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Abstract

We investigate the temperature- and density-dependence of effective pair poten-

tials for 1-site coarse-grained (CG) models of two industrial solvents, 1,4-dioxane and

tetrahydrofuran. We observe that the calculated pair potentials are much more sen-

sitive to density than to temperature. The generalized-Yvon-Born-Green framework

reveals that this striking density-dependence reflects corresponding variations in the

many-body correlations that determine the environment-mediated indirect contribu-

tion to the pair mean force. Moreover, we demonstrate, perhaps surprisingly, that this

density-dependence is not important for accurately modeling intermolecular structure.

Accordingly, we adopt a density-independent interaction potential and transfer the

density-dependence of the calculated pair potentials into a configuration-independent

volume potential. Furthermore, we develop a single global potential that accurately

models the intermolecular structure and pressure-volume equation of state across a

very wide range of liquid state points. Consequently, this work provides fundamen-

tal insight into the density-dependence of effective pair potentials and also provides

a significant step towards developing predictive CG models for efficiently modeling

industrial solvents.
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1 Introduction

Many computational studies adopt coarse-grained (CG) models to simulate length- and time-

scales that can not be effectively addressed with traditional all-atom (AA) models.1–7 By

representing systems in reduced detail, CG models provide both exceptional computational

efficiency8–11 and also a conceptually simpler perspective for studying complex materials.12–14

Unfortunately, the computational and conceptual advantages of averaging over atomic details

come at the cost of effective potentials that vary with thermodynamic conditions.10,12,15 Thus,

effective potentials that accurately model one set of thermodynamic conditions may provide

a poor description of other conditions. Clearly, the computational advantages of CG models

will be severely undermined if they must be reparameterized for each condition of interest.

Moreover, the temperature-, composition-, and density-dependence of effective CG models

also complicates the treatment of thermodynamic properties.16–21 For example, the energetic

and entropic contributions to effective potentials must be properly treated when modeling

energetic and entropic properties.12,22,23 Accordingly, a large literature has investigated the

dependence of effective potentials upon thermodynamic state point.24,25

For instance, many studies have investigated the temperature-range over which bottom-

up pair potentials provide reasonable structural fidelity.26–29 Conversely, other studies have

explicitly calculated pair potentials for a range of temperatures and, in some cases, at-

tempted to model these potentials, e.g., as a linear function of temperature.30,30–41 These

studies suggest that bottom-up pair potentials often become more repulsive with increasing

temperature at constant density. Interestingly, Voth and coworkers have demonstrated that

this observed temperature-dependence can be used to model entropic quantities that would

seem beyond the scope of CG models.42 Moreover, several recent studies have predicted

the temperature-dependence of bottom-up pair potentials based upon simulation data at a

single state point via the dual43–45 or microcanonical46 framework. In particular, the dual

approach parameterizes an operator for modeling atomic energetics and then uses this op-

erator to infer the entropic contribution and, thus, the temperature-dependence of CG pair
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potentials.

Similarly, many studies have investigated the sensitivity of bottom-up pair potentials to

variations in composition or density.17,33,36,47–67 Since these potentials tend to be overly repul-

sive, they are often modified to reproduce the average internal pressure of the AA model,68

although this modification often results in discrepancies in the compressibility of the CG

model.69 Several studies suggest that bottom-up pair potentials tend to become increasingly

attractive with decreasing density at constant temperature.33,41,51 In fact, bottom-up pair

potentials appear more sensitive to density than to temperature, since they become increas-

ingly attractive with increasing temperature as the volume increases at constant external

pressure.33,41,51 This density-dependence is typically treated “passively” and simply ignored

when calculating the internal pressure of bottom-up CG models,20,69–72 which may partially

account for their tendency to poorly model the AA pressure equation of state. Conversely,

Guenza and coworkers have recently demonstrated an “active” approach that accounted for

this density-dependence when computing the internal pressure.73 This suggests the possibil-

ity of developing a dual approach for predicting the density-dependence of pair potentials

based upon the internal pressures sampled by the AA model at a single state point.

Recent studies suggest that local density (LD) potentials provide another promising ap-

proach for treating the composition- and density-dependence of bottom-up potentials.48,74–78

By employing one-body LD potentials of the density around each particle,74 CG models can

accurately describe the AA pressure equation of state,78–80 the interfacial profiles of inho-

mogeneous systems,81 and also the liquid-liquid phase separation of immiscible solvents.82,83

Unfortunately, in comparison to conventional pair potentials, LD potentials are less compu-

tationally efficient and also more challenging to parameterize.76,84 Moreover, they appear to

demonstrate rather complex temperature-dependence.85,86

Alternatively, Das and Andersen pioneered a simpler framework for treating the density-

dependence of CG potentials for homogeneous systems.87 Specifically, Das and Andersen

introduced a configuration-independent volume potential that can be readily parameterized
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to ensure that the CG model accurately reproduces the volume-dependence of the AA free

energy and, as a consequence, the AA pressure equation of state.87–89 In particular, CG

models with volume potentials can not only reproduce the average density and internal pres-

sure of AA models, but also their compressibility. In contrast to LD potentials, the volume

potential is easy to parameterize and introduces essentially no additional computational cost

to simulations of the CG model. Few studies have investigated the temperature-dependence

of volume potentials, though.41,90 The interesting study of Rosenberger and van der Vegt

determined a single fixed pair potential and then parameterized a series of volume poten-

tials for constant pressure simulations at 1 bar external pressure across a rather wide range

of temperatures.90 They observed that this volume potential varied linearly with temper-

ature. Remarkably, the resulting models quite accurately reproduced the pair structure,

bulk density, coefficient of thermal expansion, and isothermal compressibility of hexane and

perfluorohexane across a wide temperature range at 1 bar external pressure. However, they

did not consider the performance of these models at elevated pressures.

In this work, we further investigate the temperature- and density-dependence of pair and

volume potentials for two homogeneous molecular liquids. Specifically, we consider 1-site CG

models for 1,4-dioxane (C4H8O2) and for tetrahydrofuran (C4H8O), which are two widely

used industrial solvents. Although they have very similar molecular structures, dioxane and

tetrahydrofuran have rather different physical properties. While dioxane has historically been

employed in cosmetics, shampoos, and detergents, current research into dioxane focuses on

its potential role as a carcinogen and the difficulty of separating it from aqueous solutions in

the environment.91,92 Conversely, tetrahydrofuran remains widely used in chromatography,

organic synthesis, and polymer chemistry, but demonstrates limited miscibility in water.93,94

We first parameterize a series of CG potentials for modeling dioxane at a rather wide

range of densities and temperatures. As in prior studies, we observe that the calculated

pair potentials are much more sensitive to density than to temperature. We employ the

generalized-Yvon-Born-Green framework95–98 to elucidate the molecular origin of this strik-
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ing density-dependence. However, we find that the density-dependence of the pair potentials

has relatively little impact upon the structural properties of the CG model. Consequently,

this density-dependence can be directly transferred into the volume potential without reduc-

ing the model’s structural fidelity. We then develop a global model for the volume potential

that allows us to accurately describe both the intermolecular structure and the pressure equa-

tion of state across the entire range of liquid state points for dioxane. Having established

this procedure for dioxane, we conclude by validating it for tetrahydrofuran.

The remainder of this manuscript is organized as follows. Section 2 briefly reviews the

relevant theory for bottom-up coarse-graining. Sections 3 and 4 present the details and

results of our computational studies. Finally, Section 5 summarizes our findings and provides

concluding comments.

2 Theory

2.1 Exact Coarse Graining

Bottom-up approaches develop CG models based upon information from a high resolution all-

atom (AA) model of the given system.99 We denote the AA configuration for n atoms by r =

{r1, . . . , rn} and the potential u(r;V ), which may depend upon the volume V . The instan-

taneous internal pressure of the AA model is pint(r;V ) = nkBT/V + pxs(r;V ) and the excess

pressure is pxs(r;V ) = − (∂u/∂V )r̂ = 1
3V

∑︁n
i=1 fi·ri−(∂u/∂V )r, where fi(r;V ) = − (∂u/∂ri)V

is the force on atom i, r̂i = V −1/3ri is the scaled coordinates for atom i, and r̂ = {r̂i}.100

For simplicity, we have assumed that the system is spatially homogeneous. The canonical

configuration distribution for the AA model is pr(r;V, T ) = z−1(V, T ) exp[−βu(r;V )], where

z(V, T ) =
∫︁
V n dr exp[−βu(r;V )] and β = 1/kBT .

We denote the CG configuration for N sites by R = {R1, . . . ,RN}. We define a mapping,

M : r → R = M(r), that maps each AA configuration, r, to a particular CG configuration,
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R = M(r). This determines the canonical mapped distribution,

pR(R;V, T ) =

∫︂
V n

dr pr(r;V, T )δ(R−M(r)) , (1)

which gives the probability (density) that the AA model samples a configuration that maps

to R. We seek to approximate the many-body potential of mean force (PMF), W , which

may be defined

exp[−βW (R;V, T )] ≡ V −(n−N)zR(R;V, T ), (2)

where

zR(R;V, T ) =

∫︂
V n

dr exp[−βu(r;V )]δ(R−M(r)) (3)

is the total Boltzmann weight associated with the CG configuration R at the given V and

T . Thus, the many-body PMF is defined as the excess Helmholtz potential of the AA model

as a function of the CG coordinates. Consequently, if the CG model employs the PMF

as an interaction potential, then it will perfectly reproduce the mapped distribution of CG

configurations that is implied by the AA model and the CG mapping. Moreover, if the PMF

is known as a function of configuration and thermodynamic state point, then the CG model

will be able to perfectly reproduce the thermodynamic properties of the AA model.

Because the PMF is an excess Helmholtz potential, the variations of the PMF may be

expressed20,23

dW = −
N∑︂
I=1

f I · (dRI)V − pxsdV − SWdT, (4)

where (dRI)V = V 1/3dR̂I denotes variations in configuration at constant volume and R̂I =

V −1/3RI denotes the scaled CG coordinates. Each term in Eq. (4) relates variation in

the PMF to a conditioned average of a conjugate variable over the subensemble of AA
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configurations that map to the given CG microstate. In particular,

f I ≡ f I(R;V, T ) ≡ ⟨fI(r;V )⟩R;V T (5)

pxs ≡ pxs(R;V, T ) ≡ ⟨pxs(r;V )⟩R;V T , (6)

where (assuming that the mapping associates sites with disjoint atomic groups) fI denotes

the net atomic force101–103 on CG site I and the subscripted brackets indicate an average

according to the conditioned distribution:

pr|R(r|R;V, T ) ≡ pr(r;V, T )δ(R−M(r)) /pR(R;V, T ). (7)

The temperature-dependence of the PMF is determined by

SW ≡ SW (R;V, T ) ≡ −kB
⟨︃

ln

[︃
pr|R(r|R;V, T )

qr|R(r|R;V, T )

]︃⟩︃
R;V T

, (8)

where qr|R(r|R;V, T ) = V −(n−N)δ(R−M(r)) is the uniform conditioned distribution. Thus,

SW (R;V, T ) is the excess configurational entropy associated with the subensemble of AA

configurations that map to R.22

Note that according to Eqs. (4) – (6)

⟨pxs(r;V )⟩R;V T =
1

3V

N∑︂
I=1

f I ·RI −
(︃
∂W

∂V

)︃
R,T

. (9)

In general one expects that the conditioned mean of the AA excess pressure can not be

reproduced by mean forces. Consequently, one generally expects that the PMF will de-

pend explicitly upon volume, i.e., (∂W/∂V )R,T ̸= 0. Moreover, by equating mixed partial

derivatives of the PMF, we see that

(︃
∂f I
∂V

)︃
R̂,T

= −

(︄
∂

∂V

(︃
∂W

∂RI

)︃
R∗

I ,V,T

)︄
R̂,T

=

(︃
∂pxs
∂RI

)︃
R∗

I ,V,T

, (10)
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where R̂ = {R̂I} and R∗
I denotes the set of N−1 Cartesian coordinates for sites J ̸= I. Thus,

the volume-dependence of the mean forces corresponds to the configuration-dependence of

the mean excess pressure. Finally, we note that in order to reproduce the mapped distribution

in the isothermal-isobaric ensemble at a constant external pressure, Pext, it is necessary to

account for the missing ideal contributions from the n−N particles that have been integrated

out of the AA model. Consequently, the proper interaction potential for modeling the

isothermal-isobaric ensemble is

WP(R, V ;T ) ≡ W (R;V, T ) − (n−N)kBT ln(V/Λ3
0) (11)

where Λ0 is an arbitrary constant with dimensions of length that may depend upon tem-

perature. By accounting for the ideal contribution to the internal pressure, the interaction

potential, WP , ensures that the CG model will properly sample the isothermal-isobaric en-

semble, i.e.,

exp [−β (WP(R, V ;T ) + PextV )] = Λ
−3(n−N)
0 zR(R;V, T ) exp [−βPextV ] (12)

∝ pRV(R, V ;Pext, T ), (13)

where pRV(R, V ;Pext, T ) is the joint configuration-volume distribution that is implied by the

AA model and the CG mapping.

2.2 Approximate Coarse Graining

We consider CG models for simulating 1-component systems of organic molecular liquids in

the isothermal-isobaric ensemble at temperature, T , and external pressure, Pext. Following

Das and Andersen,87 we approximate the many-body PMF, WP(R, V ), according to

U(R, V ) = UR(R) + UV(V ). (14)
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Here UR is an interaction potential that determines the forces on each site, FI = − (∂UR/∂RI)R∗
I ,V

,

but does not explicitly depend upon the volume. Since we consider neutral organic molecules,

we represent each molecule with a single CG site and describe inter-molecular interactions

with short-ranged central pair potentials, U2, between each distinct pair, (I, J), of molecules:

UR(R) =
∑︂
(I,J)

U2(RIJ), (15)

where RIJ is the distance between molecules I and J . Conversely, UV(V ) is a “volume

potential” that does not generate forces, but directly contributes a “volume force,” FV(V ) =

−dUV(V )/dV , to the excess pressure

Pxs(R, V ) =
1

3V

∑︂
(I,J)

F2(RIJ)RIJ + FV(V ) (16)

where F2(R) = −dU2(R)/dR. We model the volume potential with the simple power series

UV(V ) = N
[︁
ψ1(V/Vref − 1) + ψ2(V/Vref − 1)2

]︁
, (17)

where ψ1 and ψ2 are parameters, while Vref is the average volume of the AA model at the

reference state point (T, Pext).

While there exist many bottom-up methods for parameterizing CG models,49,68,104–106 in

this work we adopt the MS-CG force-matching method.107,108 The MS-CG method deter-

mines the pair potential, U2, by minimizing

χ2[U2;Vref , T ] =

⟨︄
1

3N

N∑︂
I=1

⃓⃓⃓
fI(r) − FI(M(r))

⃓⃓⃓2⟩︄
Vref ,T

, (18)

where the angular brackets denote a canonical average according to pr(r;Vref , T ). The MS-

CG variational principle102,109,110 ensures that the resulting interaction potential provides an

optimal approximation for the configuration-dependence of the PMF at the given state point.
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Consequently, we expect that the resulting MS-CG pair potential will explicitly depend upon

the volume and temperature of the reference AA ensemble, i.e., U2(R) = U2(R;Vref , T ).

While Eq. (18) defines the MS-CG variational principle for the canonical ensemble, we also

employ the force-matching method for simulations at constant pressure. In practice one

obtains the same potentials from minimizing χ2 over the canonical ensemble and over the

corresponding isothermal-isobaric ensemble.111

Das and Andersen proposed optimizing the volume potential, UV(V ), by minimizing a

pressure-matching functional87

χ2
V[UV|UR;Pext, T ] ≡

⟨︁
|δP0(r, V ) − FV(V )|2

⟩︁
PextT

(19)

where δP0(r, V ) = (n − N)kBT/V + pxs(r, V ) − Pxs(M(r), V )|FV=0 is the difference be-

tween the instantaneous pressure of the AA and CG models in the absence of the volume

force, while the angular brackets denote an average over the isothermal-isobaric distribution,

prV(r, V ;Pext, T ) ∝ pr(r;V, T ) exp[−βPextV ]. Note that the optimized volume potential, UV,

will depend upon the reference AA ensemble that was used in the parameterization, i.e.,

ψ = ψ(Vref , T ) where Vref and T are the mean volume and temperature of the constant NPT

simulation. Moreover, UV will also depend upon the interaction potential, UR, and, thus,

reflect the state-point dependence of UR. In the following, we first estimate UV via a related

pressure-matching functional and then systematically refine UV until it quantitatively repro-

duces the AA pressure-volume equation of state.88,111 This self-consistent pressure-matching

method minimizes the relative entropy105,112–115 between the AA and CG constant pressure

ensembles with respect to the volume potential.89
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3 Computational Methods

3.1 Atomistic Simulations

We simulated two homogeneous liquid systems with periodic boundary conditions in all

three dimensions. The dioxane system consisted of 685 molecules, while the tetrahydrofuran

(THF) system consisted of 768 molecules. We performed AA simulations of both liquids with

Gromacs version 2019.6,116,117 while propagating dynamics with the Gromacs ‘md’ leapfrog

integrator. These simulations employed a 1 fs time step and did not rigidly constrain any

bonds. We employed the Bussi stochastic thermostat118 with a relaxation time of 0.5 ps to

sample energy fluctuations at constant temperature. We employed an isotropic Parrinello-

Rahman barostat119 with a relaxation time of 5 ps and a compressibility of 4.5 x 10−5 bar−1

to sample volume fluctuations at constant external pressure.

We employed the optimized potentials for liquid simulations (OPLS-AA) force field to

model interactions in the AA simulations.120 We generated the topology files for both diox-

ane and tetrahydrofuran with the LigParGen browser tool.121–123 We modeled long-ranged

electrostatic interactions with the particle-mesh Ewald method,124 while using a grid spacing

of 0.08 nm and a short-ranged cutoff of 1.3 nm. We truncated short-ranged non-bonded in-

teractions at rc = 1.3 nm, while switching the corresponding forces to zero between 1.0 and

1.3 nm. We employed dispersion corrections to account for truncating these interactions.

We employed a neighbor list with a cut-off of 1.4 nm that was updated every step.

We performed AA simulations of both systems at the 15 state points indicated in Fig. 1.

We constructed this simulation matrix by first performing constant NPT simulations at

external pressure Pext = P 0 ≡ 1 bar for 5 evenly spaced temperatures that span the liquid

phase range at atmospheric pressure. These simulations correspond to the diagonal of the

matrix. We determined the equilibrium density, ρ0T ≡ ⟨ρ⟩TP 0 , at each temperature, T , from

these constant NPT simulations. We then performed a constant NVT simulation with the

fixed density, ρ0T , at each temperature, T ′ > T , to characterize the 10 state points above the
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Figure 1: Simulated state points, (T, ρ), for dioxane (a) and THF (b). The color of each circle
indicates the pressure of the state point according to the color bar at right. In particular,
the circles along the diagonal correspond to ambient pressure, P = 1 bar = 0.001 kbar.
The reference state, (Tref , ρref), corresponds to the top right circle in each matrix. The top
left (red circle) and bottom right (green circle) in panel a correspond to the extreme state
points considered later. The inset of each panel indicates the 1-site CG representation of the
corresponding molecule.

diagonal in Fig. 1. We determined the equilibrium internal pressure, Pint(ρ
0
T , T

′) = ⟨Pint⟩ρ0TT ′ ,

for each of these state points from these constant NVT simulations. Finally, we performed a

corresponding constant NPT simulation at each of these 10 state points with the temperature,

T ′, and the external pressure P ′
ext = Pint(ρ

0
T , T

′). Tables 1 and 2 report the pressure and

density of each simulated state point for dioxane and THF, respectively.

The AA simulations are quite consistent with experimental measurements for the bulk
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density of these liquids at Trm = 298 K and ambient pressure, Pext = 1 bar.125 Specifically,

the simulated equilibrium density for dioxane is 1.04 kg/L under these conditions, while

experimental measurements report a density of 1.03 kg/L. Similarly, experimental measure-

ments for THF report a density of 0.88 kg/L under these conditions, while our simulations

at the closest state point, T = 285 K and Pext = 1 bar, predict a density of 0.89 kg/L.

Table 1: Simulated dioxane state points in Fig. 1a. The top row indicates the
simulated temperatures, while the entries in the corresponding column report
the equilibrium density and pressure, (ρ̄, P ), of each simulation in units of kg/L
and bar, respectively.

300 K 320 K 340 K 360 K 380 K
1.041, 1 1.043, 447 1.042, 811 1.042, 1193 1.041, 1569

X 1.016, 1 1.016, 346 1.017, 714 1.017, 1053
X X 0.992, 1 0.992, 307 0.992, 623
X X X 0.967, 1 0.967, 278
X X X X 0.942, 1

Table 2: Simulated THF state points in Fig. 1b. The top row indicates the
simulated temperatures, while the entries in the corresponding column report
the equilibrium density and pressure, (ρ̄, P ), of each simulation in units of kg/L
and bar, respectively.

180 K 215 K 250 K 285 K 320 K
1.013, 1 1.013, 1152 1.013, 2222 1.013, 3257 1.013, 4245

X 0.972, 1 0.972, 911 0.972, 1770 0.972, 2590
X X 0.930, 1 0.930, 714 0.930, 1413
X X X 0.888, 1 0.887, 555
X X X X 0.844, 1

We constructed the configurations for our initial NPT simulations by employing the gro-

macs gmx solvate command to insert molecules into a cubic box with a volume of 96.6 nm3.

We then performed an energy minimization with the resulting configuration. We performed

each constant NPT simulation for 32 ns and analyzed the last 30 ns after discarding the first

2 ns as equilibration.

Given a constant NPT simulation at temperature, T , and ambient pressure, P = 1 bar, we

determined the initial condition for a subsequent constant NVT simulation as the sampled
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configuration with an instantaneous density, ρ, that was closest to the mean, ρ0T . After

performing an energy minimization with this configuration, we then simulated the resulting

configuration in the constant NVT ensemble at the target temperature, T ′ > T , for 7 ns

and discarded the first 2 ns for equilibration. After the equilibration period, we sampled our

simulations every 1 ps.

3.2 CG Models

We developed several different potentials for 1-site CG models of dioxane and THF. We ini-

tially employed the bottom-up open-source coarse-graining software (BOCS) package v. 5.0

to parameterize a potential, U(T, ρ) = UR(T, ρ) + UV(T, ρ), for each state point (T, ρ) in

Fig. 1. Here and in the following, we often suppress the explicit arguments of potentials

in order to focus on their parametric dependence upon the thermodynamic state point

for which they were parameterized, e.g., UR(T, ρ) ≡ UR(R;T, ρ) =
∑︁

(I,J) U2(RIJ ;T, ρ) ≡∑︁
(I,J) U2(T, ρ).

We first mapped the corresponding AA constant NPT simulation to the CG resolution

by representing each molecule with its mass center and determining the net force on each

molecule. We determined the optimal MS-CG pair potential, U2(T, ρ), for each state point

by minimizing Eq. (18) via the default singular value decomposition solver126,127 in BOCS. In

this force-matching calculation we represented the pair potential with cubic spline basis func-

tions on a uniformly spaced grid over the interval 0.0 nm ≤ R ≤ 1.4 nm with ∆R = 0.02 nm.

We represented the volume potential, UV(T, ρ), with the simple form in Eq. (17). We deter-

mined the corresponding parameters by performing self-consistent pressure-matching, as de-

scribed in Ref.88. In particular, we employed the mdrun -rerun feature from gromacs/2016.6

to obtain pressure information from the mapped atomistic ensemble for the initial step of

pressure-matching. We employed 6 iterations at each state point in order to adequately

converge the optimal ψ parameters.

Given the potentials, U(T, ρ), that were optimized for each dioxane state point, we de-
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veloped a CG potential, Ulin(T, ρ), by linearly extrapolating about a fixed reference state

point. We identify the top right state point in Fig. 1a, i.e., (Tref = 380 K, ρref = 1.04 kg/L),

as a reference state for dioxane and defined U2;ref = U2(Tref , ρref). In order to quantify the

density- and temperature-dependence of the MS-CG pair potentials, U2(T, ρ), we calculated

the finite differences

mT (T ) ≡ ∆U2(T, ρref)/∆T ≡
[︂
U2(T, ρref) − U2(Tref , ρref)

]︂/︂[︂
T − Tref

]︂
(20)

mρ(ρ) ≡ ∆U2(Tref , ρ)/∆ρ ≡
[︂
U2(Tref , ρ) − U2(Tref , ρref)

]︂/︂[︂
ρ− ρref

]︂
(21)

for each T < Tref and ρ < ρref . We defined mT and mρ by simply averaging the resulting 4

finite differences mT (T ) and mρ(ρ). We then modeled linear variations in the MS-CG pair

potentials according to

U2;lin(T, ρ) = U2;ref +mT (T − Tref) +mρ(ρ− ρref), (22)

which defines a corresponding interaction potential, UR;lin(T, ρ). We combined UR;lin(T, ρ)

with the volume potential, UV(T, ρ), that was optimized for the original MS-CG pair poten-

tial, U2(T, ρ), to define the extrapolated total potential: Ulin(T, ρ) = UR;lin(T, ρ) + UV(T, ρ).

In the following, we consider the radial distribution functions and pressure-volume equations

of state obtained from CG simulations with this potential, Ulin(T, ρ).

We also developed a density-decoupled (DD) potential, UDD, for each liquid by neglecting

the density-dependence of the interaction potentials. In this case, we defined the density-

independent interaction potential for each temperature, T , by the MS-CG interaction po-

tential, UR(T, ρref), determined for the reference density, ρref , i.e., UR;DD(T ) ≡ UR(T, ρref).

Given this fixed density-independent interaction potential, UR;DD(T ), we repeated our self-

consistent pressure-matching calculations to determine a new volume potential, UV;DD(T, ρ),

16



for each state point (T, ρ) in Fig. 1. We define the DD potential

UDD(T, ρ) ≡ UR;DD(T ) + UV;DD(T, ρ). (23)

In contrast to the original MS-CG models, the volume forces for the DD model, FV;DD(V ;T, ρ) =

−dUV;DD(V ;T, ρ)/dV , are well described by a continuous function of V that is independent

of the density, ρ, of the state point (T, ρ). Consequently, we approximated FV;DD(V ;T, ρ)

with a global function of V and T :

FV;glob(V ;T ) ≡ (a0 + a1∆T )V 2 + (b0 + b1∆T )V + (c0 + c1∆T ) , (24)

where {a0, a1, b0, b1, c0, c1} are six free parameters and ∆T = T − Tref . We employed the

Python curve fit function in the scipy.optimize package128 to determine the six free parame-

ters that best approximated the volume forces FV;DD(V ;T, ρ) for the 15 state points in Fig. 1.

This determines a single global potential, Uglob, for modeling the liquid phase that depends

explicitly upon R and V , while depending parametrically upon T :

Uglob(R, V ;T ) = UR;DD(R;T ) + UV;glob(V ;T ), (25)

where UV;glob(V ;T ) is the global volume potential obtained by integrating Eq. (24). We

constructed this global model for dioxane about the single reference state point, (Tref =

380 K, ρref = 1.04 kg/L). In the case of THF, we constructed two different global models

based upon two different reference state points, (Tref;1 = 320 K, ρref;1 = 1.01 kg/L) and

(Tref;2 = 320 K, ρref;2 = 0.93 kg/L). Table 3 reports the parameters for the corresponding

global volume potentials.
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Table 3: Parameters for the global volume potentials, UV;glob, defined by Eq. (24).

DD Model Dioxane THF THF
Tref (K) 380 320 320

ρref (kg/L) 1.04 1.01 0.93
a0 (bar/nm6) 2.72 3.59 5.84
b0 (bar/nm3) -471.51 -550.68 -1,152.21
c0 (bar) 11,930.03 4,610.14 49,411.44

a1 (bar/nm6 K) -0.053 -0.047 -0.051
b1 (bar/nm3 K) 10.795 9.362 9.796
c1 (bar / K) -560.448 -486.056 -487.652

3.3 CG Simulations

We simulated CG models in the constant NVT ensemble with Gromacs 2019.6. We employed

a 1 fs timestep for propagating dynamics with the leapfrog integrator, while employing the

Bussi stochastic thermostat118 with a relaxation time of 0.5 ps. We truncated interactions at

1.4 nm and employed a neighbor list of 1.5 nm that was updated every step. We performed

each constant NVT simulation for 7 ns, discarded the first 2 ns for equilibration, and sampled

the remainder of the simulation after every 1 ps.

We simulated CG models in the constant NPT ensemble with Large-scale Atomic/Molecular

Massively Parallel Simulator (LAMMPS),129,130 while employing the BOCS package that

implements volume potentials.88,111 We propagated dynamics by integrating the Martyna-

Tuckerman-Tobias-Klein131,132 equations of motion with a 1 fs time step. We employed time

scales of 100 fs and 1 ps for the thermostat and barostat, respectively, and employed the

default chain length (n = 3) for the Nosé-Hoover chain.133,134 We employed the analytic func-

tional form of Eq. (17) to represent the volume potential in all cases, except when using the

global volume potential, UV;glob(V ;T ). In this case, we employed a tabulated representation

of Eq. (24) with a grid space ∆V = 0.001 nm3. We employed a neighbor-list with a cut-off

of 1.4 nm that was updated every time step. We performed each constant NPT simulation

for 5 ns, while sampling the simulation after every 1 ps.

The results section examines the relationship between the density-dependence of pair
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and volume potentials. We performed this analysis by first creating a scatter plot of the

sampled volumes and internal pressures, {(V, Pint)}, where the internal pressure, Pint =

NkBT/V +Pxs, includes an ideal term, NkBT/V , and an excess contribution, Pxs = WR+FV,

that reflects both the virial, WR = 1
3V

∑︁
(I,J) F2(RIJ)RIJ , and also the volume force, FV. We

subtracted the volume force, FV = FV(V ), from each sampled internal pressure to determine

P0 = Pint − FV = NkBT/V + WR. We employed the Python scipy.optimize package to

fit the resulting scatter plot {(V, P0)} to determine P 0(V ) = ⟨P0⟩V as a linear function

of V . Given two CG potentials, U1 = UR1 + UV1 and U2 = UR2 + UV2, that are defined

for the same state point, we determined the difference in the corresponding average virials,

∆WR(V ) = P 0;2(V ) − P 0;1(V ). Finally, we correlated ∆WR(V ) with the difference in the

corresponding volume forces, ∆FV(V ) = FV;2(V ) − FV;1(V ).

4 Results and Discussion

4.1 Analysis of dioxane reference state

In this work, we develop 1-site CG models for simulating liquid 1,4-dioxane across the range

of state points indicated in Fig. 1a. In particular, we consider the temperature range 300 K

≤ T ≤ 380 K for which dioxane is a liquid at ambient pressure. Additionally, we consider

a rather wide range of pressures: 1 bar ≤ P ≤ 1569 bar. We select the state point, Tref =

380 K and Pref = 1569 bar, as a reference state because it allows us study the variation of

CG potentials over a wide temperature and density range.

Figure 2 presents results from AA constant NPT simulations of dioxane at this reference

state point, Tref = 380 K and Pref = 1569 bar. The solid black curve in Fig. 2a presents the

AA radial distribution function (rdf) for the dioxane mass center. (Except when otherwise

indicated, we report rdf’s from constant NPT simulations.) The rdf vanishes for r ≤ 0.38 nm

and features a prominent first peak at r0 ≈ 0.57 nm, as well as a pronounced minimum at

r1 ≈ 0.76 nm. The AA rdf demonstrates rather long-ranged structure at this high external
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Figure 2: Analysis of AA and 1-site CG models for dioxane at the reference state point. Solid
black curves indicate results for the AA model, while dashed red curves indicate results for
the CG model that was optimized for this reference state point. Panels a and b present the
mass center rdf and pressure-volume equation of state. Panels c and d present the MS-CG
pair potential and volume force.

pressure with discernible second, third, and fourth peaks at r ≈ 1.0 nm, 1.5 nm, and 1.9 nm,

respectively. The solid black curve in Fig. 2b presents the simulated pressure-volume equa-

tion of state for the AA model. At the elevated pressure Pref = 1569 bar, the average volume

of the AA model is 96.2 nm3, which corresponds to an equilibrium density, ρref = 1.04 kg/L.

We employed the MS-CG force-matching variational principle to determine an optimal

pair potential for this reference state point. Figure 2c presents the calculated MS-CG pair

potential, U2. This pair potential features a single shallow well with a depth of approximately

0.48 kBTref , a minimum near rmin ≈ 0.9 nm, and a slight shoulder over the distance range

1.0 nm ≤ r ≤ 1.3 nm. The pair potential vanishes for r ≥ 1.4 nm by construction. It is

rather striking that MS-CG pair potential is purely repulsive in the first solvation shell and

that the attractive well coincides with the second solvation shell.

As is often observed for bottom-up CG models,20,68,87 constant NPT simulations with the

pair-additive MS-CG potential dramatically over-estimate the internal pressure of the AA

model and rapidly vaporize. Consequently, we employed self-consistent pressure-matching

to determine a volume potential, UV(V ), of the form given by Eq. (17). Figure 2d presents

the resulting volume force FV(V ) = −dUV(V )/dV . The volume force reduces the internal

pressure by more than 8000 bar over the simulated volume range. The (absolute) magnitude
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of the volume force slightly decreases as the system expands. Note that here and in the

following, we plot FV(V ) only over the volume range sampled by the corresponding AA

simulation.

The dashed red curves in Figs. 2a and 2b present the rdf and pressure-volume equation

of state obtained from constant NPT simulations of the resulting CG model. The MS-CG

model slightly overestimates the height of the first peak in the AA rdf. Aside from this slight

discrepancy, the MS-CG model quantitatively reproduces the AA rdf. The MS-CG model

quantitatively reproduces the AA pressure-volume equation of state by construction.

4.2 Density- and temperature-variations in effective potentials
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Figure 3: State-point dependent potentials for 1-site CG model of dioxane. The solid curves
in the left and right columns present MS-CG pair potentials, U2, and corresponding vol-
ume forces, FV, that were optimized for each state point (T, ρ). The top row analyzes
temperature-variations at fixed density for the state points (T, ρref). The middle row ana-
lyzes density-variations at fixed temperature for the state points (Tref , ρ). The bottom row
analyzes simultaneous temperature- and density variations (T, ρ) at fixed external pressure
Pext = 1 bar. The legends are specific to each row, while ‘*’ identifies the reference state
(Tref , ρref) that is analyzed in Fig. 2. The dotted curves in the left column present pair po-
tentials, U2;lin, that were predicted for each state point via linear extrapolation according to
Eq. (27).

We employed force-matching and self-consistent pressure-matching to determine an op-
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timal pair potential, U2(T, ρ), and volume potential, UV(T, ρ), for a 1-site CG model of

dioxane at each state point, (T, ρ), in Fig. 1a. The solid curves in the left and right columns

of Fig. 3 present the resulting pair potentials and volume forces, respectively. The top row

of Fig. 3 considers temperature-variations at constant density, while the middle row con-

siders density-variations at constant temperature. The bottom row considers simultaneous

temperature- and density-variations at constant external pressure.

Figure 3a investigates the temperature-dependence of the MS-CG pair potentials, U2(T, ρref),

at the fixed reference density, ρref = 1.04 kg/L, which corresponds to the top row of Fig. 1a.

The cyan curve corresponds to the reference state with Tref = 380 K that was analyzed in

Fig. 2. As the temperature increases at constant density, the minimum of the potential very

slightly deepens, while the pair potentials also become noticeably more repulsive at short

distances, r < rmin. However, the minimum remains at rmin ≈ 0.9 nm and the shape of the

potential varies relatively little.

Figure 3b presents the corresponding volume forces, FV(T, ρref), that were optimized to

reproduce the AA pressure equation of state at the state points (T, ρref). As the temperature

increases from 300 K to 380 K at the fixed density, the internal pressure of the AA model in-

creases from 1 bar to 1569 bar. Conversely, the volume forces become increasingly attractive

as the temperature increases. The absolute magnitude of the volume force increases from

6910 bar to 8217 bar over this temperature range in order to compensate for the increasingly

repulsive pair potentials.

Figure 3c investigates the density-dependence of the MS-CG pair potentials, U2(Tref , ρ),

at the fixed reference temperature, Tref = 380 K, which corresponds to the right column of

Fig. 1a. The black curve corresponds to the reference state point, ρref = 1.04 kg/L, that

was analyzed in Fig. 2. As previously observed, the MS-CG potentials vary dramatically

with density.41 The global minimum of the pair potential becomes increasingly shallow and

slightly shifts to smaller distances as the density decreases at constant temperature, but

remains in the second solvation shell. Even more strikingly, as the density decreases the
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potential becomes much softer and a second contact minimum appears in the first solvation

shell. This second contact minimum occurs at a distance, r ≈ 0.64 nm, that is slightly greater

than the first peak of the AA rdf. This second minimum is almost as deep as the global

minimum at the lowest density, ρ = 0.94 kg/L, which corresponds to ambient pressure.

Figure 3d presents the corresponding volume forces, FV(Tref , ρ), that were parameterized

for the state points (Tref , ρ). These volume forces become much more attractive as the

density increases. Each volume force has been parameterized to reproduce the same AA

pressure-volume equation of state, pint(V, Tref), for the fixed reference temperature, Tref =

380 K. Because they have been calculated from constant NPT simulations with different

equilibrium densities, ρ, the volume forces are determined over different volume ranges.

Moreover, the calculated volume forces differ in overlapping volume ranges because they

correspond to different pair potentials. For instance, the red and blue curves correspond to

models that were parameterized for ρ = 1.02 kg/L and 0.99 kg/L, respectively. Both models

reproduce the internal pressure of the AA model at the volume V = 100 nm3. Because the

model parameterized at ρ = 1.02 kg/L employs a more repulsive pair potential (i.e., the red

curve in Fig. 3c), this model requires a more attractive volume force to match the AA internal

pressure (i.e., the red curve in Fig. 3d). Therefore, the marked variation in the volume forces

of Fig. 3d corresponds to the dramatic density-dependence of the pair potentials in Fig. 3c.

Figures 3e and 3f present the pair potentials and volume forces that were calculated from

AA simulations at the temperature range 300 K ≤ T ≤ 380 K and constant external pressure

Pext = 1 bar. As previously observed,41 the pair potentials in Fig. 3e become increasingly

attractive as the temperature increases at constant external pressure. Similarly, the variation

in the volume forces in Fig. 3f appears more similar to the density-variation in Fig. 3d than

the temperature-variation in Fig. 3b. Thus, the calculated potentials appear much more

sensitive to density than temperature.
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4.3 g-YBG analysis of effective potentials

The generalized-Yvon-Born-Green (YBG) formalism provides physical insight into the MS-

CG pair potentials, U2(r), and their sensitivity to temperature and density.95,96,98,110 Given

the approximate potential in Eq. (15), the MS-CG method determines the pair force, F2(r) =

−dU2(r)/dr, according to a force-balance equation95,135 that is analogous to the YBG equa-

tion from liquid state theory136

F 2(r) = F2(r) +

∫︂
dr′K(r, r′)F2(r

′). (26)

Here F 2(r) = −dwAA(r)/dr = −kBTg′AA(r)/gAA(r) is the AA pair mean force, i.e., the mag-

nitude of the average force on each molecule of a pair when they are separated by a distance,

r.137 The kernel, K(r, r′), of the integral term is a many-body correlation function that de-

scribes the density of surrounding molecules. Importantly, both F 2 and K are completely

specified by the underlying AA model and the CG mapping. Thus, the MS-CG method

determines the pair force by decomposing the AA pair mean force into two contributions:98

(1) a direct contribution, F2(r), that describes the interaction between the pair; and (2)

an indirect contribution, Find(r) =
∫︁

dr′K(r, r′)F2(r
′), that describes the interactions of the

pair with the surrounding many-body environment.97,98
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Figure 4: Analysis of temperature-dependent MS-CG potentials at constant density. (a)
Temperature-dependence of AA rdfs. (b) Decomposition of pair potentials of mean force,
wAA, (solid) into direct contributions, U2, (dashed) and indirect contributions, wind (dotted).
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Figure 4 employs this generalized-YBG (g-YBG) equation to interpret the variation in

the MS-CG pair potentials with decreasing temperature at constant density. Figure 4a

presents the mapped AA rdf’s, gAA(r), for dioxane at the fixed reference density and each

simulated temperature. As the temperature decreases at constant density, the first peak of

the AA rdf at r0 ≈ 0.57 nm very slightly increases, while the minimum at r1 ≈ 0.76 nm

almost imperceptibly decreases. Otherwise the AA rdf appears independent of temperature

at the fixed density. Consequently, the solid curves in Fig. 4b demonstrate that the AA

pair potential of mean force (ppmf), wAA(r) = −kBT ln gAA(r), varies almost linearly with

temperature. In particular, as the temperature decreases, wAA(r) becomes slightly less

repulsive for short distances r < r0 near contact, but becomes slightly less attractive over

the rest of the first solvation shell, r0 < r < r1.

The dashed and dotted curves in Fig. 4b present the direct, U2, and indirect, wind,

contributions to the ppmf, wAA, respectively. The indirect contribution, wind, is determined

by simply integrating (the negative of) Find. Within the first solvation shell, r ≤ r1, the

indirect contribution to the ppmf is purely attractive (i.e., Find(r) = −dwind(r)/dr < 0) due

to crowding by the surrounding liquid. This solvent-induced effective attraction between the

pair is analogous to the Asakura-Oosawa depletion-induced attraction between colloids due

to a repulsive solvent138–140 and becomes quite large as r → 0.

At large distances, wAA(r) ≈ wind(r) because U2(r) ≈ 0 for r ≳ 1.0 nm. At shorter

distances, the direct and indirect contributions to the ppmf tend to be anti-correlated and

both make significant contributions. For r > r0, the indirect contribution appears larger than

the direct contribution. However, as molecules approach contact at very short distances,

r < r0, the direct contribution begins to dominate.

The Supporting Information (SI) demonstrates that the AA many-body correlation func-

tion, K(r, r′), varies little with temperature at constant density. Consequently, the temperature-

dependence of the MS-CG pair potentials stems from the temperature-dependence of the

ppmf. In particular, as the temperature decreases, U2(r) becomes slightly more attractive

25



for r < r0 because the ppmf also becomes more attractive at such short distances. As the di-

rect repulsion between the pair decreases, the solvent-induced attraction, wind, also decreases

from reduced repulsion with the surrounding environment. Because wind dominates U2 at

slightly larger distances, r0 < r < r1, the ppmf becomes more repulsive over the remainder of

the first solvation shell. (More precisely, the dominance of wind and the increasing repulsion

in the ppmf for r0 < r < r1 cause U2 to be slightly less repulsive over this distance range.)

The MS-CG pair potential demonstrates somewhat greater sensitivity to temperature than

the ppmf because the variations in U2 and wind tend to cancel each other.
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Figure 5: Analysis of density-dependent MS-CG potentials at constant temperature. (a)
Density-dependence of AA rdfs. (b) Decomposition of pair potentials of mean force, wAA,
(solid) into direct contributions, U2, (dashed) and indirect contributions, wind (dotted).

Figure 5 similarly employs the g-YBG formalism to interpret the variations in the MS-CG

pair potentials with decreasing density at constant temperature. As the density decreases,

the AA rdf systematically shifts to larger distances, while the maxima and minima both

shift towards 1. Accordingly, the ppmf becomes very slightly more repulsive over the entire

first solvation shell, r < r1. This suggests that the MS-CG pair potential should also be-

come more repulsive at short distances, which is in direct contrast to the density-variation

that is observed in Fig. 3. The SI demonstrates that, if K were density-independent, then

the MS-CG pair potential would indeed become more repulsive at short distances as the

density decreases. However, the SI also demonstrates that the many-body correlation func-
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tion, K(r, r′), varies significantly with density. This density-variation significantly reduces

the strength of the solvent-induced effective attraction, wind, as the liquid expands. Conse-

quently, the MS-CG pair potential must become much more attractive at short distances in

order to compensate for the reduced solvent-induced effective attraction. In particular, this

increasing direct attraction gives rise to the contact minimum that emerges near r ≈ r0 as

the density decreases at constant temperature. Interestingly, the SI demonstrates that this

contact minimum corresponds to a feature in the many-body correlation matrix, K(r, r′).

Thus, the g-YBG formalism traces the dramatic density-variation in the MS-CG pair poten-

tials and, in particular, the contact minimum to the density-dependence of the many-body

liquid structure.

4.4 Structural and thermodynamic fidelity

Figure 6 assesses the structural fidelity and thermodynamic accuracy of the 1-site MS-CG

models in constant NPT simulations at 1 bar external pressure. The solid curves present

the results of AA simulations, while the dashed curves present the results of CG simulations

with the pair and volume potentials that were optimized for each state point. In particular,

Figs. 6a and 6b demonstrate that these MS-CG models very accurately reproduce the AA

rdf’s at T = 300 K and 380 K, respectively. As in Fig. 2a, the largest errors occur in the

first peak. The MS-CG models overestimate the first peak of the AA rdf by only 10% at

300 K and reproduce the first peak even more accurately at 380 K. The dashed curves in

Fig. 6c, which are obscured by the solid AA curves, demonstrate that the MS-CG models

also quantitatively reproduce the AA pressure-volume equations of state by construction.

Given the observed temperature- and density-variations in the calculated pair potentials

from Figs. 3a and 3c, we calculated empirical estimates for the temperature- and density-

derivatives of the MS-CG pair potentials, mT ≈ (∂U2/∂T )ρ and mρ ≈ (∂U2/∂ρ)T , according

to Eqs. (20) and (21). We modeled the MS-CG pair potentials as a linear function of T and
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Figure 6: Accuracy of 1-site dioxane models at 1 bar external pressure. Panels a and b present
rdf’s for the molecular mass center from simulations at T = 300 K and 380 K, respectively.
Panel c presents simulated pressure-volume equations of state. The solid curves present
results for the AA model, while the dashed curves present results for the MS-CG model
with the potential, U(T, ρ) = UR(T, ρ) +UV(T, ρ), that was optimized for the specified state
point (T, ρ). The dotted curves present results for CG models with the predicted interaction
potential, Ulin(T, ρ) = UR;lin(T, ρ) + UV(T, ρ).

ρ according to

U2;lin(T, ρ) = U2;ref +mT (T − Tref) +mρ (ρ− ρref) , (27)

where U2;ref ≡ U2(Tref , ρref) is the pair potential in Fig. 2. The dotted curves in Figs. 3a, 3c,
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3e present the resulting pair potentials. The linear predictions very accurately reproduce the

modest temperature-variations observed in Fig. 3a, as well as the density-variations in Fig. 3c

for r > rmin. Moreover, the linear predictions also accurately reproduce the density-variations

for r < rmin until the second minimum begins to emerge at lower densities. Interestingly,

the linear prediction over-estimates the depth of this minimum. The SI indicates that mT

is approximately independent of T , while mρ varies approximately linearly with ρ over this

range. Consequently, expanding the Taylor series in Eq. (27) to second order in ∆ρ provides

a slightly improved model for the calculated pair potentials.

The dotted curves in Fig. 6 present the results of CG simulations with these predicted

pair potentials, while still employing the volume potentials that were optimized for each

state point. Despite the noticeable differences between the calculated MS-CG and predicted

pair potentials for T = 380 K in Fig. 3e, Figs. 6a and 6b demonstrate that the predicted

potentials very accurately reproduce the pair structure of the AA model. Similarly, Fig. 6c

demonstrates that the predicted potentials quite accurately reproduce the AA equation of

state for T ≤ 340 K. However, for T ≥ 360 K the predicted potentials are significantly more

attractive than the corresponding MS-CG potentials. Accordingly, simulations that employ

the predicted potentials with the original volume potentials significantly overestimate the

AA density for T ≥ 360 K at ambient pressure.

4.5 Transferability of effective potentials

While Fig. 6 assesses the accuracy of the MS-CG potentials at the state point for which they

were parameterized, Fig. 7 assesses their transferability to other state points. In particular,

the top row of Fig. 7 analyzes the importance of temperature-variations in the MS-CG

potentials for simulations at the fixed reference density, ρref . The inset of Fig. 7a compares

the pair potential, U2(Tref) ≡ U2(Tref , ρref), that was optimized for the reference temperature

Tref = 380 K with the pair potential, U2(Tlo) ≡ U2(Tlo, ρref), that was optimized for the

lowest temperature, Tlo = 300 K. As already noted in Fig. 3a, as T decreases at constant
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from simulations at the reference density, ρref = 1.04 kg/L: panels a and b correspond to
simulations at the reference temperature, Tref = 380 K, and at the reduced temperature, Tlo =
300 K, respectively. The inset of panel a compares the pair potentials that were calculated
for the two state points. The bottom row presents rdf’s from simulations at the reference
temperature, Tref = 380 K: panels c and d correspond to simulations at the reference density,
ρref = 1.04 kg/L, and at the reduced density, ρlo = 0.94 kg/L, respectively. The inset of
panel c compares the pair potentials that were calculated for the two state points. The black
curves correspond to the reference state point, (Tref , ρref); the red curves correspond to the
low temperature state, (Tlo, ρref), which corresponds to the red circle in Fig. 1a; and the green
curves correspond to the low density state, (Tref , ρlo), which corresponds to the green circle
in Fig. 1a. Solid curves present results from constant NPT AA simulations, while dashed
curves present results from constant NVT CG simulations at the corresponding state point.

ρ, the MS-CG pair potential becomes slightly less repulsive at short range and slightly less

attractive at longer range.

Figure 7a presents rdf’s obtained from constant NVT simulations of two different CG

models at the reference state point (Tref , ρref). As already observed in Fig. 2a, the potential,

U2(Tref), that was optimized for this state point very accurately reproduces the AA rdf, al-

though it does slightly over-estimate the height of the first peak. Surprisingly, constant NVT
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simulations at Tref with the low-temperature MS-CG potential, U2(Tlo), also very accurately

reproduce the AA rdf. In fact, the low-temperature MS-CG potential, U2(Tlo), reproduces

the first peak of the AA rdf more accurately than the reference MS-CG potential, U2(Tref),

that was optimized for this state point. However, the low-temperature potential does appear

to slightly under-estimate the subsequent minima and maxima of the AA rdf.

Figure 7b presents rdf’s obtained from constant NVT simulations at the reduced tem-

perature, Tlo, and fixed reference density, ρref . As before, the MS-CG potential, U2(Tlo),

that was optimized for this state point very accurately reproduces the AA rdf, although it

very slightly over-estimates the height of the first peak. In contrast, the MS-CG potential,

U2(Tref), that was optimized for the higher temperature reference state provides a signfi-

cantly less accurate description of the AA rdf. Because it is notably more repulsive at short

distances, the reference potential, U2(Tref), significantly over-estimates the height of the first

peak in the AA rdf and, more generally, over-estimates the pair structure of the AA model.

Thus, Figs. 7a and 7b demonstrate that the low-temperature MS-CG potential, U2(Tlo),

models intermolecular packing quite accurately at both low- and high-temperatures. Con-

versely, the high-temperature reference MS-CG potential, U2(Tref), accurately describes the

high-temperature reference state, but provides a significantly less accurate description of

intermolecular packing at the reduced temperature, Tlo. Thus, it appears that the potential

that was optimized for lower temperatures provides improved transferability. In fact, several

previous studies have also reported similar observations.27,28,90 Moreover, these results sug-

gest that the relatively subtle temperature variations in the MS-CG potentials are important

for accurately modeling the intermolecular structure of the AA model.

The bottom row of Fig. 7 then analyzes the importance of density-variations in the MS-

CG potentials for simulations at the fixed reference temperature, Tref = 380 K. The inset

of Fig. 7c compares the pair potential, U2(ρref) ≡ U2(Tref , ρref), that was optimized for the

reference density, ρref = 1.04 kg/L, with the pair potential, U2(ρlo) ≡ U2(Tref , ρlo), that

was optimized for the reduced density, ρlo = 0.94 kg/L. As already noted in Fig. 3c, as ρ
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decreases at constant Tref , the calculated MS-CG pair potential becomes significantly softer

and develops a second minimum in the first solvation shell.

Figure 7c presents rdf’s obtained from constant NVT simulations at the reference state

point (Tref , ρref). While it is well known that rdf’s are quite insensitive to many aspects of

pair potentials,141,142 we find it somewhat surprising that such dramatically different pair

potentials generate such similar rdf’s at the reference temperature. In fact, the low-density

MS-CG potential, U2(ρlo), reproduces the AA rdf with slightly better accuracy than the

reference MS-CG potential, U2(ρref), that was calculated for this state point.

Figure 7d presents the rdf’s obtained from constant NVT simulations at the reduced

density, ρlo, and fixed reference temperature, Tref . In this case, the two MS-CG potentials

generate almost identical rdf’s.

Figures 7c and 7d demonstrate that the low-density MS-CG potential, U2(ρlo), provides

slightly better accuracy and transferability than the MS-CG potential, U2(ρref), that was

optimized for the higher reference density. Perhaps more surprisingly, despite the dramatic

differences in the inset of Fig. 7c, both MS-CG potentials reproduce the AA rdf quite accu-

rately across the entire density range. Thus, it appears that the dramatic density-dependence

in the MS-CG pair potentials is not important for modeling the pair structure of the AA

model.

4.6 A globally transferable model

Figure 7 indicates that the density-variation in the MS-CG pair potentials, U2(T, ρ), is not

very important for accurately modeling the configuration-dependence of the PMF. This sug-

gests that this density-dependence may be accurately modeled by a configuration-independent

volume potential. Consequently, we decided to decouple the density-dependence of the pair

and volume potentials. We adopted the MS-CG interaction potential, UR(Tref , ρref), that was

calculated for the reference state point, (Tref , ρref), as a fixed density-independent potential

for modeling all state points at the reference temperature, Tref . Given this density-decoupled
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Figure 8: Analysis of calculated volume forces at Tref = 380 K. Panel a: the dashed
and solid curves present the volume forces, FV(V ) = −dUV(V )/dV , that were calculated
for the density-dependent interaction potentials, {UR(ρ)}, and for the density-independent
DD interaction potential, UR;DD. Panel b: Scatter plot of the volume, V , with the näıve
internal pressure, P0 = NkBT/V + WR, that includes the ideal, NkBT/V , and config-
urational virial, WR = 1

3V

∑︁
(I,J) F2(RIJ)RIJ , contributions evaluated for configurations

(R, V ) sampled by constant NPT CG simulations with the density-independent DD in-
teraction potential, UR;DD, and with the density-dependent MS-CG interaction potential,
UR(ρ). Panel c: Correlation between the difference in the mean configurational virial,
∆WR ≡

⟨︁
WR[UR(ρ)]

⟩︁
V
−
⟨︁
WR[UR;DD]

⟩︁
V

, calculated for UR(ρ) and for UR;DD with the
difference in the corresponding volume forces, ∆FV ≡ FV[UR(ρ)] − FV[UR;DD].
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(DD) interaction potential, UR;DD ≡ UR(Tref , ρref), we repeated our self-consistent pressure-

matching calculations to determine a new volume potential, UV;DD(ρ), for modeling each

state point (Tref , ρ).

Figure 8 analyzes the resulting volume forces that were calculated for modeling the con-

stant NPT ensemble at the fixed reference temperature, Tref , and various external pres-

sures, Pext. We define P0(R, V ) = NkBT/V + WR(R, V ) as the näıve CG pressure, where

WR(R, V ) ≡ WR(R, V |UR) ≡ 1
3V

∑︁
(I,J) F2(RIJ)RIJ is the configurational virial that is de-

fined by the interaction potential, UR.

The dashed lines in Fig. 8a reproduce from Fig. 3d the set of volume forces, {FV(ρ) ≡

FV(V ;Tref , ρ)}, that were calculated for the original density-dependent MS-CG potentials,

{UR(ρ) ≡ UR(R;Tref , ρ)}. As already noted in Fig. 3d, this set of volume forces, {FV(ρ)},

cannot be described by a single continuous function of V . The solid lines in Fig. 8a present

the set of volume forces, {FV;DD(ρ) ≡ −dUV;DD(V ;ρ)/dV }, that were determined for each

state point, (Tref , ρ), when employing the fixed density-independent interaction potential,

UR;DD. Importantly, the set of DD volume forces, {FV;DD(ρ)}, can be represented by a single

continuous function of V , FV;glob ≡ FV;glob(V ;Tref). Specifically, this global volume force,

FV;glob, is independent of the density, ρ, of the simulated state point, (Tref , ρ).

The discontinuities in the original volume forces, {FV(ρ)}, reflect the changes in the virial

due to the density-dependence of the original MS-CG pair potentials, {UR(ρ)}, in Fig. 3c.

Figure 8b presents a scatter plot of (V, P0) that was sampled by CG simulations with the

density-dependent MS-CG interaction potential, UR(ρ), and with the density-independent

DD interaction potential, UR;DD. If one employs two different interaction potentials, UR(ρ1)

and UR(ρ2), to simulate the same configuration (R, V ), then one obtains two different values

for configurational virial, WR1(R, V ) and WR2(R, V ). Consequently, two different volume

potentials, UV(ρ1) and UV(ρ2), are necessary to model the same configuration in simulations

with the two interaction potentials, UR(ρ1) and UR(ρ2). Conversely, if one assumes that

the interaction potential is density-independent, then constant NPT simulations at different
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densities, ρ1 and ρ2, obtain the same configurational virial for a given configuration (R, V ).

In this case WR(V ) ≡ ⟨WR⟩V varies continuously with volume and is independent of the

density, ρ, of the simulated state point (Tref , ρ).

Figure 8c further supports this conclusion by presenting a scatter plot of the difference

in the configurational virial for the density-dependent MS-CG interaction potential and

for the DD interaction potential, ∆WR ≡ WR[UR(ρ)] − WR[UR;DD], and the difference in

the corresponding volume forces, ∆FV ≡ FV[UR(ρ)] − FV[UR;DD]. Clearly, the variation in

the configurational virial due to density-dependent potentials is exactly compensated for

by the change in the volume force. Moreover, this suggests that the density-dependence

of the original MS-CG pair potentials primarily stems from the density-dependence of the

AA pressure and, consequently, can be quite accurately captured by a single global volume

potential, UV;glob(V ;Tref).

We next repeated this process for each temperature 300 K ≤ T < Tref . At each tem-

perature, T , we defined the fixed density-independent DD interaction potential by the

MS-CG interaction potential that had been optimized for the equilibrium state, (T, ρref),

i.e., UR;DD(T ) ≡ UR;DD(R;T ) = UR(R;T, ρref). We then repeated self-consistent pressure-

matching to determine a corresponding volume potential, UV;DD(T, ρ) = UV;DD(V ;T, ρ), for

performing constant NPT simulations at each state point, (T, ρ), in Fig. 1a.

The solid lines in Fig. 9a present the resulting set of volume forces, {FV;DD(T, ρ)}. As

seen in Fig. 8a, the DD volume forces for each temperature, T , can be accurately modeled

by a single continuous function of V , FV;glob(T ) ≡ FV;glob(V ;T ) that is independent of the

density, ρ, of the simulated state point, (T, ρ). Moreover, this global volume force, FV;glob(T ),

can be accurately modeled as a quadratic function of V for each temperature. Accordingly,

we fit the entire set of DD volume forces, {FV;DD(V ;T, ρ)}, to a single global function of V

and T :

FV;glob(V ;T ) ≡ a(T )V 2 + b(T )V + c(T ), (28)

where a(T ), b(T ), and c(T ) are linear functions of temperature, e.g., a(T ) ≡ a0+a1 (T − Tref).
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The dotted orange curves in Fig. 9a present the resulting global volume force. The fit is ex-

tremely good at elevated temperatures, but slightly deteriorates at the lowest temperatures.

We define a corresponding global volume potential, UV;glob(V ;T ), by simply integrating

FV;glob(V ;T ) = −dUV;glob(V ;T )/dV .

Given UV;glob(V ;T ), we define a global potential:

Uglob(R, V ;T ) ≡ UR;DD(R;T ) + UV;glob(V ;T ). (29)

Figures 9b - 9d assess the accuracy of this global potential for modeling the liquid phase

of dioxane. In particular, Fig. 9b demonstrates that this global potential quite accurately

reproduces the AA pressure-volume equation of state across the entire range of liquid state

points. Somewhat surprisingly, Uglob accurately describes the AA pressure equation of state

even at state points where the global fit to the optimized volume forces deteriorates. Fig-

ures 9c and 9d present rdf’s from constant NPT simulations at ambient pressure for the

two state points that are farthest from the reference state point in Fig. 1a. These figures

demonstrate that the global potential also accurately reproduces the pair structure of the

AA model at each state point. While the global model slightly over-estimates the height of

the first peak of the AA rdf, it reproduces the AA rdf as accurately as the MS-CG model

that was optimized for the state point.
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Figure 9: Global liquid dioxane model defined for ρref = 1.04 kg/L. Panel a compares the
DD volume forces, FV;DD(V ;T, ρ), that were calculated for each state point (solid lines) with
the global volume force, FV;glob(V ;T ), defined by Eq. (28) (dotted orange curves). Panel b
presents simulated pressure-volume equations of state for the AA model (solid curves) and
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point, and the dotted orange curves correspond to the global model.
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4.7 Assessment for THF

In the preceding subsections we developed a global potential for modeling liquid dioxane

across a rather wide range of thermodynamic state points. In this final subsection, we

briefly consider the generality of this approach for a 1-site CG model of tetrahydrofuran

(THF), which is a structurally similar organic liquid. Specifically, we consider the range of

liquid state points 180 K ≤ T ≤ 320 K and 1 bar ≤ P ≤ 4245 bar. In this subsection we

present results for two global THF models that differ in their choice of reference state. The

SI presents detailed results that are analogous to Figs. 2 - 9 for THF.

Figure 10 presents results for a global THF model that employs the top right state point

in Fig. 1b as the reference state, i.e., Tref = 320 K, Pref = 4245 bar, ρref = 1.01 kg/L.

Figure 10a demonstrates that the global volume force, FV;glob, quite accurately matches the

volume forces that were independently calculated for each state point in Fig. 1b, although

the agreement slightly deteriorates at the lowest temperatures. Figure 10c and 10d demon-

strate that the structural fidelity of this global model slightly deteriorates at the extremes

of the state point matrix and, in particular, at the state point with highest temperature and

lowest density. Nevertheless, the global model quite accurately describes the intermolecular

structure of the AA model across the entire liquid phase. More impressively, Fig. 10b demon-

strates that the global model very accurately describes the AA pressure-volume equation of

state across the entire range of liquid state points.

Finally, Fig. 11 presents the results of employing an intermediate density, ρ∗ = 0.93 kg/L,

as a reference for parameterizing a second global potential, U∗
glob. In this case, we only

determine the DD interaction potential, U∗
R;DD(T ) ≡ UR(T, ρ∗), for T ≥ T∗ ≡ 250 K. State

points (T < T∗, ρ∗) fall below the diagonal of Fig. 1b and, consequently, correspond to

negative internal pressures. We determine a new DD volume force, F ∗
V;DD(V ;T, ρ), for each

state point (T, ρ) and fit these to determine a new global volume force, F ∗
V;glob(V ;T ), of

the form given by Eq. (28). Figure 11a demonstrates that the new global volume force

accurately describes the DD volume forces that were independently optimized for each state
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point. Interestingly, in both Fig. 10a and 11a, the volume forces are most attractive at the

state points used to define the density-independent DD interaction potential, i.e., (T, ρref)

and (T, ρ∗), respectively. Figure 11b demonstrates this second global model also accurately

reproduces the AA pressure-volume equations of state at each temperature T ≥ T∗. Similarly,

Figs. 11c and 11d demonstrate that the second global model accurately reproduces the

intermolecular structure of the AA model at each state point. In this case, the structural

fidelity of the global model appears slightly improved with respect to Fig. 10 because we

consider smaller variations from the central reference state point.
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5 Conclusions

In this study, we have investigated the temperature- and density-dependence of effective

potentials for 1-site MS-CG models that accurately describe the intermolecular structure

and internal pressure of AA models for dioxane and THF. The calculated pair potentials

are highly repulsive with very shallow minima that correspond to the second solvation shell.

The pair potentials become slightly more repulsive as the temperature increases at constant

density, while the volume potentials simultaneously become somewhat more attractive. As

previously reported, we observe that the pair and volume potentials depend much more sen-

sitively upon density than temperature. Specifically, as the density decreases at constant

temperature, the short-ranged component of the pair potential becomes much more attrac-

tive, while the corresponding volume forces become much less attractive. At the lowest

densities, a second contact minimum begins to compete with the global minimum in the pair

potential.

We employed the g-YBG framework to elucidate the physical origin of this striking

density-dependence.95–98 The g-YBG framework decomposes the mean force between each

pair of molecules into a direct contribution, which corresponds to the MS-CG pair potential,

and an indirect contribution, which results from correlated interactions with the environ-

ment. While the direct contribution between neighboring molecules is highly repulsive, the

indirect contribution to this pair mean force is highly attractive due to repulsive interactions

with the surrounding molecules.97,135 Our calculations demonstrate that the pair mean force

between contacting molecules is almost density-independent for dioxane and THF. However,

the attractive indirect contribution to this pair mean force significantly decreases as the

density of the surrounding environment decreases. Consequently, the MS-CG pair potential

between contacting molecules must become more attractive to compensate.

This analysis relied upon special properties of the MS-CG method102,107–109 and, in partic-

ular, its relationship with the g-YBG framework.95,98,135 In contrast to other structure-based

methods, such as Iterative Boltzmann Inversion (IBI)68 or Inverse Monte Carlo (IMC),104
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the MS-CG method determines interaction potentials directly from the AA mapped ensem-

ble without requiring successive simulations of CG models with trial potentials. Moreover,

the g-YBG framework interprets the resulting MS-CG potentials in terms of direct and in-

direct contributions to mean forces that can be determined from the mapped ensemble.97,98

This provides a simple physical basis for understanding the physical origin of MS-CG po-

tentials, as well as their sensitivity to temperature- and density-variations. In contrast,

the temperature- and density-dependence of IBI or IMC potentials cannot be so directly

traced to properties of the AA model because they also reflect the temperature- and density-

dependence of the simulated CG ensemble. In this case, one must consider two sets of g-YBG

equations: one for the mapped AA ensemble and one for the simulated CG ensemble.8,135,143

Nevertheless, we anticipate that the findings of our g-YBG analysis will likely qualitatively

hold also for potentials obtained via other structure-based bottom-up approaches. Specifi-

cally, we speculate that bottom-up potentials for small molecular liquids will often demon-

strate relatively weak temperature-dependence, which will be primarily determined by the

temperature-dependence of the pair mean force or, equivalently, the mapped rdf. Conversely,

we speculate that these potentials will demonstrate greater density-dependence and that this

density-dependence will be more sensitive to density-dependent many-body correlations. It

may be instructive for future studies to assess this hypothesis.

We had expected that the striking density-dependence of the MS-CG pair potentials

would be important for accurately modeling the liquid structure. Surprisingly, though, we

find that it has relatively little impact upon the structural fidelity of the MS-CG mod-

els. Consequently, we decoupled the density-dependence of the pair and volume potentials.

Specifically, for each temperature, T , we defined a fixed density-independent interaction po-

tential, UR;DD(R;T ), and then determined an independent volume potential, UV;DD(V ;T, ρ),

for modeling each state point, (T, ρ). We were able to fit this set of 15 independent volume po-

tentials to a single global volume potential, UV;glob(V ;T ), that depends cubically upon V and

linearly upon T . The resulting global potential, Uglob(R, V ;T ) = UR;DD(R;T )+UV;glob(V ;T ),
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described the AA intermolecular structure and pressure-volume equation of state with re-

markable accuracy across the range of liquid phase state points for both systems. These

global potentials, Uglob, appear very promising for developing highly efficient CG models

that accurately model the structure and thermodynamic properties of homogeneous indus-

trial solvents across their entire liquid phase.

In the present work, we employed AA simulations at 15 different state points to determine

this global potential. Specifically, we fixed a reference density, ρref , and then employed AA

simulations at a range of temperatures, T , in order to determine a density-independent

interaction potential, UR;DD(T ), for each T . In the future, it may be possible to employ the

dual43 or microcanonical46 framework to predict this temperature-dependence based upon

simulating a single state point. Additionally, we calculated a volume potential for all 15

state points in order to determine the global volume potential, UV;glob(V ;T ). This global

volume potential varied quadratically with V and linearly with T , while depending upon

6 parameters. Given the accuracy of the fit, it is likely that these six parameters could be

accurately determined from a small fraction of these 15 state points. We have also previously

demonstrated that it is sometimes possible to predict the temperature-dependence of the

volume potential via the dual approach.43,44 Moreover, it may be possible to determine the

cubic volume dependence of UV;glob from simulations at a single state point by including

an additional cubic basis function into Eq. (17) when performing self-consistent pressure-

matching. However, accurately resolving the curvature of the volume force from a single

state point may be challenging in practice.

We anticipate that it may often be possible to extend the present approach to mixtures

of miscible solvents. We have previously combined89 self-consistent pressure-matching88

with the extended ensemble framework66 in order to develop transferable pair and volume

potentials for modeling heptane-toluene mixtures at ambient pressure and a single fixed

temperature. In this case, we found that the volume potentials could be easily predicted

as a function of solution composition based upon regular solution considerations. Rather
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remarkably, the resulting transferable potentials described these solutions more accurately

than MS-CG models that had been specifically parameterized for each composition.89 Quite

recently, Kanekal et al. demonstrated that this extended ensemble framework can improve

not only the transferability, but also the accuracy of CG models by averaging over system-

specific details that cannot be accurately described by MS-CG potentials.67 Conversely, Shen

et al. demonstrated that the extended ensemble approach does not always succeed.144

In order to extend our prior work with heptane-toluene mixtures,89 we anticipate that it

would be necessary to first perform AA simulations at a range of temperatures and exter-

nal pressures for a representative set of solution compositions. We would then employ the

extended ensemble force-matching variational principle66 to determine a set of composition-

independent, density-independent (but possibly temperature-dependent) pair potentials that

optimally reproduced the configuration-dependence of the many-body PMF for each repre-

sentative composition at each simulated state point. Given these extended ensemble in-

teraction potentials, we would employ self-consistent pressure-matching to determine a six

parameter global volume force of the form given by Eq. (24) for each solution composition.

We anticipate that it may often be possible to model the global volume forces for miscible

liquids as a simple function of composition, as in our work with heptane-toluene mixtures

at a single temperature and pressure.89 However, we anticipate this approach will likely fail

to describe liquid-liquid phase separation.

It may be more challenging to extend this approach to model inhomogeneous and in-

terfacial systems. Volume potentials provide an extremely efficient method for accurately

reproducing pressure-volume equations of state for homogeneous fluids. However, because

they apply a force directly to the system volume, volume potentials cannot be employed

to simulate inhomogeneous systems, such as liquid-vapor interfaces. In these cases, local

density potentials can be used to accurately model both the internal pressure and also the

interfacial profile, while providing outstanding transferability between bulk and interfacial

environments. In some cases it is possible to directly map volume potentials to local density

45



potentials.78 This may require defining the local density over a relatively long length-scale,

though, which can generate significant artifacts when modeling liquid interfaces.81,84

Similarly, in this work we only considered equilibrium properties of small molecular sol-

vents with short-ranged interactions. Future studies should certainly investigate this ap-

proach for modeling more complex systems, such as ionic and polymeric liquids. Further-

more, future studies should extend this work to consider dynamical quantities145–148 and

non-equilibrium phenomena.149–151 Nevertheless, we hope that this study provides funda-

mental insight into the density-dependence of effective pair potentials. Moreover, we hope

that this approach may represent a significant practical advance towards developing predic-

tive CG models for modeling industrial solvents across wide ranges of their phase diagram.

Supporting Information Available

The SI further investigates the predicted interaction potentials, Ulin, and employs the g-YBG

formalism to analyze the temperature- and density-dependence of MS-CG potentials. The

SI also presents rdf’s that explicitly assess the structural fidelity of the MS-CG and global

potentials for dioxane and THF at each state point.
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