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Abstract

We investigate the temperature- and density-dependence of effective pair poten-
tials for 1-site coarse-grained (CG) models of two industrial solvents, 1,4-dioxane and
tetrahydrofuran. We observe that the calculated pair potentials are much more sen-
sitive to density than to temperature. The generalized-Yvon-Born-Green framework
reveals that this striking density-dependence reflects corresponding variations in the
many-body correlations that determine the environment-mediated indirect contribu-
tion to the pair mean force. Moreover, we demonstrate, perhaps surprisingly, that this
density-dependence is not important for accurately modeling intermolecular structure.
Accordingly, we adopt a density-independent interaction potential and transfer the
density-dependence of the calculated pair potentials into a configuration-independent
volume potential. Furthermore, we develop a single global potential that accurately
models the intermolecular structure and pressure-volume equation of state across a
very wide range of liquid state points. Consequently, this work provides fundamen-
tal insight into the density-dependence of effective pair potentials and also provides
a significant step towards developing predictive CG models for efficiently modeling

industrial solvents.



1 Introduction

Many computational studies adopt coarse-grained (CG) models to simulate length- and time-
scales that can not be effectively addressed with traditional all-atom (AA) models.' " By
representing systems in reduced detail, CG models provide both exceptional computational
efficiency” ' and also a conceptually simpler perspective for studying complex materials.
Unfortunately, the computational and conceptual advantages of averaging over atomic details
come at the cost of effective potentials that vary with thermodynamic conditions. "> =" Thus,
effective potentials that accurately model one set of thermodynamic conditions may provide
a poor description of other conditions. Clearly, the computational advantages of CG models
will be severely undermined if they must be reparameterized for each condition of interest.
Moreover, the temperature-, composition-, and density-dependence of effective CG models
also complicates the treatment of thermodynamic properties. "~ For example, the energetic
and entropic contributions to effective potentials must be properly treated when modeling
energetic and entropic properties. “~°° Accordingly, a large literature has investigated the
dependence of effective potentials upon thermodynamic state point.

For instance, many studies have investigated the temperature-range over which bottom-
up pair potentials provide reasonable structural fidelity. "’ Conversely, other studies have
explicitly calculated pair potentials for a range of temperatures and, in some cases, at-
tempted to model these potentials, e.g., as a linear function of temperature.””""~"" These
studies suggest that bottom-up pair potentials often become more repulsive with increasing
temperature at constant density. Interestingly, Voth and coworkers have demonstrated that
this observed temperature-dependence can be used to model entropic quantities that would
seem beyond the scope of CG models.”~ Moreover, several recent studies have predicted
the temperature-dependence of bottom-up pair potentials based upon simulation data at a
single state point via the dual "~ or microcanonical " framework. In particular, the dual
approach parameterizes an operator for modeling atomic energetics and then uses this op-

erator to infer the entropic contribution and, thus, the temperature-dependence of CG pair



potentials.

Similarly, many studies have investigated the sensitivity of bottom-up pair potentials to
variations in composition or density. """ """ Since these potentials tend to be overly repul-
sive, they are often modified to reproduce the average internal pressure of the AA model,
although this modification often results in discrepancies in the compressibility of the CG
model."”” Several studies suggest that bottom-up pair potentials tend to become increasingly
attractive with decreasing density at constant temperature.”” " In fact, bottom-up pair
potentials appear more sensitive to density than to temperature, since they become increas-
ingly attractive with increasing temperature as the volume increases at constant external
pressure. " *" This density-dependence is typically treated “passively” and simply ignored
when calculating the internal pressure of bottom-up CG models, """~ which may partially
account for their tendency to poorly model the AA pressure equation of state. Conversely,
Guenza and coworkers have recently demonstrated an “active” approach that accounted for
this density-dependence when computing the internal pressure. '~ This suggests the possibil-
ity of developing a dual approach for predicting the density-dependence of pair potentials
based upon the internal pressures sampled by the AA model at a single state point.

Recent studies suggest that local density (LD) potentials provide another promising ap-
proach for treating the composition- and density-dependence of bottom-up potentials.

By employing one-body LD potentials of the density around each particle,”" CG models can
accurately describe the AA pressure equation of state, """ the interfacial profiles of inho-
mogeneous systems,” and also the liquid-liquid phase separation of immiscible solvents. "
Unfortunately, in comparison to conventional pair potentials, LD potentials are less compu-
tationally efficient and also more challenging to parameterize. """ Moreover, they appear to
demonstrate rather complex temperature-dependence.””

Alternatively, Das and Andersen pioneered a simpler framework for treating the density-
dependence of CG potentials for homogeneous systems.”" Specifically, Das and Andersen

introduced a configuration-independent volume potential that can be readily parameterized



to ensure that the CG model accurately reproduces the volume-dependence of the AA free
energy and, as a consequence, the AA pressure equation of state.” ™" In particular, CG
models with volume potentials can not only reproduce the average density and internal pres-
sure of AA models, but also their compressibility. In contrast to LD potentials, the volume
potential is easy to parameterize and introduces essentially no additional computational cost
to simulations of the CG model. Few studies have investigated the temperature-dependence
of volume potentials, though." "’ The interesting study of Rosenberger and van der Vegt
determined a single fixed pair potential and then parameterized a series of volume poten-
tials for constant pressure simulations at 1 bar external pressure across a rather wide range
of temperatures.”’ They observed that this volume potential varied linearly with temper-
ature. Remarkably, the resulting models quite accurately reproduced the pair structure,
bulk density, coefficient of thermal expansion, and isothermal compressibility of hexane and
perfluorohexane across a wide temperature range at 1 bar external pressure. However, they
did not consider the performance of these models at elevated pressures.

In this work, we further investigate the temperature- and density-dependence of pair and
volume potentials for two homogeneous molecular liquids. Specifically, we consider 1-site CG
models for 1,4-dioxane (C4HgO,) and for tetrahydrofuran (C4HgO), which are two widely
used industrial solvents. Although they have very similar molecular structures, dioxane and
tetrahydrofuran have rather different physical properties. While dioxane has historically been
employed in cosmetics, shampoos, and detergents, current research into dioxane focuses on
its potential role as a carcinogen and the difficulty of separating it from aqueous solutions in
the environment. -~ Conversely, tetrahydrofuran remains widely used in chromatography,
organic synthesis, and polymer chemistry, but demonstrates limited miscibility in water.

We first parameterize a series of CG potentials for modeling dioxane at a rather wide
range of densities and temperatures. As in prior studies, we observe that the calculated
pair potentials are much more sensitive to density than to temperature. We employ the

generalized-Yvon-Born-Green framework " to elucidate the molecular origin of this strik-



ing density-dependence. However, we find that the density-dependence of the pair potentials
has relatively little impact upon the structural properties of the CG model. Consequently,
this density-dependence can be directly transferred into the volume potential without reduc-
ing the model’s structural fidelity. We then develop a global model for the volume potential
that allows us to accurately describe both the intermolecular structure and the pressure equa-
tion of state across the entire range of liquid state points for dioxane. Having established
this procedure for dioxane, we conclude by validating it for tetrahydrofuran.

The remainder of this manuscript is organized as follows. Section 2 briefly reviews the
relevant theory for bottom-up coarse-graining. Sections 3 and 4 present the details and
results of our computational studies. Finally, Section 5 summarizes our findings and provides

concluding comments.

2 Theory

2.1 Exact Coarse Graining

Bottom-up approaches develop CG models based upon information from a high resolution all-
atom (AA) model of the given system.”’ We denote the AA configuration for n atoms by r =
{ry,...,r,} and the potential u(r; V'), which may depend upon the volume V. The instan-
taneous internal pressure of the AA model is piy(r; V') = nkgT/V + pis(r; V') and the excess
pressure is pys(r; V) = — (0u/0V), = 5 >i -1, —(0u/OV),, where £;(r; V') = — (Ou/0r;),,

/3¢, is the scaled coordinates for atom i, and + = {&;}.

is the force on atom i, r; = V'~
For simplicity, we have assumed that the system is spatially homogeneous. The canonical
configuration distribution for the AA model is p,(r; V,T) = 2=V, T) exp[—Bu(r; V)], where
2(V,T) = [, drexp[—pu(r;V)] and § = 1/kgT.

We denote the CG configuration for N sites by R = {Ry,...,Ry}. We define a mapping,

M :r - R = M(r), that maps each AA configuration, r, to a particular CG configuration,



R = M(r). This determines the canonical mapped distribution,

pulRVT) = [ dep (V)R ~ M), )

which gives the probability (density) that the AA model samples a configuration that maps
to R. We seek to approximate the many-body potential of mean force (PMF), W, which

may be defined

exp[—BW (R; V,T)] = V- "Nz (R; V, T), (2)
where
mmﬂﬂUZ/ﬁme&MﬂW&R—M@D (3)

is the total Boltzmann weight associated with the CG configuration R at the given V' and
T. Thus, the many-body PMF is defined as the excess Helmholtz potential of the AA model
as a function of the CG coordinates. Consequently, if the CG model employs the PMF
as an interaction potential, then it will perfectly reproduce the mapped distribution of CG
configurations that is implied by the AA model and the CG mapping. Moreover, if the PMF
is known as a function of configuration and thermodynamic state point, then the CG model
will be able to perfectly reproduce the thermodynamic properties of the AA model.

Because the PMF is an excess Helmholtz potential, the variations of the PMF may be
expressed

N
dW = =Y "f; - (dRy)y, — PedV — SwdT, (4)

I=1
where (dRyp),, = |72 3df{1 denotes variations in configuration at constant volume and RI =
V~13R; denotes the scaled CG coordinates. Each term in Eq. (4) relates variation in

the PMF to a conditioned average of a conjugate variable over the subensemble of AA



configurations that map to the given CG microstate. In particular,

fr = RV, T) = (fi(r; V)>R;VT (5)

P = DR VIT) = (pus(r; V>>R;VT ’ (6)

where (assuming that the mapping associates sites with disjoint atomic groups) f; denotes
the net atomic force """ on CG site I and the subscripted brackets indicate an average

according to the conditioned distribution:

per(rR V. T) = p(r; V,T)S(R — M(r)) /pr(R; V, T). (7)

The temperature-dependence of the PMF is determined by

Sw = Sw (R V,T) = kg <ln { (8)

pr(r|R;V, T)} >
qr|R<r|R; ‘/7 T) RVT 7

where gr(r|R; V,T) = V-""M§(R — M(r)) is the uniform conditioned distribution. Thus,
Sw(R;V,T) is the excess configurational entropy associated with the subensemble of AA
configurations that map to R.

Note that according to Eqgs. (4) — (6)

In general one expects that the conditioned mean of the AA excess pressure can not be
reproduced by mean forces. Consequently, one generally expects that the PMF will de-
pend explicitly upon volume, i.e., (OW/0V)g ; # 0. Moreover, by equating mixed partial

derivatives of the PMF, we see that

() (2 () - (Z2) o
V) ar OV \OR ) pyvr) o \OR: gy



where R = {f{I} and R} denotes the set of N —1 Cartesian coordinates for sites J # I. Thus,
the volume-dependence of the mean forces corresponds to the configuration-dependence of
the mean excess pressure. Finally, we note that in order to reproduce the mapped distribution
in the isothermal-isobaric ensemble at a constant external pressure, P, it is necessary to
account for the missing ideal contributions from the n— N particles that have been integrated
out of the AA model. Consequently, the proper interaction potential for modeling the

isothermal-isobaric ensemble is
Wp(R,V;T) = W(R;V,T) — (n— N)kgT In(V/A}) (11)

where Ag is an arbitrary constant with dimensions of length that may depend upon tem-
perature. By accounting for the ideal contribution to the internal pressure, the interaction
potential, Wp, ensures that the CG model will properly sample the isothermal-isobaric en-

semble, i.e.,

exp [—8 (Wp(R, V;T) + P V)] = AP ™M 2r(R;V, T) exp [— 8Pt V] (12)

X pRV(RJ V7 PE'Xt7 T)7 (13)

where pry (R, V'; Pe, T') is the joint configuration-volume distribution that is implied by the

AA model and the CG mapping.

2.2 Approximate Coarse Graining

We consider CG models for simulating 1-component systems of organic molecular liquids in
the isothermal-isobaric ensemble at temperature, T', and external pressure, P,. Following

Das and Andersen,”" we approximate the many-body PMF, Wp (R, V'), according to

U(R, V) = UR<R) + Uv(V) (14)



Here Uy is an interaction potential that determines the forces on each site, F; = — (0Ur/ 8RI)R} v
but does not explicitly depend upon the volume. Since we consider neutral organic molecules,
we represent each molecule with a single CG site and describe inter-molecular interactions

with short-ranged central pair potentials, Uy, between each distinct pair, (I, J), of molecules:

Ur(R) = Z Uz(R1y), (15)
(

1,J)

where Ry is the distance between molecules I and J. Conversely, Uy (V) is a “volume
potential” that does not generate forces, but directly contributes a “volume force,” Fy (V) =

—dUy (V) /dV, to the excess pressure

1
Pi(R,V) = 3 E Fy(Rry)Riy+ Fy(V) (16)
(I,9)

where F5(R) = —dUy(R)/dR. We model the volume potential with the simple power series
Uv(V) = N [1(V/Viet = 1) + 02(V/Viet = 1)°] (17)

where 1; and 1)y are parameters, while V.. is the average volume of the AA model at the
reference state point (7, Payy).

While there exist many bottom-up methods for parameterizing CG models, """ in

this work we adopt the MS-CG force-matching method. "> The MS-CG method deter-

2
: (18)
Viet: T

T

mines the pair potential, Uy, by minimizing

Uz Vi, 7] = <3iNZ £1(1) = Fs(M(x))

where the angular brackets denote a canonical average according to p(r; Vier, 7). The MS-
CG variational principle """ ensures that the resulting interaction potential provides an

optimal approximation for the configuration-dependence of the PMF at the given state point.

10



Consequently, we expect that the resulting MS-CG pair potential will explicitly depend upon
the volume and temperature of the reference AA ensemble, i.e., Us(R) = Us(R; Vier, T').
While Eq. (18) defines the MS-CG variational principle for the canonical ensemble, we also
employ the force-matching method for simulations at constant pressure. In practice one
obtains the same potentials from minimizing y? over the canonical ensemble and over the
corresponding isothermal-isobaric ensemble.

Das and Andersen proposed optimizing the volume potential, Uy (V'), by minimizing a

pressure-matching functional

X[ Uv|Ur; P, T) = (|6 Py(x, V) — Fy(V)[?) (19)

PextT

where 6Py(r,V) = (n — N)kgT/V + pus(r,V) — Ps(M(r),V)|p —o is the difference be-
tween the instantaneous pressure of the AA and CG models in the absence of the volume
force, while the angular brackets denote an average over the isothermal-isobaric distribution,
Pov(r, V5 Pot, T) o< pp(1; V, T') exp|—BPext V]. Note that the optimized volume potential, Uy,
will depend upon the reference AA ensemble that was used in the parameterization, i.e.,
W = 1p(Vier, T) where Vi and T are the mean volume and temperature of the constant NPT
simulation. Moreover, Uy will also depend upon the interaction potential, Ur, and, thus,
reflect the state-point dependence of Ur. In the following, we first estimate Uy via a related
pressure-matching functional and then systematically refine Uy until it quantitatively repro-
duces the AA pressure-volume equation of state.”''' This self-consistent pressure-matching
method minimizes the relative entropy "> *~ '~ between the AA and CG constant pressure

ensembles with respect to the volume potential.
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3 Computational Methods

3.1 Atomistic Simulations

We simulated two homogeneous liquid systems with periodic boundary conditions in all
three dimensions. The dioxane system consisted of 685 molecules, while the tetrahydrofuran
(THF) system consisted of 768 molecules. We performed AA simulations of both liquids with
Gromacs version 2019.6, "' while propagating dynamics with the Gromacs ‘md’ leapfrog
integrator. These simulations employed a 1 fs time step and did not rigidly constrain any
bonds. We employed the Bussi stochastic thermostat = with a relaxation time of 0.5 ps to
sample energy fluctuations at constant temperature. We employed an isotropic Parrinello-
Rahman barostat''’ with a relaxation time of 5 ps and a compressibility of 4.5 x 107> bar™*
to sample volume fluctuations at constant external pressure.

We employed the optimized potentials for liquid simulations (OPLS-AA) force field to
model interactions in the AA simulations. '’ We generated the topology files for both diox-
ane and tetrahydrofuran with the LigParGen browser tool. ~~*° We modeled long-ranged
electrostatic interactions with the particle-mesh Ewald method, “* while using a grid spacing
of 0.08 nm and a short-ranged cutoff of 1.3 nm. We truncated short-ranged non-bonded in-
teractions at r. = 1.3 nm, while switching the corresponding forces to zero between 1.0 and
1.3 nm. We employed dispersion corrections to account for truncating these interactions.
We employed a neighbor list with a cut-off of 1.4 nm that was updated every step.

We performed AA simulations of both systems at the 15 state points indicated in Fig. 1.
We constructed this simulation matrix by first performing constant NPT simulations at
external pressure P. = PY = 1 bar for 5 evenly spaced temperatures that span the liquid
phase range at atmospheric pressure. These simulations correspond to the diagonal of the
matrix. We determined the equilibrium density, p = (p);po, at each temperature, 7', from
these constant NPT simulations. We then performed a constant NVT simulation with the

fixed density, p%, at each temperature, 7" > T, to characterize the 10 state points above the
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Figure 1: Simulated state points, (T, p), for dioxane (a) and THF (b). The color of each circle
indicates the pressure of the state point according to the color bar at right. In particular,
the circles along the diagonal correspond to ambient pressure, P = 1 bar = 0.001 kbar.
The reference state, (Tief, pref), corresponds to the top right circle in each matrix. The top
left (red circle) and bottom right (green circle) in panel a correspond to the extreme state
points considered later. The inset of each panel indicates the 1-site CG representation of the
corresponding molecule.

diagonal in Fig. 1. We determined the equilibrium internal pressure, Py (0%, T") = <Pint>pOT T
for each of these state points from these constant NVT simulations. Finally, we performed a
corresponding constant NPT simulation at each of these 10 state points with the temperature,

T’, and the external pressure P!,

= P(p%, T"). Tables 1 and 2 report the pressure and
density of each simulated state point for dioxane and THF, respectively.

The AA simulations are quite consistent with experimental measurements for the bulk
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density of these liquids at T, = 298 K and ambient pressure, P, = 1 bar. *’ Specifically,
the simulated equilibrium density for dioxane is 1.04 kg/L under these conditions, while
experimental measurements report a density of 1.03 kg/L. Similarly, experimental measure-

ments for THF report a density of 0.88 kg/L under these conditions, while our simulations

at the closest state point, 7' = 285 K and P = 1 bar, predict a density of 0.89 kg/L.

Table 1: Simulated dioxane state points in Fig. 1a. The top row indicates the
simulated temperatures, while the entries in the corresponding column report
the equilibrium density and pressure, (p, P), of each simulation in units of kg/L
and bar, respectively.

300K | 320K 340 K 360 K 380 K

1.041, 1 | 1.043, 447 | 1.042, 811 | 1.042, 1193 | 1.041, 1569
X 1.016, 1 | 1.016, 346 | 1.017, 714 | 1.017, 1053
X X 0.092, 1 | 0.992, 307 | 0.992, 623
X X X 0.067, 1 | 0.967, 278
X X X X 0.942, 1

Table 2: Simulated THF state points in Fig. 1b. The top row indicates the
simulated temperatures, while the entries in the corresponding column report
the equilibrium density and pressure, (p, P), of each simulation in units of kg/L
and bar, respectively.

180 K 215 K 250 K 285 K 320 K

1.013, 1 | 1.013, 1152 | 1.013, 2222 | 1.013, 3257 | 1.013, 4245
X 0.972, 1 | 0.972, 911 | 0.972, 1770 | 0.972, 2590
X X 0.930, I | 0.930, 714 | 0.930, 1413
X X X 0.888, 1 | 0.887, 555
X X X X 0.844, 1

We constructed the configurations for our initial NPT simulations by employing the gro-
macs gmx_solvate command to insert molecules into a cubic box with a volume of 96.6 nm?.
We then performed an energy minimization with the resulting configuration. We performed
each constant NPT simulation for 32 ns and analyzed the last 30 ns after discarding the first
2 ns as equilibration.

Given a constant NPT simulation at temperature, T', and ambient pressure, P = 1 bar, we

determined the initial condition for a subsequent constant NVT simulation as the sampled
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configuration with an instantaneous density, p, that was closest to the mean, p%. After
performing an energy minimization with this configuration, we then simulated the resulting
configuration in the constant NVT ensemble at the target temperature, 7" > T, for 7 ns
and discarded the first 2 ns for equilibration. After the equilibration period, we sampled our

simulations every 1 ps.

3.2 CG Models

We developed several different potentials for 1-site CG models of dioxane and THF. We ini-
tially employed the bottom-up open-source coarse-graining software (BOCS) package v. 5.0
to parameterize a potential, U(T, p) = Ur(T, p) + Uy(T, p), for each state point (T, p) in
Fig. 1. Here and in the following, we often suppress the explicit arguments of potentials
in order to focus on their parametric dependence upon the thermodynamic state point
for which they were parameterized, e.g., Ur(T,p) = Ur(R;T,p) = 32 ;) U2(R1s; T, p) =
Z(I,J) Us(T, p).

We first mapped the corresponding AA constant NPT simulation to the CG resolution
by representing each molecule with its mass center and determining the net force on each
molecule. We determined the optimal MS-CG pair potential, Us(T', p), for each state point
by minimizing Eq. (18) via the default singular value decomposition solver **'*" in BOCS. In
this force-matching calculation we represented the pair potential with cubic spline basis func-
tions on a uniformly spaced grid over the interval 0.0 nm < R < 1.4 nm with AR = 0.02 nm.
We represented the volume potential, Uy (T, p), with the simple form in Eq. (17). We deter-
mined the corresponding parameters by performing self-consistent pressure-matching, as de-
scribed in Ref.8%8. In particular, we employed the mdrun -rerun feature from gromacs/2016.6
to obtain pressure information from the mapped atomistic ensemble for the initial step of
pressure-matching. We employed 6 iterations at each state point in order to adequately
converge the optimal ¢) parameters.

Given the potentials, U(T, p), that were optimized for each dioxane state point, we de-
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veloped a CG potential, Uy, (T, p), by linearly extrapolating about a fixed reference state
point. We identify the top right state point in Fig. 1a, i.e., (Trer = 380 K, prer = 1.04 kg /L),
as a reference state for dioxane and defined Usyef = Us(Tref, pref). In order to quantify the
density- and temperature-dependence of the MS-CG pair potentials, Uy(T, p), we calculated

the finite differences

mi(T) = AUT, pre) /AT = [Va(T, prer) = Un(Trer, )| /[T = Tet|  (20)

my(p) = AUx(Tir, )/ Dp = Ui p) = UalBat pe) | [ [0 = ] (21)

for each T' < Tyef and p < prer. We defined my and m, by simply averaging the resulting 4
finite differences my(T') and m,(p). We then modeled linear variations in the MS-CG pair

potentials according to
UQ;]in(T7 P) - UQ;ref + mT(Tv - Tref) + mp(p - pref)’ (22)

which defines a corresponding interaction potential, Ur.in(T, p). We combined Ug,in (7, p)
with the volume potential, Uy (T, p), that was optimized for the original MS-CG pair poten-
tial, Ux(T', p), to define the extrapolated total potential: Uy, (T, p) = Urain(T, p) + Uy (T, p).
In the following, we consider the radial distribution functions and pressure-volume equations
of state obtained from CG simulations with this potential, Uy, (7, p).

We also developed a density-decoupled (DD) potential, Upp, for each liquid by neglecting
the density-dependence of the interaction potentials. In this case, we defined the density-
independent interaction potential for each temperature, T', by the MS-CG interaction po-
tential, Ur (T, pref), determined for the reference density, pret, i.e., Ur.pp(T) = Ur (T, pret)-
Given this fixed density-independent interaction potential, Ur.pp(7"), we repeated our self-

consistent pressure-matching calculations to determine a new volume potential, Uy.pp (7, p),
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for each state point (7', p) in Fig. 1. We define the DD potential

Upp(T, p) = Urpp(T) + Uv.pp(T, p). (23)

In contrast to the original MS-CG models, the volume forces for the DD model, Fy.pp(V; T, p) =
—dUy.pp(V; T, p)/dV, are well described by a continuous function of V' that is independent
of the density, p, of the state point (T, p). Consequently, we approximated Fy.pp(V;T, p)

with a global function of V' and T"

Fy.gon(V;T) = (ag + a1 AT) VZ + (g + b AT) V + (co + 1 AT), (24)

where {ag, a1, bg, b1, co,c1} are six free parameters and AT = T — T,s. We employed the
Python curve fit function in the scipy.optimize package “° to determine the six free parame-
ters that best approximated the volume forces Fy.pp(V; T, p) for the 15 state points in Fig. 1.
This determines a single global potential, Ugop, for modeling the liquid phase that depends

explicitly upon R and V', while depending parametrically upon T":

Uglob(R7 V7 T) = UR;DD(R; T) + UV;glob(V; T)7 (25>

where Uy,gion(V;T') is the global volume potential obtained by integrating Eq. (24). We
constructed this global model for dioxane about the single reference state point, (Tref =
380 K, pret = 1.04 kg/L). In the case of THF, we constructed two different global models
based upon two different reference state points, (Tierq1 = 320 K, prer1 = 1.01 kg/L) and
(Trer2 = 320 K, prer2 = 0.93 kg/L). Table 3 reports the parameters for the corresponding

global volume potentials.
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Table 3: Parameters for the global volume potentials, Uy.g0b, defined by Eq. (24).

DD Model Dioxane THF THF

Trt (K) 380 320 320

prer (kg/L) 1.04 1.01 0.93

ag (bar/nm®) 2.72 3.59 5.84
bo (bar/nm®) | -471.51 | -550.68 | -1,152.21
co (bar) 11,030.03 | 4,610.14 | 49,411.44

ay (bar/nm® K) | -0.053 -0.047 -0.051
by (bar/um® K) | 10795 | 9.362 | 9.796
¢ (bar / K) | -560.448 | -486.056 | -487.652

3.3 CG Simulations

We simulated CG models in the constant NVT ensemble with Gromacs 2019.6. We employed
a 1 fs timestep for propagating dynamics with the leapfrog integrator, while employing the
Bussi stochastic thermostat '~ with a relaxation time of 0.5 ps. We truncated interactions at
1.4 nm and employed a neighbor list of 1.5 nm that was updated every step. We performed
each constant NV'T simulation for 7 ns, discarded the first 2 ns for equilibration, and sampled
the remainder of the simulation after every 1 ps.

We simulated CG models in the constant NPT ensemble with Large-scale Atomic/Molecular
Massively Parallel Simulator (LAMMPS),"*"""" while employing the BOCS package that
implements volume potentials.”' ' We propagated dynamics by integrating the Martyna-
Tuckerman-Tobias-Klein *"'’* equations of motion with a 1 fs time step. We employed time
scales of 100 fs and 1 ps for the thermostat and barostat, respectively, and employed the
default chain length (n = 3) for the Nosé-Hoover chain.'”"'"" We employed the analytic func-
tional form of Eq. (17) to represent the volume potential in all cases, except when using the
global volume potential, Uy.gob(V; 7). In this case, we employed a tabulated representation
of Eq. (24) with a grid space AV = 0.001 nm3. We employed a neighbor-list with a cut-off
of 1.4 nm that was updated every time step. We performed each constant NPT simulation
for 5 ns, while sampling the simulation after every 1 ps.

The results section examines the relationship between the density-dependence of pair
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and volume potentials. We performed this analysis by first creating a scatter plot of the
sampled volumes and internal pressures, {(V, Py,)}, where the internal pressure, P, =
NkgT/V + Py, includes an ideal term, NkgT'/V', and an excess contribution, P, = Wr+ Fy,
that reflects both the virial, W = 3LV Z(I’J) F>(Rry)R;y, and also the volume force, Fy. We
subtracted the volume force, Fyy = Fy(V), from each sampled internal pressure to determine
Py = Py — Fv = NkgT/V + Wr. We employed the Python scipy.optimize package to
fit the resulting scatter plot {(V,P)} to determine Po(V) = (P), as a linear function
of V. Given two CG potentials, U; = Ugry; + Uy and Uy = Urs + Uyo, that are defined
for the same state point, we determined the difference in the corresponding average virials,
AWR(V) = Pya(V) — P (V). Finally, we correlated AWg(V) with the difference in the
corresponding volume forces, AFy (V) = Fyo(V) — Fy.1 (V).

4 Results and Discussion

4.1 Analysis of dioxane reference state

In this work, we develop 1-site CG models for simulating liquid 1,4-dioxane across the range
of state points indicated in Fig. 1a. In particular, we consider the temperature range 300 K
< T < 380 K for which dioxane is a liquid at ambient pressure. Additionally, we consider
a rather wide range of pressures: 1 bar < P < 1569 bar. We select the state point, T =
380 K and P, = 1569 bar, as a reference state because it allows us study the variation of
CG potentials over a wide temperature and density range.

Figure 2 presents results from AA constant NPT simulations of dioxane at this reference
state point, Tref = 380 K and P, = 1569 bar. The solid black curve in Fig. 2a presents the
AA radial distribution function (rdf) for the dioxane mass center. (Except when otherwise
indicated, we report rdf’s from constant NPT simulations.) The rdf vanishes for r < 0.38 nm
and features a prominent first peak at ro ~ 0.57 nm, as well as a pronounced minimum at

r1 =~ 0.76 nm. The AA rdf demonstrates rather long-ranged structure at this high external
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Figure 2: Analysis of AA and 1-site CG models for dioxane at the reference state point. Solid
black curves indicate results for the AA model, while dashed red curves indicate results for
the CG model that was optimized for this reference state point. Panels a and b present the
mass center rdf and pressure-volume equation of state. Panels ¢ and d present the MS-CG
pair potential and volume force.

pressure with discernible second, third, and fourth peaks at r ~ 1.0 nm, 1.5 nm, and 1.9 nm,
respectively. The solid black curve in Fig. 2b presents the simulated pressure-volume equa-
tion of state for the AA model. At the elevated pressure P, = 1569 bar, the average volume
of the AA model is 96.2 nm?, which corresponds to an equilibrium density, p,of = 1.04 kg/L.

We employed the MS-CG force-matching variational principle to determine an optimal
pair potential for this reference state point. Figure 2c¢ presents the calculated MS-CG pair
potential, Us. This pair potential features a single shallow well with a depth of approximately
0.48 kgTier, @ minimum near ry;, ~ 0.9 nm, and a slight shoulder over the distance range
1.0 nm < r < 1.3 nm. The pair potential vanishes for » > 1.4 nm by construction. It is
rather striking that MS-CG pair potential is purely repulsive in the first solvation shell and
that the attractive well coincides with the second solvation shell.

As is often observed for bottom-up CG models, """ constant NPT simulations with the
pair-additive MS-CG potential dramatically over-estimate the internal pressure of the AA
model and rapidly vaporize. Consequently, we employed self-consistent pressure-matching
to determine a volume potential, Uy (V), of the form given by Eq. (17). Figure 2d presents
the resulting volume force Fy (V) = —dUy(V)/dV. The volume force reduces the internal

pressure by more than 8000 bar over the simulated volume range. The (absolute) magnitude
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of the volume force slightly decreases as the system expands. Note that here and in the
following, we plot Fy (V') only over the volume range sampled by the corresponding AA
simulation.

The dashed red curves in Figs. 2a and 2b present the rdf and pressure-volume equation
of state obtained from constant NPT simulations of the resulting CG model. The MS-CG
model slightly overestimates the height of the first peak in the AA rdf. Aside from this slight
discrepancy, the MS-CG model quantitatively reproduces the AA rdf. The MS-CG model

quantitatively reproduces the AA pressure-volume equation of state by construction.

4.2 Density- and temperature-variations in effective potentials
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Figure 3: State-point dependent potentials for 1-site CG model of dioxane. The solid curves
in the left and right columns present MS-CG pair potentials, U,, and corresponding vol-
ume forces, Fy, that were optimized for each state point (7),p). The top row analyzes
temperature-variations at fixed density for the state points (7, prer). The middle row ana-
lyzes density-variations at fixed temperature for the state points (Tief, p). The bottom row
analyzes simultaneous temperature- and density variations (T, p) at fixed external pressure
P.: = 1 bar. The legends are specific to each row, while “*’ identifies the reference state
(Tref, pref) that is analyzed in Fig. 2. The dotted curves in the left column present pair po-
tentials, Usain, that were predicted for each state point via linear extrapolation according to
Eq. (27).

We employed force-matching and self-consistent pressure-matching to determine an op-
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timal pair potential, Us(T, p), and volume potential, Uy (T, p), for a 1-site CG model of
dioxane at each state point, (T, p), in Fig. 1la. The solid curves in the left and right columns
of Fig. 3 present the resulting pair potentials and volume forces, respectively. The top row
of Fig. 3 considers temperature-variations at constant density, while the middle row con-
siders density-variations at constant temperature. The bottom row considers simultaneous
temperature- and density-variations at constant external pressure.

Figure 3a investigates the temperature-dependence of the MS-CG pair potentials, Us(T', pref),
at the fixed reference density, p,of = 1.04 kg/L, which corresponds to the top row of Fig. 1a.
The cyan curve corresponds to the reference state with T = 380 K that was analyzed in
Fig. 2. As the temperature increases at constant density, the minimum of the potential very
slightly deepens, while the pair potentials also become noticeably more repulsive at short
distances, r < rp,. However, the minimum remains at r,;, ~ 0.9 nm and the shape of the
potential varies relatively little.

Figure 3b presents the corresponding volume forces, Fy (T pref), that were optimized to
reproduce the AA pressure equation of state at the state points (7', pref). As the temperature
increases from 300 K to 380 K at the fixed density, the internal pressure of the AA model in-
creases from 1 bar to 1569 bar. Conversely, the volume forces become increasingly attractive
as the temperature increases. The absolute magnitude of the volume force increases from
6910 bar to 8217 bar over this temperature range in order to compensate for the increasingly
repulsive pair potentials.

Figure 3c investigates the density-dependence of the MS-CG pair potentials, Uy (Tret, p),
at the fixed reference temperature, T.s = 380 K, which corresponds to the right column of
Fig. 1a. The black curve corresponds to the reference state point, ps = 1.04 kg/L, that
was analyzed in Fig. 2. As previously observed, the MS-CG potentials vary dramatically
with density.” The global minimum of the pair potential becomes increasingly shallow and
slightly shifts to smaller distances as the density decreases at constant temperature, but

remains in the second solvation shell. Even more strikingly, as the density decreases the
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potential becomes much softer and a second contact minimum appears in the first solvation
shell. This second contact minimum occurs at a distance, r ~ 0.64 nm, that is slightly greater
than the first peak of the AA rdf. This second minimum is almost as deep as the global
minimum at the lowest density, p = 0.94 kg/L, which corresponds to ambient pressure.
Figure 3d presents the corresponding volume forces, Fy (T, p), that were parameterized
for the state points (Tief,p). These volume forces become much more attractive as the
density increases. Each volume force has been parameterized to reproduce the same AA
pressure-volume equation of state, Py, (V, Tref), for the fixed reference temperature, Trr =
380 K. Because they have been calculated from constant NPT simulations with different
equilibrium densities, p, the volume forces are determined over different volume ranges.
Moreover, the calculated volume forces differ in overlapping volume ranges because they
correspond to different pair potentials. For instance, the red and blue curves correspond to
models that were parameterized for p = 1.02 kg/L and 0.99 kg/L, respectively. Both models
reproduce the internal pressure of the AA model at the volume V' = 100 nm?®. Because the
model parameterized at p = 1.02 kg/L employs a more repulsive pair potential (i.e., the red
curve in Fig. 3c), this model requires a more attractive volume force to match the AA internal
pressure (i.e., the red curve in Fig. 3d). Therefore, the marked variation in the volume forces
of Fig. 3d corresponds to the dramatic density-dependence of the pair potentials in Fig. 3c.
Figures 3e and 3f present the pair potentials and volume forces that were calculated from
AA simulations at the temperature range 300 K < T" < 380 K and constant external pressure
P... = 1 bar. As previously observed,” the pair potentials in Fig. 3e become increasingly
attractive as the temperature increases at constant external pressure. Similarly, the variation
in the volume forces in Fig. 3f appears more similar to the density-variation in Fig. 3d than
the temperature-variation in Fig. 3b. Thus, the calculated potentials appear much more

sensitive to density than temperature.
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4.3 g-YBG analysis of effective potentials

The generalized-Yvon-Born-Green (YBG) formalism provides physical insight into the MS-
CG pair potentials, Uy(r), and their sensitivity to temperature and density.”""">"'" Given
the approximate potential in Eq. (15), the MS-CG method determines the pair force, Fy(r) =
—dUs(r)/dr, according to a force-balance equation”” " that is analogous to the YBG equa-

tion from liquid state theory
Fo(r) = Fy(r) + /dr’K(r, ) Fy(r'). (26)

Here Fo(r) = —dwaa(r)/dr = —kgT g (1) /gaa(r) is the AA pair mean force, i.e., the mag-
nitude of the average force on each molecule of a pair when they are separated by a distance,
r.'7" The kernel, K(r,r’"), of the integral term is a many-body correlation function that de-
scribes the density of surrounding molecules. Importantly, both Fy and K are completely
specified by the underlying AA model and the CG mapping. Thus, the MS-CG method
determines the pair force by decomposing the AA pair mean force into two contributions:

(1) a direct contribution, Fy(r), that describes the interaction between the pair; and (2)
an indirect contribution, Fi,q(r) = [ dr’K(r,r")Fy(r"), that describes the interactions of the

pair with the surrounding many-body environment.""

Potentials
(kJ/mol)

1%.4 0.8 1.2
r (nm)

Figure 4: Analysis of temperature-dependent MS-CG potentials at constant density. (a)
Temperature-dependence of AA rdfs. (b) Decomposition of pair potentials of mean force,
waa, (solid) into direct contributions, Us, (dashed) and indirect contributions, wi,q (dotted).
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Figure 4 employs this generalized-YBG (g-YBG) equation to interpret the variation in
the MS-CG pair potentials with decreasing temperature at constant density. Figure 4a
presents the mapped AA rdf’s, gaa(r), for dioxane at the fixed reference density and each
simulated temperature. As the temperature decreases at constant density, the first peak of
the AA rdf at ry = 0.57 nm very slightly increases, while the minimum at r; &~ 0.76 nm
almost imperceptibly decreases. Otherwise the AA rdf appears independent of temperature
at the fixed density. Consequently, the solid curves in Fig. 4b demonstrate that the AA
pair potential of mean force (ppmf), waa(r) = —kgT Ingaa(r), varies almost linearly with
temperature. In particular, as the temperature decreases, waa(r) becomes slightly less
repulsive for short distances r < ry near contact, but becomes slightly less attractive over
the rest of the first solvation shell, o < r < ry.

The dashed and dotted curves in Fig. 4b present the direct, Us, and indirect, wjyq,
contributions to the ppmf, waa, respectively. The indirect contribution, wy,q, is determined
by simply integrating (the negative of) Fj,q. Within the first solvation shell, » < 7y, the
indirect contribution to the ppmf is purely attractive (i.e., Fiyq(r) = —dwina(r)/dr < 0) due
to crowding by the surrounding liquid. This solvent-induced effective attraction between the
pair is analogous to the Asakura-Oosawa depletion-induced attraction between colloids due
to a repulsive solvent """ and becomes quite large as r — 0.

At large distances, waa(r) & wina(r) because Uy(r) ~ 0 for » 2 1.0 nm. At shorter
distances, the direct and indirect contributions to the ppmf tend to be anti-correlated and
both make significant contributions. For r > r(, the indirect contribution appears larger than
the direct contribution. However, as molecules approach contact at very short distances,
r < 19, the direct contribution begins to dominate.

The Supporting Information (SI) demonstrates that the AA many-body correlation func-
tion, K (r,r’), varies little with temperature at constant density. Consequently, the temperature-
dependence of the MS-CG pair potentials stems from the temperature-dependence of the

ppmf. In particular, as the temperature decreases, Us(r) becomes slightly more attractive
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for r < ry because the ppmf also becomes more attractive at such short distances. As the di-
rect repulsion between the pair decreases, the solvent-induced attraction, wj,q, also decreases
from reduced repulsion with the surrounding environment. Because w;,q dominates Us at
slightly larger distances, ro < r < r, the ppmf becomes more repulsive over the remainder of
the first solvation shell. (More precisely, the dominance of wj,q and the increasing repulsion
in the ppmf for 7y < r < 7 cause U; to be slightly less repulsive over this distance range.)
The MS-CG pair potential demonstrates somewhat greater sensitivity to temperature than

the ppmf because the variations in Us; and wy,q tend to cancel each other.
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Figure 5: Analysis of density-dependent MS-CG potentials at constant temperature. (a)
Density-dependence of AA rdfs. (b) Decomposition of pair potentials of mean force, waa,
(solid) into direct contributions, Us, (dashed) and indirect contributions, wiyq (dotted).

Figure 5 similarly employs the g-YBG formalism to interpret the variations in the MS-CG
pair potentials with decreasing density at constant temperature. As the density decreases,
the AA rdf systematically shifts to larger distances, while the maxima and minima both
shift towards 1. Accordingly, the ppmf becomes very slightly more repulsive over the entire
first solvation shell, » < ry. This suggests that the MS-CG pair potential should also be-
come more repulsive at short distances, which is in direct contrast to the density-variation
that is observed in Fig. 3. The SI demonstrates that, if K were density-independent, then
the MS-CG pair potential would indeed become more repulsive at short distances as the

density decreases. However, the SI also demonstrates that the many-body correlation func-
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tion, K (r,r’), varies significantly with density. This density-variation significantly reduces
the strength of the solvent-induced effective attraction, wj,q, as the liquid expands. Conse-
quently, the MS-CG pair potential must become much more attractive at short distances in
order to compensate for the reduced solvent-induced effective attraction. In particular, this
increasing direct attraction gives rise to the contact minimum that emerges near r ~ ry as
the density decreases at constant temperature. Interestingly, the SI demonstrates that this
contact minimum corresponds to a feature in the many-body correlation matrix, K(r,r’).
Thus, the g-YBG formalism traces the dramatic density-variation in the MS-CG pair poten-
tials and, in particular, the contact minimum to the density-dependence of the many-body

liquid structure.

4.4 Structural and thermodynamic fidelity

Figure 6 assesses the structural fidelity and thermodynamic accuracy of the 1-site MS-CG
models in constant NPT simulations at 1 bar external pressure. The solid curves present
the results of AA simulations, while the dashed curves present the results of CG simulations
with the pair and volume potentials that were optimized for each state point. In particular,
Figs. 6a and 6b demonstrate that these MS-CG models very accurately reproduce the AA
rdf’s at T' = 300 K and 380 K, respectively. As in Fig. 2a, the largest errors occur in the
first peak. The MS-CG models overestimate the first peak of the AA rdf by only 10% at
300 K and reproduce the first peak even more accurately at 380 K. The dashed curves in
Fig. 6¢, which are obscured by the solid AA curves, demonstrate that the MS-CG models
also quantitatively reproduce the AA pressure-volume equations of state by construction.
Given the observed temperature- and density-variations in the calculated pair potentials
from Figs. 3a and 3c, we calculated empirical estimates for the temperature- and density-
derivatives of the MS-CG pair potentials, mp ~ (0U3/9T), and m, ~ (0U/0p)r, according

to Egs. (20) and (21). We modeled the MS-CG pair potentials as a linear function of 7" and
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Figure 6: Accuracy of 1-site dioxane models at 1 bar external pressure. Panels a and b present
rdf’s for the molecular mass center from simulations at 7" = 300 K and 380 K, respectively.
Panel ¢ presents simulated pressure-volume equations of state. The solid curves present
results for the AA model, while the dashed curves present results for the MS-CG model
with the potential, U(T, p) = Ur(T, p) + Uy (T, p), that was optimized for the specified state
point (7', p). The dotted curves present results for CG models with the predicted interaction
potential, Uiy (T, p) = Urain(T, p) + Uy (T, p).

p according to

U2;lin(T7 P) = U2;ref + mT (T - Tref) + mp (p - ,Oref) ) (27>

where Usyet = Us(Thef, pret) 18 the pair potential in Fig. 2. The dotted curves in Figs. 3a, 3c,
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3e present the resulting pair potentials. The linear predictions very accurately reproduce the
modest temperature-variations observed in Fig. 3a, as well as the density-variations in Fig. 3c
for r > ryuin. Moreover, the linear predictions also accurately reproduce the density-variations
for r < rpi until the second minimum begins to emerge at lower densities. Interestingly,
the linear prediction over-estimates the depth of this minimum. The SI indicates that myp
is approximately independent of 7', while m, varies approximately linearly with p over this
range. Consequently, expanding the Taylor series in Eq. (27) to second order in Ap provides
a slightly improved model for the calculated pair potentials.

The dotted curves in Fig. 6 present the results of CG simulations with these predicted
pair potentials, while still employing the volume potentials that were optimized for each
state point. Despite the noticeable differences between the calculated MS-CG and predicted
pair potentials for T = 380 K in Fig. 3e, Figs. 6a and 6b demonstrate that the predicted
potentials very accurately reproduce the pair structure of the AA model. Similarly, Fig. 6¢
demonstrates that the predicted potentials quite accurately reproduce the AA equation of
state for T' < 340 K. However, for T' > 360 K the predicted potentials are significantly more
attractive than the corresponding MS-CG potentials. Accordingly, simulations that employ
the predicted potentials with the original volume potentials significantly overestimate the

AA density for T' > 360 K at ambient pressure.

4.5 Transferability of effective potentials

While Fig. 6 assesses the accuracy of the MS-CG potentials at the state point for which they
were parameterized, Fig. 7 assesses their transferability to other state points. In particular,
the top row of Fig. 7 analyzes the importance of temperature-variations in the MS-CG
potentials for simulations at the fixed reference density, p,¢. The inset of Fig. 7a compares
the pair potential, Us(Tref) = Us(Tret, pref), that was optimized for the reference temperature
Tt = 380 K with the pair potential, Us(Ti,) = Usz(Tio, pret), that was optimized for the

lowest temperature, T, = 300 K. As already noted in Fig. 3a, as T decreases at constant
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Figure 7: Transferability of 1-site MS-CG models for dioxane. The top row presents rdf’s
from simulations at the reference density, p.f = 1.04 kg/L: panels a and b correspond to
simulations at the reference temperature, T, = 380 K, and at the reduced temperature, T}, =
300 K, respectively. The inset of panel a compares the pair potentials that were calculated
for the two state points. The bottom row presents rdf’s from simulations at the reference
temperature, T, = 380 K: panels ¢ and d correspond to simulations at the reference density,
pret = 1.04 kg/L, and at the reduced density, p, = 0.94 kg/L, respectively. The inset of
panel ¢ compares the pair potentials that were calculated for the two state points. The black
curves correspond to the reference state point, (Tief, pref); the red curves correspond to the
low temperature state, (T}o, prer), Which corresponds to the red circle in Fig. 1a; and the green
curves correspond to the low density state, (Tref, p10), Which corresponds to the green circle
in Fig. 1la. Solid curves present results from constant NPT AA simulations, while dashed
curves present results from constant NVT CG simulations at the corresponding state point.

p, the MS-CG pair potential becomes slightly less repulsive at short range and slightly less
attractive at longer range.

Figure 7a presents rdf’s obtained from constant NVT simulations of two different CG
models at the reference state point (Tref, pret). As already observed in Fig. 2a, the potential,
Us(Trer), that was optimized for this state point very accurately reproduces the AA rdf, al-

though it does slightly over-estimate the height of the first peak. Surprisingly, constant NV'T
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simulations at Ty with the low-temperature MS-CG potential, Us(7},), also very accurately
reproduce the AA rdf. In fact, the low-temperature MS-CG potential, Uy(T},), reproduces
the first peak of the AA rdf more accurately than the reference MS-CG potential, Us(Tref),
that was optimized for this state point. However, the low-temperature potential does appear
to slightly under-estimate the subsequent minima and maxima of the AA rdf.

Figure 7b presents rdf’s obtained from constant NVT simulations at the reduced tem-
perature, Tj,, and fixed reference density, p.f. As before, the MS-CG potential, Us(Tj,),
that was optimized for this state point very accurately reproduces the AA rdf, although it
very slightly over-estimates the height of the first peak. In contrast, the MS-CG potential,
Us(Tret), that was optimized for the higher temperature reference state provides a signfi-
cantly less accurate description of the AA rdf. Because it is notably more repulsive at short
distances, the reference potential, Uy (Tref), significantly over-estimates the height of the first
peak in the AA rdf and, more generally, over-estimates the pair structure of the AA model.

Thus, Figs. 7a and 7b demonstrate that the low-temperature MS-CG potential, Us(T},),
models intermolecular packing quite accurately at both low- and high-temperatures. Con-
versely, the high-temperature reference MS-CG potential, Us(Tef), accurately describes the
high-temperature reference state, but provides a significantly less accurate description of
intermolecular packing at the reduced temperature, Tj,. Thus, it appears that the potential
that was optimized for lower temperatures provides improved transferability. In fact, several
previous studies have also reported similar observations.”*“*"’ Moreover, these results sug-
gest that the relatively subtle temperature variations in the MS-CG potentials are important
for accurately modeling the intermolecular structure of the AA model.

The bottom row of Fig. 7 then analyzes the importance of density-variations in the MS-
CG potentials for simulations at the fixed reference temperature, T,y = 380 K. The inset
of Fig. 7c compares the pair potential, Us(prer) = Us(Tret, Pret), that was optimized for the
reference density, pr = 1.04 kg/L, with the pair potential, Us(pio) = Ua(Tref, pro), that

was optimized for the reduced density, p,, = 0.94 kg/L. As already noted in Fig. 3c, as p
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decreases at constant Ti.¢, the calculated MS-CG pair potential becomes significantly softer
and develops a second minimum in the first solvation shell.

Figure 7c presents rdf’s obtained from constant NVT simulations at the reference state
point (Tier, pror). While it is well known that rdf’s are quite insensitive to many aspects of
pair potentials, "~ we find it somewhat surprising that such dramatically different pair
potentials generate such similar rdf’s at the reference temperature. In fact, the low-density
MS-CG potential, Us(p,), reproduces the AA rdf with slightly better accuracy than the
reference MS-CG potential, Uy (pref), that was calculated for this state point.

Figure 7d presents the rdf’s obtained from constant NVT simulations at the reduced
density, p,, and fixed reference temperature, Tio¢. In this case, the two MS-CG potentials
generate almost identical rdf’s.

Figures 7c and 7d demonstrate that the low-density MS-CG potential, Us(py,), provides
slightly better accuracy and transferability than the MS-CG potential, Us(pref), that was
optimized for the higher reference density. Perhaps more surprisingly, despite the dramatic
differences in the inset of Fig. 7c, both MS-CG potentials reproduce the AA rdf quite accu-
rately across the entire density range. Thus, it appears that the dramatic density-dependence
in the MS-CG pair potentials is not important for modeling the pair structure of the AA

model.

4.6 A globally transferable model

Figure 7 indicates that the density-variation in the MS-CG pair potentials, Uy (T, p), is not
very important for accurately modeling the configuration-dependence of the PMF'. This sug-
gests that this density-dependence may be accurately modeled by a configuration-independent
volume potential. Consequently, we decided to decouple the density-dependence of the pair
and volume potentials. We adopted the MS-CG interaction potential, Ug (Tref, pref), that was
calculated for the reference state point, (Tref, pref), as a fixed density-independent potential

for modeling all state points at the reference temperature, T,.t. Given this density-decoupled
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Figure 8: Analysis of calculated volume forces at T, = 380 K. Panel a: the dashed
and solid curves present the volume forces, Fy(V) = —dUy(V)/dV, that were calculated
for the density-dependent interaction potentials, {Ur(p)}, and for the density-independent
DD interaction potential, Ur.pp. Panel b: Scatter plot of the volume, V', with the naive
internal pressure, Py = NkgT/V + Wk, that includes the ideal, NkgT/V, and config-
urational virial, Wg = %Z(L 5y F2(Ris) Ry, contributions evaluated for configurations
(R,V) sampled by constant NPT CG simulations with the density-independent DD in-
teraction potential, Ugr.,pp, and with the density-dependent MS-CG interaction potential,
Ur(p). Panel c: Correlation between the difference in the mean configurational virial,
AWy = <WR[UR(p)]>V — <WR[UR;DD]>V, calculated for Ugr(p) and for Ugr.pp with the
difference in the corresponding volume forces, AFy = Fy[Ur(p)] — Fv[Ur.pp|-
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(DD) interaction potential, Ur.pp = Ur(Tref, pret), We repeated our self-consistent pressure-
matching calculations to determine a new volume potential, Uy.pp(p), for modeling each
state point (Tief, p).

Figure 8 analyzes the resulting volume forces that were calculated for modeling the con-
stant NPT ensemble at the fixed reference temperature, T.., and various external pres-
sures, Peyxt. We define By(R, V) = NkgT/V + Wr(R, V) as the naive CG pressure, where
Wr(R,V) = Wr(R, V|Ur) = 51 > 1.y Fo(Rrs) Ry is the configurational virial that is de-
fined by the interaction potential, Ug.

The dashed lines in Fig. 8a reproduce from Fig. 3d the set of volume forces, {Fy(p) =
Fy(V; Tt p)}, that were calculated for the original density-dependent MS-CG potentials,
{Ur(p) = Ur(R; Trer, p)}. As already noted in Fig. 3d, this set of volume forces, {Fy(p)},
cannot be described by a single continuous function of V. The solid lines in Fig. 8a present
the set of volume forces, {Fyv.pp(p) = —dUv.pp(V:p)/dV}, that were determined for each
state point, (Tief, p), when employing the fixed density-independent interaction potential,
Ur.pp. Importantly, the set of DD volume forces, { Fy.pp(p)}, can be represented by a single
continuous function of V., Fygoh = Fy.gon(V; Trer). Specifically, this global volume force,
Fy.giob, 1s independent of the density, p, of the simulated state point, (T, p).

The discontinuities in the original volume forces, { Fy/(p)}, reflect the changes in the virial
due to the density-dependence of the original MS-CG pair potentials, {Ur(p)}, in Fig. 3c.
Figure 8b presents a scatter plot of (V) Fy) that was sampled by CG simulations with the
density-dependent MS-CG interaction potential, Ug(p), and with the density-independent
DD interaction potential, Ug.pp. If one employs two different interaction potentials, Ur(p1)
and Ur(p2), to simulate the same configuration (R, V'), then one obtains two different values
for configurational virial, Wg;(R, V) and Wga(R, V). Consequently, two different volume
potentials, Uy (p1) and Uy (p2), are necessary to model the same configuration in simulations
with the two interaction potentials, Ur(p1) and Ugr(p2). Conversely, if one assumes that

the interaction potential is density-independent, then constant NPT simulations at different
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densities, p; and p,, obtain the same configurational virial for a given configuration (R, V).
In this case Wg(V) = (Wr),, varies continuously with volume and is independent of the
density, p, of the simulated state point (T, p).

Figure 8c further supports this conclusion by presenting a scatter plot of the difference
in the configurational virial for the density-dependent MS-CG interaction potential and
for the DD interaction potential, AWg = Wg[Ur(p)] — Wr[Ur:pp], and the difference in
the corresponding volume forces, AFy = Fy[Ur(p)] — Fyv[Ur.pp). Clearly, the variation in
the configurational virial due to density-dependent potentials is exactly compensated for
by the change in the volume force. Moreover, this suggests that the density-dependence
of the original MS-CG pair potentials primarily stems from the density-dependence of the
AA pressure and, consequently, can be quite accurately captured by a single global volume
potential, Uy.giob(V'; Tref).

We next repeated this process for each temperature 300 K < T < T,. At each tem-
perature, T, we defined the fixed density-independent DD interaction potential by the
MS-CG interaction potential that had been optimized for the equilibrium state, (T, pret),
i.e., Uppp(T) = Urpp(R;T) = Ur(R; T, prer). We then repeated self-consistent pressure-
matching to determine a corresponding volume potential, Uy.pp (7, p) = Uy.on(V; T, p), for
performing constant NPT simulations at each state point, (T p), in Fig. 1a.

The solid lines in Fig. 9a present the resulting set of volume forces, {Fyv.pp(7,p)}. As
seen in Fig. 8a, the DD volume forces for each temperature, T', can be accurately modeled
by a single continuous function of V', Fy.gob(1T) = Fyv.gop(V;T') that is independent of the
density, p, of the simulated state point, (T, p). Moreover, this global volume force, Fy.gon(T),
can be accurately modeled as a quadratic function of V' for each temperature. Accordingly,
we fit the entire set of DD volume forces, {Fyv.pp(V; 7, p)}, to a single global function of V
and T"

Fyaon(V;T) = a(T)V? +b(T)V + o(T), (28)

where a(T'),b(T'), and ¢(T) are linear functions of temperature, e.g., a(T') = ag+ay (T — Tret)-
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The dotted orange curves in Fig. 9a present the resulting global volume force. The fit is ex-
tremely good at elevated temperatures, but slightly deteriorates at the lowest temperatures.
We define a corresponding global volume potential, Uy.gon(V;T), by simply integrating
Fygion(V;T) = =AUy gop(V; T) /dV.

Given Uygon(V; T'), we define a global potential:

Uglob(Ra V; T) = UR;DD<R; T) + UV;glob<V; T) (29>

Figures 9b - 9d assess the accuracy of this global potential for modeling the liquid phase
of dioxane. In particular, Fig. 9b demonstrates that this global potential quite accurately
reproduces the AA pressure-volume equation of state across the entire range of liquid state
points. Somewhat surprisingly, Ugion, accurately describes the AA pressure equation of state
even at state points where the global fit to the optimized volume forces deteriorates. Fig-
ures 9¢ and 9d present rdf’s from constant NPT simulations at ambient pressure for the
two state points that are farthest from the reference state point in Fig. 1a. These figures
demonstrate that the global potential also accurately reproduces the pair structure of the
AA model at each state point. While the global model slightly over-estimates the height of
the first peak of the AA rdf, it reproduces the AA rdf as accurately as the MS-CG model

that was optimized for the state point.
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Figure 9: Global liquid dioxane model defined for p. = 1.04 kg/L. Panel a compares the
DD volume forces, Fy.pp(V; T, p), that were calculated for each state point (solid lines) with
the global volume force, Fy gi0(V;T), defined by Eq. (28) (dotted orange curves). Panel b
presents simulated pressure-volume equations of state for the AA model (solid curves) and
for the global model defined by Eq. (29) (dotted orange curves). Panels ¢ and d present rdf’s
from constant NPT simulations at the two state points in Fig. 1a that are farthest from the
reference state point. In panels ¢ and d the solid curves correspond to the AA model, the
dashed curves correspond to the MS-CG models parameterized for the corresponding state
point, and the dotted orange curves correspond to the global model.
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4.7 Assessment for THF

In the preceding subsections we developed a global potential for modeling liquid dioxane
across a rather wide range of thermodynamic state points. In this final subsection, we
briefly consider the generality of this approach for a 1-site CG model of tetrahydrofuran
(THF), which is a structurally similar organic liquid. Specifically, we consider the range of
liquid state points 180 K < T < 320 K and 1 bar < P < 4245 bar. In this subsection we
present results for two global THF models that differ in their choice of reference state. The
SI presents detailed results that are analogous to Figs. 2 - 9 for THF.

Figure 10 presents results for a global THF model that employs the top right state point
in Fig. 1b as the reference state, i.e., Tiof = 320 K, Pt = 4245 bar, pr = 1.01 kg/L.
Figure 10a demonstrates that the global volume force, Fy g0p, quite accurately matches the
volume forces that were independently calculated for each state point in Fig. 1b, although
the agreement slightly deteriorates at the lowest temperatures. Figure 10c and 10d demon-
strate that the structural fidelity of this global model slightly deteriorates at the extremes
of the state point matrix and, in particular, at the state point with highest temperature and
lowest density. Nevertheless, the global model quite accurately describes the intermolecular
structure of the AA model across the entire liquid phase. More impressively, Fig. 10b demon-
strates that the global model very accurately describes the AA pressure-volume equation of
state across the entire range of liquid state points.

Finally, Fig. 11 presents the results of employing an intermediate density, p. = 0.93 kg/L,
as a reference for parameterizing a second global potential, Ug,. In this case, we only
determine the DD interaction potential, Ug (1) = Ur(T) p), for T' > T, = 250 K. State
points (T < T, p.) fall below the diagonal of Fig. 1b and, consequently, correspond to
negative internal pressures. We determine a new DD volume force, Fy.pp(V; T, p), for each
state point (7', p) and fit these to determine a new global volume force, Fy.,,,(V;T), of
the form given by Eq. (28). Figure 1la demonstrates that the new global volume force

accurately describes the DD volume forces that were independently optimized for each state
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Figure 10: Global model for liquid THF with p,s = 1.01 kg/L. Panel a compares the DD
volume forces, Fypp(V; T, p), that were calculated for each state point (solid lines) with
the global volume force, Fy g0 (V;T), defined by Eq. (28) (dotted orange curves). Panel b
presents the pressure-volume equations of state for the AA model (solid curves) and for the
global model defined by Eq. (29) (dotted orange curves). Panels ¢ and d present rdf’s from
constant NPT simulations at two representative two state points in Fig. 1b. In panels ¢ and
d the solid curves correspond to the AA model, the dashed curves correspond to the MS-
CG models parameterized for the corresponding state point, and the dotted orange curves
correspond to the global model.
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point. Interestingly, in both Fig. 10a and 11a, the volume forces are most attractive at the
state points used to define the density-independent DD interaction potential, i.e., (7', pref)
and (T, p.), respectively. Figure 11b demonstrates this second global model also accurately
reproduces the AA pressure-volume equations of state at each temperature 7' > T,. Similarly,
Figs. 11c and 11d demonstrate that the second global model accurately reproduces the
intermolecular structure of the AA model at each state point. In this case, the structural
fidelity of the global model appears slightly improved with respect to Fig. 10 because we

consider smaller variations from the central reference state point.
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Figure 11: Global model for liquid THF defined for the intermediate density p, = 0.93 kg/L.
Panel a compares the DD volume forces, I.pp(V; T, p), that were calculated for each state
point (solid lines) with the global volume force, Fy; ,,(V;T), defined by Eq. (28) (dotted
orange curves). Panel b presents simulated pressure-volume equations of state for the AA
model (solid curves) and for the global model defined by Eq. (29) (dotted orange curves).
Panels ¢ and d present rdf’s from constant NPT simulations at two representative state
points in Fig. 1b. In panels ¢ and d the solid curves correspond to the AA model, the dashed
curves correspond to the MS-CG models parameterized for the corresponding state point,
and the dotted orange curves correspond to the global model.
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5 Conclusions

In this study, we have investigated the temperature- and density-dependence of effective
potentials for 1-site MS-CG models that accurately describe the intermolecular structure
and internal pressure of AA models for dioxane and THF. The calculated pair potentials
are highly repulsive with very shallow minima that correspond to the second solvation shell.
The pair potentials become slightly more repulsive as the temperature increases at constant
density, while the volume potentials simultaneously become somewhat more attractive. As
previously reported, we observe that the pair and volume potentials depend much more sen-
sitively upon density than temperature. Specifically, as the density decreases at constant
temperature, the short-ranged component of the pair potential becomes much more attrac-
tive, while the corresponding volume forces become much less attractive. At the lowest
densities, a second contact minimum begins to compete with the global minimum in the pair
potential.

We employed the g-YBG framework to elucidate the physical origin of this striking
density-dependence. " The g-YBG framework decomposes the mean force between each
pair of molecules into a direct contribution, which corresponds to the MS-CG pair potential,
and an indirect contribution, which results from correlated interactions with the environ-
ment. While the direct contribution between neighboring molecules is highly repulsive, the
indirect contribution to this pair mean force is highly attractive due to repulsive interactions
with the surrounding molecules.”>'*” Our calculations demonstrate that the pair mean force
between contacting molecules is almost density-independent for dioxane and THF. However,
the attractive indirect contribution to this pair mean force significantly decreases as the
density of the surrounding environment decreases. Consequently, the MS-CG pair potential
between contacting molecules must become more attractive to compensate.

This analysis relied upon special properties of the MS-CG method =" and, in partic-
ular, its relationship with the g-YBG framework. "> In contrast to other structure-based

methods, such as Iterative Boltzmann Inversion (IBI)" or Inverse Monte Carlo (IMC),
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the MS-CG method determines interaction potentials directly from the AA mapped ensem-
ble without requiring successive simulations of CG models with trial potentials. Moreover,
the g¢-YBG framework interprets the resulting MS-CG potentials in terms of direct and in-
direct contributions to mean forces that can be determined from the mapped ensemble.”"
This provides a simple physical basis for understanding the physical origin of MS-CG po-
tentials, as well as their sensitivity to temperature- and density-variations. In contrast,
the temperature- and density-dependence of IBI or IMC potentials cannot be so directly
traced to properties of the AA model because they also reflect the temperature- and density-
dependence of the simulated CG ensemble. In this case, one must consider two sets of g-YBG
equations: one for the mapped AA ensemble and one for the simulated CG ensemble.” >
Nevertheless, we anticipate that the findings of our g-YBG analysis will likely qualitatively
hold also for potentials obtained via other structure-based bottom-up approaches. Specifi-
cally, we speculate that bottom-up potentials for small molecular liquids will often demon-
strate relatively weak temperature-dependence, which will be primarily determined by the
temperature-dependence of the pair mean force or, equivalently, the mapped rdf. Conversely,
we speculate that these potentials will demonstrate greater density-dependence and that this
density-dependence will be more sensitive to density-dependent many-body correlations. It
may be instructive for future studies to assess this hypothesis.

We had expected that the striking density-dependence of the MS-CG pair potentials
would be important for accurately modeling the liquid structure. Surprisingly, though, we
find that it has relatively little impact upon the structural fidelity of the MS-CG mod-
els. Consequently, we decoupled the density-dependence of the pair and volume potentials.
Specifically, for each temperature, T', we defined a fixed density-independent interaction po-
tential, Ur.pp(R;7T’), and then determined an independent volume potential, Uy.pp(V; T, p),
for modeling each state point, (T, p). We were able to fit this set of 15 independent volume po-
tentials to a single global volume potential, Uy g0, (V; T'), that depends cubically upon V' and
linearly upon 7'. The resulting global potential, Ugon(R, V;T') = Ur,pp(R; T)+Uvgion (V5 1),
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described the AA intermolecular structure and pressure-volume equation of state with re-
markable accuracy across the range of liquid phase state points for both systems. These
global potentials, Ugop, appear very promising for developing highly efficient CG models
that accurately model the structure and thermodynamic properties of homogeneous indus-
trial solvents across their entire liquid phase.

In the present work, we employed AA simulations at 15 different state points to determine
this global potential. Specifically, we fixed a reference density, pref, and then employed AA
simulations at a range of temperatures, 7', in order to determine a density-independent
interaction potential, Ur.pp(7'), for each T'. In the future, it may be possible to employ the
dual or microcanonical " framework to predict this temperature-dependence based upon
simulating a single state point. Additionally, we calculated a volume potential for all 15
state points in order to determine the global volume potential, Uy gon(V; 7). This global
volume potential varied quadratically with V' and linearly with 7', while depending upon
6 parameters. Given the accuracy of the fit, it is likely that these six parameters could be
accurately determined from a small fraction of these 15 state points. We have also previously
demonstrated that it is sometimes possible to predict the temperature-dependence of the
volume potential via the dual approach. " Moreover, it may be possible to determine the
cubic volume dependence of Uy,go, from simulations at a single state point by including
an additional cubic basis function into Eq. (17) when performing self-consistent pressure-
matching. However, accurately resolving the curvature of the volume force from a single
state point may be challenging in practice.

We anticipate that it may often be possible to extend the present approach to mixtures
of miscible solvents. We have previously combined™’ self-consistent pressure-matching
with the extended ensemble framework™ in order to develop transferable pair and volume
potentials for modeling heptane-toluene mixtures at ambient pressure and a single fixed
temperature. In this case, we found that the volume potentials could be easily predicted

as a function of solution composition based upon regular solution considerations. Rather
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remarkably, the resulting transferable potentials described these solutions more accurately
than MS-CG models that had been specifically parameterized for each composition.™’ Quite
recently, Kanekal et al. demonstrated that this extended ensemble framework can improve
not only the transferability, but also the accuracy of CG models by averaging over system-
specific details that cannot be accurately described by MS-CG potentials.” Conversely, Shen
et al. demonstrated that the extended ensemble approach does not always succeed.

In order to extend our prior work with heptane-toluene mixtures,” we anticipate that it
would be necessary to first perform AA simulations at a range of temperatures and exter-
nal pressures for a representative set of solution compositions. We would then employ the
extended ensemble force-matching variational principle” to determine a set of composition-
independent, density-independent (but possibly temperature-dependent) pair potentials that
optimally reproduced the configuration-dependence of the many-body PMF for each repre-
sentative composition at each simulated state point. Given these extended ensemble in-
teraction potentials, we would employ self-consistent pressure-matching to determine a six
parameter global volume force of the form given by Eq. (24) for each solution composition.
We anticipate that it may often be possible to model the global volume forces for miscible
liquids as a simple function of composition, as in our work with heptane-toluene mixtures
at a single temperature and pressure.”’ However, we anticipate this approach will likely fail
to describe liquid-liquid phase separation.

It may be more challenging to extend this approach to model inhomogeneous and in-
terfacial systems. Volume potentials provide an extremely efficient method for accurately
reproducing pressure-volume equations of state for homogeneous fluids. However, because
they apply a force directly to the system volume, volume potentials cannot be employed
to simulate inhomogeneous systems, such as liquid-vapor interfaces. In these cases, local
density potentials can be used to accurately model both the internal pressure and also the
interfacial profile, while providing outstanding transferability between bulk and interfacial

environments. In some cases it is possible to directly map volume potentials to local density
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potentials. © This may require defining the local density over a relatively long length-scale,
though, which can generate significant artifacts when modeling liquid interfaces.”
Similarly, in this work we only considered equilibrium properties of small molecular sol-
vents with short-ranged interactions. Future studies should certainly investigate this ap-
proach for modeling more complex systems, such as ionic and polymeric liquids. Further-
more, future studies should extend this work to consider dynamical quantities' ' and
non-equilibrium phenomena. =" Nevertheless, we hope that this study provides funda-
mental insight into the density-dependence of effective pair potentials. Moreover, we hope
that this approach may represent a significant practical advance towards developing predic-

tive CG models for modeling industrial solvents across wide ranges of their phase diagram.

Supporting Information Available

The SI further investigates the predicted interaction potentials, Uy,, and employs the g-YBG
formalism to analyze the temperature- and density-dependence of MS-CG potentials. The
SI also presents rdf’s that explicitly assess the structural fidelity of the MS-CG and global

potentials for dioxane and THF at each state point.
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