
Paper ID #38904

Board 382: RHLab RELIA: A Remote Integrated Environment forEmbed-
ded
Computing and RF Communication Systems

Brian Chap, University of Washington

Brian Chap is a Ph.D. student and research assistant of the Remote Hub Lab (RHLab) in the department

of Electrical and Computer Engineering at the University of Washington. Brian’s research spans remote

engineering, computer vision, human-computer interaction, and image processing and sensing.

Marcos Jose Inonan Moran, University of Washington

Marcos Inonan is a PhD student and research assistant in the Remote Hub Lab (RHLab) of the depart-

ment of Electrical and Computer Engineering at the University of Washington in Seattle. His research is

centered on developing remote laboratories with a lens of equitable access to engineering education, and

driven by his commitment to promote diversity, equity and inclusion in STEM education. In addition to

his research on remote laboratories, Marcos has expertise in digital communication theory, signal process-

ing, radar technology, and firmware engineering. Additionally, he has extensive experience in teaching

embedded systems and senior design courses.

Zhiyun Zhang, University of Washington

Zhiyun Zhang is an undergraduate research assistant in the Remote Hub Lab at the University of Wash-

ington. He is a graduating senior and an incoming MS student with a focus area on embedded systems

and remote engineering. Zhiyun is the recipient of the outstanding academic excellence award from the

United States President’s education awards program in 2019.

Pablo Orduna, LabsLand

Payman Arabshahi, University of Washington

Dr. Rania Hussein, University of Washington

Dr. Rania Hussein is an Associate Teaching Professor in the Electrical and Computer Engineering de-

partment at the University of Washington, where she also serves as the founder, principal investigator,

and director of the Remote Hub Lab (RHLab). With her research focus on embedded systems, medical

image analysis, digital twinning, and remote engineering, Dr. Hussein is committed to developing inno-

vative solutions that enhance equity and access in engineering education and telehealth practices. Her

work in promoting diversity, equity, and inclusion in higher education led to the successful building and

passing of the religious accommodation law in the State of Washington, which provides alternative exam

testing accommodations for students due to religious observances. Dr. Hussein is the recipient of the

2021 Innovative Program Award from the Electrical and Computer Engineering Department Head Asso-

ciation (ECEDHA), for founding the RHLab, as well as the 2022 IEEE Region 6 Outstanding Engineering

Educator, Mentor, and Facilitator in the Area of STEM Award, recognizing her contributions to advanc-

ing students’ success, mentorship, empowering under-represented communities, and promoting equitable

access to engineering education.

©American Society for Engineering Education, 2023



RHLab RELIA: An Integrated Remote Environment for

Embedded Computing and RF Communication Systems

Abstract

The development of technologies designed for the virtualization of signal and information

processing experimentation has been persistently constrained by cost-associated hardware

limitations, the inability to scale for larger audiences, and the lack of a flexible framework which

supports user-specific interaction. Given recent advances in cloud computing, we introduce an

adaptable, open-source system harnessing field-programmable gate array (FPGA) and

software-defined radio (SDR) platforms to streamline the process of analyzing communication

patterns between various individual transmitter-receiver pairs. A real-time user environment

designed to complement the GNU Radio toolkit is demonstrated with minimal signal interference,

enabling remotely-controlled, real information transfer. User-defined configuration files are

processed through various Firejail-secured runner engines and dynamically visualized with

adjustable feedback and interaction. By integrating novel images into the ADALM-PLUTO

vanilla architecture, improved processed signal resolution was accomplished, with additional

potential for ARM processor or FPGA reprogramming.

The findings of this paper are targeted towards individuals of all communities, including those

with insufficient access to requisite hardware. To remedy such issues, the integrated environment

has been adopted and is currently accessible through LabsLand, a partner in this research, and its

network of affiliated universities and institutions. Individual contributions to the constructed

system are highly distributable by courtesy of the modular nature of the provided framework,

encouraging collaboration and sharing of physical resources. Existing functionalities of

LabsLand, including learning management systems, are anticipated to further contribute towards

the fostering of a complete, visual environment for users, replicating the actual experience of end

users in standard, on-site hardware experimentation without associated localized issues.

Introduction

Numerous lessons learned amidst the COVID-19 crisis have pushed engineers, educators, and

other professionals to rethink lab work approaches post-pandemic era. Offering an equivalent to

hands-on engineering labs virtually presented itself as a particular challenge during the

emergency transition to work-from-home (WFH) and remote learning. This necessitated

innovative strategies to create lab-based solutions efficiently and conveniently for all individuals,

irrespective of geographic location. One such strategy involved the implementation of remote

hardware systems for forming full-fledged remote lab experiences without compromising on



positive aspects of physical hardware experimentation. While the implemented systems may have

appeared temporary in nature, and were often inadequate in scale, construction, and integration,

the potential effectiveness of using such technologies to replicate, and improve, testing and

learning experiences for individuals was noticeable. Such experiences have inspired this work

which seeks to design and distribute a new generation of environments offering an open-access

solution to costly hardware platforms unobtainable to many under-served communities and

institutions with limited resources. This project builds on the success of previously implemented

remotely-accessible FPGA systems by expanding scope and incorporating hardware which

integrates FPGAs and software-defined radios (SDRs), together with new software enablers, for

interdisciplinary projects in scientific and engineering disciplines. The proposed toolkit is

replicable across institutions and provides access to industry-grade hardware for all communities.

While individual institutions may use this open-source toolkit to create a remote lab for their own

purposes, our sustainability plan, in coordination with LabsLand, proposes a scalable solution

allowing users to connect individual contributions together in order to decrease equipment

purchase costs and cultivate further inter-institutional collaboration by sharing both physical

resources and user-generated content.

In this paper, we share our approach in implementing an open-source, integrated remote

environment for software defined radio applications using ADALM-PLUTO. In this system,

individuals using GNU Radio may design a complete flow from one device emitting a particular

signal to another device receiving that signal with a different, separate GNU Radio configured

process. By adopting this technology, individuals will be able to analyze real radio waves without

encountering small-scale device issues.

Related Work

GNU Radio

GNU Radio is a GPL-licensed, Linux-supporting software framework recognized for its low-level

customizability. Signal and information processing units are arranged block-wise in C++, with

each block corresponding to various sources/sinks (e.g. signal and noise generation, UDP and

USRP I/O, file read/write, oscilloscope visualization, etc.) or operations (e.g.

modulation/demodulation, interpolation, FFT, filtering, delays, gain control, etc.). Transceiver

outputs are graphed for ease-of-use, although the process of tuning such outputs is arduous, due

to the irreplicability of precise hardware tx/rx chains [1]. The system defined and discussed in this

paper aims to address this issue via an interactive user environment which enables end users to

tune results in real-time and with sufficient specificity.

Software defined radio (SDR) architectures

Since the release of Universal Software Radio Peripheral (USRP) in 2003 [2], Software Defined

Radio (SDR) has gained significant traction for its versatility in the construction of high-quality

communication prototypes. The ability to manage signal processing through FPGAs and other

programmable devices, and the subsequent ability ”to turn hardware problems into software

problems” [3] is a feature which has ensured continual growth in the field, from both developers

and end users alike.



ADALM-PLUTO, or PlutoSDR, (as visualized in Figure 1) is one instance of an SDR module

developed by Analog Devices, Inc. to help individuals self-learn wireless communication,

software-defined radio (SDR), and radio frequency (RF) [4]. This module was selected for the

design due to its reliability [5], cost-effectiveness, USB connectivity, high signal-to-noise (SNR)

ratio, and full-duplex architecture. Additionally, the ADALM-PLUTO supports a wide range of

tools (e.g. Matlab and GNU Radio). Its 12-bit ADC (analog-to-digital converter) and DAC

(digital-to-analog converter) provide sufficient signal resolution for most experimentation

expected for the design. A Raspberry Pi may be incorporated to control ADALM-PLUTO over

high-speed data transfer.

Figure 1: Simplified schematic of the internal structure of an ADALM-PLUTO module

Integrated Remote Environments

Previous publications have attempted to integrate SDR architectures into environments which

enable remote hardware access. Xu et al. propose a communications-oriented environment

requiring prior allocation of resources through a reservation system (reducing real-time

applicability and scalability) and MATLAB. As noted by the authors, if an allocated resource

were to behave unresponsively, a user must request a re-allocation of the previously assigned

resources [6]. We instead propose a design which enables users to process tasks on any of a wide

range of available devices and handles such failures through automatic time-outs, improving

scalability and efficiency.

Mikroyannidis et al.’s FORGE design incorporates open-source GNU Radio, rather than

MATLAB, as a framework [7]; however, they introduce virtual machines to run SDR, raising

potential questions relating to scalability and security, and require a calendar-based system for the

allocation of resources. Somashekar et al. similarly use GNU Radio, but on a more limited scope

[8]. Somanaidu et al. also suggest an integrated SDR environment without a custom interface for

analyzing frequency modulation (FM) signals using the USRP 2901 platform [9], a solution

which does not consider scalability and is relatively less cost-effective than our suggested

platform.



Methods

Hardware

To enable the delivery of higher resolution processed signals (rather than raw data, which is

limited by transmission rate) to hosts, as well as permit reprogramming of the ARM processor

and FPGA, customized Buildroot-based images were developed. BR2 EXTERNAL was selected

for this purpose, as the manufacturer buildroot system is not actively maintained [10]. The

ADALM-PLUTO firmware was also modified to further expand the existing frequency range,

with new frequencies ranging from 70 MHz to 6 GHz. To address prior issues of scalability, as

shown in Figure 2, all ADALM-PLUTOs are connected to a router via Ethernet, ensuring

individual device access by IP address (in lieu of USB cable). This greatly reduces wiring

between Raspberry Pis and ADALM-PLUTOs and expands the spatial scope at which Raspberry

Pis and ADALM-PLUTOs may exchange information (providing the added benefit of improved

long-term maintenance and reduced signal interference by selective placement).

Figure 2: Dual ADALM-PLUTO setup for transmitting and receiving signals

Software

The software is composed of a central server handling the user interface (UI), scheduling, and

data exchange, with authentication handled externally by weblablib [11]. A properly credentialed

user may add a pair of receiver and transmitter GNU radio configuration (GRC) files to a Redis

memory database (ideal for scaling and streaming large quantities of data), observe file progress

(i.e. whether a file is queued, being processed, completed, etc.), or delete a pair of files when

applicable. When a receiver (dubbed the “leading device”) is available, the scheduler identifies a

receiver GRC file sent by the user based on priority and assigns it to the device. When a

transmitter (dubbed the “lagging” device) is available, the scheduler assigns a configuration to it if

and only if the leading device has either finished processing the associated receiver file or is

actively processing the file. At assignment time, a GRC file is loaded onto a corresponding

Raspberry Pi and QT components embedded within each file’s flowgraph are converted into

individually-designed blocks before compilation (courtesy of GNU Radio Companion Compiler,

or GRCC). Firejail sandboxing is utilized to prevent the execution of malicious contents, or



contents which attempt to access restricted space. A thread responsible for checking file progress

interrupts the process if a user requests file deletion or if execution is exceedingly

time-exhaustive, ensuring optimal allocation of resources.

Figure 3: High-level software implementation schematic

Results

Hardware

A highly modular system comprised of multiple separate components (each consisting of a

Raspberry Pi 4 Model B and ADALM-PLUTO) and a centralized server was developed. SDR

libraries provided by the GNU Radio package enable the controlled timing of data acquisition and

transmission for each ADALM-PLUTO through HTTP and web sockets. Specifications for the

Raspberry Pi and ADALM-PLUTO are included in Table 1 of this paper.

Software

Interactivity, and the ability of an end user to adjust features dynamically, are crucial towards

realizing a full environment for individuals utilizing the system. Users may control parameters in

real-time (e.g. amplitude, frequency, power, sampling rate, offset) and customize the handling of

incoming data (e.g. arrangement, zoom, pausing, averaging, noise) on a graphical user interface

(GUI) associated with the GNU Radio signal processing framework. The GUI is flexible in

incorporation and may be integrated into additional SDR hardware devices besides

ADALM-PLUTO, as well as any browser.

The link to the associated GitLab repository for this paper is here:

https://gitlab.com/relia-project/.



Table 1: Raspberry Pi 4 & ADALM-PLUTO specifications

Specification Description

Connectivity USB 2.0

Maximum data rate 480 Mbps

Bandwidth range 200KHz - 20 MHz

Number of channels 2 (1 Tx - 1 Rx)

Type of Antenna JCG401 - omnidirectional

Processor resolution 64-bits

Operative System Linux

Programming Language Python

GRC version 3.10

Discussion

Signal Interference

Signal interference among multiple ADALM-PLUTO modules was minimized through isolation

in nickel and copper sheets, acting as a form of a Faraday cage. Packet Reception Ratio (PRR) for

the transmission of 100K sequential ASCII characters under binary phase-shift keying (BPSK)

modulation was measured and determined to be approximately 99% at distances of both 10

centimeters and 1 meter, implying minimal signal interference [12] [13].

Graphical User Interface

Our UI and GRC (GNU Radio Companion) are both visual interfaces for GNU Radio projects;

both take user input from a YAML file containing all parameters and use Python libraries to read

configuration files, as well as GNU Radio libraries to canalize and process the streaming data.

Differences lie in the visualization framework; while our UI is based on Google Charts Gallery

for creating independent interactive data in web browsers, GRC is a graphical interface for GNU

Radio, which is a software-defined radio (SDR) toolkit.

Examples of tools available to users on the GUI are shown in Figure 4. A comparison of

multichannel data from different domains: time, frequency, and scatter (constellation), is plotted.

Both provide the user the same functionalities (pause, on/off, autoscale, grid on/off, etc.).

However, the design of the system’s independent windows allow users to monitor and control the

streaming data seamlessly, as all controls from a plot are inside every window. It should be noted

that, in contrast to GRC, multiple tool windows are available to a given user at a single time,

allowing an individual to analyze multiple features of submitted data simultaneously.

As previously noted in the Related Work section of this paper, if a resource were to behave

unresponsively, the system scheduler would purge the task on the resource, providing an error

message for user guidance (alongside additional messages if a GRC file were to fail at

compile-time, runtime, etc.) and enabling re-submission to an alternate resource.



(a) Three-channel time sink I/Q data - GRC
(b) Three-channel time sink I/Q data

- Our system

(c) Two-channel frequency sink I/Q data - GRC
(d) Two-channel frequency sink I/Q

data - Our system

(e) Two-channel constellation sink I/Q Data - GRC
(f) Two-channel constellation sink

I/Q Data - Our system

Figure 4: GRC (left) vs. Our system (right) GUI comparison

Digital Design Extensions

The system may be applied towards digital design (in addition to communication and signal

processing) by harnessing remote access of the FPGA or ARM cores which control a SDR device

(e.g. ADALM-PLUTO). Initial configuration tests on ADALM-PLUTO by BR2 EXTERNAL

suggest that reprogramming of the Zynq platform for this end purpose is feasible.



Conclusion

This paper discusses the construction and implementation of a fully-integrated environment for

the remote analysis of signal patterns. Through the incorporation of flexible and scalable features,

our real-time system is demonstrated to be practical for larger audiences needing to replicate

in-person hardware experimentation virtually. The environment achieves improved signal

resolution and is resistant towards external interference, ensuring necessary robustness for

real-life use.

The system outlined in this paper is presently available via LabsLand, a partner in this research.

The remote laboratories at our research group have been used, through the

LabsLand1 network[14], by 3,700 students from 16 countries over more than 100,000 past

laboratory sessions. Learning management systems (e.g. Canvas, Moodle, Sakai, etc.) are

integrated and expected to further encourage the use of our system by individuals globally.

Acknowledgements

This work was supported by the National Science Foundation’s Division Of Undergraduate

Education under Grant 2141798.

References

[1] Danilo Valerio. Open source software-defined radio: A survey on gnuradio and its applications. In ftw.

Technical Report, 2008.

[2] Matt Ettus and Brian Bloom. Universal software radio peripheral (usrp). In Proceedings of the 4th Workshop on

Software Radio, pages 1–8. IEEE, 2003.

[3] Eric Blossom. Gnu radio: Tools for exploring the radio frequency spectrum. In Linux Journal, 2004.

[4] Analog Devices Inc. Adalm-pluto: A wideband transceiver for software defined radio, 2018. URL

https://wiki.analog.com/university/tools/pluto.

[5] Yonghan Kwon, Mingyu Park, and Jeongyeup Paek. A measurement study of adalm-pluto software defined

radio with ieee 802.15. 4. In 2022 13th International Conference on Information and Communication

Technology Convergence (ICTC), pages 865–867. IEEE, 2022.

[6] Zhengguang Xu, Wan Chen, Daiming Qu, Xiaojun Hei, and Wei Li. Developing a massive open online lab

course for learning principles of communications. In TALE, pages 586–590. IEEE, 2020.

[7] Alexander Mikroyannidis, Diarmuid Collins, Christos Tranoris, Spyros Denazis, Daan Pareit, Jono

Vanhie-Van Gerwen, Ingrid Moerman, Guillaume Jourjon, Olivier Fourmaux, John Domingue, and Johann M.

Marquez-Barja. Forge: An elearning framework for remote laboratory experimentation on fire testbed

infrastructure. In hal-01656701f, pages 521–559, 2017.

[8] Manjunath Somashekar, Preethi Biradar, Kalyan Ram Bhimavaram, Panchaksharayya S. Hiremath, and S. Arun

Kumar. Remote labs for communications. In Online Engineering and Society 4.0: Proceedings of the 18th

International Conference on Remote Engineering and Virtual Instrumentation, pages 47–54. Springer, 2021.

1https://labsland.com



[9] Utlapalli Somanaidu, Nagarjuna Telagam, Nehru Kandasamy, and Menakadevi Nanjundan. Usrp 2901 based

fm transceiver with large file capabilities in virtual and remote laboratory. In International Journal of Online

Engineering, pages 193–200. iJOE, 2018.

[10] Gwenhael Goavec-Merou, Pierre-Yves Bourgeois, and Jean-Michel Friedt. Embedded gnu radio running on

zynq/plutosdr. In Proceedings of the GNU Radio Conference, 2021.

[11] Pablo Orduña, Jaime Irurzun, Luis Rodriguez-Gil, Javier Garcia-Zubia, Fabricio Gazzola, and Diego López-de

Ipiña. Adding new features to new and existing remote experiments through their integration in weblab-deusto.

In International Journal of Online Engineering, pages 33–39. iJOE, 2011.

[12] Marcos Inonan, Brian Chap, Pablo Ordña, Rania Hussein, and Payman Arabshahi. Rhlab scalable software

defined radio (sdr) remote laboratory. In 20th Annual International Conference on Remote Engineering and

Virtual Instrumentation (REV), 2023.

[13] Rania Hussein, Brian Chap, Marcos Inonan, Matt Guo, Francisco Luquin Monroy, Riley Maloney, Stefhany

Alves, and Sai Jayanth Kalisi. Remote hub lab – rhl: Broadly accessible technologies for education and

telehealth. In 20th Annual International Conference on Remote Engineering and Virtual Instrumentation

(REV), 2023.

[14] Pablo Orduña, Luis Rodriguez-Gil, Javier Garcia-Zubia, Ignacio Angulo, Unai Hernandez-Jayo, and Esteban

Azcuenaga. Increasing the value of remote laboratory federations through an open sharing platform: Labsland.

In Online Engineering & Internet of Things, pages 859–873. Springer, 2018.


