wu et al., 2020a], or in the Reinforcement Learning (RL)
context, where, in most works the success of the planner
depends on the quality of the learned domain-specific value
function [Tamar et al., 2016; Hafner et al., 2020].

The paper fills this gap by introducing a novel domain-
independent online planner using differentiable probabilistic
transition models. Our work is related to prior algorithms
for trajectory optimization, distribution propagation, and dif-
ferential dynamic programming [Chua et al., 2018; Williams
et al., 2017; Deisenroth et al., 2013; Tassa et al., 2012;
Lenz et al., 2015]. However, we introduce a novel symbolic
approximation and propagation scheme generalizing work on
AI planning that facilitate robustness, better approximation,
and optimization [Cui et al., 2019].

The main contribution of this work is in design-
ing DiSProD (Differentiable Symbolic Propagation of
Distributions), an online planner for environments with prob-
abilistic transitions, in continuous or hybrid spaces. The core
idea is to create a symbolic graph that encodes the distri-
bution of future trajectories conditioned on a given policy.
The resulting symbolic graph provides an analytically differ-
entiable representation of the policy’s value, allowing effi-
cient gradient-based optimization of the action variables for
long-horizon search. While distributions over trajectories
are too complex to be captured exactly, DiSProD uses Tay-
lor’s approximation and an independence assumption to facil-
itate a symbolic propagation of product distributions over fu-
ture state and reward variables. The approximate distribution
propagation can be viewed as an efficient symbolic aggrega-
tion of many trajectories, which differs from sampling algo-
rithms that aggregate the results of many individual trajecto-
ries. This approach reduces variance in estimates in stochas-
tic environments and facilitates planning with sparse rewards.

Extensive quantitative experiments are conducted to com-
pare DiSProD with state-of-the-art planners in discrete-time
planning in OpenAI Gym environments [Brockman et al.,
2016] and continuous-time control of simulated robotic sys-
tems. The results show that DiSProD outperforms existing
planners in dealing with stochastic environments, sensitivity
to search depth, sparsity of rewards, and large action spaces.

ar
X

iv
:2

30
2.

01
49

1v
4

 [c
s.R

O
]

4
A

ug
 2

02
3

Furthermore, we use DiSProD with an approximate transi-
tion model to control two real-world robotic systems demon-
strating that it can successfully control ground vehicles and
surface vessels to navigate around obstacles.

Due to space constraints, some details are omitted from the
paper. The full paper as well as code to reproduce the exper-
iments and videos from physical experiments are available at
https://pecey.github.io/DiSProD.

2 Related Work
Planning in continuous spaces has been studied in several
sub-fields. A key distinction in planning methods is be-
tween offline planners, which compute a complete solution
and then apply it, and online planners or Model Predictive
Control (MPC) [Borrelli et al., 2017], in which at every time-
step, optimization is carried out over a finite horizon and only
the first action from the solution is executed. The online na-
ture of MPC provides some robustness to unexpected out-
comes at the cost of increased computation time during action
selection. Another important distinction is planning in state
space (or configuration space) [LaValle, 2006] versus plan-
ning in action space. The former seeks an optimal sequence
of states, leaving action execution to a low-level controller,
while the latter produces executable actions directly. DiS-
ProD is an online action planner but it can also produce a se-
quence of states as a byproduct, as we discuss in Section 4.6.

Within online action planners, DiSProD is related to two
lines of work using differentiable transition models. First,
our approach builds on the SOGBOFA algorithm [Cui et al.,
2018; Cui et al., 2019], which was developed for discrete
task-level AI planning problems. However, that work is re-
stricted to binary state and action variables. In addition, DiS-
ProD introduces a new distribution propagation method based
on symbolic Taylor expansions. The second group includes
planners using differentiable transition models in RL and con-
trol. However, deep RL work (e.g., [Heess et al., 2015;
Depeweg et al., 2017]) makes use of learned value functions
to aid planning performance and cannot plan in a new model
without training first, and many approaches (e.g., [Wu et al.,
2020a]) use deterministic transition models. In addition, most
approaches [Hafner et al., 2020; Bueno et al., 2019] optimize
over individual trajectories and do not propagate distributions
over trajectories as in DiSProD. In this realm, iLQG [Tassa et
al., 2012] and the PILCO family [Deisenroth et al., 2013;
Parmas et al., 2018; Kamthe and Deisenroth, 2018] are
most related to our method. iLQG linearizes the dynam-
ics, assumes linear Gaussian transitions, as in the Extended
Kalman Filter (EKF), and optimizes over individual trajecto-
ries. PILCO does propagate distributions analytically, albeit
with the restricted Gaussian process (GP) dynamics and the
Gaussian kernel. Gal et al. [2016] replace the GP in PILCO
with Bayesian neural networks, which cannot propagate dis-
tributions analytically and hence requires particle-based plan-
ning. From this perspective, DiSProD can be seen as a gen-
eralization of PILCO and iLQG, which uses differentiation
over approximate symbolic propagation of distribution.

Our work is also related to sampling-based planners
Model Predictive Path Integral (MPPI) and Cross-Entropy

Method (CEM) [Kobilarov, 2012; Williams et al., 2017;
Chua et al., 2018; Wagener et al., 2019; Mohamed et al.,
2022]. These algorithms sample a set of trajectories around
a nominal trajectory using a fixed sampling distribution, and
update the nominal trajectory based on the “goodness” of the
trajectories to bias sampling in subsequent iterations. Simi-
larly, Mania et al. [2018] use sampling to estimate numerical
gradients which provide related policy updates. Our frame-
work uses distribution propagation instead of sampling and it
optimizes stochastic policies instead of having a fixed sam-
pling distribution.

Finally, we note that our approach can flexibly handle both
discrete and continuous variables. In contrast, other methods
for planning in hybrid spaces typically restrict the transitions,
for example, to piecewise linear models [Li and Littman,
2005; Zamani et al., 2012; Raghavan et al., 2017].

3 Algorithms and Methodology
A Markov Decision Process (MDP) is specified by
{S,A, T,R, �}, where S is the state space, A is the action
space, T is the transition function, R is the one-step reward
function, and � is the discount factor. A policy ⇡ is a map-
ping from states to actions. Given a policy ⇡, the action-value
function Q⇡(st,at) represents the expected discounted total
reward that can be obtained from state st if action at is cho-
sen, and the policy ⇡ is followed thereafter, where st and at

are vectors of state and action variables at time t. We focus on
open loop probabilistic policies parameterized by ✓ = {✓t}
where each ✓t picks the action at time step t and is further fac-
torized over individual action variables. As in prior work, we
approximate Q✓(st, ✓t) = E[

PD�1
i=0 �

iR(st+i,at+i)] where
at ⇠ p(at|✓t) and st+1 ⇠ p(st+1|st,at), optimize ✓ and
pick the action using ✓t. In principle the Q-value can be cal-
culated from the distributions over {(st+i,at+i)} but these
distributions are complex. We approximate these distribu-
tions as products of independent distributions over individual
state variables.

Our algorithm can be conceptually divided into two parts.
The first calculates an approximate distribution over future
states, rewards and Q⇡(st,at), conditioned on a given policy.
A schematic overview of this process is shown in Figure 1.
The second uses this representation to optimize the policy.
These are described in the next two subsections.

3.1 Analytic Computation Graph
Transition Model. Typically, given st and at, a simula-
tor Tsim, samples from a distribution over st+1. Formally,
st+1 ⇠ Tsim(st,at). For DiSProD, we need to encapsulate
any internal sampling in Tsim as an input, to separate sampling
from computation, similar to the reparameterization trick.

st+1 = T (st,at, ✏t) where ✏t ⇠ N (0, I). (1)

Tsim and its encapsulation are shown in Figure 1a and 1b.
Representation. Let st,k denote the value of a random vari-
able sk at time t. If st,k is binary, then its marginal distribu-
tion can be captured using just its mean µ̂s,t,k as the variance
is implicitly given by v̂s,t,k = µ̂s,t,k(1 � µ̂s,t,k). If st,k is
continuous, its distribution can be summarized using its mean

https://pecey.github.io/DiSProD

and variance (µ̂s,t,k, v̂s,t,k). Similarly, the distribution over
the noise variable ✏i and action variable a` are represented
using (µ̂✏,t,i, v̂✏,t,i) and (µ̂a,t,`, v̂a,t,`) respectively. While the
use of mean and variance suggests a normal distribution, the
proposed construction does not assume anything about the
form of the distribution.
Independence Assumption. To simplify the computa-
tions of propagated distributions, our approximation as-
sumes that for all t, the distribution over the trajectories
given by p(st,at, ✏t) is a product over independent factors:
p(st,at, ✏t) =

Q
k p(st,k)

Q
` p(at,`)

Q
i p(✏t,i).

Approximation. Our main observation is that the above
assumption suffices to propagate approximate distributions
and approximate the Q-function. Specifically, we approxi-
mate the transition function using a second order Taylor ex-
pansion whose terms are given analytically in a symbolic
form. Let zt = (st,at, ✏t), ẑt = (µ̂st , µ̂at , µ̂✏t) and st+1 =
T (zt). To simplify the notation, consider the j-th state vari-
able st+1,j = Tj(st,at, ✏t) = Tj(zt) and let rTj = @Tj/@zt

and Hj = @2Tj/@zt@z
>
t . We use Taylor’s expansion to ap-

proximate the encapsulated model in Equation (1) by

st+1,j Tj(zt) ⇡ Tj(ẑt) +rT>
j (zt � ẑt)

+
1

2
(zt � ẑt)

>
Hj(zt � ẑt). (2)

This is illustrated in Figure 1c. We use this approximation to
calculate the mean and variance of st+1 via methods of prop-
agating distributions. Given our independence assumption,
the off diagonal covariance terms multiplying Hj are zero,
and the expected value of the st+1,j becomes

µ̂s,t+1,j = E [st+1,j] ⇡ Tj(ẑt) +
1

2

"
X

k

@
2
Tj

@s
2
t,k

!
v̂s,t,k

+
X

`

@
2
Tj

@a
2
t,`

!
v̂a,t,` +

X

i

@
2
Tj

@✏
2
t,i

!
v̂✏,t,i

#
. (3)

A similar approximation for the variance yields 4th order
moments. To reduce complexity, we use a first order Taylor
approximation for the variance resulting in

v̂s,t+1,j ⇡
X

k

✓
@Tj

@st,k

◆2

v̂s,t,k +
X

`

✓
@Tj

@at,`

◆2

v̂a,t,`

+
X

i

✓
@Tj

@✏t,i

◆2

v̂✏,t,i. (4)

To write these concisely we collect the first order partials and
diagonals of the Hessians into matrices as follows:

J
T
st

=


@T

@s>t

�
, i.e., [JT

st
]j,k =

@Tj

@st,k
, (5)

H̃
T
st

=


@
2
T

@s2t

>�
, i.e., [H̃T

st
]j,k =

@
2
Tj

@s
2
t,k

. (6)

Similarly, we define J
T
at
, H̃

T
at
, J

T
✏t , and H̃

T
✏t for action and

noise variables, respectively. We also define H̃
R
st

, H̃R
at

, and

Sim Encap Taylor Distribution

Dist0 Dist1 Distd

st at

st+1 rt

(a)

stat✏t

st+1 rt

(b)

stat✏t

st+1 rt

(c)

µst vst µat vat µ✏t v✏t

µst+1vst+1 µrt

(d)

v✏0

µ✏0

va0

µa0

vs0

µs0

v✏1

µ✏1

va1

µa1

µr0

vs1

µs1
vs2

µs2

µr1

vsd

µsd

vad

µad

v✏d

µ✏d...

...

...
µrd

vsd+1

µsd+1

Q̂

(e)

Figure 1: Schematic overview of the idea behind the construction of
analytic computation graph. (a) and (b) show the original probabilis-
tic simulator, and its encapsulated variant where noise variables are
represented as inputs. Using Taylor’s approximation of this variant,
we generate a third representation (c) of the same transition func-
tion. All these take as input a concrete state, action (and noise) val-
ues and compute the next state. The key idea is to combine the ap-
proximation with propagation of distributions to yield (d) that takes
distributions on states, actions, and noise as input and produces a
distribution over next states. Stacking this model up to the desired
search depth yields symbolic propagation of distributions (e).

H̃
R
✏t to be the second order partials of the reward function R

with respect to the state, action and noise variables. We can
now write the vector form of the equations as follows:

µ̂st+1 ⇡ T (ẑt) +
1

2


H̃

T
st
v̂st + H̃

T
at
v̂at + H̃

T
✏t v̂✏t

�
. (7)

v̂st+1 ⇡ (JT
st
� J

T
st
)v̂st + (JT

at
� J

T
at
)v̂at

+ (JT
✏t � J

T
✏t)v̂✏t . (8)

µ̂rt ⇡ R(ẑt) +
1

2


H̃

R
st
v̂st + H̃

R
at
v̂at + H̃

R
✏t v̂✏t

�
. (9)

In this paper, we do not model the variance of the reward
function. However, this can be easily done by analogy with
Equation (8) which will facilitate risk sensitive optimization,
for example, conditional value at risk [Chow et al., 2017].
The computations of Equations (7) to (9) are illustrated in
Figure 1d. Stacking these computations over multiple time
steps gives us an approximation of the distribution over future
states, captured analytically as a computation graph, as shown
in Figure 1e. The Q-function is then approximated as

Q̂(st, µ̂a, v̂a) =
D�1X

i=0

�
i
µ̂rt+i (10)

where we use � = 1 in our experiments. Note that the compu-
tation graph propagates distributions and does not sample tra-
jectories. The computation only requires the mean (µ̂✏ = 0)
and variance (v̂✏ = 1) of the noise which are known in ad-
vance and are absorbed as constants in the graph.

Algorithm 1 One Step of DiSProD.
Input: state

1: initialize actions (for all restarts)
2: build computation graph till depth D

3: while actions have not converged do
4: loss = -

P
restart k Q̂(st, µ̂k

a, v̂
k
a)

5: loss.backward()
6: actions safe-projected-gradient-update(actions)
7: save action-means µ̂k⇤

at+1:t+D
from the best restart k⇤

8: return action ⇠ N (µ̂k⇤

at
, v̂

k⇤

at
)

Our construction is very general – we only require access
to T (st,at, ✏t), R and analytic computation of their partial
derivatives. In practice, T and R can have non-differentiable
components which can be mitigated by approximating the
non-smooth functions with their smoother alternatives.

3.2 Optimization Algorithm
Thanks to the symbolic representation, once the computation
graph is built, it can be reused for all steps of problem solv-
ing as long as the reward function does not change. The op-
timization is conceptually simple, initializing all action vari-
ables for all time steps and performing gradient based search.
However, some important details are discussed next.
Multiple Restarts and Loss function. Following Cui et al.
[2019], we perform gradient search with multiple restarts.
While they performed restarts sequentially, we take advan-
tage of the structure of the computation to perform the restarts
in a vectorized form. Recall that each restart is represented
by (µ̂a, v̂a) as in Equation (10). Using a superscript k to
represent independent restarts we can write the loss function
(negating Q) as loss = -

P
restart k Q̂(st, µ̂k

a, v̂
k
a). Now to eval-

uate the loss we generate a matrix where every row repre-
sents a possible policy (µ̂k

a, v̂
k
a) and evaluate Q̂ on this ma-

trix. Therefore, we benefit from evaluating all restarts as a
“batch of examples” relative to the computation graph. Since
we are optimizing with respect to the input matrix (and not
computation graph weights), the loss decomposes into a sum
of independent functions and gradient search effectively op-
timizes all restarts simultaneously.
Initialization of Actions. For discrete action variables, fol-
lowing Cui et al. [2019], we initialize actions parameters for
time step t = 0 to binary values and for steps t > 0, we ini-
tialize the marginals to random values in [0, 1]. For continu-
ous action variables, we must constrain actions to be in a valid
interval. For each action variable a`, the policy is given by a
uniform distribution, initializing µ̂a,` ⇠ U(a`,min, a`,max) and
the variance of a uniform distribution centered around µ̂a,`,
i.e., v̂a,` = min(a`,max�µ̂a,`,µ̂a,`�a`,min)

2
/12.

Policy Updates. We use Adam [Kingma and Ba, 2015] to
optimize the action variables over all restarts simultaneously.
We make at most K = 10 updates and stop the search early
when ||µ̂new

a � µ̂
old
a ||1  0.1 and ||v̂new

a � v̂
old
a ||1  0.01

for normalized action ranges. Gradients are used to update
both µ̂a and v̂a, which implies that we search over a stochas-
tic policy. This can be important for success in sparse-reward

scenarios where a stochastic policy effectively broadens the
search when needed, while also allowing a nearly determin-
istic choice of actions at convergence.

Safe Projected-Gradient Update. The gradient-based up-
dates have to satisfy two constraints. The first is the need
to constrain variables into valid intervals. Similar to [Tassa et
al., 2014; Cui et al., 2019], we use the standard projected gra-
dient descent to restrict µ̂a between amin and amax, while v̂a

is constrained to min(1/12,min(µ̂a�amin,amax�µ̂a)
2
/12) which is

the variance of the largest legal uniform distribution centered
around µ̂a. If the gradient step pushes µ̂a or v̂a outside the
valid region, it is clipped to the boundary. Finally, we only
take a gradient step on the restart if it improves the Q-value
and otherwise we maintain the previous value. This safe
update requires an additional evaluation of the computation
graph to check for the Q-value improvement and it increases
runtime, but it ensures that Q̂ is monotonically increasing.

Saving Actions. Since the gradients are back-propagated
through the entire computation graph, action variables at all
depths are adjusted according to the corresponding gradients.
However, only the action at depth d = 0 is executed. For-
mally, at time t, we sample an action using µ̂at and v̂at

while µ̂at+1:t+D and v̂at+1:t+D are not used. These updated
actions can be used to initialize the action variables when
planning at state st+1. The same idea has been used be-
fore in MPPI [Williams et al., 2017; Wagener et al., 2019].
Note that MPPI also uses multiple samples, but these sam-
ples all contribute to the update of a single action sequence,
which can potentially harm the search [Lambert et al., 2021;
Barcelos et al., 2021]. This is different in DiSProD where
each restart is an independent search. To allow reuse of old
search but add diversity, we initialize one restart using saved
action mean, and initialize all other restarts randomly.

Overall Optimization Algorithm. These steps are summa-
rized in Algorithm 1, where search depth (D), the initial step-
size for µ̂a and v̂a (lrµ and lrv), and number of restarts serve
as hyper-parameters. When all restarts have converged or
K gradient steps have been performed, we choose the best
restart with the maximum Q-value, breaking ties randomly.
Finally, we sample an action using the mean and variance of
the first action distribution of the best restart.

3.3 Discussion
DiSProD propagates approximate distributions over trajecto-
ries using moment matching on individual variables, assum-
ing independence between variables. As shown by Cui et al.
[2018], in the binary case, this is equivalent to belief prop-
agation, which works well empirically despite lack of for-
mal guarantees. DiSProD offers a different trade-off from
sampling-based methods which are exact in the limit of in-
finite samples but are sensitive to variance in estimates with
limited samples. In this sense, our computation graph pro-
vides a stable if biased estimate of the Q-function. With de-
terministic transitions and policy, our computation is exact
and gradient descent can potentially find the optimal policy.
For stochastic transitions, the computation is approximate
and we use a loose stopping criterion to reduce run time.

4 Experiments
We experiment with DiSProD on a variety of deterministic
and stochastic environments and evaluate its robustness to
long horizon planning, its ability to work with sparse rewards,
and its performance in high-dimensional action spaces. For
this purpose, we conduct extensive experiments on simulated
and real-world environments with increasing complexity.

We use three OpenAI Gym environments (Cart Pole,
Mountain Car, and Pendulum) to evaluate the robustness of
the compared planners in terms of stochasticity, planning
horizon, and reward sparsity. The original OpenAI Gym envi-
ronments are deterministic. We therefore enhance these envi-
ronments by explicitly adding noise into the model and using
it as a part of the dynamics T (s,a, ✏). Further details are
in the full paper. For the discussion, it suffices to note that
we parameterize the amount of noise using a scalar ↵ and
can therefore evaluate planners’ performance as a function of
stochasticity in the dynamics.

In addition, we developed a new Gym environment that
models a simplified vehicle dynamics, elaborating over the
Dubins’ car model [Dubins, 1957]. In particular, the agent
can control the change in linear (�vt) and angular velocity
(�!t) instead of controlling the velocities directly, and the
maximum change (�v,�!) is limited to a small value. This
model is still inaccurate because it ignores friction, inertia,
actuation noise and localization noise, but it provides an ac-
ceptable approximation. We then use this model to plan in a
physics simulator with asynchronous execution. Specifically,
the planner is used to control a TurtleBot in Gazebo simula-
tion via a Robot Operating System (ROS) interface.

Finally, to demonstrate robustness and applicability, DiS-
ProD is used to control two physical robot systems: an Un-
manned Ground Vehicle (Jackal) and an Unmanned Surface
Vessel (Heron) using the aforementioned model.

In the experiments we use 200 restarts, and for DiSProD
lrv = lrµ/10. The values of D and lrµ for Gym environments
are provided in Figure 2. For TurtleBot we use D = 100,
lrµ = 10. For Jackal and Heron, D is modified to 30, 70
respectively, and we use 400 restarts.

4.1 Baselines
We compare DiSProD to CEM and MPPI. Both are shooting-
based planners that maintain a sequence of action distribu-
tions to sample actions from. From a given state, they use the
sampled actions to generate multiple trajectories and com-
pute the rewards accumulated at the end of each trajectory.
The two algorithms differ in how they recompute the action
distribution. While CEM uses the actions from the the top n

trajectories to form the new action distribution, MPPI weights
the actions in a trajectory by the cumulative reward for that
trajectory. Hyperparameters for the planners were frozen af-
ter tuning them on deterministic versions of the environments.

CEM and MPPI can potentially benefit from the use of sav-
ing actions. We have found that this is helpful in the basic
environments but harms their performance in the car model.
To ensure a fair comparison, we use the best setting for the
baselines whereas DiSProD always saves actions.

4.2 Evaluation in Basic Gym Environments
Increasing Stochasticity. First, we explore the perfor-
mance of the planners with the original deterministic environ-
ments and with added stochasticity. To separate randomness
in the environment from randomness in the experiment, we
perform 8 repetitions over 6 runs in each environment, calcu-
lating means in each repetition and standard deviations of the
means across repetitions. Averages and standard deviations
are shown in Figures 2a to 2c. We observe that the planners
perform similarly in deterministic environments (↵ = 0) but
with increasing amounts of stochasticity, DiSProD degrades
more gracefully and performs better than CEM or MPPI.
Increasing Planning Horizon. Intuitively the deeper the
search, the more informative it is. But for sampling-based
planners, deeper search can also increase variance when esti-
mating action quality and hence harm performance. Results
for experiments testing this aspect in noisy variants of basic
environments are shown in Figures 2d to 2f and determinis-
tic environments are included in the full paper. We observe
that while in the deterministic setting all the planners have
similar performance, in some stochastic environments, the
performance of CEM and MPPI can degrade with increas-
ing search depth while DiSProD gives better results. In these
environments, beyond a required minimum depth, increasing
the depth further does not help performance. This changes,
however, when we change reward sparsity.
Increasing Reward Sparsity. Robust planners should be
able to work with both sparse and dense rewards. Intuitively,
if the reward is dense then even a short search horizon can
yield good performance, but a deeper search is required for
sparse rewards. To test this, we evaluate the performance
of the planners by varying the sparsity of the rewards in the
Mountain Car environment. With the standard reward func-
tion, the agent gets a large positive reward when its position
and velocity are larger than certain thresholds. We mod-
ify the reward function to use a smooth version of greater-
than-equal-to function given by �(10�(x � target)) where �

is a sparsity multiplier (� = 1 in earlier experiments) and
�(a) = 1/(1 + e

�a). The larger the value of �, the harder
it is to get a reward from bad trajectories. Results are shown
in Figures 2g and 2h. Figure 2g shows that with the stan-
dard search depth of 100, all planners fail to reach the goal
once the reward becomes very sparse. Figure 2h shows that
DiSProD can recover and perform well by increasing search
depth to 200 but CEM and MPPI fail to do so.

4.3 Evaluation in High Dimensional Action Space
To explore high dimensional action spaces, we modify the
Mountain Car environment by adding redundant action vari-
ables. The dynamics still depend on a single relevant action
variable but the reward function includes additional penalties
for the redundant actions. To obtain a high score, the agent
must use a similar policy as before for the relevant action and
keep the values of the redundant action variables as close to
0 as possible. Details of the model are in the full paper. We
compare the performance of the planners against number of
redundant actions, without changing any other hyperparame-
ters. Results are shown in Figure 2i, where the MPPI results

��� ��� ��� ��	 ��
 ���
����� ���

�

�
��

��
�

���

���
����

�����

(a) CCP (D = 25)

� � 	
����

���

����

���

��
��
�

���

(b) P (D = 25)

� � � � � 	

���� ����

�

	

�

��
�

���

(c) CMC (D = 100)

� � � �
	��������������� �
�

�

�

�
��

�
�

(d) CCP (↵ = 5)

� 	 � �

��������������� ���

���

����

��
��
�

���

(e) P (↵ = 2)

��� ��� ���
	��������������� �
�

�

�

�
��

�
�

(f) CMC (↵ = 0.002)

� � � � 	
 �

������������������

���

��

���

�
��
�

���

(g) CMC (D = 100)

� � � � 	
 �

������������������

���

��

���

�
��
�

���

(h) CMC (D = 200)

� � 	
 �
����������������� ���

���

���

��
��
�

���

�
������
�
�������

(i) CMC-HD (D = 100,↵ = 0)

� � � 	

����������������� ���

���

���

�
��
��
��
��
�

���

(j) CMC-HD (D = 100,↵ = 0)

��	 ��� ��	 ���

��������������� ���

�

�

�

��
�

���

(k) CCP-Hybrid (↵ = 0)

��� ��� ��� ��	 ��
 ���
����
 ���

�

�

��
��
�

���

(l) CCP-Hybrid (D = 120)

Figure 2: Environments used are Continuous Cartpole (CCP, lrµ = 10), Pendulum (P, lrµ = 1) and Continuous Mountain Car (CMC,
lrµ = 0.1). 2a, 2b, 2c: While the performance of planners is similar in deterministic environments (↵ = 0), DiSProD degrades more
gracefully as compared to CEM and MPPI as the environments becomes more stochastic. 2d, 2e, 2f: In stochastic environments, using a
large planning horizon can negatively impact the performance of CEM and MPPI while DiSProD gives better results. 2g, 2h: With a planning
horizon of 100, all planners fail to reach the goal when the reward becomes very sparse, but DiSProD is able to recover by increasing the
horizon to 200. 2i, 2j: In CMC with large action space, CEM requires 100 times the number samples to achieve comparable results to
DiSProD with 200 restarts. 2k, 2l: DiSProD is able to achieve high rewards in hybrid settings as well.

are omitted since the scores are too low and they distort the
plot. We observe that while CEM/MPPI perform poorly as
the action space increases, the performance of DiSProD re-
mains stable. The performance of CEM improves if we in-
crease the population size (number of samples) by a factor of
100 (from 200 to 20,000), but it still lags behind DiSProD .
Additional results analyzing this scenario are in the full pa-
per. We note that despite the inferior reward, CEM is able
to reach the goal location. However, as shown in Figure 2j,
it requires a lot more steps to reach the goal. This experi-
ment illustrates the potential advantage of planners that use
the analytic model to identify what causes good outcomes as
compared to estimating this effect through sampling.

4.4 Evaluation with Hybrid State Space
While we focus on experiments in continuous spaces, our
planner is compatible with hybrid environments. To illustrate
this we modify the Cart Pole environment to include a binary
variable which is set to 1 if the cart is to the right of a cer-
tain x-coordinate. The agent receives a reward of 3 when this
binary variable is set to 1, otherwise it gets a reward of 1. Fig-
ures 2k and 2l show the performance of DiSProD and CEM
against planning horizon and noise level. We observe that a
deeper search is required for this problem and that DiSProD
can successfully obtain high reward.

4.5 Evaluation with a Physics Simulator

We control a TurtleBot using DiSProD on 16 maps with vary-
ing degrees of difficulty. In these experiments, the analytic
transition model does not take obstacles into account. In-
corporating obstacles in the transition yields similar or bet-
ter results, but slows down the planner due to the increased
size of the analytical computation graph. Instead, the reward
function penalizes the agent on collision with obstacles. The
obstacle patterns and detailed evaluation results are in the full
paper. Following Wu et al. [2020b], we use success rate (SR)
and success weighted by optimal path length (SL) for eval-
uation. SR measures the success percentage across different
maps, while SL is the ratio of actual path length to the eu-
clidean distance from starting position to goal, averaged over
cases where navigation was successful. Intuitively, the lower
the SL value, the faster the agent reaches the goal.

Results are shown in Table 1, averaged over 5 runs for each
map and averaged over all instances. We observe that all
planners are able to control the TurtleBot but DiSProD per-
forms better in both metrics. We also evaluated the planners
in a Gym environment where the planners’ model matches the
environment dynamics exactly. In this case, all planners per-
form similarly. Hence performance differences in TurtleBot
are mainly due to better handling of the inaccurate model.

Environments Method Success Rate (SR)"100
0 Success Length (SL)#

OpenAI Gym CEM 100.00 1.36
MPPI 97.30 1.42

DiSProD 100.00 1.44

TurtleBot CEM 85.88 1.56
MPPI 85.88 1.62

DiSProD 95.29 1.54

Table 1: Aggregated SR and SL for all maps when using the Dubins
car model to plan in our Gym simulator and TurtleBot.

Figure 3: DiSProD controls an Unmanned Ground Vehicle and an
Unmanned Surface Vessel to navigate around obstacles. The opacity
indicates the robot’s poses at different times.

4.6 Experiments with Robotic Systems
We use DiSProD with the same analytic model to control
Jackal and Heron. Real-time control requires high frequency
control commands to avoid significant drift. Therefore, one
has to find a good balance between planning horizon (D) and
the maximum change of linear velocity �v. Experiments
with low �v require a large D and are slow, while experi-
ments with high �v suffer from drift, as the hardware cannot
stop or accelerate instantaneously. We specified these param-
eters through initial exploration with the systems. Other pa-
rameters are the same as in the TurtleBot simulation.

For experiments with Jackal, DiSProD is used exactly as
above, i.e., sending actions to the robot. For the surface ves-
sel, however, we use our planner in another way because our
Heron has a motor issue in one of its thrusters. Specifically,
DiSProD optimizes the action sequence exactly as before. In-
stead of sending the actions, it computes intermediate states
expected to be reached with the policy (which are available
in the computation graph), and sends these as “waypoints”
to a PID controller. We found that, since our planner works
at a fine time granularity, we can send every 5th state to a
PID controller and achieve smooth control. Figure 3 visual-
izes the trajectories generated by DiSProD when controlling
Jackal and Heron. Some videos from these experiments can
be seen at https://pecey.github.io/DiSProD.

� �� ��
6HDUFK�'HSWK

࣏���

���

���

$Q
JO
H

� �� ��
6HDUFK�'HSWK

࣏�

�

9H
OR
FL
W\

Figure 4: Comparing empirical state distributions in Pendulum (↵ =
1) with approximations computed by DiSProD and DiSProD-NV.

4.7 Ablation Study and Runtime Comparison
We first evaluate the contribution of the different variance
terms (v̂st , v̂at and v̂✏t) in Equations (7) and (8) to the per-
formance of the algorithm. We use the term complete mode
when the planner uses the variance terms (DiSProD) and no-
variance mode when it zeroes them out (DiSProD-NV). We
look into the state distributions produced by DiSProD and
DiSProD-NV, and compare them against empirical state dis-
tributions. We fix the start state and a sequence of action dis-
tributions, and compute the next-state distribution for a fixed
depth. For the empirical state distribution, we sample actions
from the same fixed action distribution and use the dynamics
model to compute the next-state. The trajectory distributions
for Pendulum are visualized in Figure 4. We observe that
DiSProD gives us a better approximation than DiSProD-NV
– the mean is more accurate and while the variance is under-
estimated, it has a reasonable shape. Additional experiments
in the full paper show additional visualization of trajectory
distributions, as well as showing that both action and state
variance contribute to the improved planning performance.

We next consider run-time comparing DiSProD to the
baselines. Evaluating on the basic Gym environments (details
in the full paper), DiSProD-NV has roughly the same run time
as CEM and MPPI and DiSProD is up to 7 times slower. This
gap is expected to increase with more state variables due to
the inclusion of partial derivatives in the computation graph.

5 Conclusion
The paper presents DiSProD, a novel approach for planning
in continuous stochastic environments. The method is gen-
eral and overcomes limitations of prior work by using an
abstracted representation, using a higher order Taylor ap-
proximation, and showing how optimization via gradients
can be done over propagation of distributions. Experiments
show success across multiple problems, improved handling of
stochastic environments, and decreased sensitivity to search
depth, reward sparsity, and large action spaces. DiSProD is
also shown to be compatible with control in real robotic sys-
tems. At present, the key limitations of DiSProD are its com-
putational complexity arising from incorporating the first and
second order partials in the computation graph, over which
we perform gradient search, its approximation quality requir-
ing non-zero partial derivatives, and the need for a known
model which may be resolved using model-based RL. These
are left as important questions for future work.

https://pecey.github.io/DiSProD

Acknowledgements
We are grateful to members of the VAIL Lab at Indiana Uni-
versity, especially Durgakant Pushp and Lantao Liu, for help-
ing with the robotic experiments. This work was partly sup-
ported by NSF under grants 2002393, 2006886, 2047169 and
2246261. Some of the experiments in this paper were run
on the Big Red computing system at Indiana University, sup-
ported in part by Lilly Endowment, Inc., through its support
for the Indiana University Pervasive Technology Institute.

References
[Agha-Mohammadi et al., 2014] Ali-Akbar Agha-

Mohammadi, Suman Chakravorty, and Nancy M Amato.
Firm: Sampling-based feedback motion-planning under
motion uncertainty and imperfect measurements. The In-
ternational Journal of Robotics Research, 33(2):268–304,
2014.

[Barcelos et al., 2021] Lucas Barcelos, Alexander Lambert,
Rafael Oliveira, Paulo Borges, Byron Boots, and Fabio
Ramos. Dual Online Stein Variational Inference for Con-
trol and Dynamics. In Proceedings of Robotics: Science
and Systems, Virtual, July 2021.

[Borrelli et al., 2017] Francesco Borrelli, Alberto Bempo-
rad, and Manfred Morari. Predictive control for linear and
hybrid systems. Cambridge University Press, 2017.

[Brockman et al., 2016] Greg Brockman, Vicki Cheung,
Ludwig Pettersson, Jonas Schneider, John Schulman, Jie
Tang, and Wojciech Zaremba. Openai gym. arXiv preprint
arXiv:1606.01540, 2016.

[Bueno et al., 2019] Thiago P. Bueno, Leliane N. de Barros,
Denis D. Mauá, and Scott Sanner. Deep reactive policies
for planning in stochastic nonlinear domains. In Proceed-
ings of the AAAI Conference on Artificial Intelligence, vol-
ume 33, pages 7530–7537, 2019.

[Chow et al., 2017] Yinlam Chow, Mohammad
Ghavamzadeh, Lucas Janson, and Marco Pavone.
Risk-constrained reinforcement learning with percentile
risk criteria. Journal of Machine Learning Research,
18:167:1–167:51, 2017.

[Chua et al., 2018] Kurtland Chua, Roberto Calandra,
Rowan McAllister, and Sergey Levine. Deep reinforce-
ment learning in a handful of trials using probabilistic
dynamics models. Advances in neural information
processing systems, 31, 2018.

[Cui et al., 2018] Hao Jackson Cui, Radu Marinescu, and
Roni Khardon. From stochastic planning to marginal map.
Advances in Neural Information Processing Systems, 31,
2018.

[Cui et al., 2019] Hao Cui, Thomas Keller, and Roni
Khardon. Stochastic planning with lifted symbolic tra-
jectory optimization. In Proceedings of the International
Conference on Automated Planning and Scheduling, vol-
ume 29, pages 119–127, 2019.

[Curi et al., 2020] Sebastian Curi, Felix Berkenkamp, and
Andreas Krause. Efficient model-based reinforcement

learning through optimistic policy search and planning.
Advances in Neural Information Processing Systems,
33:14156–14170, 2020.

[Deisenroth and Rasmussen, 2011] Marc Deisenroth and
Carl E Rasmussen. Pilco: A model-based and data-
efficient approach to policy search. In Proceedings of
the 28th International Conference on machine learning
(ICML-11), pages 465–472, 2011.

[Deisenroth et al., 2013] Marc Peter Deisenroth, Dieter Fox,
and Carl Edward Rasmussen. Gaussian processes for
data-efficient learning in robotics and control. IEEE
transactions on pattern analysis and machine intelligence,
37(2):408–423, 2013.

[Depeweg et al., 2017] Stefan Depeweg, José Miguel
Hernández-Lobato, Finale Doshi-Velez, and Steffen Ud-
luft. Learning and policy search in stochastic dynamical
systems with bayesian neural networks. In International
Conference on Learning Representations, ICLR, 2017.

[Dubins, 1957] Lester E Dubins. On curves of minimal
length with a constraint on average curvature, and with
prescribed initial and terminal positions and tangents.
American Journal of mathematics, 79(3):497–516, 1957.

[Gal et al., 2016] Yarin Gal, Rowan McAllister, and Carl Ed-
ward Rasmussen. Improving pilco with bayesian neu-
ral network dynamics models. In Data-Efficient Machine
Learning workshop, ICML, volume 4, page 25, 2016.

[Garrett et al., 2021] Caelan Reed Garrett, Rohan Chitnis,
Rachel Holladay, Beomjoon Kim, Tom Silver, Leslie Pack
Kaelbling, and Tomás Lozano-Pérez. Integrated task and
motion planning. Annual review of control, robotics, and
autonomous systems, 4:265–293, 2021.

[Hafner et al., 2020] Danijar Hafner, Timothy Lillicrap,
Jimmy Ba, and Mohammad Norouzi. Dream to control:
Learning behaviors by latent imagination. In International
Conference on Learning Representations, 2020.

[Heess et al., 2015] Nicolas Heess, Gregory Wayne, David
Silver, Timothy Lillicrap, Tom Erez, and Yuval Tassa.
Learning continuous control policies by stochastic value
gradients. Advances in neural information processing sys-
tems, 28, 2015.

[Kaelbling and Lozano-Pérez, 2013] Leslie Pack Kaelbling
and Tomás Lozano-Pérez. Integrated task and motion
planning in belief space. The International Journal of
Robotics Research, 32(9-10):1194–1227, 2013.

[Kamthe and Deisenroth, 2018] Sanket Kamthe and Marc
Deisenroth. Data-efficient reinforcement learning with
probabilistic model predictive control. In International
conference on artificial intelligence and statistics, pages
1701–1710. PMLR, 2018.

[Keller and Helmert, 2013] Thomas Keller and Malte
Helmert. Trial-based heuristic tree search for finite hori-
zon mdps. In Proceedings of the International Conference
on Automated Planning and Scheduling, volume 23, pages
135–143, 2013.

[Kingma and Ba, 2015] Diederik P. Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. In Inter-
national Conference on Learning Representations, ICLR,
2015.

[Kobilarov, 2012] Marin Kobilarov. Cross-entropy motion
planning. The International Journal of Robotics Research,
31(7):855–871, 2012.

[Kolobov et al., 2012] Andrey Kolobov, Peng Dai, Mausam
Mausam, and Daniel Weld. Reverse iterative deepen-
ing for finite-horizon mdps with large branching factors.
In Proceedings of the International Conference on Auto-
mated Planning and Scheduling, volume 22, pages 146–
154, 2012.

[Kurniawati et al., 2011] Hanna Kurniawati, Yanzhu Du,
David Hsu, and Wee Sun Lee. Motion planning under un-
certainty for robotic tasks with long time horizons. The In-
ternational Journal of Robotics Research, 30(3):308–323,
2011.

[Lambert et al., 2021] Alexander Lambert, Fabio Ramos,
Byron Boots, Dieter Fox, and Adam Fishman. Stein vari-
ational model predictive control. In Conference on Robot
Learning, pages 1278–1297. PMLR, 2021.

[LaValle, 2006] Steven M LaValle. Planning algorithms.
Cambridge university press, 2006.

[Lenz et al., 2015] Ian Lenz, Ross A Knepper, and Ashutosh
Saxena. Deepmpc: Learning deep latent features for
model predictive control. In Robotics: Science and Sys-
tems, volume 10. Rome, Italy, 2015.

[Li and Littman, 2005] Lihong Li and Michael L. Littman.
Lazy approximation for solving continuous finite-horizon
mdps. In Proceedings of the 20th National Conference
on Artificial Intelligence - Volume 3, AAAI’05, page
1175–1180. AAAI Press, 2005.

[Mania et al., 2018] Horia Mania, Aurelia Guy, and Ben-
jamin Recht. Simple random search of static linear policies
is competitive for reinforcement learning. In Advances in
Neural Information Processing Systems, volume 31, 2018.

[Mohamed et al., 2022] Ihab S Mohamed, Kai Yin, and Lan-
tao Liu. Autonomous navigation of agvs in unknown
cluttered environments: log-mppi control strategy. IEEE
Robotics and Automation Letters, 2022.

[Parmas et al., 2018] Paavo Parmas, Carl Edward Ras-
mussen, Jan Peters, and Kenji Doya. Pipps: Flexible
model-based policy search robust to the curse of chaos.
In International Conference on Machine Learning, pages
4065–4074. PMLR, 2018.

[Raghavan et al., 2017] Aswin Raghavan, Scott Sanner,
Roni Khardon, Prasad Tadepalli, and Alan Fern. Hind-
sight optimization for hybrid state and action mdps. In
Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 31, 2017.

[Tamar et al., 2016] Aviv Tamar, Yi Wu, Garrett Thomas,
Sergey Levine, and Pieter Abbeel. Value iteration net-
works. Advances in neural information processing sys-
tems, 29, 2016.

[Tassa et al., 2012] Yuval Tassa, Tom Erez, and Emanuel
Todorov. Synthesis and stabilization of complex behaviors
through online trajectory optimization. In 2012 IEEE/RSJ
International Conference on Intelligent Robots and Sys-
tems, pages 4906–4913. IEEE, 2012.

[Tassa et al., 2014] Yuval Tassa, Nicolas Mansard, and Emo
Todorov. Control-limited differential dynamic program-
ming. In 2014 IEEE International Conference on Robotics
and Automation (ICRA), pages 1168–1175. IEEE, 2014.

[Van Den Berg et al., 2012] Jur Van Den Berg, Sachin Patil,
and Ron Alterovitz. Motion planning under uncertainty
using iterative local optimization in belief space. The In-
ternational Journal of Robotics Research, 31(11):1263–
1278, 2012.

[Vega-Brown and Roy, 2018] William Vega-Brown and
Nicholas Roy. Admissible abstractions for near-optimal
task and motion planning. In Proceedings of the 27th
International Joint Conference on Artificial Intelligence,
pages 4852–4859, 2018.

[Wagener et al., 2019] Nolan Wagener, Ching an Cheng, Ja-
cob Sacks, and Byron Boots. An online learning approach
to model predictive control. In Proceedings of Robotics:
Science and Systems, pages 1–10, 2019.

[Williams et al., 2017] Grady Williams, Nolan Wagener,
Brian Goldfain, Paul Drews, James M Rehg, Byron Boots,
and Evangelos A Theodorou. Information theoretic mpc
for model-based reinforcement learning. In 2017 IEEE
International Conference on Robotics and Automation
(ICRA), pages 1714–1721. IEEE, 2017.

[Wu et al., 2020a] Ga Wu, Buser Say, and Scott Sanner.
Scalable planning with deep neural network learned tran-
sition models. Journal of Artificial Intelligence Research,
68:571–606, 2020.

[Wu et al., 2020b] Qiaoyun Wu, Xiaoxi Gong, Kai Xu, Di-
nesh Manocha, Jingxuan Dong, and Jun Wang. Towards
target-driven visual navigation in indoor scenes via gener-
ative imitation learning. IEEE Robotics and Automation
Letters, 6(1):175–182, 2020.

[Zamani et al., 2012] Zahra Zamani, Scott Sanner, and
Cheng Fang. Symbolic dynamic programming for contin-
uous state and action mdps. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 26, pages
1839–1845, 2012.

Technical Appendix
A Example: Computation Graphs with

Known Transition Models
For a concrete example, let us consider the dynamics of the
Pendulum from the OpenAI Gym. Let St = [✓t, ✓̇t]> be the
state vector, At = [at]> be the action vector and ✏t = [et]>

be the noise vector. The transition function and the reward
function are defined as follows:

T (S,A, ✏) = [✓t+1, ✓̇t+1]
>
, (11)

where ✓̇t+1 = ✓̇t + (�c1 sin(✓t + ⇡) + c2at)�t

✓t+1 = ✓t + (✓̇t+1 + et)�t

R(S,A) = �✓2t � 0.1⇥ ✓̇t
2 � 0.001⇥ a

2
t (12)

(13)

The original reward function uses a normalized ✓t, but we
ignore it for this example, in order to keep the computations
simple. Here, c1 = 3g

2l and c2 = 3
ml2 , are constants. Then

the expectation and variance of the transition function can be
written as follows:

J
T
St

=
@St+1

@St
=

"@✓t+1

@✓t

@✓t+1

@✓̇t
@✓̇t+1

@✓t

@✓̇t+1

@✓̇t

#

=


1� c1 cos(✓t + ⇡)�2

t �t

�c1 cos(✓t + ⇡)�t 1

�
(14)

J
T
At

=
@St+1

@At
=

"
@✓t+1

@at
@✓̇t+1

@at

#
=


c2�2

t
c2�t

�
(15)

J
T
✏t =

@St+1

@✏t
=

"
@✓t+1

@et
@✓̇t+1

@et

#
=


�t

0

�
(16)

H̃
T
St

=
@
2
St+1

@S
2
t

=

2

4
@2✓t+1

@✓2
t

@2✓t+1

@✓̇2
t

@2✓̇t+1

@✓2
t

@2✓̇t+1

@✓̇2
t

3

5

=


c1 sin(✓t + ⇡)�2

t 0
c1 sin(✓t + ⇡)�t 0

�
(17)

H̃
T
At

=
@
2
St+1

@A
2
t

=

2

4
@2✓t+1

@a2
t

@2✓̇t+1

@a2
t

3

5 =


0
0

�
(18)

H̃
T
✏t =

@
2
St+1

@✏
2
t

=

2

4
@2✓t+1

@e2t
@2✓̇t+1

@e2t

3

5 =


0
0

�
(19)

v̂St =


v̂✓,t

v̂✓̇,t

�
v̂At = [v̂a,t] v̂✏t = [v̂e,t] (20)

E[T (St, At, ✏)] ⇡ T (µSt , µAt , µ✏)

+ 0.5
⇣
H̃

T
St
v̂St + H̃

T
At
v̂At + H̃

T
✏t v̂✏t

⌘

(21)

V[T (St, At, ✏)] ⇡ (JT
St
� J

T
St
)v̂St + (JT

At
� J

T
At
)v̂At

+ (JT
✏t � J

T
✏t)v̂✏t (22)

Q̂ µ0
S µ0

e µ0
a v0

S v0
e v0

a

R T hR
s hR

a hT
s jTs jT✏ jTa

· · · · · ·

⇤ ⇤
+

+ + +

+ µ0
r µ1

S µ1
e µ1

a v1
S v1

e v1
a

R T hR
s hR

a hT
s jTs jT✏ jTa

0.50.5

Figure 5: Computational diagram of the proposed planner for Pen-
dulum showing the distribution block for depth 1 and a portion of the
block for depth 2, as well as showing how the reward is accumulated
in Q̂. Node T and R represents the transition and reward function
respectively. µ0

S = S0 and v0S = 0 capture the initial state distribu-
tion. µi

a and via capture the action distribution at depth i. Similarly
µj
e = 0 and vje = 1 capture the error distribution at depth j. Nodes

hT
s and jTs , j

T
✏ , j

T
a help in computing the next state mean and vari-

ance and node hR
s and hR

a help in computing the mean reward. Note
that hT

a , h
T
✏ are both zero and hence they are omitted from the graph.

The nodes hR
s , hR

a , jT✏ and jTa have a constant value and therefore
they do not have incoming edges.

Similarly, the expressions for the reward function are:

H̃
R
St

=
h
@2R
@✓2

t

@2R
@✓̇2

t

i
= [�2 �0.2] (23)

H̃
R
At

=
h
@2R
@a2

t

i
= [�0.002] (24)

E[R(St, At)] ⇡ R(µSt , µAt)

+ 0.5
⇣
H̃

R
St
v̂St + H̃

R
At
v̂At

⌘
(25)

This illustrates that we can have analytic gradients for the
model as mentioned above. Note that, we do not model the
variance of the reward function as mentioned in Section 3.1.
For the sake of simplicity, we have considered just a single
noise variable in this model. However, the same approach
works with multiple noise variables.

The computation graph for this example is shown in Fig-
ure 5. To make the graph simple, certain portions have been
abstracted away. More specifically, T signifies the transition
function and R specifies the reward function. For this exam-
ple, nodes hT

s , j
T
s , j

T
a and j

T
✏ are used to compute the expec-

tation and variance of next state variables and are defined as
follows: h

T
s = H̃

T
St

; jTs = J
T
St
� J

T
St

; jTa = J
T
At
� J

T
At

;
j
T
✏ = J

T
✏t � J

T
✏t . Similarly, nodes h

R
s and h

R
a are used to

compute the expected reward and are defined as: hR
s = H̃

R
St

;
h
R
a = H̃

R
At

.

B Contribution of Sub-Expressions in the
Taylor’s Expansion

As described in Section 3.1, the vector form of the equations
are as follows:

µ̂st+1 ⇡ T (ẑt) + 0.5


H̃st v̂st + H̃at v̂at + H̃✏t v̂✏t

�
(26)

v̂st+1 ⇡ (Jst � Jst)v̂st + (Jat � Jat)v̂at (27)
+ (J✏t � J✏t)v̂✏t

where ẑt = (µ̂st , µat , µ✏t)
The equations depend on the distribution of state, action

and noise variables. To analyze the impact each set of vari-
ables has on the outcome, we consider three cases - no-
variance, state-variance and complete.

No variance. In this setup, all the variance
terms(v̂s, v̂a, v̂✏) are zeroed out. So the equations become

µ̂st+1 ⇡ Tj(ẑ) (28)
v̂st+1 ⇡ 0 (29)

State variance. Now, we just zero out action variance
(v̂a), which means we effectively optimize a deterministic
policy.

µ̂st+1 ⇡ T (ẑt) + 0.5


H̃st v̂st + H̃✏t v̂✏t

�
(30)

v̂st+1 ⇡ (Jst � Jst)v̂st + (J✏t � J✏t)v̂✏t (31)
Note that at t = 0, as the planner knows the state exactly,

therefore v̂s0 = 0. We now consider the possible values the
remaining partials might take and analyze the impact.

1. J✏t = 0 and H̃✏t = 0. Then,
µ̂s1 ⇡ T (ẑ0) and v̂s1 ⇡ 0 (32)

As v̂st always remains zero, the result is similar to the
no-variance mode.

2. J✏t 6= 0 but H̃✏t = 0. Then,
µ̂s1 ⇡ T (ẑ0) and v̂s1 ⇡ (J✏t � J✏t)v̂✏t (33)

As v̂s1 6= 0, it influences µ̂s2 and v̂s2 and future
timesteps.

3. J✏t = 0 but H̃✏t 6= 0. This can happen as we evaluate
the partials at the mean of the variables, and we assume
zero-mean noise (µ̂✏t = 0). So while J✏t exists, it can
evaluate to zero. In such a scenario, we have,

µ̂s1 ⇡ T (ẑ0) + H̃✏t v̂✏t and v̂s1 = 0 (34)
As v̂st+1 ⇡ (Jst � Jst)v̂st and v̂s0 = 0, the next-state
variance is always zero. We can generalize and write

µ̂st+1 ⇡ T (ẑt) + H̃✏t v̂✏t and v̂st+1 = 0 (35)

Complete. This is the default variant of DiSProD which
uses all the variance terms. As discussed above, for suc-
cessful propagation of distribution, DiSProD requires at least
some of the J or H̃ terms to be non-zero.

C Experiment details
C.1 Environments
In this section, we briefly describe the environments used
for our experiments. The basic environments are taken from
OpenAI Gym to which we make minor modifications. We
rewrite the transition and reward functions by replacing any
step-functions with their smooth equivalents. As the environ-
ments are deterministic, we add noise explicitly to make them
stochastic. ✏ denotes noise sampled from a standard Gaussian
and ↵ controls the amount of noise being added.

Cartpole
Cartpole has four state variables - x, y, ✓, ✓̇ and one control
variable which controls the force acting on the cart. We make
the environment stochastic by adding Gaussian noise to the
force being applied. Concretely, the updated equation for
force becomes forcenoisy = force + ↵✏.

Mountain Car
Mountain Car has two state variables - position (x) and ve-
locity (v) and one control variable (u) which is the force to
be applied on the car. At a high level, the environment has
two functions fx and fv that are used to update the position
and velocity.

vt+1 = fv(xt, vt) and xt+1 = fx(xt, vt+1)

We add noise to vt+1 to make the environment stochastic.
vt+1 = fv(xt, vt) + ↵✏.

Pendulum
Pendulum also has two state variables - ✓ and ✓̇ and the con-
trol variable (u) is the torque. First, ✓̇t+1 is computed using
✓t, ✓̇t, ut and some constants, and then ✓t+1 is updated using
✓̇t+1. We augment this and add noise to the update equation
for ✓t+1 such that it becomes ✓t+1 = ✓t+(✓̇t+1+↵ exp(✏))dt.

Dubins Car
The standard Dubins Car model maintains three state vari-
ables - x, y, ✓ and has two control variables - velocity (v) and
angular velocity (!). The dynamics equations are:

xt+1 = xt + vt cos ✓tdt (36)
yt+1 = yt + vt sin ✓tdt (37)
✓t+1 = ✓t + !dt (38)

Since this is a discrete time system and ignores acceleration,
the motion of the car can be unrealistic. For example, al-
though vt = 0 and vt+1 = vmax is a valid control, this cannot
be performed by a real vehicle. As Gazebo is a real-physics
simulator and considers factors like acceleration, inertia and
friction, planning with this model leads to poor performance
in Gazebo. In order to obtain a better approximation of the
model used by Gazebo, we modify the controls from velocity

(a) no-ob-1 (b) no-ob-2 (c) no-ob-3 (d) no-ob-4

(e) no-ob-5 (f) ob-1 (g) ob-2 (h) ob-3

(i) ob-4 (j) ob-6 (k) ob-7 (l) ob-8

(m) ob-9 (n) ob-10 (o) ob-11 (p) cave-mini

Figure 6: Examples of maps on which experiments with Dubins’ car
in Gym were performed. Corresponding maps were generated for
experiments in Gazebo.

and angular velocity to delta velocity (�v) and delta angular
velocity (�!) and compute velocity and angular velocity as

vt = vt�1 +�vt (39)
!t = !t�1 +�!t (40)

This prevents sudden changes in linear and angular velocity
and helps to limit the actions. We experiment with this model
on a suite of maps ranging from simple ones with no obstacles
to complex ones with obstacles. All the map configurations
are shown in Figure 6 and two of the RViz maps are shown in
Figure 7.

Simple Env
In the Gym environments that we experimented with, some
of the required partial derivatives were either zero or not sig-
nificant enough to make a difference in the planning results.
To showcase the difference more clearly, we designed an ad-
ditional environment called SimpleEnv where all the required
partials are non-zero.

The environment has two state variables - x and y and two
action variables - �x and �y . The dynamics are as follows:

xt+1 = x+ �x + ↵(0.1✏+ ✏
2) (41)

yt+1 = y + �y (42)

The reward function is a smoothed 0-1 reward where a reward
of 1 is given if the agent is sufficiently close to a predefined
goal position.

Cartpole - Hybrid Variant
To experiment with hybrid environments, we modify Cart-
pole and introduce an environment variable called reward

(a) Map ob-11 in RViz (b) Map cave-mini in RViz

Figure 7: Two of the maps used in simulated Turtelbot experiments
in Gazebo, as visualized by RViz.

࣏��� ࣏��� ��� ��� ���
[���WDUJHW

���

���

���

���

���

���

[�
!

�WD
UJ
HW

���
�
�
�
�

Figure 8: As the value of sparsity multiplier increases, the greater-
than-equal-to grows closer to a step function.

marker (set to 0.5 in the experiment) and a new binary state
variable that is set to 1 if the cart is to the left of the reward
marker. The reward function is modified such that the agent
gets a reward of 3 if the agent is to right of the reward marker
and otherwise it continues to get a reward of 1. The initial
position of the cart is always to the left of the reward marker.
The noise is added in a similar manner as in the original Cart-
pole environment.

Mountain Car - High Dimensional Action Space
For our experiments with high dimensional action space, we
tweak the standard Mountain Car environment and add m re-
dundant action variables. Similar to the original Mountain
Car environment, the dynamics are only influenced by the 1st
action variable. We modify the action penalty term in the re-
ward function to sum over all the action variables. Specif-
ically, the modified action penalty term function becomes
0.1
Pm

i=1 ai.

C.2 Controlling Sparsity of Rewards
As mentioned in Section 4.2, we modify the default reward
function of Continuous Mountain Car to use a smooth version
of greater-than-equal-to function (fge). The function takes as
input a variable x and a target t and outputs �(10�(x � t))
where � is the sparsity multiplier and �(a) = 1/1+e�a. The
function is a smooth approximation of x � t. Figure 8 shows
a plot of fge against x�t. As the sparsity multiplier increases,
the value of the function becomes increasingly similar to that
of a step function and rewards become sparse.

C.3 Hardware Platforms
We use two physical robots in our experiments - Jackal and
Heron, both of which are made by Clearpath Robotics. As
mentioned in Section 4.5, in both the cases, the positions of
obstacles in the environment are unknown to the transition
model. However, the reward function is aware of the obsta-
cles and penalizes trajectories that collide with one.

Jackal is an Unmanned Ground Vehicle (UGV), whose po-
sition and orientation are obtained through a VICON Motion
Capture System, and the UGV is controlled directly by DiS-
ProD through commands for linear and angular velocity.

Heron is an Unmanned Surface Vessel (USV), whose po-
sition is obtained by fusing GPS and Inertial Measurement
Unit (IMU) information using EKF. It is also controlled
through commands for linear and angular velocity, but in our
experiments this is mediated through a PID controller because
one of the USV’s thrusters has intermittent motor failures,
which requires a high-frequency feedback controller to com-
pensate the significant error. DiSProD computes an action
sequence through its computation graph and then send a list
of waypoints – the means of states on the graph – to the PID
controller. The list is updated asynchronously at every deci-
sion cycle of the planner.

C.4 Additional Details
We list the values of the parameters used for our experiments
with OpenAI Gym in Table 2 and for our experiments with
Jackal and Heron in Table 3. The step sizes for µa and va are
indicated by lrµ and lrv . �v and �! represent the maximum
permissible values for delta linear velocity and delta angular
velocity, while v and ! indicate the maximum permissible
linear and angular velocity respectively.

Environments nA nS lrµ lrv Rollout Depth Restarts

CartPole 1 4 10 1 25 200
Pendulum 1 4 1 0.1 25 200
Mountain Car 1 2 0.1 0.001 100 200
Dubins Car 5 5 10 1 100 200
Simple Env 2 2 0.01 0.001 20 50

Table 2: Parameter specifications for experiments with OpenAI
Gym simulators.

Robots �v �! v ! Rollout Depth Restarts

TurtleBot 0.05 1 0.5 60 100 200
Jackal 0.3 5 0.6 60 30 400
Heron 0.5 10 1 30 70 400

Table 3: This table elaborates the parameters of the Dubin’s car
model with action ranges, and specifies modifications to the depth
and restarts in experiments with TurtleBot, Jackal and Heron.

D Experimental Results
Does having a larger planning horizon help in determin-
istic environments? In our experiments with basic Gym
environments, we observe that optimal performance, with all
the three planners, is achieved with a small planning horizon.

Increasing the planning horizon further does not impact the
performance. (Figure 9 (a-c)).

Does sampling more trajectories help? Shooting algo-
rithms sample action sequences to generate trajectories. Intu-
itively, increasing the number of action sequences that a plan-
ner is allowed to sample should help with better plans and
hence improve performance. We observe that in determin-
istic environments, sampling a small number of trajectories
is sufficient to obtain near optimal performance. Making the
environments stochastic degrades the planners’ overall per-
formance. Interestingly enough, in these environments, the
performance remains unaffected on increasing the number of
samples. Experiments with high dimensional Mountain Car
indicate that this behaviour might be due to the fact the state
and action space for the basic Gym environments is quite
small. Note that we use the same hyperparameters in deter-
ministic and stochastic environments. (Figure 9 (d-i)).

How does the performance of shooting algorithms vary
when the size of the action space increases? When the
action space increases, a small number of samples cover a
very small volume of the possible trajectories. Intuitively, the
performance of agents relying on shooting methods will be
poor in such scenarios and performance should improve on
increasing the number of samples. As shown in Figure 2i,
this indeed is the case. We take a closer look at the perfor-
mance of CEM as the population size increases. For this, we
use the modified version of Mountain Car as detailed in Sec-
tion 4.3 with 14 redundant actions. For this experiment we fix
the state and consider action selection in CEM which is done
with K = 10 optimization steps. We plot the values of 5 ac-
tion variables (A1 to A5) across 10 optimization steps where
A1 influences the dynamics while the rest are redundant ac-
tion variables. The action value after the 10th optimization
step is output by CEM and is executed by the agent in the
environment. For attaining high rewards, an agent must learn
to keep the values of action variables A2 through A5 as close
to 0 as possible, while using A1 to act optimally. The result
is shown in Figure 10. We observe that as the population size
increases, CEM does a better job at keeping the values of the
redundant variables close to 0. Plots shown in the main paper
show that this indeed corresponds to improved performance.

Does DiSProD provide a better approximation of the
system dynamics than DiSProD-NV? As discussed ear-
lier, DiSProD-NV does not account for any uncertainty in the
dynamics and ignores the variance terms in the Taylor’s ex-
pansion while DiSProD uses a 2nd degree Taylor’s expansion
to approximate the dynamics. Note that DiSProD-NV does
not calculate a distribution but simply propagates the mean.
In addition, its calculated mean is potentially less accurate.
We explore this behaviour in SimpleEnv. For a fixed sequence
of action distributions, we compute the state distribution due
to DiSProD and DiSProD-NV and compare that to the em-
pirical state distribution visited by the agent when it samples
from the same action distribution. In Figure 11 we compare
the empirical state distribution of x against the state distribu-
tions as computed by DiSProD and DiSProD-NV. When ↵ is
0, the approximation using DiSProD overlaps with the empir-
ical distribution for some time before diverging slightly. As
the stochasticity of the environment increases (indicated by

� � � 	
 � �

���������������� ���

��

���

��

���

��
��
�

���

���
����
�������

(a) CCP (↵ = 0)

� 	 � �

��������������� ���

���

����

���

��
��
�

���

(b) P (↵ = 0)

��� ��� ��	 ��
 ��� ��� ���
��
������������� ���

�

�

�

	

��
��
�

���

(c) CMC (↵ = 0)

� � � 	

�����������
����� ���

��

���

��

���

��
��
�

���

(d) CCP (↵ = 0)

� � � 	

����������������� ���

����

�����

����

���
�

����

����

�
��
�

���

(e) P (↵ = 0)

��	 ��� ��	 ��� ��	
����������������� ���

���

���

���

��

���

���

�
��
�

���

(f) CMC (↵ = 0)

� � � 	

�����������
����� ���

��

���

��

���

��
��
�

���

(g) CCP (↵ = 5)

� � � 	

���������������� ���

���	

����

����

����

����

��
��
�

���

(h) P (↵ = 2)

��� ��� ��� ��� ���

��
������������� ���

�����

����

����

����

��	�

����

��
��
�

���

(i) CMC (↵ = 0.002)

Figure 9: Environments used are Continuous Cartpole (CCP), Pendulum (P) and Continuous Mountain Car (CMC). 9a, 9b, 9c: In determin-
istic environments (↵ = 0), optimal performance is achieved with a small planning horizon. Increasing the planning horizon further does not
impact performance of any of the planners. 9d, 9e, 9f: A similar behaviour is observed when number of samples is varied and ↵ = 0. 9g, 9h,
9i: In noisy environments, DiSProD performs better than CEM and MPPI. Interestingly, increasing the number of samples does not improve
the performance. Note that the hyperparameters used are same in both deterministic and stochastic environments.

� � � � �
2SWLPL]DWLRQ�VWHS

࣏���

࣏���

���

���

���

���

$F
WLR
Q�
YD
OX
H

$�

3RS�VL]H�
��

� � � � �
2SWLPL]DWLRQ�VWHS

࣏���

࣏���

࣏���

���

���

���

$F
WLR
Q�
YD
OX
H

$�

� � � � �
2SWLPL]DWLRQ�VWHS

࣏���

࣏���

���

���

���

���

$F
WLR
Q�
YD
OX
H

$�

� � � � �
2SWLPL]DWLRQ�VWHS

࣏���

࣏���

���

���

���

$F
WLR
Q�
YD
OX
H

$�

� � � � �
2SWLPL]DWLRQ�VWHS

࣏���

࣏���

���

���

���

$F
WLR
Q�
YD
OX
H

$�

� � � � �
2SWLPL]DWLRQ�VWHS

࣏���

࣏���

���

���

���

$F
WLR
Q�
YD
OX
H

3RS�VL]H�
���

� � � � �
2SWLPL]DWLRQ�VWHS

࣏���

࣏���

���

���

���

$F
WLR
Q�
YD
OX
H

� � � � �
2SWLPL]DWLRQ�VWHS

࣏���

࣏���

���

���

���

$F
WLR
Q�
YD
OX
H

� � � � �
2SWLPL]DWLRQ�VWHS

࣏���

࣏���

���

���

���

$F
WLR
Q�
YD
OX
H

� � � � �
2SWLPL]DWLRQ�VWHS

࣏���

࣏���

���

���

���

$F
WLR
Q�
YD
OX
H

� � � � �
2SWLPL]DWLRQ�VWHS

࣏���

࣏���

���

���

���

$F
WLR
Q�
YD
OX
H

3RS�VL]H�
����

� � � � �
2SWLPL]DWLRQ�VWHS

࣏���

࣏���

���

���

���

$F
WLR
Q�
YD
OX
H

� � � � �
2SWLPL]DWLRQ�VWHS

࣏���

࣏���

���

���

���

$F
WLR
Q�
YD
OX
H

� � � � �
2SWLPL]DWLRQ�VWHS

࣏���

࣏���

���

���

���

$F
WLR
Q�
YD
OX
H

� � � � �
2SWLPL]DWLRQ�VWHS

࣏���

࣏���

���

���

���

$F
WLR
Q�
YD
OX
H

� � � � �
2SWLPL]DWLRQ�VWHS

࣏���

࣏���

���

���

���

$F
WLR
Q�
YD
OX
H

3RS�VL]H�
�����

� � � � �
2SWLPL]DWLRQ�VWHS

࣏���

࣏���

���

���

���

$F
WLR
Q�
YD
OX
H

� � � � �
2SWLPL]DWLRQ�VWHS

࣏���

࣏���

���

���

���

$F
WLR
Q�
YD
OX
H

� � � � �
2SWLPL]DWLRQ�VWHS

࣏���

࣏���

���

���

���

$F
WLR
Q�
YD
OX
H

� � � � �
2SWLPL]DWLRQ�VWHS

࣏���

࣏���

���

���

���

$F
WLR
Q�
YD
OX
H

Figure 10: Values of 5 action variables (A1 to A5) across 10 optimization steps as the population size is increased. The action value at the
10th optimization step is executed in the environment. Only A1 influences the dynamics, whereas all of the action variables contribute to
action penalty in the reward function. An agent must learn to optimize A1 to achieve the goal, while keeping the values of A2 to A5 close to
0 and achieve a higher reward. When the population size is small, CEM fails to achieve this and obtains a poor score.

increasing ↵ values), the state distributions due to DiSProD
and DiSProD-NV diverge from the empirical state distribu-
tion. But the distribution due to DiSProD is a better approxi-
mation than the distribution due to DiSProD-NV.

Do both state and action variance improve planning?
DiSProD relies on state and action variance terms to propa-
gate distributions. Intuitively, state variance captures the im-
pact of noise on the state variables while having action vari-
ance enables DiSProD to search over a stochastic policy. We
explore the performance of the three variants of DiSProD dis-
cussed in Appendix B. Results are shown in Figure 12a, 12b,
12c. We observe that for regions of low stochasticity, all the
three modes have similar performance. But with increasing
↵, zeroing out the state variance harms DiSProD. Further, in
all of the basic environments, zeroing out action variance but
keeping state variance does not harm performance. However,
as shown in Figure 12d, in the Simple Env which has a more
complex noise structure (see Appendix C.1) action variance
leads to further improvement in performance.

Detailed results for experiments with modified Dubins
Car model The detailed results for experiments with the
modified Dubins Car model in Gym and TurtleBot are given
in Tables 4 and 5. These are aggregated in the main paper in
Table 1 by averaging over the 16 maps.

E Runtime
We compare the running time of DiSProD and DiSProD-NV
with CEM and MPPI in the basic Gym environments on a sys-

tem with 3.5GHz i7 CPU and 32GB of memory. We run each
planner for 5 episodes and compute the mean and standard
deviation of the time taken for each episode. As shown in
the table below, the run time of DiSProD-NV is close to both
CEM and MPPI, while DiSProD is up to 7 times slower. DiS-
ProD computes the diagonal of the Hessian matrix for propa-
gating distribution which is expensive. The partials also add
to the cost of the gradient computation while optimizing ac-
tions. Both of these computations can be expensive for high-
dimensional state spaces.

Environment CEM MPPI DiSProD-NV DiSProD

Cart Pole 3.69 ± 0.68 3.70 ± 0.75 4.10 ± 1.60 22.26 ± 4.50
Pendulum 3.68 ± 0.68 3.72 ± 0.78 4.11 ± 1.54 18.16 ± 6.73
Mountain Car 2.04 ± 0.76 2.24 ± 0.84 2.66 ± 1.69 5.70 ± 2.93

Map CEM MPPI DiSProD
%Success"100

0 #Steps# %Success"100
0 #Steps# %Success"100

0 #Steps#

no-ob-1 100.0 ± 0.0 37.0 ± 0.4 100.0 ± 0.0 38.0 ± 0.0 100.0 ± 0.0 35.0 ± 1.6
no-ob-2 100.0 ± 0.0 44.0 ± 0.0 100.0 ± 0.0 48.0 ± 0.0 100.0 ± 0.0 42.0 ± 1.2
no-ob-3 100.0 ± 0.0 63.0 ± 0.0 100.0 ± 0.0 67.0 ± 0.8 100.0 ± 0.0 63.0 ± 0.0
no-ob-4 100.0 ± 0.0 44.0 ± 0.0 100.0 ± 0.0 49.0 ± 0.0 100.0 ± 0.0 44.0 ± 0.0
no-ob-5 100.0 ± 0.0 39.0 ± 2.0 100.0 ± 0.0 37.0 ± 0.4 100.0 ± 0.0 30.0 ± 0.0

ob-1 100.0 ± 0.0 22.0 ± 0.0 100.0 ± 0.0 29.0 ± 0.0 100.0 ± 0.0 22.0 ± 0.8
ob-2 100.0 ± 0.0 77.0 ± 2.71 100.0 ± 0.0 76.0 ± 2.86 100.0 ± 0.0 75.0 ± 2.0
ob-3 100.0 ± 0.0 36.0 ± 2.0 100.0 ± 0.0 39.0 ± 0.4 100.0 ± 0.0 31.0 ± 1.6
ob-4 100.0 ± 0.0 41.0 ± 0.0 100.0 ± 0.0 46.0 ± 0.0 100.0 ± 0.0 45.0 ± 6.4
ob-5 100.0 ± 0.0 47.0 ± 0.0 100.0 ± 0.0 47.0 ± 0.0 100.0 ± 0.0 49.0 ± 0.0
ob-6 100.0 ± 0.0 60.0 ± 0.0 80.0 ± 40.0 133.0 ± 133.33 100.0 ± 0.0 60.0 ± 0.0
ob-7 100.0 ± 0.0 32.0 ± 0.0 100.0 ± 0.0 38.0 ± 0.0 100.0 ± 0.0 31.0 ± 3.72
ob-8 100.0 ± 0.0 44.0 ± 0.0 100.0 ± 0.0 48.0 ± 2.0 100.0 ± 0.0 39.0 ± 0.8
ob-9 100.0 ± 0.0 31.0 ± 0.0 100.0 ± 0.0 32.0 ± 0.0 100.0 ± 0.0 42.0 ± 0.0

ob-10 100.0 ± 0.0 46.0 ± 4.0 100.0 ± 0.0 41.0 ± 2.4 100.0 ± 0.0 29.0 ± 0.0
ob-11 100.0 ± 0.0 45.0 ± 0.0 100.0 ± 0.0 48.0 ± 0.4 100.0 ± 0.0 48.0 ± 0.0

cave-mini 100.0 ± 0.0 79.0 ± 1.6 100.0 ± 0.0 85.0 ± 0.0 100.0 ± 0.0 75.0 ± 4.8

Table 4: Success rate and number of steps taken by the planners for each map when run in the Gym environment. The dynamics model used
by the planners is an accurate representation of the true dynamics of the system. In most maps, DiSProD takes the least number of steps to
reach the goal.

Maps CEM MPPI DiSProD
%Success"100

0 #Steps# %Success"100
0 #Steps# %Success"100

0 #Steps#

no-ob-1 100.0 ± 0.0 83.0 ± 12.2 100.0 ± 0.0 134.0 ± 90.04 100.0 ± 0.0 59.0 ± 9.56
no-ob-2 100.0 ± 0.0 169.0 ± 6.95 100.0 ± 0.0 180.0 ± 3.88 100.0 ± 0.0 174.0 ± 14.05
no-ob-3 100.0 ± 0.0 163.0 ± 7.84 100.0 ± 0.0 195.0 ± 7.22 100.0 ± 0.0 143.0 ± 16.77
no-ob-4 100.0 ± 0.0 116.0 ± 3.88 100.0 ± 0.0 121.0 ± 2.87 100.0 ± 0.0 101.0 ± 12.67
no-ob-5 100.0 ± 0.0 197.0 ± 6.08 100.0 ± 0.0 203.0 ± 5.12 100.0 ± 0.0 211.0 ± 14.18

ob-1 40.0 ± 49.0 289.0 ± 136.44 100.0 ± 0.0 149.0 ± 2.1 100.0 ± 0.0 155.0 ± 51.79
ob-2 100.0 ± 0.0 89.0 ± 2.86 100.0 ± 0.0 120.0 ± 2.42 100.0 ± 0.0 88.0 ± 11.62
ob-3 100.0 ± 0.0 96.0 ± 4.35 100.0 ± 0.0 136.0 ± 4.8 100.0 ± 0.0 97.0 ± 5.68
ob-4 100.0 ± 0.0 132.0 ± 10.13 100.0 ± 0.0 177.0 ± 8.52 100.0 ± 0.0 144.0 ± 16.81
ob-5 100.0 ± 0.0 93.0 ± 7.91 100.0 ± 0.0 149.0 ± 3.61 100.0 ± 0.0 103.0 ± 6.77
ob-6 0.0 ± 0.0 400.0 ± 0.0 0.0 ± 0.0 400.0 ± 0.0 80.0 ± 40.0 243.0 ± 115.9
ob-7 100.0 ± 0.0 87.0 ± 5.23 100.0 ± 0.0 127.0 ± 4.59 100.0 ± 0.0 94.0 ± 4.83
ob-8 100.0 ± 0.0 133.0 ± 1.36 100.0 ± 0.0 175.0 ± 14.43 100.0 ± 0.0 155.0 ± 9.4
ob-9 100.0 ± 0.0 112.0 ± 7.24 100.0 ± 0.0 110.0 ± 2.68 100.0 ± 0.0 126.0 ± 33.85

ob-10 40.0 ± 49.0 298.0 ± 125.42 100.0 ± 0.0 150.0 ± 6.09 60.0 ± 49.0 233.0 ± 137.32
ob-11 80.0 ± 40.0 239.0 ± 80.75 60.0 ± 49.0 275.0 ± 102.4 80.0 ± 40.0 230.0 ± 88.32

cave-mini 100.0 ± 0.0 290.0 ± 15.97 0.0 ± 0.0 400.0 ± 0.0 100.0 ± 0.0 332.0 ± 20.43

Table 5: Success rate and number of steps taken by the planners for each map while controlling Turtlebot. The dynamics model used by the
planners in an approximation of the true dynamics of the system. Although in some cases DiSProD takes longer to complete the goal in maps
with obstacles, it has a better overall SR as compared to CEM/MPPI.

(a) ↵ = 0 (b) ↵ = 0.1 (c) ↵ = 0.2 (d) ↵ = 0.25

Figure 11: For a fixed action distribution, the state distribution simulated by DSSPD, while planning in Simple Env, is a better approximation
of the empirical state distribution than the one due to DSSPD-NV.

��� ��� ��� ��	 ��
 ���
����
 ���

���

���

��	

��

��
��
�

���

(a) CCP

� � � � � 	
����� ����

�

�

�
��
�

���

(b) CMC

���� ���	 ��	� ���	 ���� ���	 ��	� ���	 ����
�����

�

��

��

�
��
�

���

(c) P

��� ��
 ��� ��
 ��� ��

����

��

��

�

�	

��

��
��
�

���

(d) SE

Figure 12: Environments used are Continuous Cartpole (CCP), Pendulum (P), Continuous Mountain Car (CMC) and Simple Env (SE).
Ignoring the variance terms generally hurts DiSProD, especially with increasing ↵. While action variance does not contribute a lot to the
planner’s performance in some environments (a, b, c), but in others (d) searching over a stochastic policy yields further improvement.

	Introduction
	Related Work
	Algorithms and Methodology
	Analytic Computation Graph
	Optimization Algorithm
	Discussion

	Experiments
	Baselines
	Evaluation in Basic Gym Environments
	Evaluation in High Dimensional Action Space
	Evaluation with Hybrid State Space
	Evaluation with a Physics Simulator
	Experiments with Robotic Systems
	Ablation Study and Runtime Comparison

	Conclusion
	Example: Computation Graphs with Known Transition Models
	Contribution of Sub-Expressions in the Taylor's Expansion
	Experiment details
	Environments
	Cartpole
	Mountain Car
	Pendulum
	Dubins Car
	Simple Env
	Cartpole - Hybrid Variant
	Mountain Car - High Dimensional Action Space

	Controlling Sparsity of Rewards
	Hardware Platforms
	Additional Details

	Experimental Results
	Runtime

