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ABSTRACT

Dielectric elastomer actuators (DEAs) are soft, electrically powered actuators that have no discrete moving parts, yet can exhibit large strains
(10%-50%) and moderate stress (~100 kPa). This Tutorial describes the physical basis underlying the operation of DEA’s, starting with a
simple linear analysis, followed by nonlinear Newtonian and energy approaches necessary to describe large strain characteristics of actuators.
These lead to theoretical limits on actuation strains and useful non-dimensional parameters, such as the normalized electric breakdown
field. The analyses guide the selection of elastomer materials and compliant electrodes for DEAs. As DEAs operate at high electric fields,
this Tutorial describes some of the factors affecting the Weibull distribution of dielectric breakdown, geometrical effects, distinguishing
between permanent and “soft” breakdown, as well as “self-clearing” and its relation to proof testing to increase device reliability. New
evidence for molecular alignment under an electric field is also presented. In the discussion of compliant electrodes, the rationale for carbon
nanotube (CNT) electrodes is presented based on their compliance and ability to maintain their percolative conductivity even when
stretched. A procedure for making complaint CNT electrodes is included for those who wish to fabricate their own. Percolative electrodes
inevitably give rise to only partial surface coverage and the consequences on actuator performance are introduced. Developments in actuator
geometry, including recent 3D printing, are described. The physical basis of versatile and reconfigurable shape-changing actuators, together
with their analysis, is presented and illustrated with examples. Finally, prospects for achieving even higher performance DEAs will be
discussed.

Published under license by AIP Publishing. https://doi.org/10.1063/5.0043959

1. INTRODUCTION

The goal of creating artificial muscles with performances
comparable to mammalian muscles has proven to be a rallying call
to scientists and engineers, particularly in the soft robotics commu-
nity. Several different active polymer approaches have been pro-
posed1 for reaching this goal, but in this Tutorial, we focus on
dielectric elastomer actuators (DEAs). DEAs are solid electrostatic
actuators, with no discrete moving parts, that can be controlled elec-
trically to produce large actuation strains and high energy densities
on a par with mammalian muscles and over a moderate range of fre-
quencies (up to <1 kHz). Fundamental to the actuator performance
is the use of thin elastomers as the dielectric, sandwiched between
compliant electrodes, because elastomers exhibit the unusual combi-
nation of being soft, highly extensible, and nearly incompressible.

A DEA, in its simplest configuration, consists of an elastomer
layer that is coated by compliant electrodes on its two opposite sur-
faces [Fig. 1(a) (left)]. Applying a voltage to the compliant elec-
trodes compresses the elastomer in thickness due to the Coulombic
attraction of opposite charges and causes lateral expansions of the

elastomer due to its incompressibility [Fig. 1(a) (right)]. The
notion that DEAs could be used as an artificial muscle was pro-
posed in 2000 by Pelrine et al.>’ According to Google Scholar,
publications in which “dielectric elastomer actuators” are discussed
has increased from 14 publications per year in 2000 to over 800 in
2019. To date, more than 6000 articles and book chapters on
dielectric elastomer actuators have been published. Early on, much
of the research consisted of demonstrations of electrically driven
actuation using thin elastomer membranes, usually held on a frame
to keep them taut [Fig. 1(b)]. One of the major concerns at the
time was avoiding electromechanical instability leading to abrupt
failure. Although this instability had first been described in the
1950s" and is now recognized as an abrupt “snap-through” thin-
ning above a critical electrical field [Fig. 2(a)], it was found empiri-
cally that the instability could be forestalled by prestretching the
elastomer.” This necessitated the use of a rigid frame, limiting pos-
sible actuator designs. By introducing a rigorous thermodynamic
basis for describing the mechanics of actuation, Suo et al. showed
that the strain stiffening of prestretched elastomers is the reason for
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FIG. 1. Physical basis and examples of DEA devices, and their performance
compared to skeletal muscles. (a) A DEA, in its simplest configuration, consists
of a layer of soft elastomer sandwiched between two compliant electrodes (left)
that contracts in thickness under an applied voltage (right) due to Coulombic
attractions of opposite charges on the two electrodes. The red arrows represent
the electric field vectors inside the elastomer. (b) One of the first demonstrations
of dielectric elastomer actuation consisted of a film of a commercial elastomer
stretched on a circular frame with painted carbon grease as the compliant elec-
trodes, showing an area expansion of 68% under DC applied voltages.”
Reproduced with permission from Pelrine et al., Science 287(5454), 836-839
(2000). Copyright 2000 The American Association for the Advancement of
Science. (c) An example of a multilayer DEA used as the artificial muscle on a
real-size human skeleton.”” (d) The actuation stresses and strains that DEAs
produce with current materials and technology, shown by color shading, are on
a par with that of the natural muscles shown by the data points.”*** Typical
stresses and strains of natural muscles are ~100 kPa and ~10%, respectively,
operating over frequencies up to ~100Hz, both of which decrease with the
actuation frequency. From Full, Comprehensive Physiology. Copyright 2010
John Wiley and Sons. Reproduced with permission from Wiley Books.

preventing the instability and the instability could also be avoided
by using an elastomer with certain strain-stiffening characteristics
without prestretching.”~” This removed the constraint of having to
use a rigid frame to support the actuator, enabling new design
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FIG. 2. Actuation strains of biaxial DEAs as described by linear elasticity. (a)
The actuation strain, e; = log (t/fy), varies with the square of the non-
dimensional electric field, v/e/YE, assuming the electrodes are fully compliant,
and the strain varies nonlinearly with the non-dimensional applied voltage,
VelYlty. The electromechanical instability point is indicated. (b) Compliance
of the electrodes plays a key role in achieving large actuation deformations: the
more compliant the electrode the larger the attainable actuation strains.

configurations. It was also increasingly recognized that devices
require elastomer/electrode multilayer configurations® ' in order
to generate sufficiently large forces at moderate applied voltages
[Fig. 1(c)].

Since those early studies, considerable advances have been
made toward the goal of producing dielectric elastomer artificial
muscles. These include elastomer materials engineered to show
optimum strain-stiffening behaviors; electrodes optimized for high
compliance, electrical conductivity, and self-clearing; new function-
alities such as self-sensing have been added; a variety of different
configurations proposed; and numerous novel devices based on
DEAs have been demonstrated. Many of these advances can be
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12721 and will not be discussed

found in the review articles on DEAs
in this Tutorial.

To place dielectric elastomer actuator performance in context,
it is useful to compare some of their characteristics with those of
mammalian muscles as well as other types of actuators. Skeletal
muscles are made up of repeating units, called sarcomeres, consist-
ing of actin-myosin segments.”> These can produce contractile
stresses that range from less than 100 kPa up to 1000 kPa,”**** as
shown in Fig. 1(d). The actuation strains of the skeletal muscles are
typically less than 10%.”” In addition to the actual values, muscle
tissues show their maximum force near zero strain where the
actin-myosin overlap is maximum and approaches nearly zero at
the maximum actuation strain where the actin-myosin overlap is
nearly zero.”> As will be described in Sec. II, both the maximum
forces and actuation strain capabilities of multilayer DEAs can
match and even exceed those of natural muscles. For instance, for
an elastomer with a typical electrical breakdown strength of
~100 Vum™" and permittivity of ~3ey, the maximum blocking
force per area according to Eq. (3), F/A = €E?, is larger than
250 kPa, which is on par with that quoted for skeletal muscles. The
actuation strain that a DEA can produce depends on the stiffness
behavior of the elastomer [Egs. (1) and (20)] and can be as large as
100% laterally,”® which corresponds to a decrease of 75% in thick-
ness, although the maximum actuation strains more typically fall in
the range of 10%-30% laterally, i.e., between 17% and 40% decrease
in thickness. The actuation force vs strain for DEAs has its
maximum at zero strain, called the blocking force, and becomes
zero at maximum actuation strain [Fig. 3(b)] resembling the actua-
tion force-strain behavior of natural muscles. Equations (3)
and (20) describe the quasi-static force-displacement characteristic
of a biaxial DEA. Although not the focus of this article, the band-
width of DEAs and skeletal muscles are also similar, as well as their
energy densities.

More generally, actuators can be characterized in terms of
three independent parameters: the forces and displacements they
can produce and their frequency bandwidth. Pneumatic and
hydraulic actuators can be designed to produce combinations of
arbitrarily large forces and large displacements, but their band-
width is small (few Hz) and decreases with increasing size. By con-
trast, at the other extreme, piezoelectric actuators can operate over
a large bandwidth (hundreds of MHz and above) and produce
large forces, but the displacements are small, usually micrometers,
unless embodied into a stepping motor device. In comparison,
dielectric elastomers actuators occupy a more restricted region in
this three-dimensional space, generating small forces at frequencies
up to ~1 kHz but with displacements of millimeter to centimeters,
a range of interest in haptics and soft robotics. Other favorable
comparisons can be drawn in terms of specific powers and energies
since the densities of elastomers are so much lower than other engi-
neering materials. However, the biggest advantage is that their
mechanical properties are comparable to those of skin and there
are no discrete moving parts.

This Tutorial seeks to describe the key, relatively mature con-
cepts as well as areas where it can confidently be anticipated that
with future developments artificial muscles will not only exceed the
force-displacement characteristics of some of the best mammalian
muscles but also will be capable of new, shape-morphing
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capabilities. The organization of this paper is as follows. In Sec. I,
the physical basis for DEA is first described in terms of the “com-
pliant capacitor model” in which the deformation of a soft material
by electrostatic forces in a parallel plate configuration is considered.
This is useful conceptually even though the equations usually
reported in the literature are based on the linear elastic behavior.
These equations are usually too simplistic because elastomers rarely
behave as linear elastic solids and many of the important conse-
quences, such as the details of the electromechanical instability and
the required constitutive elastomer mechanical properties to avoid
premature instability, cannot be captured in terms of linear elastic-
ity. Instead, the large, nonlinear elastic response, characteristic of
elastomers, need to be incorporated in deriving equations relating
the displacements, geometry, and applied voltage. This is presented
in Sec. III that describes a consistent mathematical description for
deriving these relationships. Section IV is devoted to the mechani-
cal responses of elastomers, aspects of their electrical breakdown,
and methods being employed to increase their dielectric constant.
In Sec. V, approaches to creating compliant electrodes using perco-
lating networks of carbon nanotubes (CNTs) are described together
with the consequences on the mechanical stiffness and strain
cycling. Appendix B presents the method we often use for prepar-
ing and transferring CNT electrodes. Section VI describes actuator
geometries that are different implementations of the basic compli-
ant capacitor configuration. Finally, before summarizing the pros-
pects for future developments, Sec. VII describes shape-changing
actuators, a different path in the evolution of electrically driven and
reversible actuators.

Il. PHYSICAL BASIS OF ELECTROSTATIC ACTUATIONS
OF DIELECTRIC ELASTOMERS

DEAs are devices that convert electrostatic energy, provided
by an external electric potential, to strain energy and mechanical
work through the deformation of a soft dielectric. The simplest
actuator configuration is analogous to a parallel plate capacitor and
consists of a thin elastomer sheet between two conducting elec-
trodes to which a potential can be applied [Fig. 1(a)]. When con-
nected to a power supply, one electrode becomes positively charged
and the other one correspondingly becomes negative. The opposite
charges attract one another creating a net Coulombic attraction
acting through the elastomer subjecting it to a compressive force.
The areal density of charges on each electrode is proportional to
the applied electric field, E, and the electric permittivity of the
dielectric, €, ie., g = +€E, which results in a compressive stress,
P = gE, that is proportional to the square of the electric field,
P = eE?. The electric field is the applied voltage, ¢, divided by the
thickness of the dielectric layer, t. In response, the dielectric
deforms by decreasing in thickness until the net electrostatic attrac-
tion is balanced by the mechanical stress, oy, resisting the deforma-
tion which for small linear elastic strains is proportional to Young’s
modulus, Y, and the (true) strain in thickness direction, e, i.e.,
oy = Ye,. [True strain is the natural logarithm of final thickness
divided by the initial thickness e; = In(¢/ty).] Linear elasticity is
used throughout this section to give a simple and qualitatively
description of the physical basis of the DEAs; a more rigorous
mathematical analysis of DEAs under large deformations will be
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FIG. 3. Actuation force and work output of dielectric elastomer actuators. (a) A dielectric elastomer actuator having an initial thickness of f (left) is first stretched by a
dead load, F;, reaching a thickness of ; (middle). The voltage is then applied (right) that lifts the load up against gravity by d = t; — t. (b) The force balance in the right
figure in (a) leads to actuation forces that decrease with the strain, having a maximum of F; = AeE? at ¢, =0, the blocking force, and decreasing to zero at
e = —eE?/Y. The actuation forces increase with the non-dimensional applied voltage. (c) The non-dimensional work done by the DEA on the dead load, F;, when the

voltage is applied is W/AtyY = (Fi/AoY)(dlt).

presented in Sec. III. At force equilibrium, the relationship between
the applied electric field and the decrease in thickness can be
written as

e, = —P/Y = —eE*/Y. (1)

This is plotted in Fig. 2(a), the blue curve. The through-
thickness actuation strain is proportional to the square of the non-
dimensional electric field, \/€/YE. This non-dimensional parame-
ter appears in all analyses of DEAs with the shear modulus, u,
replacing Young’s modulus for large deformations, ie., as \/€/uE,
as will be discussed in Sec. I1I.

Although Eq. (1) only applies for small deformations and for
linear elastic dielectrics, it is useful, even with these restrictions, to
compare the strains for different classes of dielectrics (Table I). For
instance, common dielectrics, such as oxides and high-field poly-
mers, are stiff and consequently cannot deform appreciably under
these Coulombic forces; thus, their displacements and strains are

tiny, typically of the order of 10~° per V/um. Significantly, because
the shear moduli of elastomers are orders of magnitude smaller
than oxides and even most polymers, their displacements are cor-
respondingly far larger. In terms of energy conversion, the ratio
of the strain energy density stored in the DEA, Yetz/2, to its elec-
trostatic energy density, €E%/2, is €E?/Y. This indicates that the
low elastic modulus of elastomers is key to converting appreciable
electrostatic energy into the mechanical strain energy; a stiff mate-
rial acts as an electrical capacitor storing most of the input electri-
cal energy in the form of electrostatic energy, whereas a soft
elastomer acts as an actuator converting a significant portion of
the input energy into mechanical strain energy. As will be shown
later, the work done on an external load also scales with 1/Y. To
fully appreciate the advantages of using an elastomer as the dielec-
tric in an actuator, three other key attributes of elastomer materi-
als need to be taken into account: they are incompressible, they
can deform by large amounts before rupturing, and they behave
as “liquid-like” dielectrics.
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TABLE I. Properties of actuator materials.
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Density Shear modulus Poisson Recoverable elastic limit Dielectric
Material (kg/ m>) (MPa) ratio (%) permittivity
Gold* 19 320 30000 0.3 0.02 N/A
Aluminum® 2730 70000 0.3 0.02 N/A
Low density polyethylene 965 ~730 ~0.44 04 22
Polypropylene sheet 913 ~612 ~0.46 15 22
Polyanilineb 1360 ~1000 N/A 1.0 >100
Conju%ated polymer, 1011 ~1200 N/A 2.0 >100
PDOT
PDMS—Sylgard 10:1 1030 0.44 ~0.5 >100 2.7
Acrylic” ~960 03 ~0.5 >100 55
Eco-flex ~1050 0.1 ~0.5 ~500 3.2

“Polycrystalline, pure elements.
"Blends: properties depend on amount of cross-linking.

Being nearly incompressible, elastomers have a Poisson ratio
close to 0.5. In the context of Fig. 1(a), the compressive stress in
the electric field direction creates a compressive strain through the
thickness, which, by the Poisson effect, means that the elastomer
expands laterally with the lateral strain being equal to half of the
thickness contraction strain, ¢; = —e;/2 = €E*/2Y, assuming that
the strains are infinitesimal. Being highly extensible, the elastomer
strains can be very large, beyond the usual deformation regimes
described by infinitesimal elasticity theory where the strains are lin-
early related to stresses; in some special cases, the strains can be
many hundred percent,zg and for this reason, the deformations are
often described in terms of “stretches” rather than strains. (For
simple equibiaxial and uniaxial actuators, stretch can be defined as
the length upon straining divided by the original length, that is,
A =1y, Ay = wiwy, and As; = t/ty, where I, w, and t are the
length, width, and thickness of the elastomer layer after actuation,
respectively, and the subscript 0 corresponds to the initial dimen-
sions under zero voltages and forces.) Furthermore, a consequence
of the molecular structure of elastomers is that their elastic defor-
mation is nonlinearly (but reversibly) related to the stress imposed
on them. Also, unlike many crystalline dielectrics, the dielectric
properties of elastomers are independent of deformation and iso-
tropic, as liquid dielectrics are.

Increasing the applied voltage, ¢, not only directly increases
the electric field inside the elastomer, E = ¢/t, but also squeezes
the elastomer in thickness, causing a further increase in electric
field by reducing t. At sufficiently large applied voltages, this posi-
tive feedback between the electric field and the thickness strain
leads to an abrupt decrease in elastomer thickness, the so-called
electromechanical instability. This is analogous to the “pull-in”
instability in MEMS cantilevered electrostatic switches.”” The insta-
bility results in a sudden increase in electric field, which may
exceed the electrical breakdown strength of the elastomer and cause
failure. To estimate the critical strain at which the electro mechani-
cal instability occurs, the thickness, ¢, is related to the initial thick-
ness of the elastomer, f), and the true strain, e, = log(t/t),
which results in a nonlinear equation for the true strain:
e = —ed?/ Yt2 exp(2e;). This is plotted in Fig. 2(a), the red curve.

At electromechanical instability, no additional voltage is required
to increase the strain, ie., d¢/Je; = 0, which yields the critical
strain at electromechanical instability: e, = —50% or t/ty = 0.6.*
This value is very close to that established using the large deforma-
tion analysis discussed in Sec. IIL. It is important, though, to
emphasize that the use of engineering strain instead of the true
strain can be misleading since it describes the DEAs as monotonic
systems exhibiting no electromechanical instabilities.

The analysis leading to Eq. (1) implicitly assumes that the
electrodes are completely compliant meaning that they extend in
area to match the lateral expansion of the elastomer and, further-
more, exert no resistance or constraint to the lateral elongation of
the elastomer. In practice, however, no electrode is fully compliant
and always shows some level of resistance to lateral elongation,
reducing the electric field induced deformation of the elastomer
from £E%/2Y, to a smaller lateral strain, ¢; (subscript d refers to the
dielectric). An estimate of the effect of the electrode constraint can
be obtained assuming that the electrodes are attached to the elasto-
mer and no slip occurs between the electrodes and the elastomer.
Under these conditions, both the electrodes and elastomer have the
same lateral strain, e;. The expanding elastomer stretches the elec-
trode causing a tensile lateral stress in the electrode, o, = Y,e;, con-
straining the lateral expansion of the elastomer and causing a
compressive lateral stress in the elastomer, o4 = Yy(e; — £E2/2Y,)
(subscript e refers to the electrode). Mechanical equilibrium on a
cross section through the elastomer and the two electrodes requires
that o4t; = 20.,t,, enabling the strains to be expressed as

_ eE2yy
T 142t Yty

EEZ/Y,j

_——. 2
14 2Y,t./Yatq @)

el e = —2e =

So, as shown in Fig. 2(b), to achieve the largest actuation
deformations, the product of the electrode stiffness and its thick-
ness must be much smaller than that of the elastomer,
Y t. < Yat;. The constraining effect can, equivalently, be under-
stood in terms of the additional strain energy required to deform
the electrode materials as described by Eq. (29) in Sec. III and
results in the same conclusion; the product of the electrode
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thickness and modulus must be as small as possible to minimize
the constraint from the electrodes and thereby maximize the actua-
tion stretch. This is not achievable with metals that are commonly
used as electrodes; for example, even a 1 nm thick layer of alumi-
num causes a constraining effect, Y,t, ~ 70 Pam, even larger than
that of a 100um thick silicone elastomer, Y t; ~ 30 Pam.
Currently available conductive polymers are also too stiff to be
used as the electrodes primarily because their electrical conduction
relies on charge transfer along stiff polymer chains. For example,
polyaniline, an electrically conductive polymer with a modulus of
elasticity of ~1 GPa, must have its thickness in the order of ~1 nm
in order to achieve Y,t,/Yyt; < 10%. However, it may be possible
in the future to synthesize new conducting polymers having
stretchability and low shear modulus characteristics of elastomers,
just as there exist soft liquid crystal elastomers containing long stiff
molecules. It is also implicitly assumed that the electrodes can
stretch elastically by large strains without rupturing or cracking and
return to their original size when the electric potential is removed.
Metals and conductive polymers are incapable of elastically
deforming to large strains as their yield strains are typically small—
less than a few percent in even the purest metals.

At present, the possible solutions for compliant electrodes are
mats of conductive nanoparticles, liquid metals, and ionogels. Of
all possible metals, liquid metals come closest to having the lowest
resistance to deformation, but at present they cannot be made suffi-
ciently thin to take advantage of their low flow stress, especially at
higher frequencies. Another possibility is to use an ionogel or ionic
liquids; however, they can diffuse into elastomer and cause electri-
cal breakdown. A liquid electrode may also limit possible applica-
tions because it lacks any tensile strength limiting adhesion. As will
be described in Sec. V, the best practical approach for compliant
electrodes of DEAs, at present, are thin electrodes consisting of
mats of nanowires, carbon nanotubes, or other conductive nano-
particles, which are deposited onto the surfaces of the elastomer
layers or embedded in an elastomer while remaining electrically
conducting by percolation between them.

As artificial muscles, DEAs must be able to do mechanical
work by displacing loads, and therefore, the actuation forces are of
prime importance. The force balance between the external load, Fp,
parallel to the direction of electric field vector, the Coulombic
attractions, and internal stresses of the DEA in Fig. 3(a) (right)
gives

_ Fp €E2

YA Y ®

et

in which A is the surface area of the DEA. The largest actuation
deformation occurs when the actuation force, Fp, has decreased to
zero, namely, when e, = —eE?/Y. At the other extreme, when the
elastomer is not allowed to deform at all, e; = 0, the actuation force
is at its maximum, F, = AeE?, which is often referred to as the
blocking force. Significantly, the blocking force is independent of
the elasticity of the elastomer. Anywhere in between, the actuation
force varies linearly with the strain from its maximum F; = AeE?
at zero strain e; = 0 to zero force F; = 0 at the maximum strain
e, = —€E?/Y, assuming that the deformations are infinitesimal and
the electric field is held constant. A more accurate representation of
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the force-displacement characteristic of the DEA at different vol-
tages includes the change in surface area and thickness with
voltage. These are given by A = Ag/exp(e;) and t = tyexp(e;). The
actuation strain then varies nonlinearly as e; = Frexp(e;)/YA,
—ed?/ YiZexp(2e;) [Fig. 3(b)], but the blocking force remains inde-
pendent of the elastomer modulus.

To characterize the mechanical work output of the DEAs,
the sequence of operations shown in Fig. 3(a) is considered.
The elastomer is first subjected to a dead load while the
voltage is off [Fig. 3(a) (middle)], which deforms the DEA by
e, =log(t1/ty) = F/A,Y. t; and A; are the thickness and surface
area after deformation, respectively, and are related to each other
through the incompressibility condition Agty = A;t;. Applying the
voltage [Fig. 3(a) (right)] causes the elastomer to shrink in thick-
ness, e = log(ty/ty) = F,/A,Y —€E*/Y, lifting the load by
d=1t —t,. The work done on the dead load by the DEA is
W = Fd. In terms of non-dimensional parameters, the work is
W/AptY, the force is F;/AgY, and displacement is d/ty, so
W/AgtyY = (F;/AyY)(d/ty). The non-dimensional work and dis-
placement scale with the thickness of the elastomer and are also
functions of the applied load and the voltage. Figure 3(c) shows the
work done on a dead load as a function of the applied voltage,
obtained by numerically solving for ¢ and f, in d =1t — t, and
then calculating for W = F,d.

The actuation displacements, work, and even actuation forces
(when applied laterally as opposed to the parallel forces discussed
so far) all scale with the thickness of the elastomer layer. However,
for a thick elastomer layer, extremely large electric potentials are
required to achieve large electric fields, E = ¢/t. In practice, this
limits the thickness of the elastomer layers that can be used for a
given voltage. A simple and efficient way to achieve large actuation
forces, displacements, and work, while maintaining the required
voltage as low as possible, is to multilayer the DEA. A multilayer
DEA consisting of n elastomer layers with a total thickness t
requires a voltage that is # times smaller, as compared to a single-
layer DEA of the same total thickness, to achieve the electric field
E = (¢/n)/(t/n) = ¢/t, and therefore, would show exactly the same
performance as a thick single-layer DEA but at a fraction of the
voltage. In addition, multilayering provides other attributes. For
instance, as will be illustrated in Sec. VII, the ability to produce a
multilayer structure also facilitates the fabrication of shape-
morphing actuators by incorporating different electrode geometries
within the actuator to create inhomogeneous internal electric fields.
A multilayer DEA is also less susceptible to the local electrome-
chanical instabilities since the surfaces of each layer are constrained
by the other layers.

Illl. MATHEMATICAL DESCRIPTION OF ELECTROSTATIC
ACTUATIONS OF DIELECTRIC ELASTOMERS

To emphasize the physical basis of the dielectric elastomer
actuators, Sec. II was couched in terms of the small-scale,
linear-elastic response of elastomers. However, one of the major
reasons for using elastomers in actuators is that they can sustain
very large strains, and elastic strains can be nonlinearly dependent
on stress. For this reason, this section describes the nonlinear
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elastic response of DEAs for large deformations using two equiva-
lent descriptions, the Newtonian and energy method.

The Newtonian approach uses the partial differential equa-
tions of mechanical and electrostatic equilibriums together with the
problem-specific equations for the boundary conditions, while
the energy method uses the principle of least action applied to the
Lagrangian of the entire system, including the power supply.
The following introduces these two approaches for quasi-static
actuations and applies them to three types of actuators. First, actua-
tions of equibiaxial and uniaxial actuators are analyzed using the
Newtonian approach. Equibiaxial actuators are allowed to deform
equally in both lateral directions and were used to discuss the phys-
ical basis of DEAs in Sec. II, while uniaxial actuators are con-
strained from deformation in one of the lateral directions. Analysis
of these two actuation types is particularly insightful because most
designs of dielectric elastomer actuators locally behave as equibiax-
ial or uniaxial actuators, and these analyses lead to very useful
dimensionless groups and the scaling relations between the applied
voltage, actuation displacements, and forces. Second, the energy
method is used to analyze the actuations of the dielectric elastomer
actuators with finite-thickness electrodes and bilayer bending actu-
ators. The analysis of actuators with finite-thickness electrodes is
helpful to understand the importance of soft and thin electrodes,
and the analysis of bilayer bending actuators gives insight into the
out-of-plane actuation deformations of dielectric elastomer actua-
tors. The description for the more complex, shape-morphing
dielectric elastomer actuators is given in Sec. VII together with a
finite element formulation and codes for their analysis.

A. The Newtonian approach

The Newtonian approach describes the actuations of DEAs
using the two governing partial differential equations in the
bulk for the mechanical and electrostatic equilibriums, together
with the problem-specific boundary condition equations. The
quasi-static mechanical equilibrium is essentially Newton’s
second law of motion applied to infinitesimal elements, result-
ing in a partial differential equation of the balance between the
Cauchy stress tensor, o, and the electrostatic contributions. The
electrostatic forces can be written either in terms of the electro-
static body forces, b, or, as is more commonly practiced, in
terms of their equivalent stress tensor, often called the Maxwell
stress tensor, gMaxwell

80'ij

0
M +b;=0, or—— (O',-j + Gf}/laxweu> =0, forj=1,2,3. (4
1

axi

(Einstein summation convention is used.) The Cauchy stress
tensor is a function of the elastomer deformation through an appro-
priate constitutive material model. For elastomers under large defor-
mations, these models are often expressed in terms of the Helmholtz
free energy, v, as a function of the Cauchy-Green deformation
tensors. The right and left Cauchy-Green deformation tensors are
defined as C = F'F and B = FF', respectively, where F is the defor-
mation gradient tensor Fj = 0x;/0X; and X; and x;(X1, X, X3) are
the initial and current spatial coordinates, respectively. x;(X;, X, X3)
is also called the deformation mapping function. Considering only
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the mechanical forces in an isothermal and reversible process, the
rate of change in Helmholtz free energy is equal to the mechanical
work done on the system, ie., { = P:C, where P is the first Piola—
Kirchhoff stress tensor defined as the force in the current coordinate
system per infinitesimal surfaces in initial coordinate system. (The
dots over variables denote time derivatives.) The first Piola-Kirchhoff
stress tensor is related to the Cauchy stress tensor through
P= %Filo'F*T, where ] is the Jacobian of F and describes the ratio
of the current volume to its initial volume. The Helmholtz free
energy can then be written in terms of the Cauchy stress tensor as
W= (%F‘la'F_T):C. Since the Helmholtz free energy is a function
of the right Cauchy-Green deformation tensor, y = y/(C), its change

can be expressed as yr = % :C, which gives %F*IGF*T = g—g or

o="F-—F". (5)

Some of the most common constitutive mechanical models
express the Helmholtz free energy in terms of the invariants of the
Cauchy-Green deformation tensors, y(I;, I, I;), where the invari-
ants are

I =tr(C) = tr(B) = A> + A2 + 13,
L %((tr(C))2 —tr(C?) =%((tr(B))2 —tr(B%) =A1A5 +A1A5 + 4345,
I; =J* = det (C) = det(B) = 121212, (6)

where Ay, 4,, and A5 are the first, second, and third principal
stretches, respectively, defined as the current length per initial
length in three orthogonal principal directions. For instance, the
third principal stretch in Fig. 3(a) is along the thickness direction
and are 13 = t1/ty and A3 = t,/t,.

For material models that define the Helmholtz free energy as a
function of the invariants of the Cauchy-Green deformation
tensors, the Cauchy stress tensor becomes

_2F<8y/% Iy IL aW%)FT

“7\8L6C ' 8L, aCc | 8L, 6C

20p\ , 20y 20y 20y
(o= Gar ot o Gare)e @
where for the derivation of the invariants of the Cauchy-Green defor-
mation tensors with respect to the tensor itself, Otr(C)/0C =1,
otr(C?)/0C = CT, and 9 det (C)/OC = det (C)CT are used.

It is often more convenient to express the Helmholtz free
energy as the sum of the deviatoric contributions due to the material
distortions and volumetric contributions due to the material volume
compressions and expansions, y(Iy, L, Is) = w4, (I, 1) + w,q(I3).
For the deviatoric contributions, two commonly used hyperelastic
material models for dielectric elastomers are the incompressible
neo-Hookean and Gent models. The neo-Hookean model is the sim-
plest hyperelastic continuum material model that describes the
Helmholtz free energy of the elastomer as a linear function of the
first invariant of the Cauchy-Green deformation tensor and is suit-
able for stretches before any strain stiffening occurs. For the larger

deformations, where the polymer chains are stretched nearly to their
fully extended length, the Gent material model’ is used since it
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captures the strain-stiffening behavior of the elastomers using a
simple empirical equation. The Helmholtz free energy equation for
the incompressible neo-Hookean and Gent material models are

Wae(I) =4(I — 3) and g, () = — ln(
where u is the shear modulus of the material and J, = I, — 3
defines the strain stiffening limit of I; — 3. For the volumetric contri-
butions of the Helmholtz free energy, v, (I3) =5 — 1)? is often
used, in which « is the bulk modulus.

The Helmholtz free energy equations of any material model
need to satisfy two conditions:”* one is that in the absence of any
deformations the Helmholtz free energy should, by convention, be
zero, namely, y(3,3,1) =0, and the other is that the Cauchy
stresses when there are no deformations should be zero, ie., ¢ =0
when B =1, which gives Ow/0I, + 20y/0L, + Ow/0I; = 0. The
former is satisfied by material models. However, the latter is not
automatically satisfied by either the original neo-Hookean or Gent
formulations. For instance, for the neo-Hookean Helmholtz free
energy, y(I;, I3) :’5‘(11 -3)+50~- 1)%, the Cauchy stress tensor
becomes o = #B + x(J — I, using Eq. (7), which is nonzero
when B = I. There are two common ways to resolve this issue: one
is to add extra terms, for instance, —uInJ ,* to the volumetric con-
tribution y,;. From a molecular point of view, this added term
corresponds to the change in the distribution of the cross-links in
space as the material deforms.”* The other way is to use the devia-
toric invariants of the Cauchy-Green deformation tensors,
I, = I/IY® and T, = L,/I°, and express the deviatoric Helmholtz
free energies in terms of I; and I, instead of I; and L. It is straight-
forward to show that g, = W4 (I1, I;) automatically satisfies
Oy/0I; + 20y/0L, + Ow/0I; = 0 regardless of the material model
that is chosen for wg,., (I, I,). The volumetric contribution still
needs to satisfy O, /0 =0 at I3 =1, which is the case for
V) =50 — 1)%. In addition, the volumetric part is required to
satisfy y,,; — +0 when J — 400 and y,,; — 400 when | — 0;
the second condition is not satisfied by () =50 —1)%
however, since dielectric elastomer materials are nearly incompress-
ible, this model for volumetric contributions to the Helmholtz free
energy remains a good approximation near J] — 1.

Using the deviatoric invariants of the Cauchy-Green deforma-
tion tensors, the Cauchy stress tensor for y = w4, (I1, I2) + W, ()

becomes
2 al//dev 2 81//clev 2 81//dev
o= ( ]7/3 ol, )B + (]5? oI, +]5/3 ol, I |B

_3’ 8l:[/dev _* 8'//dev ay/vol
+( 3]11 oL 3]12 o1, +2 oL, L ®

-3 -
L= ), respectively,

Therefore, the neo-Hookean Helmholtz free energy in terms
of the deviatoric invariants and its Cauchy stress tensor are,
respectively,

w(fl,n:%(n —3)+§(J— 1)?,

u )
o= <]5/3>B+ (—3—]11 +x(J - 1))
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In addition, the Gent Helmholtz free energy in terms of
the deviatoric invariants and its Cauchy stress tensor are,
respectively,

' =3
W(IIJ)—_LI ( )+§(1_1)2,0: =

———=——B
]m ]5/3(1_(11_3)/]m)

U -
: <‘mh +'f(f—l))z.

(10)

As the material is stretched to its limit, I, —3 — J,, the
Cauchy stress increases very sharply, & — oo, and when the stretch
is small, I; — 3 < J,;, the Cauchy stress from the Gent model is
similar to that of the neo-Hookean model. For the nearly incom-
pressible elastomers, the bulk modulus is much larger than the
shear modulus, 4 < «; for the limit where x/u — oo, the finiteness
of k(J — 1) term in Cauchy stress tensor gives ] — 1.

The other term in the balance of momentum is the Maxwell
stress tensor. The equivalence of the two equations in Eq. (4) indi-
cates that the Maxwell stress tensor needs to satisfy
doMawell/gx; = b;. The electrostatic body forces arise from the
1nteract1on of the density of free charges, P and the electric field,
E, given by bj = pyE;. In turn, the density of free charges is related
to the electrlc displacement field, D, through py = OD;/Ox;. By defi-
nition, the electric displacement is the sum of the electric field
scaled by the vacuum electric permittivity and the polarization
density of the dielectric, D= EOE + B. The relation between the
electric field and the electric displacement is defined through the
electrostatic constitutive model of the material. Often the material
polarization under an applied electric field is proportional to the
field, POCE For such liquid-like dielectrics, the electric displace-
ment, D = €,E + B, is also proportional to the applied electric field
with the material permittivity, € = €€, (€, being the dlelectrlc
constant of material), as the proportionality constant, D = €E. The
electrostatic Maxwell stresses is

OD; 0 OE;
Maxwell _ _ i _]
a0 b=l =gl = g (Rl —ehig
8 0 OEy.
(eEE) 3 8 ——(eEE)) — eéyEka
8

In deriving this expression, the electrostatic Maxwell-Faraday
equation, curl E=0— 8Ej/8x,- = BE,-/ij, is used and it is
assumed that the permittivity does not change with position in the
dielectric, Oe/0x; = 0. Equation (11) is satisfied when

1
O_g{laxwell = € <E,E] — Eél]EkEk) . (12)

Equation (4) described the mechanical equilibrium inside the
elastomer. The other governing equation for the analysis of DEAs
using the Newtonian approach is the Poisson’s equation for electric
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potential, ¢, describing electrostatic equilibrium,

82¢ P BD,
ot e o PP =

in which p and p; are the volume density of total and free charges,
respectively. Poisson’s equation is essentially Gauss’s flux theorem
applied to Coulomb’s law, E = (keelez/rgl)?m/m, with E = Fi/e,
as the definition of the electric field and E; = 0¢/0x; as the defini-
tion of the electric potential.

Finally, at the outer and internal boundary surfaces, the
Dirichlet and Neumann boundary conditions for the mechanical
equilibrium prescribe the displacements and stresses, respectively,
and, for the electrostatic equilibrium, prescribe the electric poten-
tials and electric fields, respectively,

#X) = %(X), VX € S,,
i(X)-o(X) = i(X) - 60(X), VX E S, ”
14

HX) = ¢o(X), VX € Sy,

E(X) = Eo(X), VX € Sp,

in which %, 69, ¢, and Eo are the prescribed displacements,
stresses, electric potentials, and electric fields, respectively, specified
over the boundary surfaces S,, Sg, S¢, and Sp. ?i()_f) is the normal
vector field to the S, boundary. The boundary condition equations
are problem-specific, having a different form for any different
problems.

B. Equibiaxial DEAs analysis using the Newtonian
approach

A simple equibiaxial DEA, subjected to electric potential ¢,
and through-thickness and lateral stresses fr and fi, is shown in
Fig. 4(a). fr and fi, which are parallel and normal to the electric

Ao K

J5/3 1_3_]11+K(]_1)
H
o = 0 ]5?11_
0

Since none of the terms in the Cauchy and Maxwell stress
tensors depend on spatial position, due to the homogeneity of
the deformation, the equation of balance of momenta [Eq. (4)]
results in nothing but 0 = 0. This simply represents the fact that
any homogeneous deformation automatically satisfies the partial
differential equation of mechanical equilibrium. The only set of
equations that then remain to be satisfied are the mechanical
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field vectors, respectively, account for any external forces that are
applied to the DEA (and in reaction is applied by the DEA). For
instance, for a prestretched elastomer, f;, represents the force per
unit area exerted by a stretching frame, or fr in the context of the
artificial muscles shown in Fig. 2(b) is the actuation force per unit
area that bends the elbow. By convention, the directions of f; and
f;, in Fig. 4 point outward so that positive applied stresses, fr or fi,
lead to tensile internal stresses.

Neglecting the edge effects, the electric field can be assumed
to be normal to the electrodes, E = (0,0, E). Consequently,
Poisson’s equation with zero density of charges inside the elasto-
mer, p = 0, combined with the electrostatic boundary conditions,
¢(x3 =0) =0 and P(x3 = t) = ¢, lead to ¢ = x3¢hy/t and, there-
fore, E = ¢,/t.

When the external stresses in the two lateral directions, x; and
X, are equal, an equibiaxial and homogeneous actuations is pro-
duced when a voltage ¢, is applied. The mapping function has the
following mathematical form:

x1=0X1, 2 =0X, x3=A4X;. (15)

The homogeneity of actuation means that A;, 4, and A3 are
independent of the spatial position and the equibiaxial
actuation means that A; = A,. For this mapping function, the
deformation gradient tensor and the left Cauchy-Green deforma-
tion tensor are

AL 0 0 20 0
Bx,- T 2
F= x| = 0 4 0, B=FFT=|0 2 o0
! 0 0 A 0 0 A
(16)

Using the neo-Hookean material model [Eq. (9)], the Cauchy
stress tensor becomes

0 0
Eh+xg-1) 0 . (17)
0 %lg—%fl—kk(]—l)

boundary conditions on the faces of the actuator, six in Fig. 4.
The boundary conditions on the four vertical sides of the actua-
tor are equivalent and the equations for the top and bottom sur-
faces are both equivalent as well, and so the six boundary
conditions reduce to two, e.g., for the surfaces with (1, 0, 0) and
(0,0, 1) outward normals at the right side and the top of the
actuator,
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FIG. 4. Characterization of electrostatic actuations of equibiaxial DEAs. (a) Free-body diagram of an equibiaxial dielectric elastomer actuator that consists of a dielectric elastomer
layer sandwiched between two compliant electrodes, to which electric potentials of ¢» = 0 and ¢ = ¢, are applied. The through-thickness and lateral stresses fr and f; are any
external stresses applied to the DEA along the thickness x; and lateral x4/x, directions, respectively. The changes in these two stresses as the voltage is being applied represent
the voltage-induced actuation forces. The directions for fr and f, are chosen conventionally to point outward such that a positive applied stress leads to tensile internal stresses.
(b) The three-dimensional representation of the non-dimensional actuation stress, f = (f, — fr)iu, vs the non-dimensional electric potential, ¢ = \/quo/to, and lateral stretch,
A1, of the equibiaxial DEA expressed by Eq. (21). Also shown are the curves for the blocking force (red curve) and actuation stretch under no external forces (blue curve). 4, €,
and t, are the elastomer’s shear modulus, electrical permittivity, and initial thickness, respectively. The lateral stretch, A+, is the ratio of lateral length (or width) of the elastomer
layer after actuation to its initial length (or initial width) under zero voltages and zero forces. (c) Lateral stretch of the DEA increases gradually at low normalized electric potentials,
followed by large increase that at some critical point, indicated by the red crosses, leads to electromechanical instability at which no further applied voltage is required to increase
the stretch. The abrupt thinning of the elastomer results in extreme electric fields that if they exceed the electrical breakdown strength of the dielectric causes electrical breakdown.
Applying tensile lateral stresses or compressive transverse stresses results in larger actuation stretch at lower electric potentials. (d) The stress vs stretch decreases with the

applied voltage and shows instabilities under any applied voltage at which no further increase in applied stress is required to stretch the elastomer further. (e) The actuation forces
vs the electric potential show larger changes when the elastomer is stretched laterally.

is the electrostatic forces per surface area and is calculated from the
surface density of free charges multiplied by the jump in electric
field at the surface, f, :pf[[E]] = —pE. The surface density of
free charges is equal to the jump in electric displacement,
. . py = [[D]] = €E, which gives fz = —e§’/t* = —ed’/23t;, where 1
The changes in the two traction vectors f; and f; with is the initial thickness of the elastomer layer. Therefore, the actua-
applied voltage represent the voltage-induced actuation stresses. f tion of the equibiaxial DEA can be described by

(1,0,0)-¢(X; =L) = f,, (s)
0,0,1)-6(Xs =T) = f+ fr-
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(19)
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For a compressible material, the two equations can be solved
numerically for A; and A;. However, for nearly incompressible
materials, such as most elastomers, x/u — oo, the change in
volume is negligible, ie, J— 1 and therefore lf/h — 1.
Subtracting the two equations in (19) and letting J =1 and
Az = 1//1% leads to a normalized actuation equation,

A2t = 6‘750/14 iy (20)
ﬂto H

The dimensionless groups are the lateral stretch A, (or thick-
ness stretch 1; = 1/43), normalized applied electric potential
¢ = \/eludy/ty, and the normalized difference in the two stresses
f = (ft —fr)lu. A positive f corresponds to applied stresses that
laterally stretch the elastomer layer, namely, tensile lateral stresses
and/or compressive through-thickness stresses. The non-
dimensional electric potential for a multilayer DEA with 7 elastomer
layers and total thickness of f, becomes ¢ = \/€/undy/ty. In terms

of ¢ and f the actuation equation becomes

Bt =i+ ] (21)

Several important insights into the behavior of DEAs are
revealed by this form of the actuation equation. For example, the
actuation of an incompressible dielectric elastomer actuator is
not directly a function of the through-thickness and lateral
stresses, fr and f;, themselves but only their difference.
Consequently, the actuations are independent of any external
pressure, suggesting that DEAs have equal potential to be used in
low pressure environments such as outer space and in high pres-
sure environments such as in the ocean. Another insight is that a
softer elastomer with smaller 1 needs a lower voltage to actuate
to the same stretch as a stiffer material, ¢, oc N/ however, the
magnitude of the actuation stresses f; — fr will be proportionally
lower, (f, —fr)ocu. The exception being that the blocking
stresses, defined when the deformation is completely confined,
A1 =23 =1, are independent of the shear modulus and only
depend on the applied voltage, permittivity, and thickness:
fu —fr = —ed}/tk. For a higher permittivity elastomer, the
voltage to actuate to the same stretch and forces is smaller than
that of a low permittivity elastomer, ¢, oc e V2. Therefore,
increasing permittivity is one possible route to higher perfor-
mance DEAs with the caveat that the electrical breakdown
strength needs to be maintained.

Figure 4(b) is a plot of the equibiaxial actuation equation
[Eq. (21)] in which the non-dimensional actuation stresses are
plotted as a function of the normalized electric potential and the
lateral stretch. The lateral stretch as a function of the normalized
applied voltage, for different constant normalized stresses, is
plotted in Fig. 4(c) showing that the increase in lateral stretch is
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larger at higher applied voltage, and at some critical points,
shown with red crosses in Fig. 4(c), the increase in lateral stretch
becomes so steep that no further applied voltage is needed to
further actuate the elastomer; this is the electromechanical insta-
bility referred to previously.””*” Mathematically, the electrome-
chanical instability when no stresses are applied, f =0, occurs
when d(ﬁ/dll =0, which occurs at A; = 1.26 for which the
stretch in thickness direction is A3 = 0.63 and the normalized
electric field is E = 0.687.

Important for the design of equibiaxial dielectric elastomer
devices is that the electromechanical instability point depends on
the normalized stresses: a tensile lateral stress (or compressive
through-thickness stresses) shifts the instability point to a lower
normalized electric potential; however, the possible actuation
before the onset of the instability will be larger than the case
where the elastomer is not stretched, even when the mgterial
shows no stress stiffening effects. For example, when f =1,
the actuation stretch before the instability is about

(P = d)c)/ll(zb =0) = 1.61/1.21 = 1.33, which is significantly
larger than A4, = 1.26 for f = 0. On the other hand, when the
dielectric elastomer is pressed laterally (or stretched in the
thickness direction), the instability occurs at higher normalized
electric potentials but the actuation stretch at the instability is
smaller; for example, when f = —1, the actuation stretch is about

2(p=d)A(d=0) 1. 06/0.87 = 1.22, which is slightly
smaller than the case where f = 0. These considerations indicate
that the maximum output work, prior to electromechanical insta-
bility, increases with the normalized stresses, f. Also, it suggests
that when comparing the maximum actuation of actuators made of
different materials, it is necessary that the actuation stresses must
be the same.

Applying an electric potential also changes the stress—stretch
characteristics of the DEA as shown in Fig. 4(d). In the absence of
voltage, the externally applied stress increases monotonically with
the stretch, whereas applying a voltage lowers the stress and makes
the curve non-monotonic. There are also conditions, under an
applied voltage, at which the slope of the stress-stretch curves is
zero at which the elastomer can be continuously stretched.

The non-dimensional actuation stresses as a function of non-
dimensional electric potential and different constant stretches are
shown in Fig. 4(e). Stretching the elastomer reduces the thickness of
the elastomer and results in larger changes of the actuation forces
with applied electric potentials. The relation between the actuation
forces and electric potentials is monotonic when the elastomer is held
at a constant stretch. The blocking force in Fig. 4(e) is labeled 4; = 1.

Of particular interest is when the DEA operates under
constant external loads, for which the stresses could be replaced by
fr = Fr/PP = Fr/A’} and f, = Fy/lt = F;/A\1A;Lty, leading to the
following actuation equation. [ and J, are the initial and actuated
width (and length) of the DEA, respectively.

2 A7t = ¢t 4 By — Fray (22)
where FL = F /uLT and Fr = Fr/uL? are the normalized lateral

and through-thickness stresses, when the applied loads are
constant.
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The onset of electromechanical instability of the equibiaxial
DEAs, shown by the red crosses in Fig. 4(c), can be suppressed if the
elastomer undergoes strain stiffening before the electromechanical
instability point.”’ Rederiving the actuation equation for the equi-
biaxial dielectric elastomer actuators using the Gent model gives

A -t _
1— (24 + A2 = 3)]m

»at+ f. (23)

The effect of strain stiffening is illustrated in Fig. 5(a) for a
strain-stiffening parameter of J, =15, corresponding to a
maximum stretch of A; = 3.0 in equibiaxial actuation. The electro-
mechanical instability leads to a snap-through, shown by the verti-
cal dashed lines in Fig. 5(a), corresponding to drastic decrease in
thickness, t, and increase in electric fields, E = ¢/t. Prestretching
can prevent the electromechanical instability. The prestretch
required depends on the J,, parameter of the material, as shown in
Fig. 5(b). As mentioned in Sec. I, prestretching the elastomer was
one of the early breakthroughs in dielectric elastomer actuators that
allowed unprecedented large area actuations,” even though at the
time the underlying reason was not well understood.

It should be emphasized that the electromechanical instability
is not intrinsically a failure mechanism since it only describes a
snap-through instability to a smaller thickness. Whether the snap-
through results in failure or not depends on the electrical break-
down strength of the material. In the context of Fig. 5(a), the DEA
fails when the actuation curve of the DEA intersects with the elec-
trical breakdown curve of the dielectric (the red curves). Several
scenarios are indicated in this figure; the elastomer is prestretched
to different extents and a variety of electrical breakdown strengths
are assumed for the dielectric. When the non-dimensional electrical
breakdown strength, Ey, = \/€lUE, is small, e.g. E, < 1, the elec-
trical breakdown occurs before the electromechanical instability,
for J,, = 15; avoiding the electromechanical instability is irrelevant.
For larger electrical breakdown strengths, e.g., E, = 2, the snap-
through of the material leads to electrical breakdown and hence
failure of the actuator, shown with the red crosses in Fig. 5(a). In
this case, significantly larger actuation stretches can be achieved if
the elastomer is prestretched to the extent where the stretch vs elec-
tric potential becomes monotonic and the electromechanical insta-
bility is avoided. For very large electrical breakdown strength, e.g.,
E, =10, the electromechanical instability does not cause any

H o Hs
ﬁ/ll —3—]11 +x(J—-1)
_ . o u
o= ]5/3 3]
0

Once again, since the deformation is homogeneous, the partial
differential equation of the mechanical equilibrium is automatically
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electrical breakdown and instead the snap-through could be
employed for large actuations and possibly novel devices at small
electric potential increments near the instability point.

Significantly, as shown in Fig. 5(c), the electromechanical insta-
bility can also be avoided without any prestretch, if the dielectric
elastomer material is engineered such that its strain stiffening occurs
at J,, < 7.3, which corresponds to 1; = 2.26 for equibiaxial actua-
tion: in other words, the theoretical maximum actuation stretch of a
non-prestretched equibiaxial actuator before the electromechanical
instability is A; = 2.26, provided that the material deformation
follows the Gent model. In experiment, actuation stretches close to
this theoretical limit has been achieved; for example, the interpene-
trating polymer networks’® within VHB elastomers are used to tune
the strain-stiffening parameter and actuation area strain of 233% has
been achieved, which corresponds to 1; = 1.82.

In closing this discussion on the electromechanical instability
analysis of the equibiaxial DEAs, it has been assumed that actua-
tion is homogeneous and, therefore, the possibility of local instabil-
ities was neglected. Inhomogeneities will invariably cause local
instabilities to occur at lower electric fields for which the analysis is
more involved.”®”” DEAs can also form wrinkling patterns when
their actuation is confined, for instance, by a frame. A rich pattern
of wrinkling geometries has been studied and the interested readers
are referred to Refs. 38-41.

C. Uniaxial DEA analysis using the Newtonian
approach

By incorporating arrays of parallel fibers or strips that have a
very high stiffness compared to that of the elastomer, the biaxial
actuation can be converted into a uniaxial actuation. For instance,
when the fibers are arranged parallel to the x, direction [Fig. 6(a)],
the actuation in the x, direction is constrained, A, = 1, and the
actuator can only expand along x; while contracting in thickness.
The deformation mapping function is then

x1 =0X1, =X, x3 =A3X;. (24)

Following the same procedure as for the equibiaxial actuators,
i.e., using the mapping function to calculate the deformation gradi-
ent tensor, the right Cauchy-Green deformation tensor, and the
Cauchy stress tensor from the neo-Hookean material model, we get

0 0
L +xJ—-1) 0 . (25)
0 ]‘5‘7/@ 735]71 +x(U—1)

satisfied and leads to 0 = 0 for any choice of stretches, 4; and 4.
To evaluate the actual stretches, the boundary conditions are used
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FIG. 5. Electromechanical instability can be prevented by prestretching the elastomer or designing the elastomer to exhibit certain strain-stiffening characteristics. (a) An
example of lateral stretch as a function of the non-dimensional electric potential and at different prestretches. In this example, the strain stiffening is assumed to be
Jm = 15. The electromechanical instability results in snap-through increase in lateral stretch shown by the vertical dashed lines. The thin red lines show four examples of
the electrical breakdown strengths of the dielectric. (b) The required prestretch to avoid the electromechanical instability is a function of the strain-stiffening parameter of
the elastomer. No prestretch is required when J, < 7.4. (c) Lateral stretch as a function of the non-dimensional electric potential for elastomer materials with different
strain-stiffening characteristics. The electromechanical instability can be prevented by designing the elastomer material such that J,, < 7.4, for which no prestretch is

required.

resulting in

u [
]ST}»% —3—]11 +x(J—-1) =,
(26)
u T ed’
]STJ% 3—111+K(]—1):—t—2+fT~

Subtracting the two equations and assuming an incompress-
ible material with ] — 1 and, therefore, 13 = /ll’l results in the uni-
axial actuation equation

=A== P+ . 27)

Figure 6(b) shows the three-dimensional representation of
the non-dimensional actuation forces as a function of the
non-dimensional electric potential and the lateral stretch for
uniaxial actuators. In contrast to the biaxial actuator (Fig. 4),
the uniaxial DEA does not show any electromechanical insta-
bility [Fig. 6(c)], unless the DEA is under compressive lateral
stress (or tensile through-thickness stress). The stress—stretch
curve of the uniaxial DEA [Fig. 6(d)] softens when a voltage
is applied, but there are no conditions corresponding to
zero-stiffness. Also, comparing the graphs in Figs. 4(e) and 6
(e), it can be seen that the change in non-dimensional forces
with the applied voltage is larger when the elastomer is
stretched laterally.

D. Energy methods for analysis of dielectric elastomer
actuators

The energy approach can be a more straightforward analyti-
cal approach in some cases, such as when considering the effect
of finite-thickness electrodes. In this approach, a mathematical
form is assumed for the solution variables, similar to the proce-
dure for the analytical solutions using the Newtonian method,
and equilibrium is sought which minimizes the total potential
energy of the system consisting of dielectric elastomer, the
charging unit, and the mechanical loading. As with other energy
methods used in physics, there is no assurance that the mathe-
matical form assumed for the solution variables satisfies all the
governing equations.

For a dielectric elastomer actuator consisting of dielectric elasto-
mer layers with total initial thickness of f,, and electrodes with total
initial thickness of ¢, undergoing homogeneous equibiaxial actuation,
the strain energy is given by the Helmholtz free energy of the elasto-
mer and electrode materials. Using the neo-Hookean elastomer model,
the strain energy becomes Usrain = % (It — 3)[ a0 +l% (I, — 3)3t po,
where y1, and p,, are the shear moduli of the elastomer and elec-
trode materials, respectively, I is the initial length and width of
the actuator, and I; is the first invariant of the Cauchy-Green
deformation tensor, which for equibiaxial actuation of
incompressible elastomer becomes I; = 247 + A, assuming the
same deformation mapping function as in equibiaxial DEAs
[Eq. (15)]. The stored electrostatic energy in the elastomer
dielectric is Usectric = €E2Rty/2 = en® $*A112/2t,. The change in
the potential of the charging unit is Ucarger = —Q¢p
—C¢? = —en§*AiL/ty, and therefore the total change in
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FIG. 6. Characterization of electrostatic actuations of uniaxial DEAs. (a) Adding parallel stiff fibers to an equibiaxial DEA constraints the deformation along the
fibers, i.e., along xp, and results in a uniaxial DEA, which in this example expands in the x; direction and contracts in thickness, x3 direction, when actuated. (b)
The three-dimensional representation of the non-dimensional actuation stress, f = (f, — fr)lu, vs the non-dimensional electric potential, ¢ = \/eTyd)o/to, and
lateral stretch, A4, of the uniaxial DEA together with the curves for the blocking forces (red curve) and actuation stretches under no external forces (blue curve). (c)
The lateral stretches of uniaxial DEAs increase monotonically with the non-dimensional electric potentials unless the actuator is subjected to compressive lateral
forces (or tensile through-thickness forces). (d) The stress—stretch curve of the elastomer is lowered when the electric potential and its slope decreases, i.e., it
softens; however, no zero-stiffness point is encountered. (e) The change in the actuation stress of the DEA as a function of electric potential is larger when the

elastomer is stretched laterally, due to the decrease in its thickness. The blocking force, i.e., the actuation force when the deformation is completely confined, is
annotated by 4 = 1.

electrostatic potential of the elastomer and the charging unit is

Ha 2 Hp 2 en’ " 210
Udectric + Ucharger = —€n* *A1B/2t,. The work done by the U :?(Il = 3)sta0 "‘7(11 = 3)tp0 — T
external stresses f; and fr are Up =2 | (fidiloAsto)(A1 — Dy dAy 2
=201 —InA)filty  and Usz [ Fr22B)s — Dty dis — @0 =InA)fi + (1 +2In )l (28)
= (1+2InA))fi}to, where ty =t +tp. Therefore, the total
potential energy due to the mechanical stresses is Umech
=—(Q2@1 —InA)fy + (1 +21InA))fr)Bty. The total potential energy The equilibrium is where the actuation results in minimum
of the entire system can be written as total potential energy, ie., where QU/OA; = 0 and PU/OA > 0,
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leading to the following equation for the homogeneous equibiaxial
actuation of an incompressible dielectric elastomer with finite-
thickness electrodes,

en’d’ 4 (I +tpoltan) (f1 _fT):

A2t - -
T w2ty tpoligta) Tt (L pptpoliata)  fg

0.

(29)

This is the same as the actuation equation of equibiaxial DEAs
with infinitesimally thin electrodes [Eq. (20)], except that the
non-dimensional electric potential is scaled by (1 + Hptpolity to) M
and the non-dimensional actuation forces are scaled by
(1 + tpo/tan)/(1 + #Ptpo/#afuo)~ Considering the actuation under no
external stresses, the actuation stretch is maximized when the
product of the electrode thickness and stiffness is minimized, dem-
onstrating the importance of having compliant electrodes.

IV. DIELECTRIC ELASTOMERS

Elastomers consist of large molecular networks with low
cross-linking densities and long polymer chains. The essential
physics and the relationship between their molecular structure
and properties have been well established and the reader is
referred to textbooks on the subject'>*’ including liquid crystal
elastomers.”® In this section, we only include discussion of the
major factors that directly affect an actuator response. Before
doing so, it is important to emphasize that the elastomers used in
DEAs to date have been commercially available materials, such as
VHB films and Sylgard silicone elastomers, developed for very
different applications, for instance as sealing or insulating com-
pounds. Motivated by potential applications of DEAs, programs
are now under way to develop elastomer compositions for DEA
applications.””™"”

A. Fabrication of thin layers of elastomer

Elastomer layers of DEAs are either manufactured sheets, such
as 3M VHB™ acrylic films and ELASTOSIL® silicone films, or fab-
ricated by polymerization of commercial precursors, such as
Sylgard® silicones. As discussed in Secs. II and III, the actuation
stretches and forces increase with the non-dimensional electric
potential, ¢ = \/e/und,/ty. So, to achieve large actuations at a
given applied voltage ¢, it is important to fabricate DEAs as mul-
tilayers with thicknesses #o/n, often in the range of 10-50 um.
Handling such thin films individually and stacking them up can be
tedious and difficult to exclude air bubbles. For this reason, high-
performance multilayer DEAs are often made through
layer-by-layer fabrication schemes, in which first a precursor is
deposited onto a substrate and polymerized and then an electrode
is formed onto the elastomer layer, as will be discussed in Sec. V,
followed by forming another elastomer layer and repeating this
process until the desired number of layers and total thickness are
achieved.”’

The precursors are viscous liquids containing the oligomers to
form the backbones of the polymer chains, as well as catalysts, initi-
ators, cross-linkers, plasticizers, and other additives. Based on their
combination of low stiffness, permittivity, and electrical breakdown
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strength, the urethane and acrylate elastomers as well as silicone-
based elastomers were identified as the suitable actuator materials.*®
Polymerization of the oligomers is initiated either by heating if a
catalyst, such as Pt, is present or by exposure to light when a
photo-initiator is used. The latter has the advantage of fast poly-
merization, tens of seconds as compared to tens of minutes for the
thermal initiators, and has potential for spatial control of the poly-
merization, for instance using a laser, masking, or half-tone lithog-
raphy.”’ Light with a wavelength corresponding to absorption
bands of the photo-initiators, often in the ultraviolet, either causes
homolytic cleavage for type I photo-initiators such as hydroxyace-
tophenone or hydrogen abstraction for type II photo-initiators
such as benzophenone, which forms radicals that initiate the poly-
merization process. Catalysts such as platinum are often found in
two-part thermally initiated precursors, such as Sylgard 184 sili-
cones. The cross-linkers are chosen based on the side groups of the
polymer chain or end groups of the oligomers. For instance, the
polymer chain can be extended by using vinyl terminated oligo-
mers with thiol 3-functional cross-linkers. Gel fraction is typically
used as a measure of the effectiveness of the cross-linking. For
more on the chemistry of silicone and acrylic-based elastomers for
DEA applications, the interested reader is referred to recent
articles.”””

The most common methods to deposit the precursors are
spin-coating”** and doctor blading, also known as knife coating
and tape casting.”””* Other effective methods that have been
applied to deposit precursors and form elastomer layers are spray
coating,"’ used for fabrication of multilayer DEAs, inkjet printing™
that can create precise profiles of deposited elastomer layers, dip
coating’® that has been used for multilayer coaxial DEAs, and pad-
printing that can create elastomer layers as thin as 3 um, with
lateral strains of 7.5% at only 245 V.”’

B. Mechanical response of elastomers

Various hyperelastic models have been devised to represent
the mechanical behavior of elastomers, some for analytical sim-
plicity in modeling and others for capturing the molecular rear-
rangements under deformation. Two of the most common
material models used to describe mechanical responses of dielec-
tric elastomers are the neo-Hookean and the Gent model (Sec. 111
A). The neo-Hookean model is the simplest hyperelastic material
model that describes the stored energy of the elastomer under
deformation in terms of the sum of squared principal stretches.
From a statistical mechanics point of view, it is equivalent to a
Gaussian model in which the change in stored energy due to
mechanical deformations is associated with the decrease in con-
figurational entropy of randomly oriented polymer chains.” For
the larger deformations, where the polymer chains are stretched
nearly to their fully extended length, the phenomenological Gent
material model’' is generally preferred since it incorporates
strain stiffening using a simple empirical equation. It is also
known to be an accurate approximation to a molecular based
stretch-averaged full-network model involving the inverse
Langevin function.’

Representative stress-stretch behaviors of elastomers are
shown in Fig. 7. Figure 7(a) is of a commercial urethane acrylate
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FIG. 7. Examples of the mechanical response of acrylic-based and silicone-
based elastomers. (a) Stress-stretch measurements of a commercial urethane
acrylate elastomer (CN9018, Sartomer Arkema Group) with 5% HDDA cross-
linker, together with the fitting curves of neo-Hookean and Gent models. The
increase in the slope of stress—stretch curves with the stretch is a measure of
strain-stiffening and is only captured by the Gent model. (b) Stress-stretch mea-
surements of another commercial urethane acrylate elastomer (CN9021,
Sartomer Arkema Group) with different concentrations of HDDA cross-linker,
compared to 3M VHB™ elastomer films and an interpenetrating network (IPN)
of VHB and poly(1,6-hexanediol diacrylate).*” Increasing cross-linking increases
the stiffness at the expense of extensibility. Reproduced with permission from
Niu et al, J. Polym. Sci, Part B: Polym. Phys. 51(3), 197-206 (2012).
Copyright 2012 John Wiley and Sons. (c) Stress—stretch measurements for bot-
tlebrush elastomers with side chain degree of polymerization of ng; = 14 and
28, shown with solid and dashed lines, respectively, and different backbone
degrees of polymerization, n,,?® to which a two-parameter material model is
fitted. The measurements show the highly controllable strain-stiffening of the
bottlebrush elastomers and their low stiffness, nearly two orders of magnitude
lower than the acrylic-based elastomers shown in (a) and (b). The downward
arrows show the rupture stretch of the samples that is approximately inversely
proportional to the elastomer stiffness. Reproduced with permission from
Vatankhah-Varnoosfaderani et al., Adv. Mater. 29(2), 1604209 (2016). Copyright
2016 John Wiley and Sons.
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elastomer (CN9018, Sartomer Arkema Group) with 5%
1,6-hexanediol diacrylate cross-linker (HDDA). The neo-Hookean
model fitted to the measurements can describe only the initial
portion of the curve accurately, whereas the Gent model overlaps
the data over the entire stress—stretch curve capturing the strain-
stiffening behavior, the increase in slope with stretch. The role of
cross-linking in modifying the stress—stretch behavior is illustrated
in Fig. 7(b) for a typical urethane acrylate based elastomer,
CN9021, with different densities of 1,6-hexanediol diacrylate cross-
linker.”” With no cross-linker, the acrylic exhibits a low storage
modulus of less than 1 MPa and a stretchability of more than 600%
uniaxial strain. With increasing cross-linking density, the modulus
increases and the attainable stretch decreases. The former is consis-
tent with polymer physics theories that predict the elastic modulus
varies as the reciprocal of the molecular weight of chains between
cross-links.*” Also, the stretch at which the elastomer shows strain
stiffening decreases with the density of cross-linkers. Since strain
stiffening is desirable to prevent electromechanical instability, as
discussed in Secs. II and III, the optimum cross-linking density is
one that balances achieving a low modulus for a large actuation
with appreciable strain stiffening. This optimum is commonly
determined empirically by varying the cross-linking density.'"**

Another approach to manipulate the strain-stiffening behavior
of elastomers is the use of interpenetrating polymer networks,” in
which, first, a soft elastomer consisting of long polymer chains is
stretched biaxially and then, while stretched, a precursor of shorter
oligomers is diffused into the host network and reacted to form a
relatively stiff strain-free secondary network inside the host elasto-
mer. Releasing the stretch of the host elastomer compresses the sec-
ondary network leaving the host elastomer partially stretched. This
is, in essence, similar to prestretching the elastomer to avoid elec-
tromechanical instability, but instead of the common practice of
holding it stretched by attaching to a rigid frame, the prestretch is
maintained internally by the secondary network. Based on the
density of the secondary network, the strain-stiffening behavior of
the initial elastomer can be manipulated. For instance, DEAs based
on interpenetrating networks (IPN) of VHB as the host elastomer
and poly(1,6-hexanediol diacrylate) as the interpenetrating network
has shown area actuation strains of 233%, corresponding to equi-
biaxial lateral actuation stretch of 1; = 1.82.%° This value is close to
the maximum theoretical limit of A; = 2.26 for equibiaxial DEAs,
assuming that the electromechanical instability is the failure mech-
anism (Sec. III B). Attractive as the interpenetrating network elasto-
mers are, no methods of incorporating them into the fabrication of
multilayer DEAs has yet been demonstrated.

Another new class of elastomers with promise for DEA appli-
cations is the bottlebrush elastomers. In these elastomers, the back-
bones of the polymer network are inherently strained, due to the
presence of long, densely packed side chains, leading to intrinsic
strain-stiffening behavior to prevent electromechanical instabilities.
Significantly, despite the high density of large side chains, areal
expansions of more than 300% have been reported.”® As shown in
Fig. 7(c), high degrees of polymerization of the side chains lead to
a unique combination of softness and strain stiffening at lower
stretches. The key to making high-performance bottlebrush elasto-
mers for DEA applications is the accurate and independent control
of the degree of polymerization of the side chains, spacers between
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neighboring side chains, and the backbone of the bottlebrush
network strands.

C. Dielectric breakdown of dielectric elastomers

As the maximum achievable actuation strain and force depend
on the square of the electric field that can be sustained, there is
considerable interest in factors that determine the electric break-
down. Presently, the electrical breakdown strength of common
dielectric elastomers used in DEA applications fall in the range of
50-300 V/um.*'~* In many respects, though, a detailed under-
standing of electrical breakdown in elastomers is still very much in
its infancy. In part, this is because of the direct coupling between
the electric field and deformation and because DEAs operate in a
regime in which the stored electrical energy density is comparable
with the mechanical strain energy density. This is not the case in
other dielectrics, such as polymer capacitors or oxides. In addition
to affecting underlying breakdown mechanisms, this can also affect
the measurement of breakdown strengths since elastomers are so
soft that their local thickness can decrease during the test. This
requires particular care in some tests, such as those in which the
voltage is applied using a spherical metal contact. It is also unclear
how the intensive studies of electrical breakdown in thin gate
oxides, and earlier studies of high-permittivity oxides and polymer
dielectrics, can be translated to elastomer devices. Nevertheless, as
in other materials, the breakdown must involve multiple processes
including excitation and multiplication of free charge carriers,”* the
creation of excited radicals and species, as well as in the later stages
Joule heating due to high current densities. Each of these are
expected to be affected by local mechanical deformation due to the
large localized electric fields.” Readers interested in mechanisms as
well as reviews on breakdown mechanisms in polymers are referred
to Refs. 66 and 67. In this section, dielectric breakdown of elasto-
mer materials is considered. Soft breakdown, a phenomenon that
mainly stems from the electrodes of the DEAs and capacitors, in
which the electrical breakdown paths do not behave like Ohmic
resistors,”® will be discussed in Sec. V F.

The electrical breakdown strength of a material is not an
intrinsic property of a material just as the mechanical strength is
not. Instead, the breakdown strength is found to depend on geo-
metrical parameters, such as thickness and area under field, and
can vary from one batch to another. In stiff dielectrics, the break-
down field varies with thickness as Eg oc £~ where the exponent is
~0.5.°” This power law dependency on thickness suggests that, as
with the mechanical strength of brittle materials, the breakdown
strength is statistically determined by the probability of a
breakdown-facilitating defects lying within the stressed volume. By
the same argument, the electrical breakdown strength can be
expected to decrease with increasing area under field. At the
present stage in DEA development, dielectric elastomers unavoid-
ably contain defects such as dust particles, air microbubbles, non-
uniform thickness, gel particles, and nonuniform cross-linking.
These can act to initiate local electrical breakdown although the
mechanisms involved are not established. Nevertheless, as will be
described in Sec. V F, the ability of the electrodes to self-clear and
form nonconductive regions around these defects can significantly
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improve the electrical breakdown strength of actuator devices and
result in high-performance and fault-tolerant actuators.””’"

The statistical distribution in measured breakdown
strengths are appropriately represented in terms of extreme value
statistics, for instance, Weibull statistics. The cumulative distribu-
tion function of the two-parameter Weibull distribution is given
by the probability that breakdown occurs at, or below, an electric
field, E,

PE)y=1-¢ (%)ﬂ. (30)

Ep and S are, respectively, the electrical breakdown field and
the Weibull modulus (also called shape parameter). A large Weibull
modulus is desirable since it indicates a narrow distribution and is a
measure of the reliability for designing devices based on a specific
value of the electrical breakdown strength. The electrical breakdown
strength parameter, Ep, is the electric field up to which 63%
(=21 — e7!) of the samples fail, approximating the arithmetic average
of the breakdown field. Figure 8 presents examples of electrical
breakdown measurements for Sylgard 184 with different ratios of
oligomers to curing agents and Wacker 613, commercial silicone-
based elastomers, VHB F9460, an acrylic-based elastomer, and ther-
moplastic poly-(styrene-co-ethylene-co-butylene-co-styrene). Fitting
the Weibull cumulative distribution functions to the measurements
show electrical breakdown strengths ranging from ~30 to ~130 V/um
and Weibull moduli in the range of ~8 to ~34, characterized by the
slope of the log [log [1/(1 — P)]] vs log E curves. These measurements
were made with a spherical electrode in contact with the elastomer
on a rigid, conducting substrate.””

The electrical breakdown field, Eg, and the reliability parame-
ter, f, depend not only on the material but is also strongly affected
by factors such as the film surface area,”” film thickness,®"’*”°
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FIG. 8. Fitting cumulative Weibull distribution functions to the electrical break-
down strength measurements of Sylgard 184 (labeled as S184) with different
ratios of oligomers to curing agents, Wacker 613 (labeled as W613),
poly-(styrene-co-ethylene-co-butylene-co-styrene) (labeled as S0), and 3M
VHB™ F9460 (labeled as F9460) show electrical breakdown strengths in the
range of ~30 to ~130 V/um and Weibull modulus of 8-34. Figure courtesy of
M. Kollosche.
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The effect of surface area on the electrical breakdown strength
can be shown through a simple analysis of the Weibull distribution
of electrical breakdown.”” Consider that the electrical breakdown
measured on a sample with surface area A, is Ep and f3,. For a
film whose surface area is n = A,/A; times larger, the first electrical
breakdowns in any of the n portions would lead to the breakdown
of the entire film. Therefore, due to the statistical independence of
electrical breakdown process of each of those n portions, the proba-
bility of survival of the film with »n times larger surface area,
1 — Py, is the probability of survival of all # portions (1 — P)",

and density of defects and

Ao g n
pz(E):1—(1—P1(E))3—?:1—e7($) . 31)

The implication is that the Weibull modulus does not change
significantly with increases in the surface area, but the electrical
breakdown is reduced by a factor of (Ax/A)™VE,

Ba ~ By

(32)
Epy/Epy ~ (Aol A1)~

The decrease in electrical breakdown with surface area is
strongly affected by the value of the Weibull modulus, §. For
instance, for silicone elastomers, for which a range of 10-40 is
reported for 8,% an increase in surface area by 100 and 10000
times will decrease the electrical breakdown field by ~37% and
~60%, respectively, when B =10, but by only 11% and 21%,
respectively, when = 40.

Although the electrical breakdown strength of elastomer films
show a similar power law dependence on thickness as hard dielec-
trics, the physical basis and the exponent a in Ep oc t~* differs and
also there is an apparent linear increase in the Weibull modulus
with thickness § oc 7589 For instance, the VHB acrylic elastomer
sheets from 3M, the material most commonly used in early works
on dielectric elastomer actuators, exhibit a Epoc t7%?> depend-
ency.”’ Silicone elastomers show similar thickness dependence:
Ep oc t7023°2 The possibility that the processing used to make the
elastomer affected the observed reduction in electrical breakdown
strength with thickness was ruled out, since electrical breakdown
strength decreases with film thickness whether the films are made
of single layers with different thicknesses or multiple layers each
having the same thickness.”

No single model adequately describes the reduction of the
electrical breakdown strength with thickness. Some of the essential
ideas are, however, expressed in charge injection models such as®'
for polymer dielectrics. Under high fields, electrons from the
cathode and holes from the anode are injected into the dielectric
and diffuse as charge packets within the polymer film under the
applied electric field to create space charge regions in the vicinity
of both electrodes. This, in turn, modifies the electric field profile
inside the polymer. The peak of the electric field profile is signifi-
cantly larger than the nominal applied electric field, causing electri-
cal breakdown when it exceeds the local breakdown strength. The
model predicts a power law dependence on the thickness often
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observed in experiments but the calculated exponent, & = 0.125, is
significantly smaller, about half of that measured. It is also consis-
tent with measurements of the distribution of space charges within
polymer films and their strong influence on electrical break-
down.*>** According to this model, a significant contributor to the
lower electrical breakdown field measured for the thicker polymer
films is due to the fact that at the same voltage ramp up rate, the
electric field ramp up rate is smaller for the thicker polymer films
and there is a longer time for the injected charges to migrate and
create a larger peak for electric field profile inside the polymer film.
This suggests that if the polymer films were to be tested at the same
electric field ramp up rate, the measured dependence of the electri-
cal breakdown strength on thickness would have been different.
While such charge injection models capture many key concepts,
their direct applicability to elastomers remains to be established
since they do not take account of the mechanical deformation pro-
duced under large electric fields in soft elastomers.

The electrical breakdown strengths of soft elastomers also
depend on their mechanical stiffness. When breakdown is associ-
ated with the onset of the electromechanical instability, this can be
readily understood from the instability criteria discussed in Sec. ITI.
Support for this interpretation comes from experiments with chem-
ically similar blends of thermoplastic soft elastomers having differ-
ent elastic stiffness. These show an increase in electrical breakdown
strength with stiffness and also showed that hyperelastic models of
electromechanical instability predict the stiffness dependence of
electrical breakdown.”” As individual elastomer layers are con-
strained by one another in multilayers, it can be expected that the
local electromechanical instability is less likely, at a given field than
a free-standing elastomer. This would suggest, but has not been
demonstrated, that the breakdown strengths are higher in multi-
layer devices than in single-layer actuators.

Preventing the electromechanical instability is not the only
mechanism by which prestretching increases the electrical break-
down strength of elastomers. Even for fully constrained elastomer
films for which no deformations are allowed and so no electrome-
chanical instabilities are expected, prestretching increases the
electrical breakdown strength of an elastomer.”’ Under fully con-
strained conditions, the dependence of the electrical breakdown
strength on stretch has been found to vary as EpocAd, with
g = 0.63 for VHB acrylic elastomers’' and g = 0.77 for silicone-
based elastomers.”” The increase in electrical breakdown strength
with lateral stretch is also observed when the volume of the
samples is conserved. This is observed with elastomers biaxially
stretched by A, where the electrodes are A> times larger.”” For
context, prestretching is used in the manufacture of high-
performance biaxially-oriented polypropylene (BOPP) polymer
dielectrics. As the name suggests, the polypropylene is biaxially
stretched, at elevated temperatures, to preferentially orient the poly-
propylene molecules in the plane of the film, and this oriented
state is then frozen in on cooling. It is generally thought that such a
preferential molecular alignment is not possible in elastomers since
the energy for molecular re-arrangement is small. However, there
are examples of optical birefringence in some elastomers while
mechanically stretched,”™*° indicating that molecular alignment
can occur under deformation. This suggests that alignment can
also occur under an electric field and this is demonstrated in Fig. 9,
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FIG. 9. Birefringence of dielectric elastomers. (a) Mechanically stretching a
0.7 mm thick multilayered strip of CN9028, an acrylic-based dielectric elastomer,
by 5% and 10% uniaxial strain causes birefringence as evidenced by the
change in its color when placed between two parallel polarizers with their axis
at 45° with respect to the birefringence axis of the elastomer, and illuminated by
a background white light source. (b) Birefringence of a CNT electroded elasto-
mer sheet before and during electrostatic actuation. The electroded regions
exhibit green birefringence at 2kV as they expand, whereas the non-electroded
areas that are inactive but are being compressed laterally in width appear red.
Blisters formed as a result of soft breakdowns are also apparent.

which shows the birefringence of an acrylic-based elastomer,
CN9028 (Sartomer Arkema Group), under both mechanical and
electrical loadings. (The imaging conditions consist of the elasto-
mer sheet between two parallel polarizers, whose transmission axis
is at 45° with respect to the horizontal direction in Fig. 9, illumi-
nated by a background white light source.) In Fig. 9(a), the elasto-
mer strip is mechanically stretched by up to 10% showing a large
change in color. The same effect can be seen for electrical loading
of a DEA having a comb-like electrode geometry [Fig. 9(b)] where
the birefringence colors in the electroded and non-electroded areas
are different, indicating different magnitude and orientation of the
polymer chains. In this configuration, when a voltage is applied,
the electroded areas of the DEA expand in width while their neigh-
boring non-electroded areas are compressed in width, causing two
different orientations of largest principal stretch. Again, the mecha-
nism by which molecular orientation might affect the breakdown
strength remains to be established.

D. Long-term degradation of dielectric elastomers

The effect of large electric fields applied to elastomers over
extended periods of time have yet to be studied in detail although
some devices have exhibited voltage cycling for millions of cycles,
albeit for short cycles. Long-term aging is a concern since it occurs
in polymeric systems, such as high-density polyethylene (HDPE)
and XLPE—cross-linked polyethylene used as insulation for
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high-voltage cables®’—as well as in polymer films.”® Assuming that
the degradation mechanism is both thermally activated and biased
by the electric field, the general transition rate equation can be
written in the form

o~

E
eA0oksT coch (i) R (33)

t
f ksT

2kgT
where t is the time to fail, & is the Planck constant, kg is the
Boltzmann constant, T is the absolute temperature in Kelvin, AG
is the Gibbs free energy difference of the products and reactants,
and e is electrical charge of electrons. a is a characteristic distance
along which a charged species moves under the applied electric
field, E.

A variety of mechanisms can be described by this formulation
including field-assisted migration of moisture in HDPE and XLPE
cables, space charges, or some other charged species in polymer
films under an electric field.*® The mechanism can then be repre-
sented by equilibrium reaction, for instance, between charges on
radical species or the trapping-detrapping of space charges. The
concentration of the species then evolves according to the local
reaction as dX/dt = ks X + (1 — X)k;, where the coefficients ks and
ky are, respectively, the forward and backward reaction rates and
are proportional to the absolute temperature, T, and decrease expo-
nentially with an activation energy, G. The electric field, E, biases
the reaction, decreasing the forward activation energy as a function
of electric field, G — CE?, and drives the equilibrium toward an
increase in local reaction products, X. To apply this biased equilib-
rium to breakdown under aging conditions, it is necessary to
assume that electrical breakdown occurs when the reaction product
concentration reaches a critical value of X'. In the relatively few
cases where detailed studies of aging have been performed, the life-
times fit the temperature and electric field dependence given by
Eq. (33)."”%" Given the lack of specificity of the mechanisms, the
predictions made using this equation can only be used to compare
aging results for the same material, although this can be indispens-
able for a particular device. It can be expected that dielectric elasto-
mer actuators will exhibit long-term aging. Indeed, because they
are rather open structures, long-term degradation by field-assisted
diffusion of moisture and other mobile charge species is likely
unless protective measures are implemented.

Degradation of actuators can occur due to the degradation of
the dielectric elastomer under high electric field but also by degra-
dation of the electrode under cyclic deformations. This will be dis-
cussed in Sec. V C.

E. Increasing the dielectric constant

The dielectric permittivities of most elastomers are small, typi-
cally 3-6 at low frequencies, as elastomer molecules generally lack
highly polarizable ions. As the actuation strains are proportional to
the dielectric constant, there are continuing activities directed
toward increasing its value by incorporating nanoparticles having
large dielectric constants”’™”" or using sub-percolative concentra-
tions of conductive fillers.””"*" The results show increases in dielec-
tric constant as expected and in proportion to their volume fraction,
consistent with simple mixing rules, indicating that the approach
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holds promise for the future. However, the approach faces two
hurdles, one related to electrical breakdown and the other the inherent
mechanical stiffening the particles confer. In most studies, the addi-
tion of high-dielectric particles severely reduces the electrical break-
down strength although only the breakdown field is usually reported
and not the Weibull statistics. Much of the decrease is probably due
to inhomogeneities in the spatial distribution of the particles, raising
the local electric field and initiating breakdown. More refined
approaches have been recently been used to creating a uniform parti-
cle distribution. Nevertheless, the difficulties in the approach are illus-
trated by reporting that the addition of 2% of conductive carbon black
particles in poly-(styrene-co-ethylene-co-butylene-co-styrene) resulted
in an order of magnitude decrease in electrical breakdown while the
permittivity only increased by a factor of ~2.”

One way of assessing the relative merits of nanoparticle addi-
tions is to use the non-dimensional maximum electric field,
\€luEg, as a figure of merit. For instance, this figure-of-merit
decreases by a factor of ~7 for the 2% carbon black fillers
in poly-(styrene-co-ethylene-co-butylene-co-styrene). Inclusion of
20% titanium dioxide particles in poly-(styrene-co-ethylene-
co-butylene-co-styrene) increased the elastic modulus by a factor of
~3.9 while the permittivity only increased by ~2.5.” Composites
of ceramic particles in elastomer matrices can moderately increase
the permittivity while maintaining or, in some cases, even increas-
ing the average electrical breakdown strength.*””® However, the
large volume fractions of stiff ceramic particles required to cause a
notable increase in permittivity increases the elastomer stiffness,
balancing the increased permittivity and potentially reducing the
non-dimensional electrical breakdown field. Furthermore, although
increasing the average breakdown field is important in many
practical instances, this is not useful if the Weibull modulus
decreases.

V. COMPLIANT ELECTRODES

The over-riding requirements of the electrodes is that they can
distribute charges from the power supply over the surface of the
dielectric while also being sufficiently compliant that they can
follow the large strain deformation of the elastomer without con-
straining the elastomer. Formally, this mechanical requirement is
given by Eq. (29) for a biaxial actuator. It is also necessary that the
electrode conductivity is sufficiently high so that Ohmic energy
losses are low and the RC time constant for charging and discharg-
ing is less than the viscoelastic time constant for elastomer defor-
mation. (RC time constant is the product of the circuit resistance
and the circuit capacitance). In addition, it is also desirable that
they can be patterned and adhered well to prevent possible delami-
nation between layers when used in a multilayer configuration.

One effective method for achieving such compliant electrodes,
which will be the focus of this section, is to form quasi-two-
dimensional percolating networks of high-aspect-ratio nanoparti-
cles such as carbon nanotubes or metallic nanowires on dielectric
elastomer sheets.”* A percolating network of conductive particles
allows for electrical conduction through numerous percolating
paths, and when stretched, the individual or patches of particles
easily slide relative to each other to give high mechanical compli-
ance. Methods other than percolating networks of conductive
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particles has also been developed for compliant electrodes of DEAs,
such as ionogels”" and liquid metals,” which will not be discussed
here for reasons discussed in Sec. II.

In this section, first, a percolative network of conductive
high-aspect-ratio particles, such as carbon nanotubes, is identified
as an effective percolative system for compliant electrodes, drawn
from a couple of key theoretical and experimental studies on perco-
lative systems and their electrical conduction. Next, a simple recipe
for fabrication of such percolative networks of carbon nanotubes is
presented, for which mechanical and electrical characterizations are
performed, and alternative fabrication methods are discussed. The
electrical characterizations investigate the conductivity of these thin
film electrodes, their performance as electrodes for capacitors given
their partial surface coverage, and their degradation under high
currents, which leads to self-clearing for fault-tolerant dielectric
elastomer actuators. The mechanical characterizations investigate
the added mechanical stiffness from the electrodes to the dielectric
elastomer actuators and the change in electrical conductivity under
mechanical loading.

A. Conductive networks of percolating particles as
compliant electrodes

Even before the detailed mechanics of the restraining effect of
electrodes were fully developed, it was recognized that the elec-
trodes for DEAs need to be capable of large extensions and so
would have to consist of networks or mats of percolating conduct-
ing particles. (In the earliest studies, carbon grease was often used
as electrodes.) It was also appreciated that the electrodes need to
have a low concentration of particles to minimize the electrode
stiffness. These considerations naturally led to the development of
electrodes based on carbon nanotubes, nanowires, and carbon
black nanoparticles.

Although a thin electrode of high-aspect ratio conducting
fibers is neither a random three-dimensional nor a truly two-
dimensional random arrangement, for which exact solutions exist,
guidance for the selection of random percolating fibers can be
gained from the percolation properties of fibers. Specifically,
Balberg et al” developed the excluded volume method and
showed that at the percolation threshold, the total excluded volume
of a system of particles with a given shape is a system invariant.
For a two-dimensional percolating network of high aspect ratio
fibers of length Iiper and diameter dpper, the number of fibers per
surface area at the percolation threshold, N, is proportional to the
inverse of squared length of fibers, Nflleber = constant. Therefore,
the critical mass density of fibers required to form a percolating
network, which is p, o< Nelgperdfiver in 2D, is inversely proportional
to their aspect ratio, p,oc (sber/diber) *. In  other words,
high-aspect-ratio particles such as carbon nanotubes and metal
nanowires require much lower volume densities to form the first
percolating path, compared to more equiaxed nanoparticles such as
carbon black and spherical colloids.

In practice, the density of conducting fibers must be signifi-
cantly larger than the percolation threshold both to have a high
conductivity and to assure uniform charge distribution, especially
at maximum stretch. Beyond the percolation threshold, increasing
the number density of fibers connects separate clusters resulting in
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a sharp jump in the size of the largest cluster. However, the con-
ductivity near the percolation threshold increases only gradually
and fits a power law function, o o< (p — p.), whose slope is zero at
percolation threshold. Well above the threshold, the conductivity
increases linearly at higher densities, as shown in an elegant tab-
letop experiment by Last and Thouless,”” and well described by
effective medium models.”

Measurements of electrical conductivity of quasi-two-
dimensional percolating networks of carbon nanotubes” showed
similar results for electrical conductivity near the percolation
threshold, o oc (o — p,)**. A similar dependence but with an expo-
nent of 1.8 is found for the sheet conductivity of the CNT elec-
trodes as a function of their areal density [Fig. 10(a)] fabricated
using the procedure described in Appendix B. The power law func-
tion for the electrical conductivity shows that the lower the critical
density, p,., the higher the electrical conductivity, o. Therefore,
high-aspect-ratio conducting nanoparticles such as carbon nano-
tubes, for which the critical density p, oc (Iber/diver) " is smaller
by several orders of magnitude, are by far more effective than equi-
axed nanoparticles, such as carbon black, for creating conductive
percolative networks.

B. Fabrication of CNT electrodes

An enormous literature on CNT electrodes has developed in
the last 20 years as interest has grown in their use in electronic
devices, wearable electronics, and displays as possible replacement
of ITO transparent conductors. Much of the knowledge established
for these applications is transferrable to the use as electrodes for
DEAs, but there are two important additional requirements. One is
the requirement that the electrode must be stretchable without
losing appreciable conductivity. The other is a processing constraint
that they can be deposited uniformly on materials having a low
surface energy since most elastomers have a surface energy of less
than 0.03 mJ/m”. This compares with the surface energy of silicon
of 1.24 J/m? and glass of 4.4 J/m?>.

No single fabrication method suits all applications, but the
one we have adopted for low volume applications is described in
Appendix B for readers interested in making their own devices.
This procedure, which is one of the many variations of the original
techniques”'"" for fabrication of thin film carbon nanotube elec-
trodes, consists of two main steps: making a suspension of carbon
nanotubes through sonication, centrifuging, and decanting, fol-
lowed by depositing the suspension as a percolating thin film of
CNTs by vacuum filtration and stamping.

The method used to prepare the CNT suspensions affects the
concentration of CNTs in the suspension as well as the conductiv-
ity of the deposited CNT film (at the same film thicknesses). In
addition to the procedure presented in Appendix B, other examples
for making CNT suspensions are to disperse non-functionalized
CNTs in solvents such as chloroform™ or in de-ionized water
using surfactants such as sodium dodecyl sulfate” or to use func-
tionalized CNTs with other functional groups such as polyethylene
glycol (PEG) or poly(aminobenzene sulfonic acid) (PABS). The
latter can result in higher stable concentrations of carbon nano-
tubes in de-ionized water'®” but lower electrical conductivity of the
electrode.'”'"* On the other hand, suspensions of CNTs with
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FIG. 10. Sheet conductivity of CNT electrodes under mechanical loading. (a)
Sheet conductivity, o, of CNT electrodes as a function of the area density,
p — pe, on a PTFE filter (black) and after stamping onto Sylgard 184 elastomer
(red). Both exhibit a power law dependence, o oc (o — p,)', with an exponent
t = 1.8. (b) Comparison of the sheet conductivity of biaxially stretching a CNT
electrode stamped on VHB (red solid triangles) with those measured for non-
stretched electrodes with lower CNT density (black solid circles). The fitted
curves for sheet ’ conductivity under biaxial stretching (red line),
o = oo(pylA? — p;), and non-stretched electrodes with lower CNT densities
(black line), o = ao(p—pc)', match each other. On unloading back to the
unstretched state, the electrode conductivity is reduced and follows a similar
power law dependence but with a lower exponent. This is attributed to the per-
manent buckling of CNTs resulting in shorter effes:tive lengths. The blue line
shows the fitted curve o = og(0g/A2 — PogAmaxld) With Amax = 1.3. (c) SEM
images of CNT electrodes under mechanical loading shows buckling of CNTs
during unloading.'” The CNTs shown in white boxes show straight CNTs
before mechanical loading and buckled CNTs after the first cycle of loading and
unloading. Reproduced with permission from Lipomi et al., Nat. Nanotechnol.
6(12), 788-792 (2011). Copyright 2011 Springer Nature.
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carboxylic acid groups (Appendix A) show high concentrations of
CNTs, and their deposited electrodes have similar electrical con-
ductivities as those of purified non-functionalized CNT electrodes
at the same film thicknesses.'"” Electrical conductivity of CNT elec-
trodes can be further enhanced through acid treatments'”>™'"” or
doping with potassium or bromine.'**

To deposit CNT suspensions and form electrodes, vacuum fil-
tration and stamping through shadow masks (Appendix B) offers a
good balance between ease of application and high homogeneity
and complexity of the CNT electrodes. However, this method is not
suited for automatic, precise, or large-scale fabrication of CNT elec-
trodes, for which other deposition methods are preferable. For
example, instead of using shadow masks, CNT electrodes can be
transferred using patterned polydimethylsiloxane (PDMS)
stamps'’” for repeated fabrication of electrodes with complex
geometries. A comparison of three common deposition methods
for CNT electrodes and their advantages and challenges are pre-
sented in Table II.

The main challenge with the inkjet printing and spray
coating of CNT electrodes is avoiding inhomogeneities due to the
capillary flow toward the edges of the deposited (micro-)droplets
during the evaporation of the solvent that forms ring-like concen-
trations of CNTs, known as coffee rings.'”''' Two common
practices to minimize this form of processing inhomogeneity are
oxygen plasma (or ozone UV) treatments to decrease the contact
angle and heating the substrate to accelerate the solvent evapora-
tion. While effective in reducing the dewetting inhomogeneity in
inkjet printing of carbon nanotube electrodes,''* surface plasma
treatments can create very thin, brittle layers of silica on PDMS
elastomers,''*"''* which micro-crack and grow when the elastomer
is stretched. Not only is the surface embrittled but the cracks can
disrupt the CNT network causing a sharp decrease in electrical
conductivity.'*>'"”

TABLE II. Comparison of common deposition methods for CNT electrodes.
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C. Electrical conductivity of CNT electrodes under
mechanical deformations

When stretching an elastomer sheet with stamped CNT elec-
trodes, individual and small bundles of carbon nanotubes must
slide past one another, and the electrode only remains conductive
as long as multiple percolating paths persist. However, the sheet
conductivity decreases since the number of percolating paths in the
CNT network decreases because of the increase in electrode surface
area. This is illustrated in Fig. 10(b) by measurements of the electri-
cal sheet conductivity of CNT electrodes, stamped onto a VHB
elastomer, while it was stretched equi-biaxially, A = A = 4,. The
CNT electrodes were made by vacuum filtration of non-
functionalized carbon nanotubes suspended in de-ionized water
using 1% sodium dodecyl sulfate surfactants. Stretching the elec-
trodes decreases the areal density of carbon nanotubes by
p = p,y/A?, whereas the sheet conductivity of mechanically stretched
electrodes decreased according to o = oo(py/A* —pc)t. The data
follow the same curve as reference electrodes made with different
areal densities of carbon nanotubes, o = oy(p — pc)t, shown by the
black solid circles in Fig. 10(b). The similarity over almost two
orders of magnitude suggests that mechanical stretching of carbon
nanotube electrodes does not damage either the individual CNTs,
as they slide on top of each other, or the homogeneity of the
network. Both these effects would have resulted in a percolative
network with shortened or separated patches of carbon nanotubes
that, in turn, would have had significantly lower sheet conductivity.

On unloading the mechanically stretched CNT electrodes, the
sheet conductivity does not follow the same curve as the non-
stretched electrodes and decreases orders of magnitude compared
to the original non-stretched electrode, as has been reported previ-
ously.'”” The same behavior has been observed for the CNT elec-
trodes sandwiched between two PDMS elastomer layers.'”' During
unloading, the carbon nanotubes undergo compression and buckle,
due to their high-aspect ratio, as has been observed in the scanning

Deposition method Advantages

Disadvantages

Vacuum filtration and « Highly homogeneous CNT
stamping (Appendix B)™~'"! relatively complex geometries

« Simplicity and ease of application

104,106,112,115,116

Inkjet printing

electrodes

with « Not scalable to large-scale electrodes or
suitable for precise submillimeter electrodes
« Not suitable for automation

+ Automated and high-resolution deposition of CNT « “Coffee ring” inhomogeneities due to the
electrodes with complex geometries (e.g., 80 um
feature sizes on PDMS elastomer sheets

capillary flow during solvent evaporation
106

o Precise control of the local density of CNTs and

the local electrical conductivity

70,117,118

106,112,115

Spray coating o Fabrication of large-area CNT electrodes o “Coffee ring” inhomogeneities due to the

capillary flow during solvent evaporation

e Mesoscale inhomogeneities due to the
nonuniform flow velocity below the spray
nozzle,'"” leading to nonuniform deposited
film thicknesses'’
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electron microscopy images of unloaded carbon nanotube elec-
trodes [Fig. 10(c)]."”*" The decrease in the electrical conductivity
can be understood in terms of the shortened effective length of the
buckled and curved carbon nanotubes that translates into a higher
critical density for percolation, p.I = p l. Assuming the carbon
nanotubes do not tolerate any compressive force and buckle, their
end-to-end lengths decrease proportionally to the unloading
stretch, I/l = A/Amax. This leads to an increase in the critical
areal density of the unloaded electrode as p, = pgAmax/A. As a
result, the sheet conductivity increases very slowly as the elec-
trode is unloaded, o = oy(p,/A* —pcolmax/l)t. When the elec-
trode is fully unloaded, A2 =1, the sheet conductivity is
(Po — Peormax) 1Py — pe)’ times smaller than the original sheet
conductivity. For a more detailed analysis of sheet conductivity
of CNT electrodes under mechanical loading and unloading, the
interested reader is referred to Ref. 122. Similar behavior is
observed for the electrical conductivity of silver nanowires in
elastomeric matrices during the first cycle of stretching and
unloading.'*” The reduction in electrical conductivity of silver
nanowire electrodes, which are typically both thicker and stiffer
than CNT electrodes, is not due to the buckling of individual
nanowires but rather by out of plane wrinkling during the first
unloading. The wrinkling increases the surface area and, there-
fore, reduces the area density of silver nanowires.

Upon re-loading, the relative decrease in sheet conductivity
with stretching becomes smaller in subsequent loading and unload-
ing cycles."”* There are also indications that after the first cycle, the
subsequent changes in sheet conductivity are reproducible and
reversible,'* although this requires further, more detailed studies.
Part of the decrease in conductivity from the first loading cycle is
probably the result of the initial CNT buckling not recovering elas-
tically due to changes in the surrounding elastomer. It also remains
to be established whether the changes are greater if subsequent
strains exceed the first cycle strains as might be expected if a
Mullins’s like effect occurs. Studies of long-term degradation of
stretchable electrodes made of elastomers filled with conductive
particles show that the decreased electric conductivity is highly
dependent on the stretch that the electrode is subjected to.'””
Under these conditions, degradation is usually associated with sep-
aration between the particles and the elastomer and the rupture of
conducting percolating paths between particles. Despite not always
knowing the underlying degradation mechanisms, these results
emphasize the importance of performing strain-controlled cyclic
fatigue measurements of electrodes both on free surfaces and in
multilayers.

D. Mechanical compliance of CNT electrodes

It is generally assumed that percolative electrode networks of
CNT’s and nanowires will have low stiffnesses, because when
stretched, individual and small bundles of CNTs are able to slide
relative to each other. Under unloading or compression, similar
behavior is expected provided that the fibers do not jam into one
another and lock together and creating a jamming transition.
(Prior to jamming, they may buckle under compression as shown
in Fig. 10.) The experimental results reported are consistent with
CNT electrodes having high compliance at low areal concentrations
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but not necessarily at higher concentrations. For example, the
added stiffness from CNT electrodes with densities lower than
22.5mg m™> between acrylic-based elastomer multilayers with layer
thickness of ~90 um and shear modulus of ~0.4 MPa was shown to
be insignificant, by comparing the stress—strain curves of the elasto-
mer sheets with and without CNT electrodes [Fig. 11(a)]."" High
densities of carbon nanotubes, however, can reduce the actuation
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FIG. 11. Mechanical compliance of CNT electrodes. (a) Adding low density
single-walled CNT electrodes (less than 225mgm™) to a soft acrylic-based
six-layer elastomer with layer thickness of ~90um and shear modulus of
~0.4 MPa does not cause any significant increase in stiffness.'’ The elastomers
were stretched until rupture. Reproduced with permission from Duduta et al.,
Adv. Mater. 28(36), 8058-8063 (2016). Copyright 2016 John Wiley and Sons.
(b) High density of CNTs, e.g., 62mgm™, on a 0.5mm thick acrylic-based
elastomer (VHB 4905, 3M Co.) can cause significant decrease in the attainable
actuation stretch of the DEA due to the added stiffness, whereas low densities
of CNTs lead to loss of percolation at relatively low actuation stretches, e.g.,
Ac ~ 1.3, for 42mgm=2 CNT density.** Consequently, there is an optimum
density of CNTs. Carbon grease is used as a comparison electrode since it
follows the elastomer deformation and remains highly conducting. At too low
CNT density, e.g., 2.3mgm™2, the electrode is almost nonconductive and con-
sequently the actuation is nearly zero. Reproduced with permission from Shian
et al,, Appl. Phys. Lett. 101(6), 061101 (2012). Copyright 2012 AIP Publishing
LLC.
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of dielectric elastomer actuators due to their added stiffness. For
example, a dielectric elastomer actuator consisting of a prestretched
VHB 4905 (3M Co.) 0.5mm thick elastomer with stamped CNT
electrodes with density of 62 mg m™ exhibited lower actuation dis-
placement compared to a 19 mg m™2 electrode [Fig. 11(b)].°* For
the very low-density CNT electrodes, less than 4.2 mgm™>s in this
instance, the network of CNTs loses percolation at relatively low
stretches, shown by A, in Fig. 11(b). These results highlight that
there will exist an optimum CNT concentration, sufficiently low
that its stiffness does not constrain actuation even for the thinnest
elastomer actuators but also be sufficiently large that the electrode
maintains the required electrical conductivity at maximum stretch.

E. Electrical capacitance of DEAs with CNT electrodes

The Coulombic attraction forces that cause actuation of DEAs
are proportional to the voltage-induced electric field within the
elastomer and the charge density on the electrodes, P = gE
(Sec. II). At a constant applied voltage, the former is proportional
to the capacitance. Up until this point, it has been assumed that
the charge over both elastomer surfaces is uniformly distributed so
that the Coulombic attraction is the same as a parallel plate capaci-
tor with metallic electrodes. Electrodes consisting of mats of con-
ducting, percolative fibers do not cover the entire elastomer surface,
so unless there is extensive charge spreading over the surface
between the CNTs, the coverage will be patchy. It has been implic-
itly assumed in the actuator literature that the size of the uncovered
areas between CNT patches is small compared with the thickness
of the dielectric and so any effects can be neglected under current
DEA operating conditions. Although these effects may indeed be
negligible for commonly used elastomer thicknesses, in the range
of 30-100 um, they have not been quantified and so the effects of
going to much thinner elastomers in order to operate at lower vol-
tages are unknown.

An estimate can, nevertheless, be made using the results of
calculations of the capacitance of capacitors with periodic arrays of
conducting electrode strips. Grosser and Schulz'*® considered a
double-layer capacitor consisting of a periodic array of conductive
strips with surface coverage of s =a/l [Fig. 12(a)] sandwiched
between two elastomers of equal thickness covered by planar elec-
trodes. They derived an expression for the distribution of electric
potential using a potential that automatically satisfies both the
Laplace equation and the boundary conditions on the two outer
electrodes. From their analysis, it is straightforward to extract the
relative capacitance of the double-layer capacitor as

c_. v (34)

& ()

where C,_; is the capacitance for the case where the middle elec-
trode is a planar sheet with full surface coverage and I/t is the rela-
tive spacing between the uncovered areas. Figure 12(c) compares
the relative capacitance given by the analytical Eq. (34) with com-
plementary COMSOL electrostatic simulations as a function of the
ratio I/t and surface coverage s. The COMSOL solution for the
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FIG. 12. The decrease in capacitance due to only partial coverage of the elec-
trodes depends on both the surface coverage and the relative spacing between
the uncovered areas. (a) Schematic of a double layer capacitor with perforated
middle electrode whose surface coverage is s = all and the normalized spacing
between the uncovered area is //t. (b) COMSOL simulations for the distribution
of electric potentials inside a double-layer capacitor with a perforated strip
middle electrode. (c) COMSOL simulations (black circles) and analytical solution
for the relative capacitance, C/Cs_1, as a function of the surface coverage and
normalized spacing show that even at extremely small surface coverage, the rel-
ative capacitance remains close to 1 if the spacing between the uncovered
areas is small compared to the thickness of the dielectric layers.

distribution of electric potential at a cross section of the double-
layer capacitor is shown in Fig. 12(b).

The calculations reveal that the relative spacing between the
uncovered areas, I/t, is as important as the surface coverage itself.
This gives several new insights into the design parameters of the
CNT electrodes including the importance of homogeneity of the
CNT electrodes, the length of the individual CNTs, and the effect of
reducing elastomer thickness on the relative capacitance C/C;—;. For
instance, for a homogeneous network of CNTs, the spacing between
the uncovered areas is expected to be shorter than the length of the
carbon nanotubes (of the order of 1 um). So, for a DEA with homo-
geneous CNT electrodes and elastomer thickness of 20 um, the rela-
tive capacitance, C/C,_;, remains above 93% even when the surface
coverage is as low as 1%. However, large-scale inhomogeneities in
the spacing of the carbon nanotubes, for instance, due to the coffee
ring effect, which might be tens of micrometers, can significantly
reduce the capacitance of the DEA. Homogeneous percolating net-
works of metallic nanowires that have similar aspect ratio to that of
CNTs but usually tend to be much longer and thicker have relatively
larger spacing between the uncovered areas and, therefore, may
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result in lower capacitance. This may, in part, be the reason that
DEAs with silver nanowire electrodes show smaller actuations com-
pared to the DEAs with CNT electrodes.”

Although it can be concluded that the effect of incomplete
coverage is not presently significant since the elastomer thicknesses
are usually tens of micrometers, it is likely to be of significance as
substantially thinner elastomers are used in order to reduce the
operating voltages. For instance, if the elastomer thickness is 1 um,
the relative capacitance drops to 44%-64% for surface coverage of
1%-10% (assuming that the spacing between the uncovered areas is
of the order of the length of the CNTs, ~1um). The periodic
arrangement of electrode strips is clearly a poor geometric descrip-
tion of a random, quasi-two-dimensional mat of CNTs, but unpub-
lished results of simulations of an electrode containing a random
arrangement of random sized circular holes indicate that the results
for the periodic strips are nevertheless in reasonable agreement.

F. Self-cleaning and soft electrical breakdowns

The terms “soft breakdown” and “self-clearing”'*”'** come

from the literature describing breakdown in gate electrodes,
polymer capacitors, and electrical cables. Operationally, soft break-
down is characterized by the appearance of current spikes as the
voltage is increased or held constant. As illustrated in Fig. 13,”'
numerous spikes can occur during the first few actuations without
catastrophic breakdown and loss of functionality that occurs when
the electrodes are shorted. Intriguingly, these current spikes do not
reoccur after a few actuation cycles. The simplest explanation for
soft breakdown is that a very high, localized current flows through
the thickness of the dielectric destroying the material along the fila-
mentary path by Joule heating, typically with the formation of
various carbonaceous species. The observation that a device can
continue to function suggests that the conducting filamentary
channel either becomes isolated from the electrodes or there is suf-
ficient flow of elastomer material from the surroundings to “heal”
the channel. In high-performance density capacitors based on the
biaxially-oriented polypropylene (BOPP) dielectric, the high energy
dissipation associated with a current spike can lead to evaporation
(or breakup) of the thin metal electrode surrounding the
channel thereby insulating the channel from the current supply,
shown schematically in Fig. 14(a) for single-layer capacitors and in
Fig. 14(c) for multilayer capacitors.'”® Indeed, this is the basis for
the “self-clearing” process used to proof test BOPP capacitors by
systematically removing potential breakdown paths.

Early studies of self-clearing of thin metalized polymer films
and capacitors'*”'*® showed that the self-cleared areas of the elec-
trodes are proportional to their sheet conductivity, S, oc o, and
therefore to the thickness of the electrodes, S, oc t,. Furthermore,
since the dissipated energy during a self-clearing event is propor-
tional to the volume of the evaporated electrodes, U o< S,t,, it
varies with the square of the electrode thickness, U oc tg. Thinner
and less conductive electrodes are, therefore, better suited for self-
clearing, while thick electrodes will not self-clear and lead to pre-
mature electrical breakdown due to formation of a conducting
channel, for instance, by the decomposition of the dielectric mate-
rial. The same self-clearing isolation occurs when the electrodes
consist of CNTs rather than a metal as a result of locally high
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FIG. 13. Operationally, soft breakdown and self-clearing of CNT electrodes are
characterized by the random appearance of current spikes during the first few
runs (current as a function of time being shown in blue) as the voltage (black
dotted curves) is increased stepwise, while the DEA keeps its actuation strain
(orange curves) after each soft breakdown event. The self-clearing completes
after a few runs and the spikes disappear.”’ The spikes that coincide with each
voltage increase step, that are seen even in the later runs, correspond to the
charging of the DEA. Reproduced with permission from Zhao et al., Adv. Funct.
Mater. 28(42), 1804328 (2018). Copyright 2018 John Wiley and Sons.

current densities vaporizing (or oxidizing) the adjacent CNT elec-
trode regions. The maximum current that an individual CNT can
tolerate is ~19 ,uA.129 For self-clearing to be effective, the areal con-
centration of CNTs cannot be too high; otherwise, there may be
insufficient thermal energy to locally vaporize the CNT network,
leaving some electrical continuity with the current supply and a
current path through the dielectric. Photographs of the self-cleared
spots of CNTs of dielectric elastomer actuators shows that the
length scale of the self-cleared areas can be as large as millimeters,
at least on a free surface [Fig. 14(b)]."*° Based on the estimates
introduced in Sec. V E, such large areas will adversely affect the
attainable actuation. This has yet to be evaluated.

In multilayer DEAs with CNT electrodes, the main difference
is that the gaseous species formed during breakdown cannot escape
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FIG. 14. Self-clearing of CNT electrodes on single-layer and multilayer DEAs.
(a) Schematic of self-clearing of the electrodes around a weak spot on a single-
layer polymer capacitors. (b) Photographs of a self-clearing of CNT electrodes
on a single-layer silicone-based elastomer'*” shows that the self-cleared areas
can be several mm? in size. Reproduced with permission from Stoyanov et al.,
RSC Adv. 3(7), 2272-2278 (2013). Copyright 2013 Royal Society of Chemistry.
(c) Schematic of self-clearing and blister formation on a multilayer capacitor.
The breakdown paths are shown by dashed lines. (d) Self-clearing in a multi-
layer acrylic-based DEA produces gaseous species that cannot escape and so
form blisters.

and instead form blisters. For instance, Fig. 14(d) is a photograph
of a multilayer acrylic-based DEA showing multiple blisters formed
after several soft breakdown events, even while the actuator still
functioned. (There is some evidence that the gases can diffuse out
over time, particularly in silicones, and the blisters disappear, at
least to the eye.) The literature on multilayer capacitors suggest that
the carbon content of the gaseous species can significantly affect
the effectiveness of the self-clearing process,”* meaning that self-
clearing in multilayer capacitors is not only determined by the elec-
trode but also depends on the chemistry of the dielectric material.
Indeed, it is not unusual in commercial polymer insulators to
include additives to scavenge oxygen radicals, for instance.

In some elastomer actuators, soft breakdown together with
self-clearing can significantly improve the electrical breakdown
strength of DEAs and result in high-performance and fault-tolerant
actuators.”” In these instances, “self-clearing” acts to isolate break-
down paths that would otherwise lead to breakdowns at the lower
side of the Weibull distribution thereby truncating the distribution,
increasing the average breakdown strength and, if measured,
increase the Weibull modulus. Similar proof testing has been used
by Duduta” and Zhao'' to improve electrical breakdown and reli-
ability of multilayer DEAs. Key to successful proof testing is to
slowly raise the voltage so that individual breakdown paths can be
sequentially cleared without causing permanent catastrophic break-
down that shorts the electrodes.

Unresolved at the present time is the possibility that the CNT's
or nanowires themselves and, in particular, their ends can act as
local field concentrators. The basis for this is that nanowires and
CNTs have very small diameters and the electric field varies as 1/r
with radial distance, r, from a charged cylindrical conductor. The
field concentration is even higher at the end of a cylindrical

TUTORIAL scitation.org/journalljap

conductor if it is represented by the spherical cap."’" Evidence sug-
gesting that these geometrical effects can be important are observa-
tions of electric-field induced pitting in soft elastomers at the tip of
a carbon fiber electrode lying on top of an elastomer film on an
ITO coated glass. If the propensity for failure initiation at the ends
of CNTs are borne out, then it would suggest that the electric
breakdown field would increase with the length of the CNTs and
that, ideally, electrodes should be fabricated from continuous CNTs

VI. ACTUATOR GEOMETRY

The parallel plate capacitor configuration forms the basis of
several actuation geometries. The simplest being stacks of multi-
layers to generate a contractile displacement and tensile force in the
electric field direction and a biaxial expansion and compressive
force perpendicular to the field. This can be achieved through a
layer-by-layer fabrication scheme,'' folding an electrode coated
thin elastomer layer back and forth,” or using a helical structures.’
The tensile force can be used to lift a load in the stacking direction,
whereas the compressive force acts orthogonally. Both the contrac-
tile displacement and the perpendicular compressive forces increase
with the number of layers (at a constant total thickness and applied
voltage) as described in Secs. II and III. This is an attractive propo-
sition but places a premium on the manufacturing of multiple actu-
ators and electrode layers having similar thicknesses and
breakdown characteristics while avoiding defects. The biaxial actua-
tion [e.g., the multilayer DEA in Fig. 1(c)] is akin to the contractile
actuation of muscle tissues since the contractions in their length is
associated with insignificant volume changes, less than 0.01%,""
and their tensile properties are transversely isotropic,"”> which
result in biaxial contractile actuations.

Biaxial actuators, however, are not common in engineering
practice, which usually employs uniaxial actuators to apply a force
or displacement in a specific direction. To meet this requirement,
two modifications of the basic biaxial DEA have been utilized. One
is to incorporate stiffening elements,'** such as fibers or rings, to
convert the biaxial expansion force into a tensile force that acts in a
direction perpendicular to the stiffening elements. This configura-
tion is analyzed in Sec. ITI C. The other is to wind the biaxial multi-
layer into a thick-wall cylinder, the elastomer layers being along the
longitudinal axis and the azimuthal directions (Fig. 15), in which
the friction or a glue between the layers prevents any expansion in
the azimuthal direction converting the biaxial force produced by

Axial dlrecﬂoni

FIG. 15. Rolling of a multilayer DEA (left) forms compact cylindrical actuators
(right) producing uniaxial actuations.”' Reproduced with permission from Zhao
et al, Adv. Funct. Mater. 28(42), 1804328 (2018). Copyright 2018 John Wiley
and Sons.
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the electric field into a force mainly acting along the axis of the cyl-
inder.”* This has found implementation in haptic devices'’> and
flapping-wing robots (Fig. 16)."’° An important feature of the
dielectric elastomer actuators is their impact resistance, analogous
to the natural muscles. Recent work by Chen et al.'*® made use of
this feature to create robust flapping-wing flying robots. The block-
ing forces of these compact cylindrical actuators were shown to
remain unchanged over 0.5kHz and the actuation displacement
peaked at 0.5 kHz (Fig. 16), once again exceeding the performance
of natural muscles shown in Fig. 1(d).”’

The dynamic response of dielectric elastomers actuators
depends on their geometry, the viscoelastic response of the elasto-
mer material, and the response of the electrical drive circuit. It is
often assumed that the bandwidth of the drive circuit, including
the electrodes, is substantially larger than that of the elastomer, but
this is not necessarily the case when using percolative CNT elec-
trodes. For instance, if the electrode sheet resistance is of the order
of ~1 MQ and the actuator capacitance is ~1 nF, the electrical time
constant, 7 = RC, is of the order of milliseconds. Furthermore, the
resistance of percolative electrodes increases with stretch as does
the capacitance, so during actuation the electrical time constant,
7 = RC, itself increases. Consequently, lowering the sheet resist-
ance, without increasing the electrode stiffness, is essential for
device operation up to and above 1 kHz.
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FIG. 16. Application of compact cylindrical DEAs for flapping-wing robots.
Reproduced with permission from Chen et al., Nature 575(7782), 324-329
(2019). Copyright 2019 Springer Nature. (a) Photograph of a flapping-wing flying
micro-robot using two compact cylindrical DEAs as impact resistant artificial
muscles.*® (b) The frequency response of the mesoscale silicone-based cylin-
drical DEA used in (a) shows that the blocking force remains unchanged up to
600 Hz, which significantly exceeds those of the mammalian skeletal muscles.
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The simplicity of the cylindrical geometry actuator, consisting
of concentric cylindrical layers, makes it well suited to fabrication
in the laboratory as well as translation to large-scale manufacturing.
For instance, they can be produced by successive dip-coating in
elastomer and electrode solutions and curing’® or by successive
spray coating of the solutions onto a mandrel. Additionally, rolled
DEAs can achieve multiple degrees of freedom by sectioning their
electrode and addressing them separately.'”’

Advances in 3D printing have recently been utilized to create
coaxial fibers and fiber bundle actuators.'”® Each fiber consists of
an electrical conducting core, a sheath of dielectric, and an outer
electrically conducting layer [Fig. 17(a)], similar to a standard
coaxial cable except using compliant electrodes and a soft elastomer
dielectric. The coaxial geometry creates a radial electric field in the
dielectric, and to accommodate the incompressibility of the elasto-
mer, the stresses in the fiber are purely hydrostatic. In response,
when a voltage is applied, the fibers elongate and decrease in diam-
eter. The axial actuation stretch is given by the relation

2 €0€r
T uR:In(Ry/Ry)’ (35)
In contrast to the thin-walled cylindrical actuator, the solid
core prevents the electromechanical instability so larger actuation
strains are possible.'*®
The ability to print the fibers also facilitates the fabrication of
hitherto unattainable shaped actuator designs, such as the micro-lattice
structure [Fig. 17(c)] and possibly novel actuators. More significantly,
fibers within a bundle can be individually addressed, akin to the inner-
vation of natural muscle fascicles. In principle, this facilitates program-
mable and complex motions of the fiber bundles. As with all other

(a)

Complaint conducting sheath

Elastomer dielectric

Complaint conducting core

FIG. 17. 3D printing of coaxial dielectric elastomer fibers and actuators. (a)
Micrograph (left) and schematic (right) of the cross section of a coaxial dielectric
elastomer fiber consisting of the elastomer dielectric and the compliant conduct-
ing core and sheath. The dark center of each fiber is an elastomer containing
nanocarbon particles to provide electrical conduction. The same conducting
elastomer is used as the thinner, outer electrode. (b) Cross section of a 5 x 5
bundle of 3D-printed coaxial fiber actuators. (c) A 3D-printed micro-lattice struc-
ture using coaxial dielectric elastomer fibers.
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designs of DEASs, one challenge with the 3D-printed coaxial fiber actu-
ator is to reduce the elastomer layer thickness as well as the electrodes’
thicknesses, in order to reduce their operating voltages. 3D printing
poses additional processing challenges as both the dielectric and con-
ductor materials must have matching rheological behavior so that
both can be printed simultaneously and then subsequently cured to
produce a uniform coaxial fiber geometry.

Multilayer and rolled DEAs that have been the focus of this
section do not require any rigid frames, resulting in versatile
functionalities and effortless integrations into soft machines.
However, there are other important and well-developed DEAs
that require rigid framing, such as diaphragm, bending, bistable,
conical, and antagonistic DEAs. Diaphragm DEAs, such as the
configuration shown in Fig. 1(a), consist of a prestretched layer
of elastomer held onto a rigid frame with compliant electrodes
deposited onto the two sides of the stretched elastomer.
Applying voltage to the compliant electrodes expands the elec-
troded areas reducing the prestretch of the surrounding elasto-
mer. The result is in-plane actuations that can have used for
applications such as thin rotary motors by sectioning the elec-
trodes and addressing them sequentially'”® or tunable
meta-lenses by bonding a meta-surface onto a DEA.'*" With a
bias pressure, the diaphragm can be deformed out of plane and,
in response to a voltage, deforms further in out-of-plane direc-
tion and changes curvature. The curvature change, in an antago-
nistic configuration, has been used for applications such as
tunable lenses,'*! among other DEA-based tunable lenses.'*?
Other bias forces such as those from compressed springs'*’ or
magnets'** can also be used to deform the diaphragm. A partic-
ularly versatile configuration because it has six degrees of
freedom for position and orientation is obtained by combining
two cone DEAs, holding a stiff rod in the middle, and segment-
ing the electrodes'*” (Fig. 18). For instance, the rod can be
moved in vertical or horizontal directions, respectively, if the
electrodes on the top diaphragm or the left electrodes on both
diaphragms are actuated [Figs. 18(b) and 18(c)]. To tilt the rod,
the left electrodes on the top diaphragm and the right electrodes
on the bottom diaphragm are actuated [Fig. 18(d)].

Bending actuators, discussed in Appendix A, are made of
two layers of elastomer adhered to each other, one of which is
coated on the two sides with compliant electrodes and expands
when a voltage is applied, called the active layer, and the other
resists the expansion, called the passive layer. The result is
bending along one principal axis (and zero curvature along the
second principal curvature). This has been used for applications
such as grippers.'*®

VIl. SHAPE-CHANGING DIELECTRIC ELASTOMERS

In the parallel plate capacitor configuration, the electric fields
in the dielectric are spatially homogenous. This results in actuators
that can homogeneously contract along field direction and expand
in one or both perpendicular directions. In other words, the actua-
tor only scales in its dimensions. Although such simple actuations
are useful for various applications, such as applying a force in a
single direction, more complex shape changes are also possible
with dielectric elastomers. One simple approach is to break the
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FIG. 18. Schematic of a six degree of freedom double-cone DEA attached to a
circular frame with four, addressable segmented electrodes on each side.'*®
Reproduced with permission from Conn and Rossiter, Smart Mater. Struct. 21
(3), 035012 (2012). Copyright 2012 IOP Publishing. (a) The actuator consists of
two diaphragm DEAs that are pushed into a double-cone shape by a middle
vertical rod, and the electrodes on both diaphragms are segmented into four
parts, A1, A2, A3, and A4 on the top diaphragm and B1, B2, B3, and B4 on the
bottom diaphragm. (b) Applying voltage to the electrodes of the top diaphragm
displaces the rod in the +Z direction. (c) Applying voltage to the left electrodes
of the two diaphragms, i.e., A1, A4, B1, and B4, moves the rod in the +X direc-
tion. (d) Actuating the left electrodes of the top diaphragm and right electrodes
of the bottom diaphragm rotates the rod clockwise in the XZ plane.

symmetry along the thickness direction by adhering a passive layer
of elastomer onto the DEA, which results in a bending actuator
that can produce out of plane deformations.'*® This is analyzed in
Appendix A. Although non-symmetric along the thickness direc-
tion, the electric field is homogeneous along the surface of the
DEA, which results in bending along only one axis and zero curva-
ture along the perpendicular axis. A double curvature requires an
actuation that is inhomogeneous along the surface of the DEA. As
a result, the Gaussian curvature of the bending actuator, which is
the product of the two principal curvatures, remains zero. Since the
shape of any surface is characterized by its local Gaussian curva-
tures, a generalizable shape-changing method must be able to
produce locally controlled, nonzero Gaussian curvatures. To
change the Gaussian curvature, the actuator must deform inhomo-
geneously along the surface, as implied by Gauss’s Theorema
Egregium.'*”'*®

To produce controlled, spatially varying deformations in
DEAs, several methods can be envisaged, two of which have been
proven effective for shape-changing in dielectric elastomer actua-
tors. One is to create a spatial variation of internal electric fields
inside the elastomer'*’ by the design of the electrodes on adjacent
layers whose overlap determines the regions with nonzero electric
fields. In essence, it is to create an embedded meso-architecture of
the electrodes. The other is to control the local anisotropy of the
DEA'™" by incorporating 3D-printed stiff fibers into the DEAs.
Other methods that could also potentially result in controlled
spatial variations of the actuation in DEAs are to control the shear
modulus or the permittivity of the elastomer locally. These
methods, however, are currently difficult to implement in practice
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although half-tone lithography,”’ for instance, might be used to
locally control the stiffness of single-layer elastomers. Recent
advances in 3D printing of DEAs'"" also provide new opportunities

for fabrication of shape-changing DEAs.

A. Shape-changing through spatial variation of
internal electric field

To create spatial variations of the internal electric field,'** the
DEA is fabricated using a layer-by-layer scheme with different
designs of the electrode geometries on each layer. Upon applying a
voltage between the inter-digitated electrodes, an electric field is
induced inside the elastomer layers, primarily in those regions
where the adjacent electrodes overlap. This is perhaps better under-
stood with the example shown in Fig. 19(a). In this example, the
electrodes are a set of concentric circular disks whose diameters
increase from the minimum on the top electrode to maximum on
the bottom electrode. When a voltage is applied, all the elastomer
layers at the center of the circular disk of the DEA will actuate but
decreasing toward the edge of the DEA as the number of active,
overlapping layers decreases to zero. Consequently, this geometry
results in spatially varying lateral expansions that are larger at the
center of the disk and smaller near its outer edge. To accommodate
this incompatible actuation, the flat sheet of elastomer morphs into
a dome-like shape with positive Gaussian curvature [Figs. 19(b)
(top) and 19(c)]. The opposite geometry of overlap with a large
lateral expansion near the edge and decreasing toward the center
results in saddle-like shapes with negative Gaussian curvatures
[Fig. 19(b) (bottom)].

A shape-changing DEA that uses the spatial variation of inter-
nal electric fields can be designed to morph into several fundamen-
tally different actuation shapes, when different sets of electrodes are
incorporated inside the DEA and addressed separately. The spatial
distribution of the internal electric fields and actuation deforma-
tions depend on the set of the electrodes that are addressed. For
instance, two sets of addressable electrodes were incorporated into
the elastomer sheet to create the reconfigurable shape-morphing
actuator shown in Fig. 19(d); one set of circular electrodes, as used
to create a positive Gaussian curvature, and another set of elec-
trodes, as used for the saddle shape, were positioned on alternate
layers. Upon applying a voltage to the two sets of electrodes that
correspond to the circular disk electrodes with varying radius, the
elastomer morphs into a dome-like shape [Fig. 19(d) (left)], and
applying voltage to the other set of electrodes results in a saddle-
like shape [Fig. 19(d) (right)].

B. Shape-changing through spatial variation of
anisotropy

The other method to achieve shape-changing DEAs is to create
spatially varying anisotropy by incorporating 3D-printed fibers into
the DEAs."” These fibers were selected so that they are much stiffer
than the elastomer and constrain the deformation along the fiber,
permitting only the actuations that are locally perpendicular to the
fibers."** The inhomogeneity in isotropy can be used to create
inhomogeneous deformations that result in shape-morphing.
Figure 20(a) (top) shows the example of a multilayer DEA, with
homogeneous internal electric field, onto which a set of concentric
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FIG. 19. Shape-changlnq dielectric elastomer actuators using spatial variation
of internal electric fields.'*® Reproduced with permission from Hajiesmaili and
Clarke, Nat. Commun. 10, 183 (2019). Copyright 2019 Author(s), licensed under
a Creative Commons Attribution (CC BY 4.0) license (a) An example of a
shape-changing DEA in which the embedded inter-digitated electrodes are con-
centric circular disks, shown in red, with diameters varying with height. Applying
a voltage to the inter-digitated electrodes creates electric fields mainly in the
overlapping regions between the adjacent electrodes. The spatial variation of
electric field results in an axisymmetric distribution of actuation strains. To
accommodate the incompatible strain, the DEA morphs its shape, in this case
into a dome-like shape with positive Gaussian curvatures. (b) Example of
shape-changing DEAs designed to morph into dome-like shape with positive
Gaussian curvature (top) and saddle-like shape with negative Gaussian curva-
ture (bottom). (c) Finite element analysis of the dome-like DEA shown in (b) can
accurately analyze the actuation shapes and displacements at different applied
voltages. (d) A reconfigurable shape-changing DEA consisting of two sets of
inter-digitated electrodes that are placed on alternating layers. The ones set cor-
respond to dome-like shapes (left) and the others correspond to the saddle-like
shape (right). The black lines are ink lines written on the surface to facilitate
shape change measurements.

stiff rings are 3D-printed to create the spatial variation in anisotropy.
Upon applying a voltage, the DEA morphs into a conical shape
[Fig. 20(a) (bottom)]. Other examples of shape-changing DEAs are
shown in Fig. 20(b), the actuation of which depends on the pattern
of the 3D-printed stiff fibers. For example, in Fig. 20(b) (top), con-
straining the radial deformation of a DEA disk causes an “anti-cone”
actuation shape.'”” Combining this method with the spatial variation
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FIG. 20. Shape-changing DEAs using local control of anisotropy.'
Reproduced with permission from Hajiesmaili et al., Extreme Mech. Lett. 30,
100504 (2019). Copyright 2019 Elsevier. (a) A circular multilayer DEA with a set
of concentric circular stiff 3D-printed rings on top (top) morphs into a conical
shape upon applying a voltage (bottom). (b) Two shape-morphing DEAs in
which the actuation depends on the pattern of 3D-printed fibers. For example,
constraining the radial deformation of the top actuator created an “anti-cone.”

of the internal electric field can lead to a more powerful shape-
changing actuation scheme in which not only the magnitude of the
lateral stretch but also its direction is locally controlled.

C. Numerical analysis of shape-changing DEAs

Because of their complexity, the development of shape with
voltage can only be predicted numerically. The following describes
a finite elements formulation for the quasi-static fully coupled elec-
tromechanical actuations.'*”'°*!>® Based on this formulation, a
User Element (UEL) subroutine was developed to be used with
Abaqus/CAE. The UEL introduces the coupling between the elec-
trostatics and mechanical deformations into the stiffness matrix
and residual vectors of the finite element formulation. Abaqus/
CAE is used to define the geometry of the dielectric elastomer, elec-
trode designs and boundary conditions, and material model and
parameters, and then solves the system of algebraic equations itera-
tively using the Newton-Raphson method.

For the finite element formulation, the partial differential
equations of electrostatic and mechanical equilibrium are rewritten
in the integral weak form that needs to be satisfied for any arbitrary
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weight function,

60',']'
b; dV =0, Vwy, j=1,2,3,
Jv (8x,— + 1> wij Wi J

J OD;
Dx;

It is straightforward to show that the partial differential form

and the weak form are equivalent, simply by choosing the weight

function to be wi; = 00;j/0x; + b; and w, = OD;/0x; — py- Using
integration by parts, the integral weak form can be rewritten as

(36)
pf> Wde =0, VWZ

jV( O',] 6 +bW11>dV+JsW1]tdS

JV < ,'— — hWZ) dV + jS wzqst

[0 i=1,23 (37)
) s

Two approximations are made for the finite element method.
One is that instead of any arbitrary function for the weight func-
tions, we choose the weight functions to have polynomial forms
with arbitrary coefficients:

wij(§1, &5, &3) = NG & 53)Wﬁ‘: VW‘?j»
wily, €, &) = NAEL &, Ews,  Yws,

i=1,2,3,
(38)

where &, &,, and &; are the local element coordinates, NA is the
Ath polynomial, and wfj and w4 are any arbitrary coefficients. The
second approximation is that the solution variables ux(&;, &,, &)
= Xi(&1, &5, &) — xil&1, &5, &3) and P(Ey, &y, &5) are also assumed
to have polynomial forms but with unknown coefficients, instead
of being any arbitrary function,

uk(&1, &5, &) = NB(§1> & 53)“f>

(39)
&1, 6 85) = NB(fp & 53)‘153-

Using these two approximations with the integral weak form,
the four partial differential equations of electrostatic and mechani-
cal equilibrium in three dimensions are converted into a set of 4N
nonlinear algebraic equations, where N is the number of nodes and
is the same as the number of polynomials in the approximation of
the solution variables,

ONA 0xp
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with A=1, ..., N. This system of nonlinear partial differential
equations is solved numerically using the Newton-Raphson method,

A Y i+l AN A AN
R, _ Ruj + 9 o | R, 5l + 9 Ruj
R ou o¢*

0
5&:{0} j=1,23 A=1,...,N

9 RA ) RA R4
- ()

ji=1,23 A=1,..,N, (41)
where the superscripts i+ 1 and i are the iteration numbers.
Therefore,

Ko Kipop {5uf}_ Bl o aa Az N
B (=934 Jj=L23 A=1_...,N.
K¢Auf Kd’Ad’B 5¢) Rd’

(42)

Successive iterations are continued until the changes in the sol-
ution variables and the absolute value of the largest element of the
right-hand-side residual vector are smaller than some predefined tol-
erance values. Based on this formulation, an Abaqus User Element
(UEL) subroutine adds the Maxwell stress contributions to the
mechanical residual vector and the coupling terms K AP and K, Hu
to the stiffness matrix. The finite element code, with an accompany-
ing tutorial of using it within the finite element commercial program
Abaqus, is presented in the supplementary material. The finite
element formulation and the accompanying code are not only able
to analyze the actuation shapes of the shape-morphing DEAs quali-
tatively [the insert in Fig. 19(c)] but also prove to accurately describe
the actuation shapes and displacements shown in Fig. 19(c).

VIil. FUTURE PROSPECTS

Significant improvements in DEAs’ actuation forces, displace-
ments, reliability, and functionality can be anticipated based on the
properties and issues discussed in this Tutorial. Although these
may not require an improved understanding of the detailed physics
involved, there are clear benefits from a deeper understanding of
phenomena such as electrical breakdown and charge injection in
soft disordered materials where the electrical energies are compara-
ble to the deformation energies.

One major area of improvement is likely to be the develop-
ment of elastomers specifically designed for high-field actuator
applications. Existing elastomers have been designed for very
different applications, such as for sealing gaps, adhesive applica-
tions, or as potting materials. Improved high-field elastomers
can be anticipated to be purer, contain a lower concentration of
non-network polymers, and have additives designed for specific
purposes such as getters to absorb mobile radicals produced
under very high local electric fields. Together, it is expected that
these will lead to greater reproducibility and higher electric
breakdown strength elastomers. In addition, one can also
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anticipate that by careful control of the network molecular
weight, a variety of chemically similar elastomers can be tailored
to produce desired combinations of blocking force and actuation
displacements.

Two other areas of elastomer research can also be expected to
lead to further improvements in capabilities of DEAs. One is to
incorporate conducting molecules in the elastomer to form compli-
ant electrodes to replace current CNT electrodes, improving elec-
trode homogeneity and actuator reliability. This is a major
challenge since conducting molecules are very stiff and do not
exhibit the flexible network forming characteristics of elastomers.
Nevertheless, the development of liquid crystal elastomers suggests
that it is possible to incorporate stiff molecules into elastomers
without compromising their flexibility. The second is the develop-
ment of higher permittivity elastomers, whether by adding polariz-
able groups to the polymer chains or the incorporation
of high-permittivity second phase particles. As described in
Sec. IV E, to be beneficial for device operation, the increase in per-
mittivity must outweigh the possible decrease in breakdown
strength and increase in stiffness that has so far limited the success
of this approach.

DEAs currently operate at high voltages (1-5kV) because
current processing methods limit the minimum uniform thickness
of elastomers that can be reproducibly fabricated. While these high
voltages do not pose a safety issue provided the current is
limited,"”* it would be desirable to operate at substantially lower
voltages to take advantage of the availability of existing low voltage
circuits and also to avoid having to operate high-voltage circuits in
parallel with low voltage ones. Substantial progress to achieving
lower voltages has been made by combining processing methods
more suited to producing thin elastomer layers (e.g., 3um’’) with
more controlled deposition of CNTSs, such as the Langmuir-
Blodgett method. New questions will then arise as to the effects of
charge uniformity, attainable capacitance, and the possible role of
charge injection and preferential breakdown from the ends of the
CNTs. For instance, the 7.5% maximum lateral strain that a 3 um
thin pad-printed DEA shows at 245V” is nearly half of the
maximum actuation that a 30 um thick DEA made of the same
material can achieve, due to the higher ratio of electrodes’ to elasto-
mer’s thickness for the 3 um DEA and, potentially, lower tolerance
for electrode and surface inhomogeneities. Nevertheless, it is likely
that the major impediment to lower voltage operation will primar-
ily be the wide variability in breakdown fields caused by fabrication
defects, such as bubbles and dust. Consequently, operation at high
voltages together with “proof testing”’' is the most straightforward
way of dealing with the poor reproducibility of currently produced
devices.

Multiple layer stacks of elastomers and electrodes are likely
to be the basis of all actuators because of the larger forces that can
be generated as well as for ease of handling. Multilayered struc-
tures allow for structural improvements to the DEAs’ perfor-
mance. For instance, depositing strain-stiffening elastomers onto
the two sides of each soft elastomer layers can help with prevent-
ing electromechanical and local instabilities. Including high-
breakdown layers such as hexagonal boron nitride layers can
result in DEAs with higher electrical breakdown strength. Scalable
fabrication of multilayer devices will require the development of
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reel-to-reel manufacturing and in clean-room conditions to avoid
dust and other impurities. The availability of prefabricated multi-
layers would also speed up technology innovation, much as the
availability of resin impregnated carbon fibers pre-forms enabled
broad applications of carbon fiber composites. UV curing is faster
than thermal curing and hence more suited for multilayers and
large-scale fabrication. However, it remains to be seen whether
chemical defects introduced by UV curing affect long-term aging
under high fields.

At the system level, two areas of improvement for the control
circuitry of the DEAs can be expected. One is to incorporate min-
iaturized and integrated high-voltage switches into the DEAs for
reprogrammable local control of their actuations. The other is
methods and electronics for charge recovery to realize the high
energy efficiency of DEAs. Intrinsically, the low electric currents
that DEAs consume (typically less than one up to a few milli-
amps) leads to high energy efficiencies at low frequencies with
insignificant joule heating, but high efficiencies can only be
achieved if the stored charges during the discharge of the DEAs
can be reused. Additionally, for untethered DEA robots, energy
storage at high voltages, e.g., using high-voltage capacitors as
opposed to 5V batteries with lossy DC-DC converters, may be an
advantage.

The continuing improvements of elastomers, their process-
ing, and their control circuitry are expected to lead to improved
actuator designs. Developing design tools that enable morphing
into predefined target shapes together with improved actuation
displacements, forces, and reliability will result in novel devices
such as shape-morphing airfoils and adaptive optical lenses
and mirrors. Furthermore, the use of liquid crystal elastomers
opens up the possibility of directional properties, enhancing
DEAs’ performance and allowing for even more complex
shape-morphing. By incorporating miniaturized high-voltage
soft switches, fully reprogrammable shape-morphing DEAs
can be realized, resulting in highly versatile soft machines. The
revolution that integrated circuits and liquid crystal displays
created in electronics industry could be repeated for mechanical
devices using high-performance reprogrammable shape-
morphing DEAs.

SUPPLEMENTARY MATERIAL

See the supplementary material for demonstrations of DEA
artificial muscles, birefringence of dielectric elastomers under
mechanical loadings and electrostatic actuations, flight of
flapping-wing micro-robots powered by DEAs, and shape-
morphing of DEAs with spatial variations of internal electric field
and anisotropy, as well as the finite element codes for analysis of
complex DEAs:

Supplementary video S1. A multilayer acrylic-based dielectric
elastomer actuator, weighing ~20 g, lifting a 1 kg weight. The video
demonstrates utilization of a stack of multilayer dielectric elastomer
actuators as an artificial muscle on a real-size plastic skeleton.
Adopted from Duduta et al., Proc. Natl. Acad. Sci. U.S.A. 116(7),
2476-2481 (2019). Copyright 2019, published under the PNAS
license.
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Supplementary video S2. Birefringence of a strip of an
acrylic-based, multilayered dielectric elastomer under uniaxial
mechanical stretch, demonstrated by the color change of the elas-
tomer, placed between two parallel polarizers with their axis at
45° with respect to the birefringence axis of the elastomer and
illuminated by a background white light source. At one stage, as
the multilayer strip is stretched, the outer layer of elastomer
breaks and progressively delaminates, followed by rupture of the
entire elastomer strip.

Supplementary video S3. Birefringence of a dielectric elastomer
actuator with comb-like electrode geometries under electric field
induced deformations, demonstrated by the color change of the actu-
ator, placed between two parallel polarizers with their axis at 45° with
respect to the birefringence axis of the elastomer and illuminated by a
background white light source. The blisters, arrowed, formed under
applied voltages are the products of soft breakdowns of the multilayer
actuator. The actuator remains operational even after multiple soft
breakdowns and blister formations.

Supplementary video S4. Flapping-wing micro-robots,
each with two dielectric elastomer actuators, showing impact
resistance and robustness under in-flight collisions. Adopted
from Chen et al., Nature 575(7782), 324-329 (2019). Copyright
2019 Springer Nature.

Supplementary video S5. Demonstration of a reconfigurable
shape-morphing dielectric elastomer actuator. The actuator con-
sists of two sets of embedded electrodes placed on alternating
layers. The first set of electrodes corresponds to morphing
into dome-like shapes and consists of concentric circular disks
of inter-digitated ground and high-voltage electrodes with line-
arly increasing diameters from the bottom layer to the top layer.
The second set of electrodes correspond to morphing into
saddle-like shapes, having zero active layer at the center of the
disk and linearly increasing with radius to the maximum
number of active layers around the edge. The shape-morphing is
determined by the addressed set of electrodes. Reproduced with
permission from Hajiesmaili and Clarke, Nat. Commun. 10, 183
(2019). Copyright 2019 Author(s), licensed under a Creative
Commons Attribution (CC BY 4.0) license.

Supplementary video S6. Actuation of a shape-morphing
dielectric elastomer actuator with spatially varying anisotropy,
using 3D-printed circular rings of stiff elastomers on the
bottom of the actuator. The actuation shapes for this design of
the stiff elastomers are cone shapes. Adopted from Hajiesmaili
et al, Extreme Mech. Lett. 30, 100504 (2019). Copyright
2019 Elsevier.

Supplementary codes: The Abaqus user element subroutine
(static.f) for finite element analysis of DEAs, together with an aux-
iliary run code (run.py) and a brief user guide on how to use the
codes are provided.
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APPENDIX A: BILAYER BENDING DIELECTRIC
ELASTOMER ACTUATORS

Dielectric elastomer actuators can produce large out of plane
actuations if the actuator is designed to have inhomogeneities in
either lateral or through-thickness directions. The simplest are
bilayer bending actuators that consist of a homogeneous active
layer of dielectric elastomer coated with compliant electrodes,
attached to a homogeneous passive layer of elastomer, as shown in

TUTORIAL scitation.org/journalljap

Fig. 21(a). The actuation is inhomogeneous in through-thickness
direction, but homogeneous laterally. When a voltage is applied to
the electrodes, the lateral expansion of the active layer is con-
strained by the passive layer causing the out of plane bending
actuation.

For the deformation mapping function of the bilayer bending
actuators, it can be assumed that the actuator bends into a thick-
wall cylindrical shape. This is based on two assumptions: one is the
Kirchhoff-Love plate theory that considers the straight lines
normal to the plate’s mid-surface to remain straight and normal to
the mid-surface after the deformation. The other assumption is
that the second principal curvature is zero, since the actuation is
expected to be homogeneous in lateral directions. Therefore, the
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FIG. 21. Bilayer bending dielectric elastomer actuators. (a) Schematic of a bilayer bending DEA consisting of an active layer sandwiched between two compliant capacitors
and a passive layer adhered, bended along an axis under an applied voltage. (b) The curvature of bending as a function of the normalized electric potential,
& = \/elu, dlty, for different rations of passive to active layer thicknesses. (c) Bending curvature normalized by the thickness of the active layer, t;o/R, as a function of
the two design parameters of the bending actuators, i.e., relative thickness and shear modulus of the passive layer. The normalized curvature is scaled by the inverse
square of the normalized electric potential and plotted for ¢ = 0.1, 0.3, and 0.5, which nearly overlap. (d) The optimum relative thickness of the passive layer for a given

relative shear modulus is the ridge of the 3D plot in (c).
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deformation mapping function can be written as

x1 = rsin(@), x, = 4,X5, x3 = R — rcos(0), (A1)

where r = R — A3(X3)X; and 8 = 2,X;/R. R is the radius of curva-
ture and the function 43(X3) accounts for the change in thickness
of the elastomer layers. and it would have been 1;(X;) = 1 if there
was no change in thickness as is often the case with the
Kirchhoff-Love plate theory. Using the mapping function
x{(X1, X3, X3), the deformation gradient tensor and the left
Cauchy-Green deformation tensor are calculated to find the first
and third invariants. For an incompressible material, the third
invariant does not change during the deformation allowing 13(X3)

Il =trB =

4X227 — 2RX3M1 A, (242 + 23) + RA(1 + 4123 + A243)
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to be determined,

AR — 45(X5))*A5(X5)°
- -

I =detB=1 R

1. (A2)

This ordinary differential equation can be solved for 13(X3)
and the solution is chosen such that 13 = 1/4;4, for X3 — 0 and
A3(X3) — 1 whenR — o0, 1; — 1l,and 4, — 1,

R 2X;
X)) =—(1—4/1— .
(%) X3( J MR)

Using A3(X3), the first invariant of the Cauchy-Green defor-
mation tensors can be evaluated as

(A3)

(A4)

RA1A2(—2X3 + RLiA,)

The fact that the first invariant and, therefore, the Helmholtz free energy is independent of the lateral positions, X; and X5, confirms
that the choice of cylindrical actuation shape satisfies the lateral homogeneity of the actuation. The strain energy of the system can be calcu-

lated as
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The electrostatic energy of the whole system is
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The solution for the actuation parameters A;, 1,, and R can be

calculated from the minimization of the total energy,
Utotal = Ustrain + Ueectric> Which occurs when
0 Utotal 0 Utotal 0 Utotal
=0, =0, =0. A7
oM Ay OR (A7)

These three nonlinear algebraic equations can be solved
numerically for any given normalized voltage \/€/u,¢/t,0 and nor-
malized thickness and shear modulus of the passive layer tyo/ts0
and u,/u,. Figure 21(b) shows the normalized curvature t,/R of
four bilayer actuators with different normalized thicknesses of the
passive layer, as a function of the normalized voltage, indicating
that the normalized curvature scales with the square of the normal-
ized voltage, to the first degree. When the active and passive layers

R
+—(-3+A1+2) —

(=344 + /13))

% (L(Xs) — 3)dXs

2

R 2
420k 8T MAaRity

(A5)

B R? el — 2tp0/tao
420, 8 T ARty —2|) |

are made of the same material, 4, = u;,, the maximum normalized
curvature is achieved with the thickness of the passive layer being
half of that of the active layer, as shown in Fig. 21(b). To explore
the optimal designs of the bilayer actuators that can achieve
maximum normalized curvatures, Fig. 21(c) shows the normalized
curvature scaled by ¢, for different design parameters of the nor-
malized thickness and shear modulus of the passive layer, 0/t
and u,/u,, and at different normalized voltages. The graph shows
that larger normalized curvatures can be achieved if stiffer passive
layers with optimal thicknesses are used.

APPENDIX B: FABRICATION PROCEDURE OF CNT
ELECTRODES

A simple recipe to form thin films of percolating networks of
carbon nanotubes on elastomer sheets is described below, which is
one of the many variations of the original techniques” """ for fab-
rication of thin film carbon nanotube electrodes.

1. 100 mg of carbon nanotubes functionalized with carboxylic acid
(P3-SWNT, outer diameter of individual or bundles 1-5nm,
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length 1+ 0.5um, Carbon Solutions, Inc.) is added to 200 ml of
de-ionized water in a 200 ml glass beaker.

2. To exfoliate carbon nanotubes from the large bundles, the
mixture is ultrasonicated using a probe sonicator at 300 W
power for 10 min. A Branson 450 Digital Sonifier attached to a
0.5 in. tapped stepped disruptor horn through a 102C convertor
is used and set to 75% power with intervals of 5s on and 5 s off
for a total duration of 20 min.

3. To sediment the remaining large bundles, the ultrasonicated dis-
persion is then transferred to 50 ml centrifuge tubes and centri-
fuged for 1h at 8000 rpm (Sorvall Primo Centrifuge, Thermo
Fisher Scientific, Waltham, MA).

4. A stable suspension is obtained by decanting the top three-
fourth supernatant of the dispersion and disposing the remain-
ing. Typical concentration of the carbon nanotubes in the
decanted dispersion is 0.2mg/ml, or 0.02wt. %, measured
through thermogravimetric analysis (TGA Q5000, TA
Instruments, New Castle, DE).

5. To provide a reference for the concentration of carbon nano-
tubes, the dispersion can then be diluted with de-ionized water
to 17% transmittance at 550 nm wavelength, for which the con-
centration of carbon nanotubes is 15 ug/ml. Figure 22 shows the
transmittance of the suspension of CNTs as a function of the
concentration. The transmittance is measured through a path
length of 10mm (Standard-Sized 3.5ml glass cuvettes,
EW-83301-03, Cole-Parmer, Vernon Hills, IL) using USB650
Red Tide Spectrometer (Ocean Optics, New Port Richey, FL),
and calibrated with the cuvette filled with de-ionized water as
the 100% transmittance.

6. To form a thin film of percolating network of carbon nanotubes,
the diluted solution is vacuum filtered through a porous filter
membrane whose pores are smaller than the length of the
carbon nanotubes and its surface energy is high so that the
carbon nanotube film can be easily stamped onto an elastomer.
To form a circular disk of thin film carbon nanotubes with
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FIG. 22. Optical transmittance at 550 nm of a dispersion of CNTs in de-ionized
water as a function of the concentration of CNTs, measured through a 10 mm
path length.

diameter of 35 mm and carbon nanotubes with areal density of
1.3ug/cm® onto the filter, 5004l of the diluted solution is
further diluted with isopropanol and vacuum filtered through
hydrophobic polytetrafluoroethylene (PTFE) filter membrane
with 0.2um pore size and 47 mm diameter (T020A047A,
Advantec, Dublin, CA) placed onto a supporting filter paper
(Whatman 1004-042, GE Healthcare Life Sciences, Chicago, IL)
and mounted onto a vacuum filter holder set with fritted glass
support base (FHFT47, United Scientific Supplies, Inc.,
Waukegan, IL) whose circular opening is 35 mm in diameter.
To form a larger thin film circular disk of carbon nanotubes
with diameter of 70 mm and the same carbon nanotubes with
areal density of 1.3ug/cm?® 2ml of the diluted solution is
vacuum filtered through a hydrophobic PTFE filter membrane
with 0.2um pore size and 90 mm diameter (T020A090C,
Advantec, Dublin, CA) placed onto a supporting filter paper
(Whatman 1004-090, GE Healthcare Life Sciences, Chicago, IL)
and mounted onto a vacuum filter holder set with fritted glass
support base (FHSS90, United Scientific Supplies, Inc.,
Waukegan, IL) whose circular opening is 70 mm in diameter.

7. The compliant electrode of percolating networks of carbon
nanotube is formed onto the elastomer by stamping the filter
onto the elastomer sheet through a mask that defines the two-
dimensional geometry of the electrode. Masks are cut from a
clear silicone release film (CRP41082, Drytac, Richmond, VA)
using either a low-cost desktop cutting machine (Silhouette
Cameo, Silhouette America, Inc., Lindon, Utah) or a laser
cutting machine.

The sheet conductivity in Fig. 10 is measured by the four-
point probe method'” using a Keithley 6221 current source and
Keithley 2182A Nanovoltmeter. To show the effectiveness of trans-
ferring the CNT film by stamping, the sheet conductivity in
Fig. 10(a) was measured for both the CNT film on the PTFE filter
and after stamping onto a silicone elastomer with high surface
tension (Sylgard 184 with stoichiometric ratio of 10:1 Part A to
Part B cured for 30 min at 70 °C).

DATA AVAILABILITY

The data that support the findings of this study are available
from the corresponding author upon reasonable request.
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