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Simulations of soft materials often adopt low-resolution coarse-grained (CG) mod-

els. However, the CG representation is not unique and its impact upon simulated

properties is poorly understood. In this work, we investigate the space of CG rep-

resentations for ubiquitin, which is a typical globular protein with 72 amino acids.

We employ Monte Carlo methods to ergodically sample this space and to charac-

terize its landscape. By adopting the gaussian network model as an analytically

tractable atomistic model for equilibrium fluctuations, we exactly assess the intrinsic

quality of each CG representation without introducing any approximations in sam-

pling configurations or in modeling interactions. We focus on two metrics, the spec-

tral quality and the information content, that quantify the extent to which the CG

representation preserves low-frequency, large-amplitude motions and configurational

information, respectively. The spectral quality and information content are weakly

correlated among high resolution representations, but become strongly anti-correlated

among low-resolution representations. Representations with maximal spectral qual-

ity appear consistent with physical intuition, while low-resolution representations

with maximal information content do not. Interestingly, quenching studies indicate

that the energy landscape of mapping space is very smooth and highly connected.

Moreover, our study suggests a critical resolution below which a “phase transition”

qualitatively distinguishes good and bad representations.
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I. INTRODUCTION

An essential first step in modeling any physical phenomena is determining how to rep-

resent the system of interest. The choice of representation is critical to the success of any

model because it immediately determines the physical mechanisms that can be described

and the questions that can be answered. More pragmatically, the choice of representation

also determines the model’s range of validity and the computational effort that it requires.

These considerations are particularly important for low resolution, particle-based coarse-

grained (CG) models that are widely employed to study soft materials.1–5 By averaging over

atomic details, these CG models enable simulations of length- and time-scales that cannot be

effectively addressed with conventional all-atom (AA) models.6–8 The representation of a CG

model is often specified by a “mapping” that projects the AA configuration onto relatively

few CG degrees of freedom.9 Tremendous effort has been invested in developing potentials

that accurately reproduce the mapped distribution for these CG degrees of freedom.10–16

In comparison, relatively few studies have investigated the CG mapping itself. Although

one expects that it may profoundly impact the accuracy and utility of CG models,17 most

researchers rely upon their intuition to determine the CG representation.2

In recent years, a growing number of studies have investigated the impact of the map-

ping upon the structural fidelity of CG models that describe interactions with relatively

simple molecular mechanics potentials. These comparative case studies suggest that “good”

CG maps generate relatively simple mapped distributions for the CG degrees of freedom.

In particular, good CG maps should avoid complex intramolecular correlations that can-

not be modeled with additive bond, angle, and torsional potentials.18–23 Similarly, several

studies suggest that lower resolution representations often improve the structural fidelity of

bottom-up models.13,24–28 One intuitively expects that, by reducing the density of CG sites,

lower resolution CG models reduce the importance of higher order many-body correlations

that cannot be accurately modeled with simple pair additive potentials.5 These case studies

provide important insight for guiding the choice of CG mappings for practical calculations.

However, they provide relatively little insight into the “intrinsic” quality of a CG map-

ping. Rather, they assess the consistency of the mapping with the approximations that are

introduced by modeling CG interactions with simple molecular mechanics potentials.

Recent studies have also developed automated procedures for determining the CG repre-
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sentation, e.g., by graph-based29–33 and machine learning (ML) approaches.34–40 In particu-

lar, several studies have optimized the CG mapping in order to minimize the error associ-

ated with reconstructing AA configurations.35,36,40 More generally, Potestio and coworkers

have proposed optimizing the CG mapping by minimizing the mapping entropy,38,41–44 which

quantifies the configurational information discarded by the mapping.14,45 While the mapping

entropy is very challenging to calculate for realistic AA models, they developed cumulant-41

and ML-based38 approximations that, along with enhanced sampling methods,42 allowed

them to explore the entire space of “decimation” mappings that associate each CG site with

a single atom. In their very interesting journey through mapping space,42 they introduced a

scalar product and distance for characterizing the metric and topological properties of this

mapping space.

Conversely, other studies have proposed optimizing the CG representation in order to pre-

serve the low-frequency, large-amplitude motions that are sampled by the AA model.46–49

The essential dynamics coarse-graining (ED-CG) method of Voth and coworkers exempli-

fies this approach.50–54 The ED-CG methodology first projects an AA trajectory onto the

“essential dynamics” subspace that is identified by principal component analysis.55 The ED-

CG methodology then defines the CG mapping by partitioning the atoms into rigid atomic

groups that move coherently within this subspace. Similarly, several studies have employed

graph-based approaches or network models to identify CG representations that preserve low

frequency motions.29,31,32 While these studies have primarily focused on modeling fluctua-

tions about a single equilibrium structure, Clementi and coworkers have employed diffusion

maps and Markov state methods to identify CG sites that move coherently in AA simula-

tions of protein folding.56 More recently, they employed a variational approach for Markov

processes (VAMP) to determine CG representations that accurately described the dynamics

of slow transitions.57

Our prior work has provided complementary insight into the space of CG mappings.58–60

By employing the Gaussian Network Model (GNM) for globular proteins,61–63 we previously

derived an exact, analytic expression for the mapped ensemble as a function of the CG

mapping.58 Based upon this result, we introduced two metrics to assess the intrinsic quality

of CG mappings.59 The spectral quality, Q, quantifies the extent to which the CG mapping

preserves large-amplitude motions and is closely related to the fitness metric employed in

the ED-CG method. Conversely, the information content, I, quantifies the fraction of non-
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trivial configurational information that is preserved by the mapping and is closely related

to the mapping entropy considered by Potestio and coworkers. By employing these metrics

to define an effective energy for the CG mapping, we employed Monte Carlo methods to

explore the space of CG maps and to calculate a density of states quantifying the number of

maps with a given quality.59 In distinction to Potestio and coworkers,38,41–43 we considered

CG maps that represented groups of connected amino acids with their mass center. Further-

more, we restricted our sampling to “homogeneous” maps for which each site corresponded

to an equal number of amino acids. We observed that Q and I were almost uncorrelated

among the sampled high-resolution maps, but became anti-correlated among low-resolution

maps. Most interestingly, the calculated density of states for the spectral quality, Ω(Q),

suggested the existence of a “critical resolution” below which a “phase transition” quali-

tatively distinguishes maps of high and low quality. Remarkably, Potestio and coworkers

employed an analogy with lattice gas models to discover a similar phase transition in the

space of decimation mappings.42

In the present work, we extend our prior studies in several key aspects. Most importantly,

while our prior study was restricted to a “canonical” ensemble of homogeneous maps, here

we consider a vastly larger “semi-grand” ensemble of inhomogeneous maps in which sites can

correspond to different numbers of amino acids. We introduce a more general algorithm for

sampling this semi-grand ensemble and we prove its ergodicity. Moreover, we generalize our

definition of the spectral quality, Q, to account for the inhomogeneity of site sizes. Given this

ergodic sampling algorithm and an appropriate fitness metric, we examine the landscape of

mapping space by characterizing its connectivity and exploring its local and global minimum.

We again observe the characteristics of a phase transition distinguishing good and bad maps

below a critical resolution in this much more complex semi-grand ensemble.

We note that many prior studies have employed normal mode analysis (NMA), often

in combination with the GNM or other network models,64 to efficiently investigate protein

dynamics, folding, and conformational changes,65–75 as well as to refine low resolution struc-

tural data.76–78 NMA is itself a form of coarse-graining protein dynamics that considers the

simplified harmonic potential defined by the Hessian of a potential energy surface.79 Many

studies have further simplified atomic NMA calculations, e.g., by treating blocks of amino

acids as rigid bodies80,81 or by adopting simplified elastic network models to describe atomic

interactions.82,83 The lowest frequency normal modes of network models have often been
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employed to identify rigid functional domains.84,85 Moreover, several studies have developed

hierarchies of network models for modeling proteins at various resolutions.86–89 The quality

of such models has been assessed based upon the overlap between observed conformational

changes and the lowest frequency normal modes of the coarse-grained network.64,90 Further-

more, information-theoretic metrics, such as the mode-concentration, have been employed

to demonstrate that protein conformational changes are often described by surprisingly few

low-frequency normal modes.91

While these studies have provided important insights into protein biophysics, the present

study differs in several respects. In particular, we exactly coarse-grain the underlying net-

work model by analytically integrating out atomic degrees of freedom. Moreover, rather

than assessing our CG models against experimentally observed conformational transitions,

we assess the quality of the CG representation by comparing the corresponding mapped

ensemble with the underlying AA ensemble. Most importantly, we employ Monte Carlo

methods to exhaustively explore and quantitatively assess the entire space of CG represen-

tations. Our primary goal is to understand the impact of the CG representation upon the

resulting mapped ensemble.

The remainder of this manuscript is organized as follows. Section II reviews the relevant

statistical mechanics for coarse-graining the GNM and generalizes the spectral quality to

account for variations in site sizes. Section III defines mapping space and describes the

sampling methods that we employ to investigate the semi-grand ensemble. Section IV pro-

vides additional details of our computational methods. Section V presents the results of

our computational studies, while Section VI discusses these results and provides concluding

comments. The Appendix provides a brief, self-contained summary of key graph concepts

that are useful for this work and also proves the ergodicity of our sampling algorithm.

II. GAUSSIAN NETWORK MODEL

A. Atomic description

1. AA equilibrium distribution

The Gaussian Network Model (GNM) provides a simple description of equilibrium protein

dynamics about a reference folded structure.61–63 The AA GNM represents each amino acid
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with its α carbon and introduces an isotropic linear spring between each pair of α carbons

that are within a distance, rc, in the reference structure. Due to the isotropy of these linear

springs, the GNM potential separates into independent contributions that govern the motion

in each Cartesian direction:

u(r) =
1

2
Γδr†κδr ≥ 0. (1)

Here r = (r1, . . . , rn) indicates the coordinates for the n atoms in the specified direction,

δr = r − r0 is the corresponding displacement from the reference coordinates r0, Γ is a

dimensional factor with units of energy/length2, and † denotes the transpose. The Kirchhoff

matrix, κ, is an n× n symmetric, positive semi-definite matrix with elements

κij = niδij − θij, (2)

where ni is the number of springs connected to atom i, while θij is a contact matrix: θij = 1

if i and j are connected by springs and otherwise θij = 0. Assuming that the protein

is connected, the nullspace of κ is spanned by the vector Jn = (1, . . . , 1)† ∈ Rn, which

describes free uniform translation of all atoms. The spectral resolution theorem92 implies

that

κ =
n−1∑︂
i=1

uiλiu
†
i , (3)

where λi > 0 for i = 1, . . . , n − 1, u0 = n−1/2Jn, and {u0, . . . ,un−1} forms a complete

orthonormal basis for the space of AA displacements.

The equilibrium distribution for the AA GNM is

pr(r) ∝ exp[−βu(r)] = exp

[︃
−1

2
βΓδr†κδr

]︃
, (4)

where β = 1/kBT . Thus, the AA GNM has one free translational degree of freedom and

n− 1 internal degrees of freedom that are described by Gaussian random variables. In the

following, averages over AA configurations, r, are defined

⟨a(r)⟩ =

∫︂
dr pr(r)a(r). (5)

2. Configurational information

We quantify the information content of the AA GNM, HAA, by the Kullback-Leibler

(KL) divergence93,94 between the AA equilibrium distribution, pr(r) ∝ exp[−βu(r)], and the
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corresponding uniform distribution, qr(r) = L−n, where L is the length of the system in the

specified direction:

HAA ≡ DKL[pr||qr] ≡
∫︂

dr pr(r) ln[pr(r)/qr(r)] = (n− 1)h1 +
1

2
ln tκ. (6)

Here h1 = 1
2
{ln(βΓL2/2π) − 1} and tκ = n−1 det1 κ, where det1 κ = λ1 · · ·λn−1 is the

product of the n− 1 positive eigenvalues of κ. Note that h1 is a trivial protein-independent

constant accounting for replacing a translational degree of freedom with a vibrational degree

of freedom. Moreover, h1 depends upon the system size, L, which is not only irrelevant to

the protein vibrational motion but also must be large, βΓL2 ≫ 1, in order to analytically

evaluate Eq. (6) and other integrals over configuration space. Conversely, tκ depends upon

the connectivity of the protein that is encoded in the AA Kirchhoff matrix, κ, and is

independent of L. Consequently, we consider IAA = 1
2

ln tκ to quantify the non-trivial

information present in the AA GNM for a given protein.

3. Mass-weighted vibrations

In our prior work,59 we also considered the magnitude of the mass-weighted vibrations,

π, sampled by the AA model, which we referred to as the “vibrational power.” In this

previous work, we assumed that all CG sites corresponded to an equal number of atoms

and, therefore, had equal mass. Consequently, the geometric center coincided with the mass

center. In the present work, we relax this restriction and treat CG sites with different mass,

such that the geometric and mass centers no longer coincide. Accordingly, we now generalize

our previous definition of the vibrational power to allow for atoms of different mass, as in

normal mode analysis.95,96

The displacement of the geometric center may be computed δrcg = n−1J†
nδr. The pro-

jection operator Pn = n−1JnJ
†
n and its orthogonal complement, Qn = 1n − Pn, may be used

to decompose the displacement δr into a translation of the geometric center, Pnδr = δrcgJn,

and an internal displacement, δrint = Qnδr = δr− δrcgJn. The covariance matrix describing

the correlation among these internal displacements is then

cint ≡
⟨︂
δrintδr

†
int

⟩︂
= (βΓκ)I , (7)

where I denotes the pseudo-inverse, such that κI =
∑︁n−1

i=1 uiλ
−1
i u†

i .
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In the present work it is important to distinguish between the mass and geometric centers.

The displacement of the mass center is defined δrcm ≡ m−1
t

∑︁n
i=1miδri, where mi is the mass

of atom i and mt =
∑︁n

i=1 mi is the total mass. We define vibrational displacements with

respect to the mass center:

δrv ≡ δr− δrcmJn. (8)

In order to distinguish fast and slow vibrations, it is convenient to introduce a diagonal

mass-weighting matrix gn ≡ diag(m
1/2
i ) for defining mass-weighted coordinates δr = gnδr.

When considering mass-weighted coordinates, the vector describing free uniform translation

of all atoms becomes Jn ≡ gnJn such that δrcm = m−1
t J

†
nδr. The projection operator for

mass-weighted translational motion is Pn ≡ m−1
t JnJ

†
n, while the projection operator for

vibrational motion is Qn ≡ 1n − Pn. The mass-weighted vibrational displacement is then

δrv ≡ gnδrv = Qnδr = Qngnδrint, (9)

where the last equality follows because Qngn = QngnQn. The covariance matrix describing

mass-weighted vibrations is

cv ≡
⟨︁
δrvδr

†
v

⟩︁
= QngncintgnQn. (10)

We define

κ ≡ g−1
n κg−1

n , (11)

such that

cv = (βΓκ)I , (12)

which can be proved by using the identity Qng
−1
n = Qng

−1
n Qn.

Note that Γκ is the Hessian of the GNM potential, while g2
n is the Hessian of the GNM

kinetic energy with respect to the corresponding velocities. Consequently, the GNM normal

mode frequencies, ωi, satisfy⃓⃓
Γκ− ω2

i g
2
n

⃓⃓
= |gn|2

⃓⃓
Γκ− ω2

i 1n

⃓⃓
= 0. (13)

Thus, the n − 1 positive eigenvalues of Γκ are given by the square of the corresponding

normal mode frequency, ω2
i . We define the vibrational power, π, by the mass-weighted

vibrations:

π ≡

⟨︄
n∑︂

i=1

miδr
2
vi

⟩︄
= Trn cv = kBT

n−1∑︂
i=1

ω−2
i , (14)

where Trn denotes the trace over the n AA coordinates.
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B. Coarse-grained description

1. Mapped distribution

The N -site CG representation of the n-atom AA GNM is defined by a linear mapping,

M = (cIi) : r → R = M(r), that determines the CG coordinates by

RI =
n∑︂

i=1

cIiri, (15)

for each CG site, I = 1, . . . , N . We require that a valid map satisfies two properties: (1)

We require that the mapping coefficients are linearly independent such that
∑︁N

I=1 tIcIi = 0

for all i = 1, . . . , n if and only if tI = 0 for all I = 1, . . . , N . This ensures that the mapped

CG coordinates are linearly independent. (2) We also require that the mapping coefficients

are nonnegative and properly normalized such that
∑︁n

i=1 cIi = 1 for all i = 1, . . . , n, i.e.,

the mapped coordinates correspond to a convex combination of atomic coordinates. This

normalization ensures that the mapping preserves translational motion between the AA and

CG representations, i.e., for any t ∈ R, M(r + tJn) = M(r) + tJN , where JN ≡ MJn =

(1, . . . , 1)† ∈ RN is a corresponding vector describing translational motion of the N CG

sites. As for the AA model, we shall find it convenient to define CG projection operators

for translational motion, PN = N−1JNJ
†
N , and for internal motion, QN = 1N − PN .

Given the mapping, M, the probability (density) for observing an AA configuration, r,

that maps to the CG configuration, R, is given by

pR(R) ≡
∫︂

dr pr(r)δ(R−M(r)). (16)

Foley et al. previously proved that58

pR(R) ∝ exp

[︃
−1

2
βΓδR†KδR

]︃
, (17)

where

K ≡ K(M) ≡
(︁
QNMκIM†QN

)︁I
, (18)

explicitly depends upon the mapping, M. K does not have exactly the same form as Eq. (2)

and, e.g., can have positive off-diagonal elements. Nevertheless, K preserves several key

properties of the AA Kirchhoff matrix, κ. In particular, Eq. (18) implies that K is sym-

metric and positive semi-definite. Moreover, because the mapping coefficients are linearly
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independent, JN spans the nullspace of K. Therefore, the spectral resolution theorem im-

plies that K =
∑︁N−1

I=1 vIΛIv
†
I , where ΛI > 0 for I = 1, . . . , N − 1, v0 = N−1/2JN , and

{v0, . . . ,vN−1} forms a complete orthonormal basis for the space of CG displacements.

Thus, the CG representation of the AA GNM preserves one free translational degree of free-

dom and N − 1 internal degrees of freedom that are Gaussian random variables, in perfect

analogy with Eq. (4). In the following, averages of CG configurations, R, are defined over

the mapped ensemble:

⟨A(R)⟩ ≡
∫︂

dR pR(R)A(R) = ⟨A(M(r))⟩ , (19)

where the last expression is an average over r according to Eq. (5). Given the analogy

between Eqs. (3)-(5) for the AA model and Eqs. (16)-(19) for its CG representation, the

relevant averages of CG observables can be directly determined from Section II A.

2. Information content

We quantify the information content of the mapped ensemble, HCG, by the KL divergence

between the mapped distribution, pR, and the minimally informative uniform distribution,

qR = L−N :

HCG ≡ DKL[pR||qR] ≡
∫︂

dR pR(R) ln[pR(R)/qR(R)] = (N − 1)h1 +
1

2
lnTK, (20)

where TK = N−1det1K. In analogy to the AA model, we define ICG ≡ 1
2

lnTK as the

non-trivial information preserved in the mapped ensemble. The mapping entropy is

Hmap ≡ HAA −HCG = (n−N)h1 +
1

2
ln tκ/TK. (21)

While the mapping entropy is an important metric for characterizing CG models, Hmap

includes a “trivial” contribution, (n−N)h1. This trivial contribution is independent of the

properties of the protein itself and is simply determined by the number of degrees of freedom

that have been eliminated from the model. Consequently, in the present work we consider

the metric

I(M) ≡ ICG/ IAA = lnTK/ ln tκ = ln
[︁
N−1det1K

]︁/︁
ln
[︁
n−1det1κ

]︁
, (22)

which quantifies the fraction of (non-trivial) information that is preserved by the CG repre-

sentation, M. Note that the mapping entropy may be expressed

Hmap = (n−N)h1 +
1

2
(1 − I) ln tκ. (23)
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Because ln tκ is fixed by the AA model, it follows that minimizing Hmap (at fixed N) corre-

sponds to maximizing I.

3. Mass-weighted vibrations

As for the AA model, the displacement of the geometric center of the CG configuration

is δRcg ≡ N−1J†
NδR. The CG internal displacement is then δRint ≡ δR− δRcgJn = QNδR

and the corresponding covariance matrix is

Cint ≡
⟨︂
δRintδR

†
int

⟩︂
= (βΓK)I (24)

As in our prior studies with the GNM,58,59 we again assume that M partitions the set of

n atoms, V = {1, . . . , n}, such that each atom contributes to a single site. For each site, I,

we define a set of atoms, VI = {i|cIi > 0}, that contribute to the site, such that ∪N
I=1VI = V

and VI ∩ VJ = ∅ if I ̸= J . We then define the mass, MI , of site I as the total mass of the

atoms in VI , i.e., MI =
∑︁

i∈VI
mi. Note that this partitioning preserves the total atomic

mass, Mt =
∑︁N

I=1MI = mt.

In analogy to the AA model, we define a CG mass-weighting matrix, GN ≡ diag(M
1/2
I ),

and CG mass-weighted coordinates, δR ≡ GNδR. Similarly, we define JN ≡ GNJN and

corresponding projection operators, PN ≡ M−1
t JNJ

†
N , and QN ≡ 1N − PN . The CG mass

center displacement is δRcm ≡ M−1
t

∑︁N
I=1 MIδRI = M−1

t J
†
NδR and the CG vibrations are

defined δRv ≡ δR− δRcmJN . The CG mass-weighted vibrations are then

δRv ≡ GNδRv = QNδR = QNGNδRint, (25)

where the last expression employs QNGN = QNGNQN . The mass-weighted covariance

matrix is

Cv ≡
⟨︂
δRvδR

†
v

⟩︂
= QNGNCintGNQN =

(︁
βΓK

)︁I
, (26)

where

K ≡ G−1
N KG−1

N (27)

and we have used the analogous identity QNG
−1
N = QNG

−1
N QN . The N − 1 positive eigen-

values of ΓK are given by the square of the CG normal mode frequencies, Ω2
I . We define

the vibrational power, Π, of the CG representation, M, by

Π(M) ≡

⟨︄
N∑︂
I=1

MIδR
2
vI

⟩︄
= TrN Cv = kBT

N−1∑︂
I=1

Ω−2
I , (28)
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where TrN denotes the trace. We define the spectral quality, Q, of the CG representation,

M, by the fraction of vibrational power that it preserves:

Q(M) ≡ Π/π = TrN K
I
/︂

Trn κ
I =

N−1∑︂
I=1

Ω−2
I

/︄
n−1∑︂
i=1

ω−2
i . (29)

It is important to note that the mass-weighted vibrational covariance matrix, Cv, is not

simply obtained by mass-weighting the covariance matrix of internal displacements, Cint.

Specifically, if we define Cint ≡ GNCintGN as the matrix obtained by mass-weighting Cint,

then Cv = QNCintQN ̸= Cint when the CG sites have different masses. Physically, the two

differ because Cint mass-weights displacements with respect to the geometric center of the

mapped configuration, while Cv mass-weights vibrations with respect to the mass center

of the mapped configuration. The mass centers of AA and mapped configurations always

coincide by definition. However, the geometric centers of AA and mapped configurations do

not necessarily coincide. In particular, when the CG sites correspond to different numbers

of amino acids, the geometric centers of the AA and mapped configurations can dramat-

ically differ. While this distinction may seem a minor technical detail, it has important

ramifications for determining the spectral quality of CG representations.

Figure 1 presents a scatter plot comparing Π ≡ TrN Cv and TrN Cint for 3-site maps

sampled from Monte Carlo simulations in the mapping space for ubiquitin. The orange star

indicates the map that maximizes Π, which is illustrated at the top right of Fig. 1. This

map associates each site with a coherent structural motif and agrees well with our physical

intuition. Conversely, the blue star indicates the map that maximizes TrN Cint. This map,

which is illustrated at the top left of Fig. 1, does not agree well with our physical intuition.

In particular, this map represents almost the entire protein with a single site, while the

remaining sites correspond to individual amino acids. Thus, it is important to properly

account for the inhomogeneous mass distribution when evaluating the spectral quality of

a CG mapping. Moreover, Eq. (28) indicates that Π(M) increases when M reduces the

normal mode frequencies of the mapped Hamiltonian. Consequently, we anticipate that the

spectral quality, Q(M), defined by Eq. (29) is quite similar to the VAMP metric proposed

by Clementi and coworkers.57

The spectral quality, Q, is also similar to a number of other metrics that have been

previously proposed to identify CG sites with coherently moving atomic groups46,50 and to

define quasi-rigid protein domains.85,97–100 While it does not explicitly employ essential dy-
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FIG. 1. Scatter plot of Π ≡ TrN Cv and TrN Cint for 3-site maps sampled from Monte Carlo

simulations of the mapping space for ubiquitin. The blue and orange stars indicate the 3-site maps

that maximize TrN Cint and TrN Cv, respectively. The top left (blue) and right (orange) panels

present the corresponding maps.

namics analysis,50,97 Eqs. (28) and (29) demonstrate that Q similarly emphasizes large scale

motions of an underlying AA model. Conversely, although it does not explicitly employ

rigidity analysis,46,50,97 Q gives little weight to localized, high-frequency motions that are

characteristic of quasi-rigid intra-domain motions. Similarly, by emphasizing low-frequency

motions, one expects that Q will also emphasize persistent, slow motions without explic-

itly considering time-correlation functions.99 Finally, it is worth noting that Q emphasizes

the spectral properties of a mass-weighted covariance matrix that can be derived from the

Laplacian matrix of a graph, as in the SPECTRUS method.98,100
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III. SAMPLING MAPPING SPACE

A. Graph description of GNM

Graph theoretic ideas provide a useful framework for exploring mapping space. The

GNM determines a simple graph for describing the network of interactions within a globular

protein. This graph includes a labelled vertex, vi, for each atom, i = 1, . . . , n, in the

AA GNM. For simplicity, we shall use i to identify both the atom index and also the

corresponding vertex, vi. This graph includes an edge, eij, between two distinct vertices,

i( ̸=)j, if the corresponding atoms are connected by a spring in the AA GNM potential, i.e., if

θij = 1. The resulting vertex set, V = {1, . . . , n}, and edge set, E = {eij|i, j ∈ V and θij =

1}, then define a graph, G = (V,E), that we shall refer to as the AA protein graph.

The edge set, E, includes edges that reflect, e.g., hydrogen-bonding, salt-bridge, or dis-

persive interactions between amino acids. Because the protein is physically connected along

the backbone, E also includes edges, ei,i+1, between each successive pair of atoms. Moreover,

when using a cut-off, rc ≥ 7.5 Å, to define GNM bonds, we find that E also includes an

edge ei,i+2 whenever i, i + 2 ∈ V . Consequently, we shall assume that valid protein graphs

are singly and doubly connected along the backbone, such that eij ∈ E whenever i, j ∈ V

and |i− j| ≤ 2.

B. Allowed maps as graph partitions

Given an N -site mapping, M = (cIi), we define a site vertex set, VI = {i|cIi > 0}, by

the set of atoms associated with CG site I. We define the size of site I by the number of

elements in VI , i.e., |VI |. We define the site edge set, EI = {eij ∈ E|i, j ∈ VI}, by the set

of bonds among the atoms in the vertex set VI . This then defines a subgraph GI = (VI , EI)

for each CG site I.

We consider the space, MN , of N -site CG representations, M, that satisfy the following

properties:

1. M partitions V into N disjoint, nonempty vertex sets, V1, . . . , VN , such that |VI | ≥ 1,

∪N
I=1VI = V , and VI ∩ VJ = ∅ if I ̸= J .

2. Each atomic group, VI , is “connected” in the sense that each pair of atoms i, j ∈ VI
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can be connected by a sequence of edges in EI .

3. The mapping coefficients correspond to the mass center for each site I, i.e.,

cIi =

⎧⎪⎨⎪⎩mi/MI if i ∈ VI

0 otherwise ,
(30)

where MI =
∑︁

i∈VI
mi.

Each allowed mapping, M ∈ MN , is then in one-to-one relationship with a partitioning,

[G1, . . . , GN ], of the AA protein graph, i.e., M ∼ [G1, . . . , GN ].

Note that any of the N ! permutations of the site labels, I = 1, . . . , N , generates an

equivalent CG mapping, M. In order to break this degeneracy, we order the sites based upon

the minimal elements in the corresponding atomic groups, i.e., atom 1 ∈ V1, V2 includes the

first atom that is not in V1, and so on.

C. Equilibrium ensemble

We are interested in characterizing the statistical properties of this N -site mapping space

and, in particular, the number of allowed N -site maps, ΩN(Q, I), with a given spectral

quality, Q, and information content, I. In order to calculate, ΩN(Q, I), it useful to define a

“semi-grand ensemble” in which the probability of sampling an allowed map, M, is

PN(M; β, λ) ∝ exp
[︁
−β

(︁
E(M) + λσ2(M)

)︁]︁
. (31)

Here E(M) = 1 − Q(M) and β is a conjugate inverse temperature such that the “ground

state” sampled at β = ∞ maximizes Q. Additionally, we have defined σ2(M) ≡ var{|V1|, |V2|, . . . , |VN |}

as the variance in the size of the N sites, while λ is a pressure-like conjugate variable.

Equilibrium MC simulations at a given state point (β, λ) will primarily sample CG rep-

resentations with a corresponding spectral quality, E(β, λ), and variance, σ2(β, λ). By

performing MC simulations for a wide range of β and λ, we can sample the entirety of

mapping space, MN , for a given resolution, N . We can then estimate ΩN(Q, I) (to within

a constant prefactor) by reweighting the sampled configurations in the limit β, λ → 0 such

that PN(Q, I) ∝ ΩN(Q, I). Previously, we considered a “canonical” ensemble of connected

maps, M, in which each site was the same size, i.e., σ2(M) = 0, and which corresponds to

βλ → ∞. The present semi-grand ensemble is vastly larger than this canonical ensemble.
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D. Steal move set

We employ a “steal” move set to explore mapping space. Starting from an allowed map,

M ∼ [G1, . . . , GN ], a steal move generates a new map, M′, by moving an atom i from site

I to a new site J (̸= I), creating two new sites G′
I = GI − i and G′

J = GJ + i, while leaving

the remaining N − 2 sites unchanged, i.e., site J steals atom i from site I. The steal map

is allowed if the new map, M′, is allowed, i.e., if the modified sites, G′
I and G′

J , are both

connected. This requires that removing atom i from site I does not disconnect GI and that

there exists an edge eij ∈ E from atom i to an atom j ∈ VJ . Thus, atom i in site I is

“stealable” if the following conditions are fulfilled: (1) |VI | ≥ 2 so that V ′
I = VI − {i} is

non-empty; (2) i is not a cut-vertex (i.e., articulation node) of GI so that G′
I = GI − i

remains connected; and (3) there exists a different site J (̸= I) with an atom j ∈ VJ that

forms an “out-of-site” edge with i, eij ∈ E, so that G′
J = GJ + i is connected. Note that

allowed steal moves are reversible: site I ′ can steal atom i back from site J ′ to restore the

original sites, GI and GJ , which both are connected since M is an allowed map.

Importantly, the steal move set is ergodic and allows us to exhaustively explore all of

mapping space. Our proof of this ergodicity proceeds by proving that steal moves can

transform any allowable map, M, into a special N -site “monster” map, M∗
Nm. The appendix

proves this proposition. It is then simple to prove that any two valid maps, M and M′, can

be connected by a series of steal moves. The proposition implies that there exist series of

steal moves, M → M∗
Nm and M′ → M∗

Nm. Since steal moves can be reversed, the series

M → M∗
Nm → M′ connects M and M′.

Given a map, M ∼ [G1, . . . , GN ], we denote the steal move that transfers atom i to site

J by the ordered pair (i, J). The set of allowed steal moves, T = {(i, J)}, and the number

of allowed steal moves both vary with the mapping, M, i.e., T = T (M). We determine the

set of allowed steal moves, T (M), via the following algorithm:

1. For each distinct pair of sites, (I, J), we determine the corresponding set of intersite

edges, EIJ = {eij ∈ E|i ∈ VI , j ∈ VJ}.

2. Each intersite edge, eij ∈ EIJ , determines two potential steal moves, (i, J) and (j, I).

We include each of these potential moves in the set T
(0)
IJ = {(i, J), (j, I)|eij ∈ EIJ , i ∈

VI , j ∈ VJ}.
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3. We compile the set, T
(0)
IJ , for each pair of distinct sites, (I, J), to obtain T (0) =

∪(I,J)T
(0)
IJ .

4. Since each move, (i, J), included in T (0) corresponds to an intersite edge, it will be

allowed if it satisfies two conditions: (1) i must not be the only vertex of a site

graph GI ; and (2) i must not be a cut-vertex (articulation node) of this site graph

GI . Consequently, we then remove any pair, (i, J), from T (0) that violates these two

conditions according to the following algorithm:

(a) We first determine the size, |VI |, of each site I. If site I contains only one atom,

i, then we remove every pair (i, J) from T (0) that would transfer atom i.

(b) We next identify the cut-vertices that would disconnect each site I. We remove

from T (0) every pair, (c, J), that would transfer a cut vertex, c.

After eliminating the potential moves that would eliminate or disconnect a site, we obtain

the set, T (M), of valid steal moves. We define the coordination, CM, of the map, M, as the

number of maps, M′, that can be reached from M via a single steal move, i.e., CM = |T (M)|.

E. Monte Carlo algorithm

Given a valid map, M ∼ [G1, . . . , GN ], we perform each step of our MC simulation

according to the following algorithm:

1. We construct the set of allowed steal moves, T (M), from site M.

2. We select one of the allowed steal moves, (i, J), according to the uniform distribution,

α(M → M′) = C−1
M δMM′ where δMM′ = 1 if M → M′ is an allowed steal move;

otherwise δMM′ = 0.

3. We construct the trial map, M′, by transferring atom i to site J .

4. We construct the set of allowed steal moves, T (M′), from site M′.

5. We accept the proposed move, M → M′ with probability,

Acc(M → M′) ≡ CM

max{CM, CM′}
min {1,PN(M′)/PN(M)} , (32)
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while remaining at M with probability 1 − Acc(M → M′). Note that, in order to

satisfy the detailed balance condition, the modified Metropolis criterion must account

for the difference in the coordination, CM = |T (M)| and CM′ = |T (M′)|, of the two

maps.

IV. ADDITIONAL COMPUTATIONAL DETAILS

A. AA model

We adopted an α-carbon GNM as an AA model for equilibrium fluctuations of ubiquitin

about its folded conformation. We defined the equilibrium structure for ubiquitin by the

three-dimensional coordinates for the first 72 residues in the PDB structure 1UBQ, while

discarding the coordinates for the 4 disordered residues at the C-terminus.101 We employed

ProDy version 3.0.4102 to determine the Kirchhoff matrix, κ, for the AA GNM, while em-

ploying the cut-off rc = 7.5 Å to identify residues that are in contact.

B. Simulated annealing

We initially performed simulated annealing to find the range of β and λ that were relevant

for sampling the mapping space, MN , of N -site representations. These simulations scanned

a series of T = β−1 and λ values on a log scale from 1 to 0.0001 and from −1 to −0.0001.

Starting with λ = 1, we simulated 5000 equilibrium MC steps at T = 1 before reducing

the temperature and performing an additional 5000 equilibrium MC steps. We continued

this process with λ = 1 until we had performed 5000 equilibrium MC steps at the lowest

temperature, 0.0001. We then reduced λ and repeated this process, again starting from

T = 1. In order to fully explore MN we repeated this process for both positive and negative

T and λ values. We estimated Q(T, λ) = ⟨Q(M)⟩T,λ and σ2(T, λ) = ⟨σ2(M)⟩T,λ from these

simulated annealing simulations and checked that the resulting averages attained plateaus

at the limiting values for T and λ, indicating that we had sampled the bounds of MN .
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C. Monte Carlo simulations

We primarily explored the mapping space, MN , for N -site representations by performing

unbiased MC simulations that sampled PN(M) at a range of state points, (β, λ). Each

simulation in MN started from the same “block” map, which is defined by associating a site

with each consecutive group of n/N residues along the backbone. We performed each MC

simulation for 1.5 ×106 steps, while discarding the first 103 MC steps as equilibration and

sampling every 10th map from the remainder of the simulation.

After completing our initial equilibrium simulations, we visualized two-dimensional scat-

ter plots of the sampled maps with respect to (Q, σ2) and (Q, I). In some cases, we found

that our canonical simulations failed to sample certain regions of mapping space. In or-

der to specifically sample these regions, we performed additional biased simulations that

supplemented E(M) = 1 −Q(M) with the umbrella potential:

Ebias(M;Qk, Ik, σ
2
k) =

1

2
kQ (Q(M) −Qk)2+

1

2
kI (I(M) − Ik)2+

1

2
kσ2λ

(︁
σ2(M) − σ2

k

)︁2
, (33)

where Qk, Ik, σ2
k, and the corresponding spring constants were chosen to target specific

regions of mapping space.

D. Statistics and free energy calculations

Given the maps sampled from these biased and equilibrium simulations, we employed

the multistate Bennett Acceptance Ratio (MBAR) method103 to estimate the statistical

weight of each map at a target state point (β, λ). We then estimated statistical properties

of mapping space and, in particular, the density of states, ΩN , from the calculated statis-

tical weights for the infinite temperature, zero pressure limit, i.e., β = λ = 0.01. For all

resolutions, we employed a bin spacing of δQ = 0.005 and δI = 0.001 to represent ΩN with

respect to Q and I, respectively. Because σ2 takes on discrete values over a range that varies

with both protein size and CG resolution, we adopted a bin spacing δσ2 that corresponds

to twice as many bins for σ2 as for Q. We calculated temperature-dependent free energy

surfaces, βF (Q) = βE(Q) − ln ΩN(Q).
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E. Representative maps and steepest descent simulations

Based upon our equilibrium MC simulations for N = 3 and 12, we constructed a histogram

of the sampled maps as a function of spectral quality, Q, while employing a bin spacing

δQ = 0.005. We randomly selected 5000 maps from each bin of the histogram with at least

5000 maps. From bins with fewer than 5000 maps, we selected all of the sampled maps.

This process identified 185,112 distinct maps for N = 3 and 358,000 distinct maps for N

= 12. We employed these representative maps to analyze the energy landscape of mapping

space. In particular, we performed a steepest descent simulation with each of these selected

maps. At each step in these simulations, we identified all the neighbors, M′, of a given map,

M, and then moved to the neighbor, M′
∗, with greatest spectral quality. The quench ended

when we reached a map, Mm, with greater spectral quality than any of its neighbors.

F. Metrics

We characterize the physical size of the sites defined by a CG mapping, M, by the radius

of gyration, Rg(M). We denote r∗iα as the α Cartesian coordinate of atom i in the atomically

detailed PDB reference structure. Similarly, we denote R∗
Iα = R∗

Iα(M) = n−1
I

∑︁
i∈VI

r∗iα as

the α Cartesian coordinate of site I in the mapped representation of the PDB structure.

For each site I, we define a gyration tensor, GI , with elements:

GI;αγ ≡ GI;αγ(M) ≡ n−1
I

∑︂
i∈VI

δr∗iαδr
∗
iγ, (34)

where δr∗iα = r∗iα − R∗
Iα and 1 ≤ α, γ ≤ 3. We define the gyration radius of site I by

R2
g;I(M) =

∑︁3
α=1 GI;αα The gyration radius of the map is then Rg(M) = N−1

∑︁N
I=1Rg;I(M).

We quantify the sequence similarity between two CG representations based upon the

variation of information (VI), which quantifies the overlap between the corresponding atomic

partitions.104 Consider a mapping, M ∼ [G1, . . . , GN ] where GI = (VI , EI) is the subgraph

associated with site I. We define PI(M) = |VI |/n as the probability of randomly selecting

an atom that is associated with site I, where |VI | is the number of atoms in VI . We define

H1(M) = −
N∑︂
I=1

PI(M) lnPI(M) (35)

as the information stored in PI(M). Now consider a second mapping, M′ ∼ [G′
1, . . . , G

′
N ],

where G′
I′ = (V ′

I′ , E
′
I′) is the subgraph associated with site I ′ in M′. We define |VI ∩ V ′

I′| as
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the number of atoms in the set VI ∩ V ′
I′ . We then define PII′(M,M′) = |VI ∩ V ′

I′|/n as the

probability of randomly selecting an atom that is associated with both site I in M and also

site I ′ in M′. Given the two representations, M and M′, we define the total information,

H2(M,M′), and the mutual information, MI(M,M′), associated with the corresponding

partitions by

H2(M,M′) = −
N∑︂
I=1

N ′∑︂
I′=1

PII′(M,M′) lnPII′(M,M′) (36)

MI(M,M′) = −
N∑︂
I=1

N ′∑︂
I′=1

PII′(M,M′) ln

[︃
PII′(M,M′)

PI(M)PI′(M′)

]︃
. (37)

The VI quantifies the information in PII′(M,M′) that is not shared between the two map-

pings:

VI(M,M′) = H2(M,M′) − MI(M,M′) = H1(M) + H1(M
′) − 2MI(M,M′). (38)

Since VI defines a formal distance metric between partitions,104 we quantify the distance of

M from the ground state representation, M0, by d0(M) ≡ VI(M,M0).

V. RESULTS

A. The AA Model

In the present work, we adopt an α-carbon Gaussian network model (GNM) as a high

resolution model for the equilibrium fluctuations of ubiquitin. This GNM represents each of

the n = 72 amino acids with its α-carbon and introduces a linear spring between each pair

of amino acids that are in contact in the equilibrium folded structure. Figure 2a presents a

ribbon structure of the equilibrium ubiquitin structure, while indicating the α carbons with

yellow spheres.

The top half of Fig. 2b presents the upper half (j > i) of the corresponding Kirchhoff

matrix, κij = −θij, where θij is the contact matrix for ubiquitin, i.e., θij = 1 if amino

acids i and j are in contact and 0 otherwise. The blue marks along the diagonal, j = i + 1,

correspond to consecutive amino acids along the protein backbone. We adopt a GNM cutoff,

rc = 7.5 Å, that also introduces a bond between each pair of next-nearest neighbors along

the chain, j = i + 2. The thickened band along the diagonal for 20 < i < 33 corresponds to
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C

N

FIG. 2. High-resolution GNM for ubiquitin. Panel a presents a cartoon ribbon structure for

the equilibrium folded structure. The amino acids are colored by secondary structure, while the

yellow spheres indicate the α carbons. N and C indicate the α carbons for amino acids i = 1

and 72, respectively. Panel b presents intensity plots of the Kirchhoff matrix, κ, (top half) and

the dimensionless vibrational covariance matrix, βΓcv = κI, (bottom half) for the high-resolution

GNM. The color bars along the axes of panel b indicate the secondary structure of each residue in

panel a.

non-bonded contacts between successive turns of the α helix, while the band that is farther

from the diagonal for 20 < i < 33 reflects non-bonded contacts between the α helix and β

sheet. Conversely, the longer bands that are parallel and anti-parallel to the main diagonal

correspond to contacts between parallel and anti-parallel β strands, respectively.

The bottom half of Fig. 2b presents an intensity plot of the vibrational covariance matrix,

cv, for the high resolution GNM. The vibrational covariance matrix indicates strong corre-
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lation along the backbone and within the α helical region, as well as between contacting

β strands. Conversely, the covariance matrix indicates that the motion of the α helix and

contacting β strands appear to be anti-correlated.

B. Mapping Space

In this work, we investigate the space, MN , of N -site CG representations for ubiquitin.

Each CG representation corresponds to a mapping, M, that partitions the n = 72 α carbons

into N disjoint connected groups and associates a CG site with the mass center of each group.

We explore MN with an ergodic steal move set. Starting from valid representation M, each

steal move generates a new representation M′ by moving a single atom between CG sites.

We employ several metrics to characterize the quality of a given map, M. In particular,

we focus on the spectral quality, Q(M), and the information content, I(M), which are both

defined in Section II. The spectral quality, Q(M), quantifies the extent to which M preserves

low-frequency, large-amplitude motions. Conversely, the information content, I(M), quan-

tifies the fraction of non-trivial configurational information that is preserved by M. We also

define the site-size variance, σ2(M) = var{|V1|, . . . , |VN |}, where |VI | is the number of atoms

associated with site I. This metric quantifies the heterogeneity of the mass-distribution

defined by the mapping.

We define an equilibrium distribution for MN according to

PN(M; β, λ) ∝ exp
[︁
−β

(︁
E(M) + λσ2(M)

)︁]︁
, (39)

where E(M) = 1−Q(M) biases sampling towards maps with high spectral quality and β is

the conjugate inverse temperature. In order to facilitate sampling diverse representations,

we supplemented E(M) with a term λσ2(M), where λ is analogous to a pressure. For a

given N , we define the “ground state” map, M0, as the N -site map that minimizes E and,

equivalently, maximizes the spectral quality, Q.

The top half of Fig. 3 presents the ground state representations, M0, for N = 2, 3, and 12.

In the lowest resolution case, N = 2, M0 assigns the β sheet to one site, while assigning the

α helix and loops that are above the β sheet to the second. This representation corresponds

to a rather homogeneous mass distribution, σ2(M0) = 4, with one site representing 38

residues and the second site representing 34 residues. Nevertheless, it would not be sampled
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FIG. 3. CG representations of ubiquitin that maximize Q (top) and I (bottom). The left, center,

and right columns correspond to N = 2-, 3-, and 12-site representations, respectively. The colors

in the ribbon structures and in the linear sequence representation below each structure indicate

the CG site that is associated with each amino acid.

in a canonical ensemble that required all sites to represent the same number of residues.

Additionally, it is worth noting that the two CG sites do not correspond to consecutive

residues in the protein sequence. Consequently, this representation would not be identified

by algorithms that sampled representations by shifting the boundaries between contiguous

atomic groups. In the case N = 3, the ground state representation again maps the β sheet

and α helix to their own sites, while mapping the neighboring loop regions to the third site.

Interestingly, the N = 3 ground state essentially retains the β-sheet site from the N = 2

ground state, while splitting the remaining residues approximately even between the second

and third sites. This results in a rather inhomogeneous mass distribution, σ2(M0) = 72.67,

in which the blue site, red, and yellow sites correspond to 36, 19, and 17 amino acids,

respectively. The ground state map is more complex for N = 12. Nevertheless, the different

sites again correspond to coherent structural features.

These ground state maps partition atoms such that the majority of the bonds in the

underlying AA model are “intra-site” bonds, i.e., bonds between two atoms that have been

mapped to the same site. In particular, the ground state maps for N = 2 and 3 partition

atoms such that 92% and 88%, respectively, of the AA bonds are intra-site bonds. Even the

relatively high-resolution N = 12-site ground state partitions atoms such that 57% of the

AA bonds are intra-site bonds. Conversely, these ground state maps are characterized by
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relatively few “inter-site” bonds, i.e., AA bonds between atoms in distinct sites. Thus, the

ground state maps maximize the mass-weighted displacements of the CG sites by associating

them with rigid atomic groups that are minimally constrained by inter-site bonds.

The bottom half of Fig. 3 presents the representations, MI , that maximize I(M) for N =

2, 3, and 12. Even in the lowest resolution case, N = 2, MI divides the α helix and β sheet

rather evenly between the two CG sites. In all three cases, the sites in maximally informative

mappings do not correspond to coherent structural features. These maps correspond to

loosely connected atomic groups with relatively few intra-site bonds and relatively many

inter-site bonds. The maximally informative maps for N = 2, 3, and 12 partition atoms

such that 62%, 75%, and 77% of the AA bonds are inter-site bonds. These inter-site bonds

strongly constrain the motion of the CG sites in the mapped ensemble, which results in a

relatively narrow and, thus, highly informative mapped distribution.

These findings are consistent with the work of Giulini et al., who observed that mini-

mizing Hmap – which corresponds to maximizing I – resulted in CG representations that

did not match their physical intuition.41 Interestingly, they also observed that decimation

CG representations with maximal Hmap tended to highlight functionally important residues.

However, while Giulini et al. considered decimation maps that associated CG sites with spe-

cific amino acids, here we have considered “partition” maps that preserve all of the amino

acids and associate CG sites with connected groups of amino acids. The SM demonstrates

that the partition maps with maximal information content, I, do not appear to highlight

functionally important residues.

Our physical intuition suggests that “good” representations should generally associate

CG sites with distinct structural features, e.g., secondary structures, that move coherently.

Maps with maximal spectral quality appear quite consistent with this intuition, while maps

with maximal information content do not. Consequently, we focus on exploring mapping

space with the energy function, E = 1 −Q, that favors maps of high spectral quality.

C. The Landscape

We next consider the “energy landscape” of N -site mapping space, MN , that is specified

by the energy function E = 1 −Q and the steal move set. In this section, we focus on N =

3 and 12 as two representative resolutions for ubiquitin. At each resolution, we performed
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equilibrium Monte Carlo simulations according to the methods described in Sections III and

IV. We then selected representative maps from these Monte Carlo simulations in order to

investigate the minima and connectivity of mapping space.

In order to investigate the minima of the energy landscape, we quenched each represen-

tative map according to the energy function E = 1 − Q.105 At each step in these steepest

descent simulations, we identified all the neighbors of a map and then moved to the neigh-

boring map with lowest energy. The quench ended when the simulation reached a map, Mm,

that had lower energy than any of its neighbors.

2 3

4 5

FIG. 4. Local minima in the energy landscape for N = 3-site representations of ubiquitin. The

top left panel indicates (σ2(Mm),Q(Mm)) for the 10 minima, Mm, most frequently obtained from

quenching simulations. The size of each circle is proportional to the number of quenches that

ended in the corresponding minimum. The top right panel presents the CG representations, Mm,

for m = 2, . . . , 5. The bottom panel presents the partitioning associated with each of the top 10

minima, M1, . . . ,M10. In these two panels, the colors indicate the residues associated with each

site. In particular, the blue, red, and yellow colors indicate the sites associated primarily with the

β sheet, α helix, and remaining loops, respectively.

We performed steepest descent simulations for the 185,112 different N = 3-site repre-

sentations that are described in Section IV E. These quenches ended in 18 distinct local

minima, Mm, in the energy landscape. Table I and Fig. 4 characterize the 10 minima, Mm,

that were most frequently obtained in these quenching simulations. Each circle in Fig. 4
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TABLE I. Properties of the 10 local minima,Mm, that are most frequently obtained from quenching

3- and 12-site representations of ubiquitin.

3 12

Minima Trajectories Q σ2 d0 Minima Trajectories Q σ2 d0

1 101463 0.204 72.67 0.0 1 47379 0.469 1.83 0.0

2 69420 0.202 18.0 0.628 2 6692 0.469 4.67 0.375

3 5202 0.187 8.67 0.864 3 6581 0.466 3.17 0.488

4 4159 0.179 32.67 1.035 4 6132 0.467 4.67 0.508

5 3303 0.154 340.67 0.960 5 5626 0.469 3.5 0.538

6 529 0.178 54.0 1.015 6 5106 0.467 4.67 0.194

7 380 0.176 44.67 1.19 7 4683 0.466 4.33 0.313

8 333 0.136 208.67 0.828 8 3853 0.467 5.5 0.274

9 162 0.159 128.67 0.834 9 3462 0.467 3.67 0.674

10 117 0.177 56.0 1.072 10 3378 0.465 5.33 0.326

indicates the spectral quality, Q(Mm), and site variance, σ2(Mm), of a particular minimum,

Mm, while the size of the circle indicates the number of quenches that ended at Mm. The

overwhelming majority, ≈ 98 %, of quenches ended in local minima with very high spectral

quality, Q(Mm) > 0.175. Moreover, the corresponding basins of attraction span the entirety

of mapping space. Thus, it appears that M3 is highly connected with surprisingly few local

minima.

The five minima with the largest basins accounted for 99% of the quenches and correspond

to similar, physically reasonable representations. As shown in the top right panel of Fig. 4,

these representations tend to map the β sheet and α helix to separate sites, while assigning

the third site to different loop regions of the protein. In particular, the local minimum,

M1, with the largest basin of attraction accounted for 55% of the quenches and corresponds

to the 3-site ground state, M0, which is shown in Fig. 3. A second, nearly degenerate

local minimum, M2, attracted 38% of the quenches. This second minima corresponded to

a very similar representation in which part of the last β strand is mapped with the turn

and loop regions. Interestingly, the fifth minimum, M5, is characterized by a particularly

inhomogeneous mass distribution, σ2(M5) = 340.67
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Table I and the supplementary material present corresponding results for quenching

358,000 distinct N = 12-site representations. These quenches identified 8595 distinct

minima. We analyzed 10 distinct minima that were each obtained from at least 3000

quenches. All of these 10 minima have very high and nearly equivalent spectral quality,

0.46 ≤ Q(Mm) ≤ 0.47 and very homogeneous mass distributions, σ2(Mm) ≤ 6. In partic-

ular, the 12-site local minimum with the largest basin of attraction accounted for 13.2% of

quenches and again corresponds to the ground state, M0, with spectral quality Q(M0) =

0.4689. More generally, 99.9% of the quenches resulted in representations with high spectral

quality, Q(Mm) > 0.44. Consequently, the mapping space for 12-site representations also

appears highly connected. Furthermore, steepest descent optimization appears very likely

to determine physically reasonable CG representations.

a)

b)

FIG. 5. Average length, nm(Q), of quenching simulations that ended in the minimum, Mm, when

starting from initial maps with spectral quality, Q. Each curve, nm(Q), corresponds to a single

minimum, Mm, that is indicated by the legend. Panels a (top) and b (bottom) present results for

N = 3 and 12, respectively.

Figure 5 characterizes the length of the quenching trajectories for 3- and 12-site repre-
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sentations of ubiquitin. Each curve in Fig. 5 corresponds to a local minimum, Mm, that was

identified by at least 103 quenches. For each minimum, we plot the average number, nm(Q),

of quenching steps that were necessary to reach the local minimum, Mm, when starting from

an initial map with spectral quality Q.

Figure 5 indicates that these steepest descent trajectories are quite short and, moreover,

do not dramatically lengthen with increasing resolution. For instance, approximately 50

steps are required to reach a high-quality 3-site map when starting from a very poor 3-

site map with minimal spectral quality Q ≈ 0.016. Similarly, approximately 70 steps are

required to reach a high-quality 12-site map when starting from a low quality map.

The curves, nm(Q), that describe the quenches to different local minima, Mm, are remark-

ably similar. With the exception of the quenches to M5, nm(Q) appears to be almost inde-

pendent of m for N = 3-site representations. Moreover, the slopes, dnm/dQ, appear nearly

independent of both m and also Q. In the case of N = 12-site representations, nm(Q) again

appears almost independent of m. Interestingly, though, the slope of these curves varies

with Q. Specifically, nm(Q) decreases quite slowly with Q for initial maps with relatively

low spectral quality, but decreases more rapidly for initial maps with relatively high spectral

quality. Given a map with spectral quality, Q, one expects that δn ≡ |dnm(Q)/dQ| × δQ

quenching steps are necessary to increase the spectral quality by δQ. Consequently, it re-

quires relatively few steps to increase the spectral quality of relatively poor maps by δQ,

but requires more steps to improve high quality maps by the same increment. This suggests

that, while the energy landscape is generally sloped towards the ground state, this slope

decreases as one approaches the ground state.

Figure 6 characterizes the connectivity of mapping space for N = 3- and 12-site repre-

sentations of ubiquitin. For each of the representative maps, M, we identified and analyzed

the properties of the neighboring maps, M′, that are separated by a single steal move. As

discussed in Sec. III D, a steal move is only allowed if (1) the stolen atom forms an inter-site

connection to a new site; and (2) the stolen atom is not an articulation node that would

disconnect its original site when stolen. The panels of Fig. 6 present box plots characterizing

the distribution of neighbor properties as a function of the spectral quality, Q = Q(M), of

the map, M. In each panel, the solid curve presents the mean of this distribution as a

function of Q. The dashed curves present the first and third quartiles of the distribution,

while the dotted curves present the extrema.
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a)

b)

c)

d)

FIG. 6. Neighbor analysis of maps, M, as a function of their spectral quality, Q(M) = Q. The

top panels characterize the number of neighbors, CM, while the bottom panels characterize the

spectral quality of these neighbors. The left and right panels present results for N = 3- and 12-site

representations of ubiquitin, respectively. Each panel presents a box plot of the corresponding

distribution as a function of Q. The solid curves indicate the mean, the dashed curves indicate the

first and third quartile, and the dotted lines indicate the extrema of each distribution. The dotted

red curve in the bottom panels indicates the line y = x.

We define the coordination number, CM, of a map, M, as the number of its neighbors or,

equivalently, as the number of possible steal moves starting from M. The mean coordination

number of low-resolution 3-site maps is 59 with a standard deviation of approximately 16.

Conversely, the mean coordination number for high-resolution 12-site maps is 116 with a

standard deviation of approximately 19. The top panels of Fig. 6 characterize the coor-

dination number, CM, of maps as a function of their spectral quality, Q = Q(M). The

coordination number, CM, appears to vary relatively little with the spectral quality of M.

Interestingly, the average coordination number, C(Q), tends to slightly decrease with spec-

tral quality among N = 3-site representations but tends to slightly increase with spectral

quality among N = 12-site representations. We hypothesize that this reflects a competition

between surface and volume properties of CG sites. The following subsection demonstrates

that representations with relatively high spectral quality generally correspond to spatially

compact sites. Because compact sites are characterized by relatively little surface area, they

form relatively few inter-site connections that are required for stealing atoms. Similarly,
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because compact sites tend to be densely connected, they contain relatively few articulation

nodes that would disconnect the site if removed. We hypothesize that the surface effect

dominates at low resolution: CM tends to decrease with increasing Q because higher quality

sites include fewer surface atoms that form the necessary inter-site connections for being

stolen. Conversely, we hypothesize that the volume effect dominates at high resolution:

CM tends to increase with increasing Q because higher quality sites have fewer articulation

nodes that cannot be stolen.

The bottom panels of Fig. 6 characterize the distribution of spectral quality, Q′ = Q(M′),

for the neighbors, M′, of a map, M, with spectral quality, Q = Q(M). Clearly, each map,

M, and its neighbors, M′, tend to have extremely similar spectral quality. The mean of

these distributions is very close to the line y = x, which is indicated by the dotted red line.

Moreover, the first and third quartiles of this distribution span a spectral quality range of

approximately .005, which is a very small fraction of the range sampled across mapping

space.

D. Statistical Properties

We next investigate the statistical properties of mapping space for N = 3- and 12-site

representations of ubiquitin. Figure 7 presents intensity plots of the corresponding two-

dimensional (log) densities of states, ln ΩN(σ2,Q), as a function of the spectral quality, Q,

and the site-size variance, σ2. While our prior investigation of mapping space considered

only a “canonical” ensemble with σ2 = 0,59 here we have ergodically sampled the entire

space of maps with N connected sites.

In the case of low resolution N = 3-site representations, mapping space is dominated

by maps with relatively low spectral quality and low site-size variance. In particular, the

canonical slice, σ2 = 0, spans almost the entire range of spectral qualities sampled by N = 3-

site representations. Conversely, in the case of higher resolution N = 12-site representations,

mapping space is dominated by maps with moderate spectral quality and comparatively

greater site-size variance. The canonical slice, σ2 = 0, for N = 12 only includes maps

with relatively high spectral quality. Thus, 12-site representations with low spectral quality

appear to be characterized by relatively inhomogeneous mass distributions.

Figure 7 demonstrates that the canonical slice, σ2 = 0, includes representations with very
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a)

b)

FIG. 7. Intensity plot of the two-dimensional (log) density of states, lnΩN (σ2,Q), for CG

representations of ubiquitin as a function of site-size variance, σ2, and spectral quality, Q. The

top and bottom panels present results for N = 3- and 12-site representations, respectively. We

have shifted lnΩN to 0 for the point (σ2,Q) with minimal sampling. White regions correspond to

points for which no maps have been sampled. In particular, the spectrum of the discrete variable

σ2 becomes increasingly sparse as σ2 increases.

high spectral quality at both resolutions. Moreover, Fig. 7 indicates that Q and σ2 tend to

be negatively correlated, i.e., maps with uniform mass distributions tend to have relatively

high spectral quality. However, this correlation is not as strong as might be expected.

There exist maps at every resolution with rather inhomogeneous mass distributions and also

relatively high spectral quality. In particular, the N = 3 ground state corresponded to a

rather heterogeneous mass distribution with σ2 = 72.67, while the local minima in M3 were

characterized by a rather wide range of σ2. Furthermore, as just noted, the overwhelming

majority of N = 3 representations are characterized by homogeneous mass distributions and

low spectral quality.

Figure 8 investigates the correlation between the spectral quality, Q, and three other

metrics that are defined in Section IV. The left, center, and right columns present intensity

plots of two-dimensional (log) densities of states, ln ΩN , for Q with (1) the information

content, I(M); (2) the average radius of gyration for the corresponding CG sites, Rg(M);

and (3) the distance, d0(M) = ||M−M0||, of M from the ground state, M0. In particular,
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FIG. 8. Intensity plots of two-dimensional (log) densities of states, lnΩN , for the spectral quality,

Q, with three other metrics: (1) the information content, I (left); (2) the CG site size, Rg (center);

and (3) the distance, d0, from the ground state, M0 (right). The top and bottom panels correspond

to N = 3- and 12-site representations of ubiquitin.

the distance, d0(M), quantifies the overlap of the partitions (i.e., the atomic groups) defined

by M and M0. For calibration, N = 3- and 12-site maps, M, are characterized by an average

distance d = ⟨d(M,M′)⟩ = 0.12 and 0.083, respectively, from their neighbors, M′.

While the information content, I, and spectral quality, Q, appear quite strongly anti-

correlated among low-resolution representations, they appear weakly correlated among high-

resolution representations. Conversely, Rg is strongly anti-correlated with Q at all resolu-

tions. Thus, maps with high spectral quality are characterized by spatially compact sites.

Finally, the right column demonstrates that the spectral quality is also anti-correlated with

the distance, d0, from the ground state. However, the set of maps that are a fixed distance

from the ground state is characterized by a very wide range of spectral qualities. Similarly,

the set of maps with high spectral quality are characterized by a rather wide range of dis-

tances from the ground state, i.e., a very diverse set of partitions. We hypothesize that

this diversity of high-quality representations may be the source of the variation in the slope,

dnm(Q)/dQ, that was observed in Fig. 5. Some high-quality representations may correspond

to partitions that are very different from the ground state and, consequently, may require

many quenching steps to reach a local minimum in the energy landscape.
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E. Resolution Variation

a)

b)

FIG. 9. Distribution of spectral quality, Q, for CG representations of ubiquitin. The top panel

presents the one-dimensional (log) density of states, lnΩN (Q) for all simulated resolutions. The

bottom panel presents box plots characterizing the distribution of Q for each N as a function of

C = n/N . In these box plots the horizontal black line indicates the mean, the box indicates the

first and third quartiles of the distribution, and the whiskers indicate the extrema. The dotted

blue curve in the bottom panel plots the näıve expectation 1/C. The legend indicates the number,

N , of CG sites for each resolution.

Having examined mapping space, MN , for two representative resolutions, N = 3 and

12, we now systematically examine the impact of resolution, N , upon the properties of

MN . In particular, Fig. 9 investigates the impact of resolution upon the spectral quality,

Q. Figure 9a plots the logarithm of the one-dimensional density of states, ln ΩN(Q), with

respect to the spectral quality, Q, for resolutions ranging from N = 2 (blue) to N = 24
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(pink). Figure 9b presents a box plot indicating the mean, quartiles, and extrema of the

corresponding distributions as a function of coarsening, C = n/N , which corresponds to the

average number of amino acids associated with each site. The dotted blue curve in Fig. 9b

presents a näıve expectation for the typical spectral quality of N -site representations, i.e.,

1/C,

The density of states, ln ΩN(Q), features a single prominent maximum at each resolu-

tion, N . Consequently, the mapping space, MN , for each resolution is characterized by

a very large number of maps with a typical spectral quality, Q∗
N . This typical spectral

quality systematically decreases with resolution. For relatively high resolutions, C ≤ 8, the

typical spectral quality, Q∗
N , is significantly greater than the näıve expectation 1/C. For

instance, when N = 18 and C = 4, Q∗
N ≈ 0.4, which is significantly larger than 1/C = 0.25.

However, at very low resolutions, C > 18, the typical spectral quality is less than näıvely

expected. This reflects an interesting “tilt” in Fig. 9a, as the maximum of ln ΩN(Q) shifts

from relatively high to relatively low spectral quality with decreasing resolution.

The one-dimensional densities of states, ln ΩN(Q), are remarkably broad. There are very

rare maps at each resolution with much greater spectral quality than Q∗
N . In particular, the

ground state map always has significantly greater spectral quality than näıvely expected.

Moreover, because the densities of states overlap significantly, higher resolution maps do

not necessarily have higher spectral quality. For instance, there exist rare N = 4-site

representations with higher spectral quality than either typical N = 9-site representations

or poor N = 24-site representations. These observations are generally consistent with our

prior study in the canonical ensemble.59

It is worth noting that the one-dimensional densities of states in Fig. 9 appear to system-

atically broaden with increasing resolution. In contrast, our prior canonical study indicated

that the one-dimensional densities of states, ln ΩN(Q), became more narrow with increasing

resolution. This distinction reflects the difference in the two-dimensional densities of states,

ln ΩN(σ2,Q), for N = 3 and N = 12 in Fig. 7. The canonical slice, σ2 = 0, essentially spans

the entire spectral quality range for low resolution representations. However, the canonical

slice omits a large range of spectral qualities for higher resolution representations.

Figure 10 similarly analyzes the one-dimensional densities of states, ln ΩN(I), quantify-

ing the number of N -site maps with a given information content, I. (The SM presents a

corresponding density of states for the mapping entropy, Hmap.) Figure 10 demonstrates
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b)

a)

FIG. 10. Distribution of information content, I, for CG representations of ubiquitin. The top

panel presents the one-dimensional (log) density of states, lnΩN (I) for all simulated resolutions.

The bottom panel presents box plots characterizing the distribution of I for each N as a function

of C = n/N . In these box plots the horizontal black line indicates the mean, the box indicates the

first and third quartiles of the distribution, and the whiskers indicate the extrema. The dotted

blue curve in the bottom panel plots the näıve expectation 1/C. The legend indicates the number,

N , of CG sites for each resolution.

that MN is also characterized by a large number of maps with typical information con-

tent. This typical information content, I∗N , decreases with coarsening but is always larger

than the näıve expectation of 1/C. Interestingly, ln ΩN(I) is considerably more narrow than

ln ΩN(Q). Thus, in comparison to the spectral quality, the information content appears less

sensitive to the details of the particular mapping.

Figure 11 investigates the impact of resolution upon the correlation between spectral

quality, Q, and information content, I. Because the densities of states overlap, we plot
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FIG. 11. Contour plots of the two-dimensional (log) density of states, ΩN (Q, I), for all simulated

resolutions of ubiquitin. The plots are colored according to the number, N , of CG sites. For each

N , the inner three contours indicate where ΩN decreases to 75%, 50%, and 25% of its maximum

value, while the outer-most contour corresponds to the boundaries of sampled maps.

contours of ln ΩN(Q, I) for each resolution. As just noted, the mapping space, MN , for each

resolution is characterized by a very wide range of spectral qualities, but a comparatively

narrow range of information content.

For low resolution representations, N ≤ 4, Q and I appear quite strongly anti-correlated,

as already noted in Fig. 8 and in our prior study. Interestingly, typical maps for these low

resolutions (i.e., maps near the peak of ln ΩN(Q, I)) are characterized by I > Q. Conversely,

maps with relatively high spectral quality are characterized by minimal information content.

Consequently, it is not possible to simultaneously optimize both Q and I for low-resolution

representations.

The situation is rather different for higher resolution representations with N ≥ 9. At

these higher resolutions, typical maps are characterized by Q > I. Moreover, Q and I

demonstrate a weak positive correlation among higher resolution maps. This somewhat

differs from our prior study,59 which did not notice a significant correlation between Q

and I in the canonical ensemble for higher resolutions. Consequently, it may be possible to

simultaneously optimize both Q and I for high-resolution representations. More importantly,

though, we again observe a qualitative distinction between mapping space for low- and high-

resolutions.

Figure 12 characterizes the thermodynamics associated with sampling mapping space at
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a)

b)

FIG. 12. Thermodynamics of sampling mapping space. The top panel presents the mean spectral

quality, Q(T ) = ⟨Q⟩T , as a function of temperature, T = β−1, for λ = 0.01 ≈ 0. The bottom

panel presents the scaled variance, σ2
Q(T ) = σ2

Q(T )/σ
2
Q(T∞), where σ2

Q(T ) =
⟨︂(︁

Q−Q(T )
)︁2⟩︂

T

and T∞ = 100.

each resolution. In particular, the top panel presents the average spectral quality, Q(T ) =

⟨Q⟩T , as a function of the sampling temperature, T = β−1, that is conjugate to Q. Figure 9

indicates that the maximum in the one-dimensional density of states, ΩN(Q), occurs at

moderate spectral quality for high resolution maps, but occurs at very low spectral quality

for low resolution maps. Consequently, the entropic T → ∞ limit in Fig. 12 corresponds to

moderate quality maps at high resolutions, but very low quality maps at low resolutions.

By definition, the spectral quality systematically increases with decreasing temperature.

In the case of high-resolution representations, N ≥ 9, the spectral quality gradually increases

across a rather wide temperature range. In contrast, the spectral quality transitions from low
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to high values over a relatively narrow temperature range for low-resolution representations,

N ≤ 4.

The bottom panel of Fig. 12 presents the scaled variance in the spectral quality, σ2
Q(T ) =

σ2
Q(T )/σ2

Q(T∞), where we define T∞ = 100 as our infinite temperature limit. In the case of

high-resolution representations, σ2
Q(T ) monotonically decreases as T decreases. However, in

the case of low-resolution representations, σ2
Q(T ) peaks in the transition region, as would

be expected for a physical phase transition in a mechanical model. This peak is first visible

for N = 4 and grows with decreasing resolution, which suggests that N = 4 is near to a

“critical resolution.”

The Supplementary Material investigates the impact of this transition upon the physical

size, Rg, of CG maps and their distance, d0, from the ground state. These calculations

demonstrate that as the temperature decreases through this transition, low-resolution maps

become both more compact and also closer to the ground state. Moreover, the fluctuations in

these metrics increase in the transition temperature range for low-resolution representations

with N ≤ 4 but not for high-resolution representations with N ≥ 9. This transition and

the suggestion of a critical resolution are both highly consistent with our prior study in the

more restricted canonical ensemble.59

Finally, Fig. 13 analyzes the corresponding free energy surface for the two representative

resolutions, N = 3 and 12, that are below and above the suggested critical resolution,

respectively. Specifically, we present the dimensionless free energy, βF (Q), as a function of

Q for a range of temperatures, T = β−1. In the high-resolution case, N = 12, the minimum

of the free energy surface simply shifts to lower Q with decreasing temperature. Moreover,

the high temperature limit, T → ∞, corresponds to characteristic maps with modest spectral

quality. In the low-resolution case, N = 3, the free energy surface appears more reminiscent

of a physical phase transition. At high temperatures, the minimum of the free energy

surface appears to correspond to a basin of maps with low spectral quality. Conversely

at low temperatures, the minimum of the free energy surface appears to correspond to a

basin of maps with high spectral quality and spatially compact sites. Near the transition

temperature, the minimum quickly shifts from one basin to the other, as would be expected

for a physical phase transition. However, in contrast to our prior study in the canonical

ensemble, we do not find a barrier in the free energy surface at any temperature.
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a)

b)

FIG. 13. Dimensionless free energy, βF , as a function of Q for a range of temperature, T = β−1.

The left and right panels present results for N = 3- and 12-site representations of ubiquitin,

respectively.

VI. DISCUSSION

In this work we have systematically investigated and characterized the space of CG rep-

resentations for ubiquitin, which is a typical globular protein. Specifically, we considered

representations that partition the protein α carbons into connected groups and associate

a CG site with the mass center of each group. We sampled mapping space by employing

a Markov chain that employs steal moves to generate new maps by moving a single atom

between sites. Importantly, we proved that this steal move set is ergodic. This allowed

us to rigorously sample and statistically characterize the space, MN , of N -site CG rep-

resentations. While our prior study investigated a canonical ensemble in which each site

corresponded to an equal number of amino acids,59 our present study investigated a much
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larger semi-grand ensemble in which each site can represent an arbitrary number of amino

acids.

By adopting the GNM as a simple high resolution model for equilibrium fluctuations

about the protein folded conformation, we are able to exactly assess the intrinsic quality of

each CG representation. We primarily focused on two metrics: the information content and

the spectral quality. The information content, I(M), quantifies the fraction of (non-trivial)

configurational information that is preserved in the mapped ensemble. The information con-

tent is closely related to the mapping entropy, Hmap, which has been previously investigated

by Potestio and coworkers.38,41–44 Conversely, the spectral quality, Q(M), quantifies the

fraction of the mass-weighted covariance that is preserved in the mapped ensemble. Since

the spectral quality favors maps that preserve large-amplitude, low frequency motions, it

appears closely related to the ED-CG metric of Voth and coworkers,50–54 the VAMP metric

of Clementi and coworkers,57 and many other metrics that have been developed to identify

quasi-rigid domains in proteins.46,85,97–100 However, it is important to properly account for

the number of amino acids associated with each site when computing Q(M) for low reso-

lution representations. In particular, Section II showed that Q should not be calculated by

simply mass-weighting the mapped covariance matrix.

We observe striking differences between the maps that maximize I and Q. Maps that

maximize I associate CG sites with loosely connected atomic groups that are constrained

by many inter-site bonds. These representations generate relatively narrow mapped dis-

tributions that preserve configurational information. Conversely, maps that maximize Q

associate CG sites with compact, densely connected atomic groups that correspond to co-

herent structural features as observed in quasi-rigid domains.46,97,98,100 Because these sites are

constrained by relatively few inter-site bonds, these representations generate broad mapped

distributions that preserve large-amplitude motions. Consequently, maps that maximize Q

agree well with our physical intuition, while maps that maximize I do not. Interestingly, if

one employs the distance metric, d0, to quantify the similarity between atomic partitions,

then representations with high spectral quality correspond to a rather diverse set of par-

titions. Moreover, while the spectral quality and the variance in the site-size distribution,

σ2, are anti-correlated, this anti-correlation is weaker than we had expected. In particu-

lar, the overwhelming majority of low-resolution representations are characterized by both

low spectral quality and uniform mass distributions. Furthermore, we find representations
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at every resolution that are characterized by both high spectral quality and also a rather

inhomogeneous mass distribution.

In order to gain insight into MN , we investigated the landscape that is defined by the steal

move set and the energy function, E(M) = 1−Q(M), for N = 3- and 12-site representations.

Our analysis of neighboring maps demonstrated that the coordination number of typical N =

3- and 12- site maps are in the range 59 ± 32 and 116 ± 38, respectively. This coordination

number, CM, depends relatively weakly upon the spectral quality of M. Moreover, we find

that neighboring representations have very similar spectral quality.

Our quenching studies revealed that the energy landscape for MN is highly connected and

characterized by relatively few local minima. The over-whelming majority of quenches ended

in representations with very high spectral quality after relatively few steps. In particular,

the ground state representations with maximal spectral quality had the largest basins of

attraction for both N = 3 and 12. Thus, steepest descent optimization of Q is very likely to

determine a high quality CG representation. Moreover, our quenching studies also suggest

that this energy landscape generally slopes towards the ground state. This gradient appears

independent of Q for N = 3. However, for N = 12, the bottom of the energy landscape

appears relatively flat.

We employed Monte Carlo methods to statistically characterize the space of CG repre-

sentations. At each resolution, MN is dominated by a large number of characteristic maps

with typical information content, I∗N . This typical information content, I∗N , decreases with

coarsening, C = n/N , but is always greater than the näıve expectation of 1/C. Similarly,

MN is also dominated by a large number of characteristic maps with a typical spectral qual-

ity, Q∗
N , that also decreases with coarsening. Interestingly, Q∗

N is significantly greater than

the näıve expectation, 1/C, for modest degrees of coarsening, C ≤ 8, but becomes less than

1/C at lower resolutions, C ≥ 18. Moreover, the densities of states, ΩN(Q), for the spectral

quality are extremely broad. Thus, in comparison to I, Q appears considerably more sensi-

tive to the details of the CG mapping. In particular, there exist very rare representations

at each resolution with spectral quality that is much greater than typical. Consequently,

the spectral quality of representations does not necessarily increase with resolution. For

instance, the N = 4-site ground state representation has similar spectral quality to typical

N = 9-site representations.

The two-dimensional density of states, ΩN(Q, I), reveals an interesting distinction be-
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tween low- and high-resolution representations. In particular, for very low resolution repre-

sentations, N ≤ 4, I and Q appear strongly anti-correlated. Consequently, it appears im-

possible to simultaneously optimize I and Q for low-resolution representations. Conversely,

for relatively high resolutions, N ≥ 9, I and Q are characterized by a slightly positive corre-

lation. We hypothesize that this reversal reflects the spectral features of the CG Kirchhoff

matrix, K = (QNMκIM†QN)I. The spectral quality, Q, emphasizes the smallest eigenvalues

of K that correspond to large amplitude, low frequency motions. (More precisely, Q empha-

sizes the lowest eigenvalues of the mass-weighted CG Kirchhoff matrix, K = G−1
N KG−1

N .)

In contrast, the information content, I, emphasizes the largest eigenvalues of K that corre-

spond to localized, high frequency motions. Following the intuition of the essential dynamics

formalism,55 we expect that the spectrum of K is dominated by relatively few low frequency

modes. CG representations with high spectral fitness will tend to align CG sites to move

along these few low frequency modes. We expect this objective strongly constrains low-

resolution representations, N ≤ 4. However, for higher resolution representations, N ≥ 9,

it appears possible to define CG sites that both lie along the few low frequency modes and

also preserve higher frequency modes that contribute significantly to I.

The thermodynamics associated with sampling mapping space also suggests a qualitative

distinction between high- and low-resolutions. At higher resolutions, N ≥ 9, the average

spectral quality, Q(T ), gradually increases as we decrease the temperature, T , of our Monte

Carlo simulations. However, for sufficiently low resolutions, N ≤ 4, the average spectral

quality rather sharply transitions from relatively low values to relatively high values over

rather narrow temperature range. Moreover, in this narrow temperature range, we observe

large fluctuations in spectral quality that systematically grow with decreasing resolution. As

the temperature decreases through this transition range, the minima of the corresponding

free energy surface rapidly transitions from a basin with relatively low spectral quality to

a basin that is close to the ground state. CG representations in this low temperature

basin are characterized by more compact sites and by partitions that are more similar to

the ground state partitioning. While we do not observe a free energy barrier associated

with this transition, these features are otherwise quite reminiscent of a phase transition in

a physical model for a finite-size system.106–108 In this analogy, N = 4 appears close to a

critical resolution that signals the onset of a phase transition that qualitatively distinguishes

low and high quality representations. Intriguingly, the recent work on decimation mappings
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by Potestio and coworkers also suggested the existence of a phase transition in mapping

space based upon the analogy with the condensation transition in lattice-gas models.42

It is interesting that the mapped distribution and, thus, the renormalized potential for the

GNM have the same form as the underlying AA distribution and potential, respectively.58

This is in stark contrast to more general, nonlinear potentials, for which renormaliza-

tion introduces higher-order, many-body interactions between the remaining CG degrees

of freedom.108 This suggests that it may be interesting for future studies to consider hierar-

chies of renormalized GNM’s. Such a hierarchy of GNM’s may possibly follow scaling laws,

as recently reported for hierarchical CG models of molecular liquids.109

In closing, it is important to emphasize that our study has focused on CG representations

for a very simple high resolution model. In particular, the high resolution GNM describes

protein fluctuations by a simple harmonic potential with a single global minimum. This high

resolution model cannot explicitly describe conformational transitions or any other nontriv-

ial thermodynamic behavior.56 However, the success of network models to study protein

folding and conformational transitions,65–75 suggests that the present approach may possi-

bly be useful in determining CG representations for modeling these very complex and highly

nonlinear processes, although this would certainly require a more sophisticated treatment of

CG dynamics.110–117 Consequently, future studies should certainly investigate the extent to

which insights for the GNM generalize to more complex systems.

Nevertheless, we are optimistic that the GNM provides a qualitatively reasonable descrip-

tion of more complex nonlinear models that are characterized by equilibrium fluctuations

about a single free energy minimum. Moreover, we speculate that the spectral quality and

information content may prove rather robust metrics for assessing CG representations of

more complex systems that undergo physical phase transitions. Furthermore, we have de-

veloped an ergodic algorithm for sampling the space of CG representations as a function

of relevant order parameters. This algorithm may itself prove useful for optimizing or fur-

ther exploring low-resolution representations. Thus, we hope that the present study will

prove useful for developing CG models of soft materials. Much more generally, we hope

that this study may provide useful insight for understanding and optimizing low-resolution

representations of complex systems.
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SUPPLEMENTARY MATERIAL

See the supplementary material for analysis of mapping space for additional resolutions.
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Appendix: Proof of ergodicity

In this appendix we provide additional background information regarding the graph treat-

ment of CG representations. We also prove several results that imply the ergodicity of the

steal move set. Our proof relies upon several basic definitions and properties of simple

graphs that are found in Gross and Yellen.120

1. Basic graph definitions

A graph G = (V,E) is defined by a set of vertices, V = {v}, and a set of edges, E = {euv},

that connect the vertices. We consider non-directed graphs such that euv and evu refer to

the same edge. The degree of a vertex, v, is the number of edges that connect to v. Given a

graph G, a walk is defined as a sequence of vertices v1, v2, . . . , vn ∈ V such that there is an

edge evi,vi+1
∈ E connecting each successive pair of vertices, vi and vi+1, in the sequence. If

there is a walk from u to v for every pair of vertices u, v ∈ V , then the graph G is connected.

Given G = (V,E), a subgraph, H = (VH , EH), is a graph defined by vertices and edges

in G, i.e., VH ⊂ V and EH ⊂ E. Given a vertex subset U ⊂ V , the subgraph induced on U ,

G(U), is the subgraph defined by the vertex set U and the edge set EG(U) that includes all

edges between the vertices of U , i.e., EG(U) = {euv ∈ E|u, v ∈ U}. Given a vertex, v ∈ V ,

the deletion subgraph G − v is defined by the vertex set VG−v = V − {v} and the edge-set

EG−v that is obtained by removing from E every edge that connects to v. Thus, G − v is

the subgraph of G that is induced by the vertex subset V − {v}.

Given a connected graph, G = (V,E), a vertex v ∈ V is a cut-vertex (articulation node)

if the deletion graph G − v is no longer connected. A graph G is k-connected if at least k

nodes must be deleted from G in order to either disconnect the graph or reduce it to a single

vertex.

Property 1 Any connected graph with more than one vertex contains at least two vertices

that are not cut-vertices.

2. Atomic and CG graphs

The GNM defines a simple graph, G = (V,E), for a protein with n amino acids. The

vertex set V = {1, . . . , n} associates a labelled vertex with each α carbon in the protein. For
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simplicity, we employ the integer, i, to identify both the atom and corresponding vertex. In

particular, G includes two terminal vertices: the N-terminal α carbon is iN = 1 ∈ V , while

the C-terminal α carbon is iC = n ∈ V . The edge set E = {eij|i, j ∈ V, θij = 1} contains

an edge between each pair of vertices that are connected by a linear spring in the GNM

potential. We shall require that a valid protein graph is singly and doubly connected along

the backbone, such that eij ∈ E whenever i, j ∈ V and |i − j| ≤ 2. The Kirchhoff matrix,

κij = niδij − θij, is the Laplacian matrix for G, where ni is the degree of vertex i and θij is

the adjacency matrix.

We assume that the CG mapping, M = (cIi), partitions the atoms into disjoint sites and

defines the coordinates of each site by the mass center of the associated atomic group. Thus,

the mapping, M, determines a vertex set VI = {i ∈ V |cIi > 0} for each site I = 1, . . . , N

such that ∪IVI = V and VI∩VJ = ∅ whenever I ̸= J . The mapping also determines an edge

set EI = {eij ∈ E|i, j ∈ VI} for each site I that corresponds to the linear springs between

atoms associated with the site. For each site I, we define a site graph, GI = (VI , EI), that is

the subgraph of G induced on VI . Therefore, the mapping, M, corresponds to a partitioning

of G, i.e., M ∼ [G1, . . . , GN ]. We define a CG mapping as valid when each site graph, GI ,

is connected. If eij ∈ E is an edge between two atoms i and j that are in different sites,

then we refer to eij as an “out-of-site” edge. For each pair of distinct sites, I ̸= J , we define

EIJ = {eij ∈ E|i ∈ VI , j ∈ VJ} as the set of out-of-site edges.

Lemma 1 Let G = (V,E) be a valid protein graph for an n residue protein. Let GI =

(VI , EI) be a site graph for which 2 ≤ |VI | ≤ n − 1. Then GI contains at least one atom,

i∗ ∈ VI , such that i∗ > 1 and i∗ forms an out-of-site edge. Proof: Define i+ ≡ max{i ∈ VI}.

Note that i+ > 1 because |VI | ≥ 2. There exist two cases. Case 1: i+ ≤ n− 1. In this case,

we define j+ ≡ i+ + 1 ≤ n, such that j+ ∈ V and ei+j+ ∈ E because G is singly connected

along the backbone. Since j+ > i+, j+ /∈ VI and ei+j+ is an out-of-site edge. Therefore,

i∗ = i+ ∈ VI satisfies Lemma 1. Case 2: i+ = n. We define i1 ≡ max{i ∈ VI |i − 1 /∈ VI}.

Because |VI | < n and i+ = n ∈ VI , it follows that i1 > 1. We define j1 ≡ i1 − 1 ≥ 1, such

that j1 ∈ V and ei1j1 ∈ E because G is singly connected along the backbone. The definition

of i1 implies that j1 /∈ VI and, thus, ei1j1 is an out-of-site edge. Therefore, i∗ = i1 ∈ VI

satisfies Lemma 1. Consequently, in either case, there exists at least one atom i∗ ∈ VI such

that i∗ > 1 and i∗ forms an out-of-site edge.
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3. Steal move set

We employ a “steal” move set to explore mapping space. Starting from a valid map,

M ∼ [G1, . . . , GN ], we generate a new map, M′, by transferring an atom i ∈ VI from site I

to a new site J (̸= I), while leaving the remaining N − 2 sites unchanged. This steal move

creates two new sites, G′
I = GI − i and G′

J = GJ + i, that are the subgraphs of G induced

on V ′
I = VI − {i} and V ′

J = VJ ∪ {i}, respectively. The steal move is allowed if the new

map, M′, is a valid map, i.e., if the modified sites, G′
I and G′

J , are both connected. Thus,

atom i ∈ VI is stealable if two conditions are fulfilled: (1) i is not a cut-vertex (i.e., not an

articulation node) of GI and (2) i forms an out-of-site edge, eij ∈ E, with an atom j ∈ V

that is not in site I.

Lemma 2 Given a valid map, M, an allowable steal move, M → M′, is reversible, i.e.,

there exists an allowed steal move M′ → M. Proof: Since the map, M ∼ [G1, . . . GN ], is

valid, each of the site graphs G1, . . . , GN is connected. The allowed (forward) steal move,

M → M′, creates two new sites: GI → G′
I = GI − i and G′

J = GJ + i. Consider the

(reverse) steal move that transfers atom i from site J ′ to site I ′. This creates two new sites,

G′′
I ≡ G′

I + i = GI and G′′
J ≡ G′

J − i = GJ , that correspond to the original connected sites

in M. The forward and reverse steal moves leave the remaining N − 2 sites unchanged.

Therefore, the reverse steal move is allowed and recreates the original map, M′ → M.

4. Block decomposition

Our proof of ergodicity employs the block decomposition of simple graphs, G, as described

in Section 5.4 of Gross and Yellen.120 A block Bk = (Vk, Ek) is a maximally connected

subgraph of G such that Bk has no cut-vertices. For a connected graph, G, with two or

more vertices (and no loops), the blocks are either (1) pairs of vertices that are connected

by an edge or (2) maximal 2-connected subgraphs of G with 3 or more vertices. A block Bk

is a leaf block if it contains exactly one vertex, v ∈ Vk, that is a cut-vertex of G. The set of

blocks, {Bk}, define the block decomposition of G.

This block decomposition, {Bk}, of a graph G = (V,E) has the following useful properties:

2. Two blocks can share at most one vertex.

3. A vertex, v ∈ V , is a member of two or more blocks if and only if v is a cut-vertex of
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G.

4. The block decomposition partitions the edges of G, i.e., ∪kEk = E and Ek ∩ Ek′ = ∅

if k ̸= k′.

5. All graphs with at least one cut-vertex contain at least two leaf blocks.

6. Let B1 and B2 be two blocks of G. Let v1 and v2 be vertices in B1 and B2, respectively,

that are not cut-vertices of G. Then G does not contain an edge from v1 to v2.

The last property leads to a result that is particularly useful for proving the ergodicity of

the steal move-set.

Lemma 3 Let G = (V,E) be a valid atomic protein graph. Let Bk = (Vk, Ek) be a block

of a connected site graph, GI = (VI , EI). Suppose that i ∈ Vk is not a cut-vertex of the site

graph GI . If eij ∈ E and j /∈ Vk, then i is stealable. Proof: Because i ∈ Vk is not a cut-

vertex of GI , property 3 implies that i is not present in any other block of GI . Because the

block decomposition partitions EI between blocks (property 4), any in-site edge, eit ∈ EI ,

must connect atom i to another atom t in the same block, Bk. Since j /∈ Vk by hypothesis,

it follows that eij /∈ EI . Therefore, the edge, eij ∈ E connects atom i ∈ VI to an atom j

in a distinct site, J (̸= I). Because i is not a cut-vertex of GI and eij is an out-of-site edge,

atom i is stealable.

5. Proposition 1

Let G = (V,E) be a valid protein graph. Let GI = (VI , EI) be a connected site graph

with 2 ≤ |VI | ≤ n − 1. Then GI contains at least one stealable vertex, is ∈ VI , that is not

the N-terminal (i.e., is > 1).

Proof: If GI does not contain a cut-vertex, then the proposition follows directly from

Lemma 1. Conversely, if GI does contain a cut-vertex, then the proposition follows by

finding a leaf block that contains a stealable vertex, is > 1.

Suppose that GI does not contain a cut-vertex. Lemma 1 states that GI contains an

atom i∗ ∈ VI for which i∗ > 1 and i∗ forms an out-of-site edge. Because i∗ ∈ VI and GI does

not contain a cut-vertex, i∗ is stealable. Therefore, is = i∗ fulfills the proposition.

Alternatively, suppose that GI does contain a cut-vertex. Property 5 above implies that

the block decomposition, {Bk}, of GI contains at least two leaf blocks. Since there exist at
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least two leaf blocks and only 2 termini (i.e., iN = 1 and iC = n), there are only two cases

to consider:

A: At least one leaf block does not contain a terminal vertex.

B: The block decomposition contains only two leaf blocks and both leaf blocks contain a

terminal vertex.

In both cases, we select a single leaf block, Lb = (Vb, Eb), of GI . In case A, we select a

leaf block that does not contain a terminal vertex. In case B, we select the leaf block that

contains iC = n, but not iN = 1. In either case, Lb does not contain the N-terminal. Thus,

if Lb contains a stealable vertex, is ∈ Vb, then is satisfies the proposition.

In both cases, the selected leaf block, Lb, contains at least two vertices, |Vb| ≥ 2, and only

one vertex, c, that is a cut-vertex of the site graph GI . Consequently, the set Vb|c = Vb−{c}

is a non-empty set of vertices that are not cut-vertices of GI . We define the maximal and

minimal vertices in Vb|c: i+ = max{i ∈ Vb|c} and i− = min{i ∈ Vb|c}. We also define

j+ = i+ + 1 and j− = i− − 1, such that j+ ̸= j− and j+, j− /∈ Vb|c.

case A In case A, we choose a leaf block, Lb = (Vb, Eb), that does not contain a terminal

vertex. Because i−, i+ ∈ Vb, it follows that 2 ≤ i− ≤ i+ ≤ n − 1. Consequently, 1 ≤ j− <

j+ ≤ n, which implies that both j+, j− ∈ V . Because j+ ̸= j− and j+, j− /∈ Vb|c, at least one

vertex of the pair {j+, j−} is not an element of Vb. We denote this vertex as j′ /∈ Vb and

define i′ as the corresponding vertex in the pair {i+, i−}. Then ei′j′ ∈ E because i′, j′ ∈ V ,

|j′ − i′| = 1, and the valid protein graph, G, is singly connected along the backbone. Since

j′ /∈ Vb and i′ ∈ Vb|c ⊂ Vb is not a cut-vertex of the site graph GI , Lemma 3 implies that

is = i′ ∈ VI is stealable.

case B In case B, we choose a leaf block, Lb = (Vb, Eb), that contains the C-terminal

vertex, but not the N-terminal vertex, i.e., iC = n ∈ Vb and iN = 1 /∈ Vb. In this case, 2 ≤ i−

such that j− ≥ 1 ∈ V and ei−j− ∈ E, but i+ may be the C-terminal vertex, iC = n. If

i+ < n, then 1 ≤ j− < j+ ≤ n, such that j−, j+ ∈ V and the proposition follows exactly as

in case A. Conversely, if i+ = n, then the proof is more cumbersome because j+ /∈ V and we

must focus on j−. Note that i− ∈ Vb|c is not a cut-vertex of GI and j− /∈ Vb|c. However, we

must consider whether j− is the cut-vertex, c, of GI . If j− ̸= c, then j− /∈ Vb and Lemma 3

implies that is = i− ∈ VI is stealable. In contrast, if j− = c, then j− ∈ Vb. This implies that

j− ≥ 2 and, moreover, j− is the minimal element of Vb. We define j2− = j− − 1 ≥ 1, such
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that j2− ∈ V but j2− /∈ Vb. We now rely upon the double-connectivity along the backbone,

such that ei−j2− ∈ E because i− − j2− = 2 and i−, j2− ∈ V . Consequently, is = i− ∈ VI is

stealable also if j− = c.

Thus, in either case A or B, there exists a vertex is ∈ VI that is stealable and is > 1.

Therefore, proposition 1 holds irrespective of whether GI contains a cut-vertex.

6. Proposition 2

a. Preliminary considerations

Let G = (V,E) be a valid protein graph with vertex set V = {1, 2, . . . , n}. The edge set

E = {eij|i, j ∈ V, θij = 1} is singly and doubly connected along the backbone, i.e., eij ∈ E

for all i, j ∈ V such that |i− j| = 1 or 2.

We define the N -site “monster” map M∗
Nm ∼ [G∗

1m, . . . G
∗
Nm]. Each of the first N−1 sites

of M∗
Nm is associated with the corresponding single atom, i.e., V ∗

im = {i} for i = 1, . . . , N−1.

The last site is associated with the remaining n−N+1 atoms, i.e., V ∗
Nm = {N,N+1, . . . , n}.

Given G, we define a truncated (and shifted) protein graph, G(k) = (V (k), E(k)), by elim-

inating the first k N-terminal vertices from G and then shifting the labels of the remaining

nk ≡ n − k vertices by k. The vertex set V (k) = {1, 2, . . . , nk} corresponds to the last nk

vertices of V , i.e., each i ∈ V (k) corresponds to a vertex iR ≡ i + k ∈ V of the original

graph, G. The edge set, E(k), is the set of edges among the corresponding vertices of the

original graph, i.e., E(k) = {eij|i, j ∈ V (k), ei+k,j+k ∈ E}. Note that E(k) includes all of the

edges among the vertices i, j ≥ k + 1 of the original graph, G. In particular, the truncated

graph G(k) is singly and doubly connected along the backbone. Consequently, G(k) is a valid

protein graph for a protein with nk amino acids.

Let M(k) ∼ [G
(k)
1 , . . . , G

(k)
Nk

] be a map that represents the truncated graph, G(k), with

Nk ≡ N − k sites. The map, M(k), corresponds to a unique map, M
(k)
R , that represents G

with N sites:

M
(k)
R ∼ [G∗

1m, . . . , G
∗
km, G

(k)
k+1R, . . . , G

(k)
NR]. (A.1)

The first k sites of M
(k)
R correspond to the first k sites of M∗

Nm, i.e., to the individual atoms

1, . . . , k in the original protein graph. The last Nk sites of M
(k)
R are obtained from the sites

of M(k). Specifically, for I = 1, . . . , Nk, the site vertex set is V
(k)
k+IR = {k + i|i ∈ V

(k)
I },
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while the site edge set is E
(k)
k+IR = {ei+k,j+k|eij ∈ E

(k)
I }. Importantly, the relabelled site

G
(k)
k+IR = (V

(k)
k+IR, E

(k)
k+IR) is a connected site graph for the original graph, G, if and only if

G
(k)
I = (V

(k)
I , E

(k)
I ) is a connected site graph for the truncated graph, G(k). Consequently,

M
(k)
R is a valid map for G if and only if M(k) is a valid map for G(k). Moreover, a steal move

M
(k)
R → M

(k)′

R is allowed for G if and only if M(k) → M(k)′ is allowed for G(k).

b. Statement of proposition 2

Starting from any allowed N -site CG mapping, M ∼ [G1, . . . , GN ], it is possible to reach

M∗
Nm via a series of steal moves.

c. Proof of proposition 2

We first provide a brief summary of the proof. Starting from M ∼ [G1, . . . , GN ], we steal

atoms from site 1 until it contains only the N -terminus of the protein. Proposition 1 implies

that these steal moves are allowed. Then at each subsequent step k ≥ 1, we hold the first

k sites fixed and treat the remaining n− k atoms as a truncated protein that we represent

with N−k sites. Because the truncated protein corresponds to a valid protein graph, we can

apply proposition 1 in each iteration to reduce the next site, I = k+ 1, to the corresponding

single atom, i = k + 1. After completing this for step k = N − 2, we have transformed M

to M∗
Nm. Below we give a more detailed proof.

Step 0: Given a valid protein graph, G = (V,E), with V = {1, . . . , n}, we define G(0) =

(V (0), E(0)), where V (0) = V and E(0) = E. Given the valid mapping, M, we relabel the sites

as necessary so that the N-terminus, iN = 1, is in site 1. This leads to M
(0)
1 ∼ [G

(0)
1;1, . . . , G

(0)
N ;1],

where iN = 1 ∈ V
(0)
1;1 and each site graph, G

(0)
I;1, is connected. Without loss of generality,

we assume that the first site graph, G
(0)
1;1, contains more than one vertex, i.e., |V (0)

1;1 | > 1.

Proposition 1 implies that we can steal an atom i1 ∈ V
(0)
1;1 with i1 > 1 from the first site.

This steal move leads to a new allowed map, M
(0)
2 ∼ [G

(0)
1;2, . . . , G

(0)
N ;2], where G

(0)
1;2 = G

(0)
1;1− i1

and all of the sites are connected. By proposition 1, we can continue to steal atoms from

site 1 until its graph has been reduced to the N-terminal vertex, iN = 1. At this point, we

relabel the CG sites such that site 2 contains the atomic vertex i = 2. We obtain a valid

map M
(0)
∞ ∼ [G

(0)
1;∞, G

(0)
2;∞, . . . , G

(0)
N ;∞] with G

(0)
1;∞ = G∗

1m = {1}, vertex i = 2 ∈ V
(0)
2;∞, and each
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site is connected.

For each iteration, k = 1, . . . , N − 2, we define nk = n − k and Nk = N − k. We then

perform the following two steps.

Step 1: We now eliminate vertex i = 1 (and its edges) from G(k−1) and shift the labels

of the remaining nk vertices i → i − 1 in order to obtain the truncated (and shifted)

protein graph, G(k) = (V (k), E(k)). As described above, G(k) is a valid protein graph with

V (k) = {1, . . . , nk} that is singly and doubly connected along the backbone. Similarly, we

remove the first site from M
(k−1)
∞ while shifting the vertex and site labels by 1, i.e., i → i−1

and I → I − 1. The resulting map, M
(k)
1 ∼ [G

(k)
1;1, . . . , G

(k)
Nk;1

], is a valid Nk-site map for

the nk-vertex graph, G(k), with the N-terminus of the truncated protein in the first site,

G
(k)
1;1. Note that the Nk-site map, M

(k)
1 , for the truncated nk-atom protein corresponds to a

valid N -site map, M
(k)
1R , for the original n-vertex protein graph, G. The first k sites of M

(k)
1R

correspond to the first k atoms of G, i.e., G∗
1m, . . . , G

∗
km. The remaining Nk sites of M

(k)
1R are

obtained by relabelling the vertices and sites of M
(k)
1 .

Step 2: We are now in an analogous situation to step 0. G(k) is a valid protein graph with

nk vertices that is singly and doubly connected along the backbone. M
(k)
1 is a valid Nk-site

map for G(k) that assigns (shifted) vertex 1 to (shifted) site 1. Proposition 1 implies that we

can again steal vertices from this first site until we have reduced G
(k)
1;1 to a single vertex that

corresponds to the N-terminus of G(k). After performing these valid steal moves, we relabel

the CG sites to obtain a valid map, M
(k)
∞ ∼ [G

(k)
1;∞, G

(k)
2;∞, . . . , G

(k)
Nk;∞], with V

(k)
1;∞ = {1}, vertex

2 ∈ V
(k)
2;∞, and each site is connected. This series of steal moves for the truncated graph,

G(k), corresponds to a series of valid steal moves for the original graph, G, in which the first

k sites are unchanged, while site k + 1 is reduced to the single vertex k + 1. The resulting

N -site map is then

M
(k)
R;∞ ∼ [G∗

1m, . . . , G
∗
k+1m, G

(k)
k+2R;∞, . . . , G

(k)
NR;∞], (A.2)

where, for I = 2, . . . , Nk, G
(k)
k+IR;∞ is obtained by relabelling G

(k)
I;∞.

We iteratively apply steps 1 and 2 for k = 1, . . . , N − 2. Each successive iteration

gives a series of valid steal moves that transform M by successively reducing site k + 1 to

the corresponding atom, while leaving the preceding k sites unchanged. After completing

iteration k = N − 2, we arrive at the desired monster map.
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