

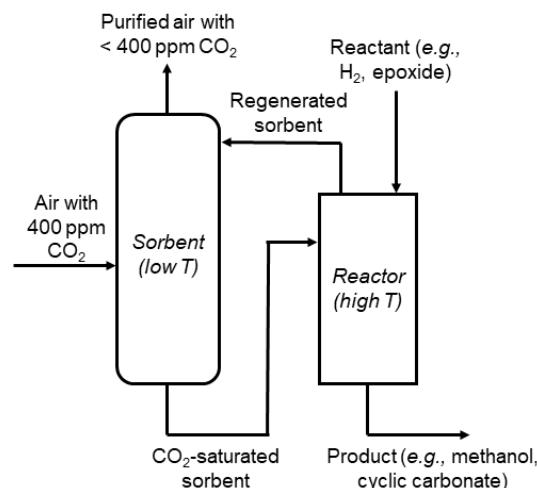
Multi-Functional Polymer Membranes Enable Integrated CO₂ Capture and Conversion in a Single, Continuous-Flow Membrane Reactor at Mild Conditions

Hui Xu,¹ Renxi Jin² and Casey P. O'Brien^{2*}

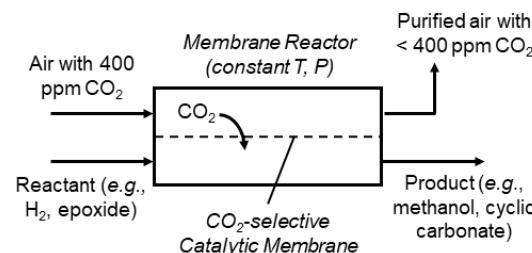
¹Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, 46556, United States.

²Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN, 46556, United States.

ABSTRACT: Herein, we present a membrane-based system designed to capture CO₂ from dilute mixtures and convert the captured CO₂ into value-added products in a single, integrated process operated continuously at mild conditions. Specifically, we demonstrate that quaternized poly(4-vinylpyridine) (P4VP) membranes are selective CO₂ separation membranes that are also catalytically active for cyclic carbonate synthesis from the cycloaddition of CO₂ to epichlorohydrin. We further demonstrate that quaternized P4VP membranes can integrate CO₂ capture, including from dilute mixtures down to 0.1 kPa CO₂, with CO₂ conversion to cyclic carbonates at 57 °C and atmospheric pressure. The catalytic membrane acts as both the CO₂ capture and conversion medium, providing an energy-efficient alternative to sorbent-based capture, compression, transport, and storage. The membrane is also potentially tunable for CO₂ conversion to a variety of products, including chemicals and fuels not limited to cyclic carbonates, which would be a transformative shift in carbon capture and utilization technology.


KEYWORDS: CO₂ capture, CO₂ conversion, integrated CO₂ capture and conversion, polymer membrane, catalytic membrane

INTRODUCTION


The Paris Agreement¹ set a goal to limit the global temperature increase to below 2 °C and preferably below 1.5 °C, relative to pre-industrial temperatures, to avoid catastrophic consequences of global warming. According to a recent Intergovernmental Panel on Climate Change (IPCC) special report,² limiting global warming to less than 2 °C will require widespread deployment of carbon capture technologies that capture CO₂ emissions from industrial processes (point source capture) or remove CO₂ directly from air (direct air capture), and either utilize it or store it permanently underground. However, current commercial carbon capture processes are sorbent-based technologies that are extremely inefficient and prohibitively expensive because they require energy-intensive regeneration stages to release CO₂ and regenerate the sorbent.^{3, 4} Additionally, they produce CO₂ streams that must be compressed and transported to sites for utilization or storage, which reduces efficiency.

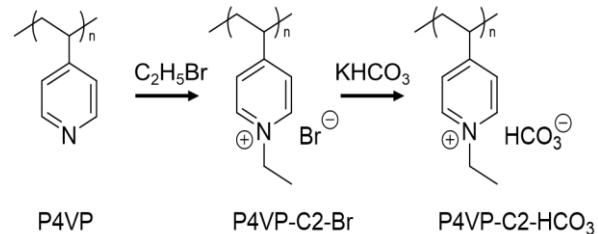
To reduce the energy intensity and costs associated with CO₂ capture, there is currently significant interest in the development of intensified processes that integrate CO₂ capture with CO₂ conversion to valuable products. For example, there are recent examples in the literature⁵⁻¹⁶ of multi-functional catalytic materials with amine or alkali-metal hydroxide functional groups for capturing CO₂ from dilute streams such as flue gas or air, and catalytic sites (e.g., metals, halogens) for converting the captured CO₂ with H₂, steam, or epoxides to produce methane, formic acid, syngas (H₂ + CO), or cyclic carbonate products. While such multi-functional materials could improve the efficiency of CO₂ capture by eliminating the need to compress and transport high-pressure CO₂, these technologies require a two-step temperature-swing process to first capture CO₂ at low temperatures and then convert CO₂ at higher temperatures in a separate unit process (i.e., similar to sorbent-based carbon capture; see **Figure 1a**). A process that completely integrates the CO₂ capture and conversion processes in a single unit process could improve the energy efficiency of CO₂ capture even further.

(a) Sorbent-based Integrated Capture and Conversion

(b) Membrane-based Integrated Capture and Conversion

Figure 1. Schematic of (a) sorbent-based and (b) membrane-based integrated CO₂ capture and conversion.

Towards this end, this work introduces a multi-functional membrane concept that enables the integration of CO₂ capture from dilute sources with CO₂ conversion *in a single unit process operated continuously—not cyclical—at mild tem-*


peratures and pressures (see **Figure 1b**). The multi-functional membrane is polymeric with (a) amine groups attached to the polymer chain to selectively capture CO₂ from air or more concentrated point sources and facilitate CO₂ transport across the membrane via carbamate (NCOO⁻) or bicarbonate (HCO₃⁻) species;¹⁷⁻²⁴ and (b) catalytic groups (e.g., amines, halides, metals) to catalyze conversion of CO₂ on the permeate side of the membrane to value-added chemicals and/or fuels. The membrane ideally couples CO₂ transport across the membrane to CO₂ conversion on the permeate side through common molecular intermediates (NCOO⁻/HCO₃⁻) in both the transport and conversion processes.

In principle, the multi-functional membrane can couple CO₂ capture with any transformation that involves carbamate (NCOO⁻) or bicarbonate (HCO₃⁻) species including, but not limited to, cyclic carbonate synthesis from epoxides,²⁵⁻²⁸ urea synthesis from NH₃,²⁹ methanol synthesis from H₂,^{16, 30, 31} and formic acid from H₂O.³² A key challenge is that the CO₂ capture and conversion processes occur in a single unit process and thus the operating conditions (e.g., temperature) for CO₂ capture and CO₂ conversion cannot be independently optimized but, rather, the operating conditions for both the CO₂ capture and conversion processes must be nearly identical. This is a significant challenge because CO₂ capture is typically carried out at low temperatures (<~70 °C) where CO₂ uptake is more favorable, but CO₂ conversion reactions are typically carried out at much higher temperatures.

Cyclic carbonate synthesis from the cycloaddition of CO₂ to epoxides is one particularly promising reaction for demonstrating the proof-of-principle and the potential of multi-functional polymer membranes for integrated CO₂ capture and conversion. Cyclic carbonate synthesis is: (i) thermodynamically favorable at mild temperatures and pressures;³³ (ii) known to be catalyzed by organic amines, including polymeric amines;^{25-28, 34} (iii) believed to occur through carbamate and/or bicarbonate intermediates;^{25-27, 34} and (iv) a 100% atom-economical “green” reaction that produces valuable cyclic carbonate products. Integrating CO₂ capture with more thermodynamically and kinetically challenging CO₂ conversion reactions, such as methanol synthesis, may require external stimulus (e.g., electricity, light) to enable operation at mild temperatures and pressures. Thus, cyclic carbonate synthesis is an ideal model reaction to demonstrate the proof-of-principle of multi-functional polymer membranes for integrating CO₂ capture and conversion because of its relative simplicity and thermodynamic and kinetic favorability of the reaction at mild temperatures.

To integrate CO₂ capture and conversion in a single unit process, a membrane is required that satisfies several criteria: (1) separates CO₂ from air or more concentrated point sources with high selectivity and permeability; (2) catalyzes CO₂ conversion on the permeate side of the membrane with high activity and selectivity at mild temperature and pressure; and (3) is stable for extended operation. In our previous work,³⁴ we demonstrated that poly(4-vinylpyridine) (P4VP), a polymer with pyridinic nitrogen groups attached to the polymer chain (see **Scheme 1**), is catalytically active for CO₂ cycloaddition to epoxides (epichlorohydrin) to give

the corresponding cyclic carbonate product at mild temperature (57 °C) and atmospheric pressure (criterion 2). Further, P4VP membranes are permeable and selective to CO₂ separation from mixed gases (criterion 1).^{35, 36} However, P4VP does not satisfy the third criterion (stability), and thus is not suitable for integrating CO₂ capture with CO₂ cycloaddition to epichlorohydrin, due to its high solubility in the epichlorohydrin reactant.

Scheme 1. Procedure for converting P4VP to bromoethane-quaternized P4VP (P4VP-C2-Br), and anion-exchange of P4VP-C2-Br with KHCO₃ to give P4VP-C2-HCO₃.

In this work, we demonstrate that synthetic quaternization of P4VP enhances the CO₂ separation performance, the catalytic activity, and the stability of the polymer in epichlorohydrin. We further demonstrate that P4VP-C2-HCO₃ membranes (see **Scheme 1**), synthesized by quaternization of P4VP with bromoethane (P4VP-C2-Br) followed by anion exchange of bromine with bicarbonate, can integrate CO₂ capture, including from extremely dilute CO₂/N₂ feed gas mixtures (0.1 kPa CO₂) similar to the concentration of CO₂ in air, with cyclic carbonate synthesis in a single membrane reactor unit operated continuously at mild temperature (57 °C) and atmospheric pressure. The P4VP-C2-HCO₃ material has not been reported in the literature to our knowledge. Other work has also shown that metal electrocatalytic functionality can be incorporated into P4VP-based materials for electrochemical CO₂ reduction, and polymer encapsulation of the metal catalyst can even enhance the activity, selectivity, and stability of the catalyst.³⁷⁻⁴⁰ Thus, P4VP-based membranes are not only useful for demonstrating the proof-of-principle of the multi-functional polymer membrane concept for integrated CO₂ capture and conversion in a single unit process; they are also a highly tunable platform for integrating CO₂ capture with CO₂ conversion potentially to a variety of chemicals and fuels by incorporating metal electrocatalytic functionality into the membrane.

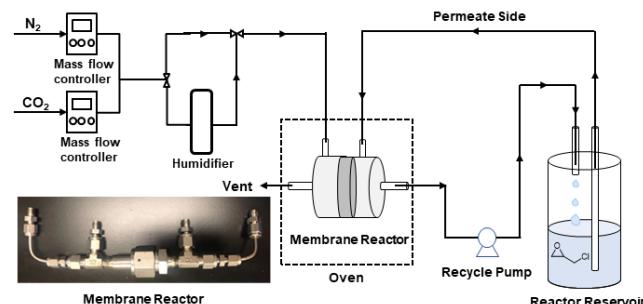
EXPERIMENTAL SECTION

Reagents. All chemicals were used as received without further purification: poly(4-vinylpyridine) (~160,000 MW, Sigma-Aldrich), bromoethane (VWR, ≥99.0%), dimethyl sulfoxide (TCI Chemicals, >99%), epichlorohydrin (VWR), 1,3,5-trimethoxybenzene (VWR, ≥99%), chloroform-d (VWR, ≥99.8%), potassium bicarbonate (Sigma-Aldrich, 99.7%), acetone (VWR, >99.5%), methanol (VWR, >99.8%). Polyvinylidene fluoride (PVDF) ultrafiltration substrates with a molecular weight cut off 100kDa were kindly donated by Philips’ lab at the University of Notre Dame.

Synthesis of P4VP-C2-Br and P4VP-C2-HCO₃. Bromoethane-quaternized P4VP (P4VP-C2-Br; see **Scheme 1**) was

synthesized by first dissolving 1 g of P4VP in 12 mL of dimethyl sulfoxide at room temperature. Then 23.9 mmol of bromoethane was added into the mixture and the reaction was conducted at 50 °C for 2 days. After the reaction, the polymer was purified by precipitating in acetone. The final quaternized P4VP was dried in a vacuum oven for 2 days at room temperature. The degree of quaternization was ~100%, which was confirmed by ¹H NMR spectroscopy (**Figure S1**).

Synthesis of P4VP-C2-HCO₃ was carried out by anion-exchange of P4VP-C2-Br with KHCO₃. 0.4 g of P4VP-C2-Br was dissolved into methanol to prepare a 20 wt% solution. Then 4.6 mmol of KHCO₃ was added into the P4VP-C2-Br solution, and the mixture was stirred at room temperature for 48 h. After the reaction, the solution was filtered with a Nylon filter (size 0.45 µm) to remove the side product KBr. The structure of P4VP-C2-HCO₃ was confirmed using Attenuated Total Reflection Infrared (ATR-IR) spectroscopy. The ATR-FTIR measurements were performed using a Bruker Tensor 27 FTIR spectrometer, with a spectral resolution of 4 cm⁻¹ and 64 scans-per-spectrum. The ATR-IR spectrum of P4VP-C2-HCO₃ (**Figure S2**) displayed bands associated with bicarbonate at 1673 cm⁻¹, 1399 cm⁻¹, 1278 cm⁻¹, and 1005 cm⁻¹, which were not present in the spectrum of P4VP-C2-Br. The band at 1673 cm⁻¹ is close to the asymmetric stretch of C-O (~1650 cm⁻¹) in species HCO₃⁻ reported in the literature,⁴¹ while the band at 1399 cm⁻¹ is close to the symmetric stretch of C-O in bicarbonate (~1365 cm⁻¹).⁴¹⁻⁴³ Additionally, the band at 1278 cm⁻¹ is close to the bending mode of C-OH in bicarbonate (~1300 cm⁻¹).^{41, 43} The band at 1005 cm⁻¹ is same as the asymmetric stretch of -C-OH in bicarbonate.^{41, 43} The higher values of the asymmetric and symmetric stretch of C-O, and the bending mode of C-OH in our study may be attributed to the presence of the pyridine ion, a conjugate cation whose π system may interact with the bicarbonate anion. Overall, these spectral assignments confirm the successful synthesis of P4VP-C2-HCO₃.


Preparation of P4VP, P4VP-C2-Br, and P4VP-C2-HCO₃ membranes. All the membranes utilized in this study were prepared by knife casting on PVDF substrates. Specifically, a 20 wt% methanol solution of P4VP-C2-HCO₃ was employed and directly cast onto a PVDF substrate with a certain wet thickness to fabricate the P4VP-C2-HCO₃ membranes. All membrane thickness values mentioned in this work are wet thicknesses. For the fabrication of P4VP-C2-Br membrane, a 20 wt% aqueous solution of P4VP-C2-Br was used, while a 20 wt% ethanol solution of P4VP was employed for the preparation of the P4VP membranes. Following the casting process, all membranes were left to dry overnight for subsequent analysis.

CO₂/N₂ separation performance measurements. All gas separation performance measurements were conducted with a gas permeation apparatus shown in **Figure S3**. The membranes were cut to 19 mm in OD and installed into the permeation cell. Aluminum gaskets were used on both sides of the membrane for sealing. The effective membrane surface area was determined to be ~1.77 cm². CO₂/N₂ gas mixtures with varying x% CO₂ and (100-x)% N₂ at a flow rate of 53 mL/min were used as the feed gas for permeation measurements. Ar with a flow rate of 10 mL/min was used

as the sweep gas. The two streams were saturated with water vapor at 57 °C, and the feed and sweep were both at atmospheric pressure. The outlet gas compositions of the sweep side were analyzed by an online gas chromatograph (Agilent 7890) equipped with a Carboxen® 1010 PLOT capillary column and a TCD detector. CO₂ permeance and CO₂/N₂ selectivity were calculated from GC analysis of the permeate.

CO₂ cycloaddition reactivity measurements. The reactivity of P4VP, P4VP-C2-Br, and P4VP-C2-HCO₃ for CO₂ cycloaddition to epichlorohydrin was investigated using the batch reactor setup described in our previous study.³⁴ In this experimental configuration, a 25 mL Schlenk tube equipped with a gas bag was employed as the reactor. To commence the experimental procedure, 0.95 mmol of catalyst was introduced into the batch reactor, which was subsequently followed by the addition of a 5 mL solution of epichlorohydrin containing 0.1 g of 1,3,5-trimethoxybenzene, which was incorporated as the inner standard. After undergoing three cycles of CO₂ purging, a 1 L of pure CO₂ bag was connected to the reactor. The reaction was conducted at 57 °C under atmospheric pressure of CO₂ for 24 hours. Subsequently, the resulting solution was analyzed with ¹H NMR spectroscopy (Bruker AVANCE III HD 400 Nanobay spectrometer). Chloroform-d was used as the solvent for the ¹H NMR analysis.

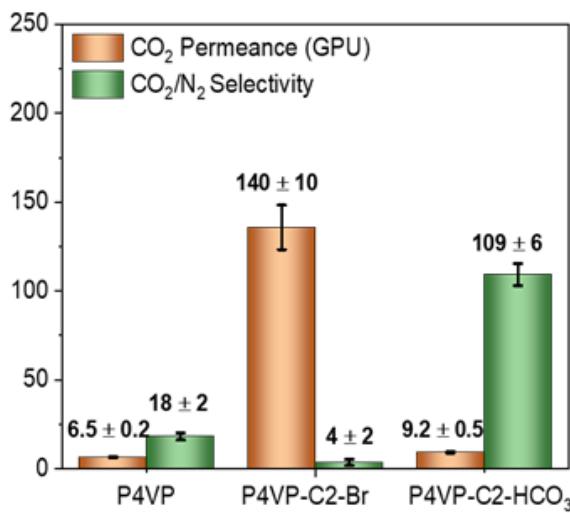

Integrated CO₂ capture and conversion measurements. The apparatus used for integrated CO₂ capture and conversion measurements was the same as that used for gas separation performance measurements, except instead of using an Ar sweep, the epichlorohydrin reactant was cycled through the permeate side of the membrane (see **Figure 2**). In all the integrated CO₂ capture and conversion measurements, 5 mL of epichlorohydrin with 0.1 g of 1,3,5-trimethoxybenzene as the internal standard was used and cycled through the permeate side of the membrane with a VICI M6 pump. The epichlorohydrin was circulated through the reactor with a flux of 1000 µL/min. Same as the gas separation measurements, a water vapor-saturated gas mixture with x% CO₂ and (100-x)% N₂ with a total flow rate of 53 mL/min was used as the feed gas. After reacting at 57 °C for 24 h, the reaction solution was analyzed by ¹H-NMR spectroscopy using chloroform-d as the solvent.

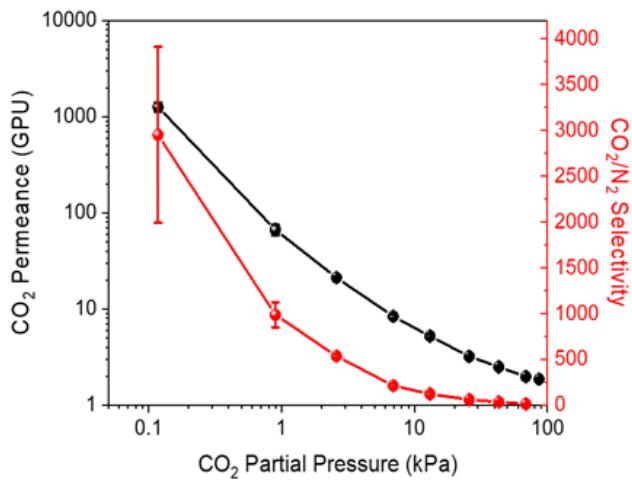
Figure 2. Schematic of the membrane reactor apparatus used for integrated CO₂ capture and conversion measurements.

RESULTS AND DISCUSSION

CO₂/N₂ separation performance of P4VP, P4VP-C2-Br and P4VP-C2-HCO₃. The CO₂ permeance and CO₂/N₂ selectivity of P4VP, P4VP-C2-Br and P4VP-C2-HCO₃ membranes with wet thicknesses of 0.356 mm were measured at 57°C and atmospheric pressure using a permeation apparatus depicted in **Figure S3**. The feed gas employed for the experiments consisted of 15% CO₂ and 85% N₂ (dry basis), which was saturated with water vapor by passing through a water bubbler. The sweep gas was pure Ar, which was also saturated with water vapor using a bubbler. To ensure reliable and accurate measurements, three membrane samples were evaluated for each material. The CO₂ permeance and CO₂/N₂ selectivity of the P4VP, P4VP-C2-Br and P4VP-C2-HCO₃ membranes are summarized in **Figure 3**.

Figure 3. Comparison of the CO₂ permeance (orange) and CO₂/N₂ selectivity (green) of P4VP, P4VP-C2-Br, and P4VP-C2-HCO₃ membranes (Conditions: feed side: humidified 15% CO₂ and 85% N₂ (dry basis) with a total flow rate of 53 mL/min, 1 atm; sweep side: humidified Ar with a flow rate of 10 mL/min, 1 atm; 57 °C). Each data point represents the average of three membranes.

The CO₂ permeance of P4VP was 6.5 ± 0.2 GPU, with a CO₂/N₂ selectivity of 18 ± 2 . The CO₂ permeance of P4VP-C2-Br (140 ± 10 GPU) was significantly higher, but the CO₂/N₂ selectivity of P4VP-C2-Br (4 ± 2) was significantly lower, than that of P4VP. To understand the underlying cause of the reduced CO₂/N₂ selectivity exhibited by P4VP-C2-Br membranes at 57 °C, gas separation measurements were conducted at room temperature. The results (**Figure S4a**) show that the CO₂/N₂ selectivity reached 57 ± 8 . However, upon increasing the temperature to 57 °C (**Figure S4b**), the CO₂/N₂ selectivity decreased to 5.6 ± 0.2 . The reason for the decrease in the CO₂/N₂ selectivity of P4VP-C2-Br membranes at 57°C is not clear, but it could be due to the dissolution of P4VP-C2-Br in water vapor at this elevated temperature.


To improve the thermal stability of the P4VP-C2-Br membrane, an ion exchange process was employed to substitute

the bromide counter ion with bicarbonate ions (see **Scheme 1**). This strategy was based on the hypothesis that bicarbonate ions could engage in hydrogen bonding interactions, thereby improving the overall stability of the membrane. Additionally, the use of bicarbonate ions offers environmental advantages over bromide ions, bicarbonate ions are reactive towards epoxides,⁴⁴ and bicarbonate ions were reported as key intermediates in coupled CO₂ capture and conversion.⁴⁵⁻⁴⁷ The ion exchange process was carried out using KHCO₃ as the exchange agent (see **Experimental Section**).

The replacement of bromide with bicarbonate as the counter ion yielded noteworthy improvements in the CO₂/N₂ selectivity of the membrane (see **Figure 3**). Specifically, at 57 °C, the CO₂/N₂ selectivity increased significantly from 4 ± 2 for P4VP-C2-Br to 109 ± 6 for P4VP-C2-HCO₃. This substantial enhancement in the CO₂/N₂ selectivity clearly indicates the superior performance of the P4VP-C2-HCO₃ membrane compared to both P4VP-C2-Br and P4VP in terms of selective separation of CO₂ and N₂. The enhanced CO₂/N₂ selectivity of P4VP-C2-HCO₃ at 57 °C compared to P4VP-C2-Br may be related to the ability of bicarbonate ions to engage in hydrogen bonding interactions that may enhance its thermal stability, as hypothesized above, or the lower water solubility of P4VP-C2-HCO₃. The lower CO₂ permeance, but higher CO₂/N₂ selectivity, of P4VP-C2-HCO₃ compared to P4VP-C2-Br is most likely related to the well-known “permeability-selectivity tradeoff” inherent to polymer membrane separations⁴⁸⁻⁵⁰: membranes that are more permeable are generally less selective, and vice-versa.

In order to comprehensively evaluate the gas separation performance of P4VP-C2-HCO₃, the CO₂ permeance and CO₂/N₂ selectivity of P4VP-C2-HCO₃ was measured as a function of CO₂ partial pressure from 0.1 kPa (i.e., similar to the CO₂ concentration in air) up to 86 kPa. As shown in **Figure 4**, the CO₂ permeance and CO₂/N₂ selectivity increase with decreasing CO₂ partial pressure, which suggests that the P4VP-C2-HCO₃ membrane behaves like a facilitated transport membrane.⁵¹⁻⁵³ Notably, at a low CO₂ partial pressure of approximately 0.1 kPa, the P4VP-C2-HCO₃ membrane exhibited a high CO₂ permeance of 1300 ± 100 GPU and a high CO₂/N₂ selectivity of 3000 ± 1000 . The high uncertainty in the CO₂/N₂ selectivity measurement at 0.1 kPa is likely due to the small amount of CO₂ in the permeate stream at this pressure, and hence the relatively low signal-to-noise ratio of the CO₂ peak in gas chromatography. These results indicate that the P4VP-C2-HCO₃ membrane is effective at separating CO₂ from gas mixtures under conditions that closely resemble atmospheric compositions.

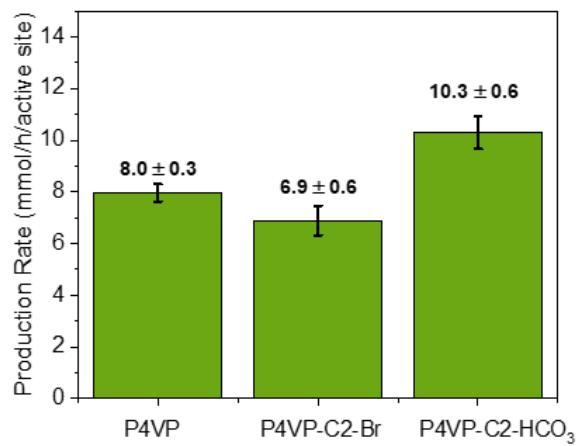

P4VP membranes exhibited a similar trend of increasing CO₂ permeance and CO₂/N₂ selectivity with decreasing CO₂ partial pressure (**Figure S5**), but with a lower CO₂ permeance and CO₂/N₂ selectivity compared to P4VP-C2-HCO₃. The CO₂ permeance and CO₂/N₂ selectivity of P4VP-C2-Br was not evaluated as a function of CO₂ partial pressure at 57 °C due to its poor thermal stability, as discussed above.

Figure 4. CO₂ permeance (black; left axis) and CO₂/N₂ selectivity (red; right axis) of P4VP-C2-HCO₃ versus feed CO₂ partial pressure (Conditions: feed side: humidified x % CO₂ and (100 – x) % N₂ (dry basis) with a total flow rate of 53 mL/min, 1 atm; sweep side: humidified Ar with a flow rate of 10 mL/min, 1 atm; 57 °C). Each data point represents the average of three membranes.

CO₂ cycloaddition reactivity of P4VP, P4VP-C2-Br, and P4VP-C2-HCO₃. The catalytic performance of P4VP, P4VP-C2-Br, and P4VP-C2-HCO₃ for the CO₂ cycloaddition reaction was evaluated at 57 °C and 1 atm CO₂ for 24 h using a batch reactor setup described previously (see Figure S6).³⁴ By comparing the ¹H NMR spectra of the epichlorohydrin solution before and after the reaction involving P4VP, P4VP-C2-Br (Figure S7), and P4VP-C2-HCO₃ (Figure S8), distinct peaks emerged that were identified as cyclic carbonate, verified through comparison with the ¹H NMR spectrum of the cyclic carbonate (Figure S9). Thus, both P4VP-C2-Br and P4VP-C2-HCO₃ exhibit catalytic activity in the cycloaddition reaction between CO₂ and epichlorohydrin at mild temperatures and CO₂ pressures. Trace amounts of diols, with characteristic ¹H NMR peaks at 3.75–4 ppm, were also observed.

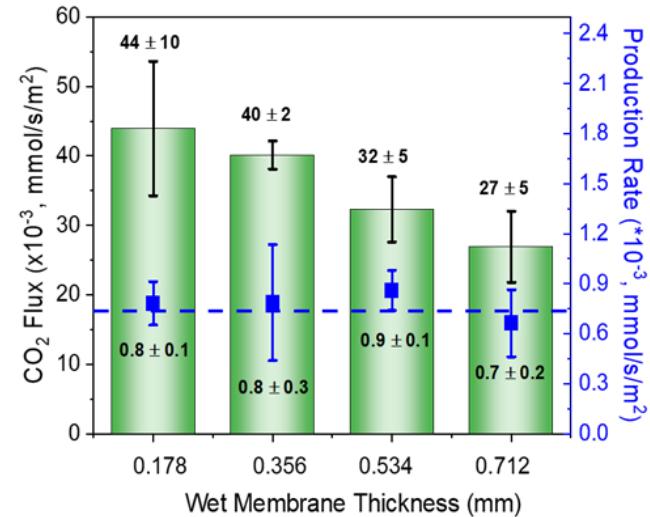
The production rate of cyclic carbonate was calculated for P4VP, P4VP-C2-Br, and P4VP-C2-HCO₃ for comparison. The production rate is reported in mmol of product per hour per reactive site, where we assume that there is one active site per pyridine unit in each polymeric material. Figure 5 shows the cyclic carbonate production rate of P4VP, P4VP-C2-Br, and P4VP-C2-HCO₃. The results show that, while the cyclic carbonate production rate is similar for the three materials, P4VP-C2-HCO₃ exhibited a significantly higher cyclic carbonate production rate (10.3 ± 0.6 mmol/h/active site) compared to P4VP-C2-Br (6.9 ± 0.6 mmol/h/active site) and P4VP (8.0 ± 0.3 mmol/h/active site). The similarity in the catalytic activity of P4VP, P4VP-C2-Br, and P4VP-C2-HCO₃ may suggest that the active sites in these different materials is similar, and the activity of this site is sensitive to quaternization and anion-exchange, which may influence the reaction mechanism directly or indirectly (by influencing the electronic structure of the active site, for example). Nevertheless, these results show that catalytic activity of P4VP can be tuned and enhanced by synthetic quaternization.

Figure 5. Comparison of the cyclic carbonate production rate of P4VP, P4VP-C2-Br, and P4VP-C2-HCO₃ in the batch reactor under 1 atm CO₂ at 57 °C after reaction for 24 h. Each data point represents the average and standard deviation of four batches.

Integrated CO₂ capture and conversion using P4VP-C2-HCO₃. Our CO₂/N₂ separation performance measurements and CO₂ cycloaddition activity measurements show that P4VP-C2-HCO₃ is selective for CO₂/N₂ separation at 57 °C; is active for the CO₂ cycloaddition reaction at 57 °C; and is insoluble in the epichlorohydrin reactant. P4VP and P4VP-C2-Br, on the other hand, do not satisfy these criteria for selecting a membrane for integrated CO₂ capture and conversion to cyclic carbonates because P4VP is solubilized by epichlorohydrin, and P4VP-C2-Br is not selective for CO₂/N₂ separation at 57 °C. Thus, P4VP-C2-HCO₃ is the most promising membrane in this study for integrating CO₂ capture and conversion to cyclic carbonates.

The integration of CO₂ capture with CO₂ conversion to cyclic carbonates was evaluated in the membrane reactor (Figure 2) using a P4VP-C2-HCO₃ membrane with a wet thickness of 0.356 mm. The procedure for testing the overall rate of integrated CO₂ capture and conversion using the P4VP-C2-HCO₃ membrane initially involved verifying its CO₂/N₂ selectivity through gas separation performance testing. The testing was performed using a feed gas consisting of 15% CO₂, 85% N₂ (dry basis) saturated with water vapor with a total dry gas (CO₂ and N₂) flow rate of 53 mL/min at atmospheric pressure. After verifying the CO₂/N₂ selectivity of the membrane, the integration of CO₂ capture and CO₂ conversion to cyclic carbonates was then investigated by changing the sweep from Ar to epichlorohydrin containing 1,3,5-trimethoxybenzene as an inner standard without changing the feed side setup. The composition of the reaction solution containing the epichlorohydrin reactant and the cyclic carbonate produced from the reaction was monitored with ¹H NMR in CDCl₃. ¹H NMR results (see Figure S10) indicate that a significant amount of cyclic carbonate was produced during integrated CO₂ capture and conversion using P4VP-C2-HCO₃. This confirms that P4VP-C2-HCO₃ can effectively capture CO₂ from mixed gas streams and convert the captured CO₂ to cyclic carbonate in a single, continuous unit.

process at mild temperatures (57 °C) and atmospheric pressure.


To further investigate the role of the P4VP-C2-HCO₃ membrane in the CO₂ capture and conversion process, a control experiment was conducted using the batch reactor with the P4VP-C2-HCO₃ membrane as the catalyst. The reaction conditions and gas composition were kept the same as in the membrane reactor system used for integrated CO₂ capture and conversion to mimic the conditions in the membrane reactor. The membrane was suspended in the batch reactor at the gas-liquid interface, identical to its position in the membrane reactor (**Figure S11**). To simulate water vapor in the CO₂/N₂ feed, 113 μL of DI water (see Section S3 for calculation) was added to the liquid, and 1L of simulated flue gas (15% CO₂ and 85% N₂) was introduced into the reactor. The reaction was carried out at 57 °C and sampled at certain time intervals up to 48 hours. The time-resolved ¹H NMR spectra of the reaction solution with the membrane at the gas-liquid interface is shown in **Figure S12b**. The ¹H NMR results show that there was not a significant amount of cyclic carbonate produced during the 48-hour of reaction in the control experiment using a batch reactor with the P4VP-C2-HCO₃ membrane as the catalyst.

An additional control experiment was conducted in the batch reactor under the same conditions, with the exception that the membrane was immersed in the epichlorohydrin liquid (**Figure S13**). The resulting ¹H NMR spectra are presented in **Figure S14**, and similarly, only trace amounts of cyclic carbonate were detected. Therefore, we can conclude that the P4VP-C2-HCO₃ plays a crucial role in separating CO₂ from the CO₂/N₂ gas mixture and delivering concentrated CO₂ to the catalytically active sites of the membrane at the gas-solid-liquid interface for conversion with epichlorohydrin to cyclic carbonate. Additionally, the membrane acts as a barrier preventing evaporation of the volatile epichlorohydrin reactant.

The influence of membrane thickness and CO₂ partial pressure on the rate of integrated CO₂ capture and conversion using P4VP-C2-HCO₃. To investigate the influence of membrane thickness on the CO₂/N₂ separation performance and the integrated CO₂ capture and conversion process, P4VP-C2-HCO₃ membranes with varying wet thicknesses from 0.178 mm to 0.712 mm were prepared and evaluated in the membrane reactor apparatus. We are not necessarily limited to membranes in the wet thickness range of 0.178 to 0.712 mm, but membranes thinner than 0.178 mm wet thickness are difficult to prepare reproducibly.

As expected, the CO₂ flux (**Figure 6**, green bars, left axis) and the CO₂ permeance (**Figure S15**) decreased monotonically with increasing P4VP-C2-HCO₃ membrane thickness. The CO₂/N₂ selectivity of P4VP-C2-HCO₃ increased as the membrane wet thickness increased from 0.178 mm (65 ± 7) to 0.356 mm (150 ± 20), as expected, and then decreased to 109 ± 4 as the membrane wet thickness increased further to 0.712 mm (**Figure S15**). This non-monotonic trend in the CO₂/N₂ selectivity of P4VP-C2-HCO₃ is surprising as selectivity in facilitated transport membranes is expected to increase with increasing membrane thickness.⁵¹ The origin of this unexpected trend is not clear, but the CO₂/N₂ selectivity

of P4VP-C2-HCO₃ is still quite high in the 0.178 to 0.712 mm wet thickness range.

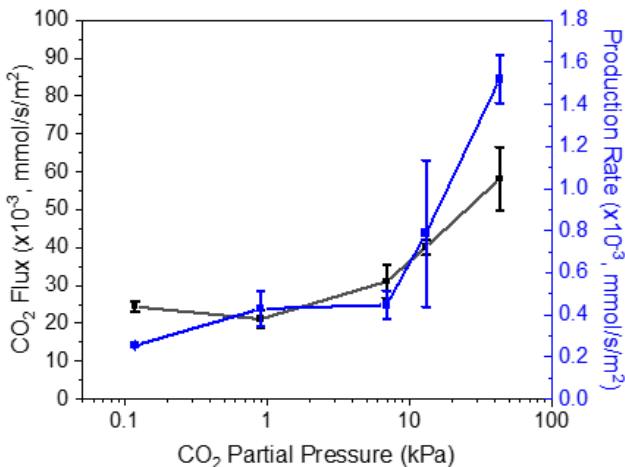


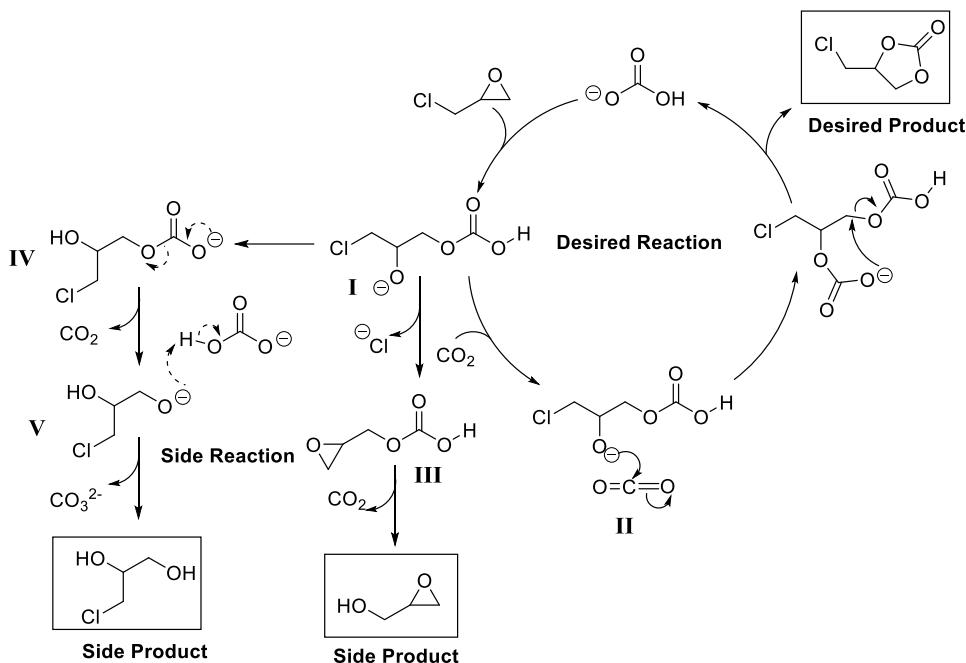
Figure 6. Comparison of the CO₂ flux (green bars; left axis) and cyclic carbonate production rate (blue data points; right axis) during integrated CO₂ capture and conversion with different membrane wet thicknesses. (Feed gas composition: 15% CO₂ and 85% N₂ (dry basis) with a total flow rate of 53 mL/min, water vapor saturated, 1 atm; sweep side: humidified Ar at a flow rate of 10 mL/min, 1 atm; 57 °C; reaction temperature: 57 °C; reaction time: 24 hours). Each data point represents the average and standard deviation of three different membranes.

The overall rate of integrated CO₂ capture and conversion to cyclic carbonates using P4VP-C2-HCO₃ membranes with different membrane thickness is shown in **Figure 6** (blue data points; right axis). The overall rate of cyclic carbonate production remains roughly constant at $(7.7 \pm 0.8) \times 10^{-4}$ mmol/s/m² as the membrane wet thickness increases from 0.178 mm to 0.712 mm. If CO₂ transport across the membrane was the rate-limiting step in the overall CO₂ capture and conversion sequence, then one would expect the cyclic carbonate production rate to decrease with increasing membrane thickness, similar to the trend observed in the CO₂ flux (**Figure 6**, green bars, left axis). The observation that the cyclic carbonate production rate is independent of the membrane thickness suggests that the rate-limiting step in the combined CO₂ capture and conversion process is the conversion of CO₂ to cyclic carbonates. This conclusion is further supported by our observation that the CO₂ fluxes across the P4VP-C2-HCO₃ membranes are more than an order-of-magnitude larger than the rate of integrated CO₂ capture and conversion to cyclic carbonates.

The performance of P4VP-C2-HCO₃ for integrated CO₂ capture and conversion was further evaluated by examining its performance under varied CO₂ partial pressures, using P4VP-C2-HCO₃ membranes with a wet thickness of 0.356 mm. **Figure 7** shows that the CO₂ flux across the membrane increases as the feed CO₂ partial pressure increases from 0.1 kPa to 86 kPa, as expected. Additionally, while there is a relatively large uncertainty in the cyclic carbonate production

rate measured at 15 kPa CO_2 , there is a general trend of increasing rate of cyclic carbonate production with increasing CO_2 partial pressure. As our membrane thickness-dependent measurements (**Figure 6**) suggest that conversion of CO_2 to cyclic carbonates is the rate-limiting step in the combined CO_2 capture and conversion process, the increase in the cyclic carbonate production rate with increasing CO_2 partial pressure is most likely due to an increase in the concentration of dissolved CO_2 in the membrane, and not necessarily due to an increase in the CO_2 flux across the membrane. It is also noteworthy that P4VP-C2-HCO₃ exhibited the ability to capture and convert CO_2 into cyclic carbonate even at extremely low CO_2 partial pressures of 0.1 kPa (0.1%), which is close to the CO_2 partial pressure in air (0.04 kPa). Thus, the catalytic membrane is promising for direct air capture and conversion of CO_2 .

Figure 7. CO_2 flux (black; left axis) and cyclic carbonate production rate (blue; right axis) of P4VP-C2-HCO₃ versus feed CO_2 partial pressure in the integrated CO_2 capture and conversion system. (Membrane wet thickness: 0.356 mm; feed gas composition: $x\% \text{CO}_2$ and $(100 - x)\% \text{N}_2$ (dry basis) with a total flow rate of 53 mL/min, water vapor-saturated, 1 atm; sweep side: humidified Ar at a flow rate of 10 mL/min, 1 atm; 57 °C; reaction temperature: 57 °C; reaction time: 24 h). Each data point represents the average and standard deviation of three different membranes.


Stability of P4VP-C2-HCO₃ during integrated CO_2 capture and conversion. The stability of the P4VP-C2-HCO₃ membrane during integrated CO_2 capture and conversion to cyclic carbonates was evaluated by measuring the cyclic carbonate production rate as a function of time from 0 to 48 h of reaction. The results, presented in **Figure S16a**, show that the cyclic carbonate production rate decreased from an initial value of $\sim 2.8 \times 10^{-3} \text{ mmol/s/m}^2$ to a nearly constant value of $\sim 1 \times 10^{-3} \text{ mmol/s/m}^2$ at reaction times greater than ~ 30 h.

To investigate the underlying reason for the decrease in the cyclic carbonate production rate over time, the P4VP-C2-HCO₃ membrane was analyzed by ATR-FTIR spectroscopy before and after the reaction. The ATR-FTIR results, presented in **Figure S17**, revealed small but significant changes

in several FTIR bands over the course of the reaction. We postulate that the decrease in membrane reactivity may be attributed to the formation of byproducts, such as glycidol or 3-chloro-1,2-propanediol, that may adsorb strongly on the membrane surface. The strong OH stretch⁵⁴⁻⁵⁶ band observed at approximately 3301 cm^{-1} and the shift in the asymmetric stretch of C-OH in bicarbonate from 1005 cm^{-1} to 1043 cm^{-1} could be evidence of this deactivation. Additionally, the band observed at 1043 cm^{-1} may also contribute to the shift of C-O groups in 3-chloro-1,2-propanediol (which is normally observed at $\sim 1031 \text{ cm}^{-1}$).⁵⁴ These observations may suggest that byproducts such as 3-chloro-1,2-propanediol are bound to the membrane surface rather than in solution. These byproducts may block active sites on the P4VP-C2-HCO₃ membrane surface, thereby decreasing the rate of conversion of CO_2 to cyclic carbonate, which was determined to be the rate-limiting step in the combined CO_2 capture and conversion process. The presence of these potential byproducts may be difficult to distinguish via ¹H NMR because of their low concentrations and adsorption on the membrane, although peaks were detected at 3.75-4 ppm.

In addition to a decrease of the production rate of cyclic carbonate over reaction time, the CO_2/N_2 selectivity of P4VP-C2-HCO₃ was also compromised by exposure to the epichlorohydrin reaction mixture, as depicted in **Figure S16b**. Prior to exposure to epichlorohydrin, the CO_2/N_2 selectivity of P4VP-C2-HCO₃ was 109 ± 6 , which decreased to 5 ± 5 after epichlorohydrin exposure. The CO_2 flux across P4VP-C2-HCO₃ is quite stable prior to exposure to the epichlorohydrin reactant, during exposure to humidified 15% CO_2 / 85% N_2 (dry basis) with a humidified Ar sweep (**Figure S18**). This suggests that the integrity of the membrane might have been compromised during the reaction from exposure to epichlorohydrin and potentially stemming from the formation of byproducts such as glycidol or 3-chloro-1,2-propanediol. Another plausible cause for the compromised membrane integrity is the dissolution of the membrane in the epichlorohydrin reaction solution, which has the potential to induce structural damage to the membrane.

Based on our results and a mechanism reported in the literature for bicarbonate-catalyzed cyclic carbonate synthesis,⁵⁷ the proposed reaction mechanism of P4VP-C2-HCO₃, including formation of byproducts, is illustrated in **Figure 8**. The bicarbonate counter ion in the membrane opens the epoxide ring of epichlorohydrin to form intermediate **I**. Then, the intermediate **I** can attack CO_2 to form intermediate **II**, and further release the desired product (cyclic carbonate) and reform bicarbonate ion, which can further react with epoxide and CO_2 to form the desired product. Besides the desired reaction process, the intermediate **I** may also form the intermediate **III** and intermediate **IV**, which can be further converted to side products glycidol and 3-chloro-1,2-propanediol. As mentioned previously, although the P4VP-C2-HCO₃ membrane is more selective for CO_2/N_2 separation than P4VP-C2-Br at 57 °C, the stability towards the epichlorohydrin reactant still needs to be improved by further materials research and development.

Figure 8. Proposed mechanism of the CO₂ capture and conversion process, including the formation of byproducts.

CONCLUSIONS

This work demonstrates that synthetically-quaternized P4VP membranes are a promising and tunable platform for integrating CO₂ capture and conversion in a single, continuous process at mild conditions. Remarkably, the P4VP-C2-HCO₃ membrane system can capture and convert CO₂ even from streams with low CO₂ concentration (such as 0.1 kPa), which is approximately the CO₂ concentration to air. Thus, this work provides a promising approach for direct CO₂ capture and conversion, opening new opportunities in this field. While this work focuses on CO₂ conversion to cyclic carbonates as a model system, due to its relative simplicity and the thermodynamic and kinetic favorability of this reaction at mild temperatures, the catalytic membrane is potentially tunable for CO₂ conversion to a variety of chemicals and/or fuels by incorporating metal electrocatalytic functionality into the membrane, for example. If the technology is capable of being sufficiently scaled up, this would be a transformative shift in carbon capture and utilization technology that could have a large impact on chemical engineering in the future.

ASSOCIATED CONTENT

Supporting Information

The supporting Information is available free of charge on the ACS Publications website.

¹H NMR spectra, ATR-IR spectra, membrane reactor and batch reactor apparatus schematics, P4VP-C2-Br membrane performance at room temperature and 57 °C, P4VP membrane performance versus CO₂ partial pressure, water calculation, P4VP-C2-HCO₃ membrane performance versus membrane thickness, P4VP-C2-HCO₃ membrane stability.

AUTHOR INFORMATION

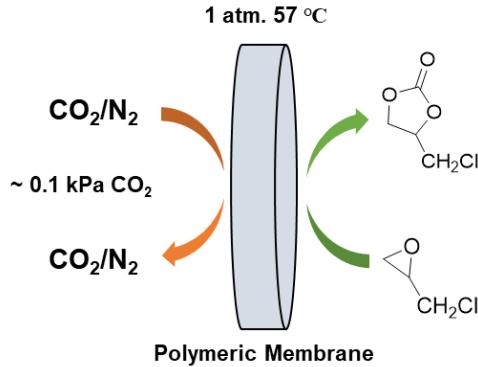
Corresponding Author

* Casey P. O'Brien: Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States. Email: cobrie23@nd.edu

Author Contributions

All authors have given approval to the final version of the manuscript.

ACKNOWLEDGMENT


This work was funded through U.S. national Science Foundation CAREER award [CBET-2144362]. We thank the Center for Environmental Science and Technology (CEST) for the use of ATR-FTIR. We thank Professor William Phillip's group for providing the PVDF support membranes.

REFERENCES

- (1) Horowitz, C. A. Paris Agreement. *International Legal Materials* **2017**, *55* (4), 740-755.
- (2) IPCC. *Global Warming of 1.5 °C.* 2018. <https://www.ipcc.ch/sr15/>
- (3) National Academies of Sciences, E., Medicine. *Negative Emissions Technologies and Reliable Sequestration: A Research Agenda*; The National Academies Press, 2019.
- (4) Ozkan, M. Direct Air Capture of CO₂: A Response to Meet the Global Climate Targets. *MRS Energy & Sustainability* **2021**, *8* (2), 51-56.
- (5) Maina, J. W.; Pringle, J. M.; Razal, J. M.; Nunes, S.; Vega, L.; Gallucci, F.; Dumée, L. F. Strategies for Integrated Capture and Conversion of CO₂ from Dilute Flue Gases and the Atmosphere. *ChemSusChem* **2021**, *14* (8), 1805-1820.
- (6) Chen, J.; Xu, Y.; Liao, P.; Wang, H.; Zhou, H. Recent Progress in Integrated CO₂ Capture and Conversion Process Using Dual

- Function Materials: A State-of-the-Art Review. *Carbon Capture Science & Technology* **2022**, *4*, 100052.
- (7) Sun, S.; Sun, H.; Williams, P. T.; Wu, C. Recent Advances in Integrated CO₂ Capture and Utilization: A Review. *Sustainable Energy & Fuels* **2021**, *5* (18), 4546-4559, 10.1039/D1SE00797A.
- (8) Pazdera, J.; Berger, E.; Lercher, J. A.; Jentys, A. Conversion of CO₂ to Methanol over Bifunctional Basic-Metallic Catalysts. *Catalysis Communications* **2021**, *159*, 106347.
- (9) Jakobsen, J. B.; Rønne, M. H.; Daasbjerg, K.; Skrydstrup, T. Are Amines the Holy Grail for Facilitating CO₂ Reduction? *Angew. Chem. Int. Ed.* **2021**, *60* (17), 9174-9179.
- (10) Zanatta, M.; García-Verdugo, E.; Sans, V. Direct Air Capture and Integrated Conversion of Carbon Dioxide into Cyclic Carbonates with Basic Organic Salts. *ACS Sustain. Chem. Eng.* **2023**, *11* (26), 9613-9619.
- (11) Kim, S. M.; Abdala, P. M.; Broda, M.; Hosseini, D.; Copéret, C.; Müller, C. Integrated CO₂ Capture and Conversion as an Efficient Process for Fuels from Greenhouse Gases. *ACS Catal.* **2018**, *8* (4), 2815-2823.
- (12) Sasayama, T.; Kosaka, F.; Liu, Y.; Yamaguchi, T.; Chen, S.-Y.; Mochizuki, T.; Urakawa, A.; Kuramoto, K. Integrated CO₂ Capture and Selective Conversion to Syngas Using Transition-Metal-Free Na/Al₂O₃ Dual-Function Material. *J. CO₂ Util.* **2022**, *60*, 102049.
- (13) Barthel, A.; Sahl, Y.; Gimenez, M.; Pelletier, J. D. A.; Kühn, F. E.; D'Elia, V.; Basset, J.-M. Highly Integrated CO₂ Capture and Conversion: Direct Synthesis of Cyclic Carbonates from Industrial Flue Gas. *Green Chemistry* **2016**, *18* (10), 3116-3123, 10.1039/C5GC03007B.
- (14) Yi, Q.; Liu, T.; Wang, X.; Shan, Y.; Li, X.; Ding, M.; Shi, L.; Zeng, H.; Wu, Y. One-Step Multiple-Site Integration Strategy for CO₂ Capture and Conversion into Cyclic Carbonates under Atmospheric and Cocatalyst/Metal/Solvent-Free Conditions. *Applied Catalysis B: Environmental* **2021**, *283*, 119620.
- (15) Ma, H.; Liu, S.; Wang, H.; Li, G.; Zhao, K.; Cui, X.; Shi, F. In Situ CO₂ Capture and Transformation into Cyclic Carbonates using Flue Gas. *Green Chemistry* **2023**, *25* (6), 2293-2298, 10.1039/D2GC04757H.
- (16) Kar, S.; Goeppert, A.; Prakash, G. K. S. Integrated CO₂ Capture and Conversion to Formate and Methanol: Connecting Two Threads. *Accounts of chemical research* **2019**, *52* (10), 2892-2903.
- (17) Xu, H.; Pate, S. G.; O'Brien, C. P. The Influence of Amine Structure on the Mechanism of CO₂ Facilitated Transport across Amine-Functionalized Polymer Membranes: An *Operando* Spectroscopy Study. *J. Membr. Sci.* **2024**, *689*, 122163.
- (18) Xu, H.; Pate, S. G.; O'Brien, C. P. Mathematical Modeling of CO₂ Facilitated Transport across Polyvinylamine Membranes with Direct Operando Observation of Amine Carrier Saturation. *Chem. Eng. J.* **2023**, *460*, 141728.
- (19) Tong, Z.; Ho, W. S. W. Facilitated Transport Membranes for CO₂ Separation and Capture. *Sep. Sci. Technol.* **2017**, *52* (2), 156-167.
- (20) Deng, L.; Kim, T.-J.; Hägg, M.-B. Facilitated Transport of CO₂ in Novel PVAm/PVA Blend Membrane. *J. Membr. Sci.* **2009**, *340* (1), 154-163.
- (21) Rafiq, S.; Deng, L.; Hägg, M.-B. Role of Facilitated Transport Membranes and Composite Membranes for Efficient CO₂ Capture - A Review. *ChemBioEng Rev.* **2016**, *3* (2), 68-85.
- (22) Huang, J.; Zou, J.; Ho, W. S. W. Carbon Dioxide Capture Using a CO₂-Selective Facilitated Transport Membrane. *Ind. Eng. Chem. Res.* **2008**, *47*, 1261-1267.
- (23) Xu, H.; Easa, J.; Pate, S. G.; Jin, R.; O'Brien, C. P. Operando Surface-Enhanced Raman-Scattering (SERS) for Probing CO₂ Facilitated Transport Mechanisms of Amine-Functionalized Polymeric Membranes. *ACS Appl. Mater. Interfaces* **2022**, *14* (13), 15697-15705.
- (24) Pate, S. G.; Xu, H.; O'Brien, C. P. Operando Observation of CO₂ Transport Intermediates in Polyvinylamine Facilitated Transport Membranes, and the Role of Water in the Formation of Intermediates, Using Transmission FTIR Spectroscopy. *J. Mater. Chem. A* **2022**, *10* (8), 4418-4427, 10.1039/D1TA10015G.
- (25) Srivastava, R.; Srinivas, D.; Ratnasamy, P. Sites for CO₂ Activation over Amine-Functionalized Mesoporous Ti(Al)-SBA-15 Catalysts. *Microporous and Mesoporous Materials* **2006**, *90* (1), 314-326.
- (26) Wei-Li, D.; Bi, J.; Sheng-Lian, L.; Xu-Biao, L.; Xin-Man, T.; Chak-Tong, A. Novel Functionalized Guanidinium Ionic Liquids: Efficient Acid-Base Bifunctional Catalysts for CO₂ Fixation with Epoxides. *Journal of Molecular Catalysis A: Chemical* **2013**, *378*, 326-332.
- (27) Zhang, X.; Zhao, N.; Wei, W.; Sun, Y. Chemical Fixation of Carbon Dioxide to Propylene Carbonate over Amine-Functionalized Silica Catalysts. *Catal. Today* **2006**, *115* (1), 102-106.
- (28) Yu, K. M. K.; Curcic, I.; Gabriel, J.; Morganstewart, H.; Tsang, S. C. Catalytic Coupling of CO₂ with Epoxide Over Supported and Unsupported Amines. *The Journal of Physical Chemistry A* **2010**, *114* (11), 3863-3872.
- (29) Manaka, Y.; Nagatsuka, Y.; Motokura, K. Organic Bases Catalyze the Synthesis of Urea from Ammonium Salts Derived from Recovered Environmental Ammonia. *Sci. Rep.* **2020**, *10* (1), 2834.
- (30) Kothandaraman, J.; Goeppert, A.; Czaun, M.; Olah, G. A.; Prakash, G. K. S. Conversion of CO₂ from Air into Methanol Using a Polyamine and a Homogeneous Ruthenium Catalyst. *J. Am. Chem. Soc.* **2016**, *138* (3), 778-781.
- (31) Kar, S.; Sen, R.; Goeppert, A.; Prakash, G. K. S. Integrative CO₂ Capture and Hydrogenation to Methanol with Reusable Catalyst and Amine: Toward a Carbon Neutral Methanol Economy. *J. Am. Chem. Soc.* **2018**, *140* (5), 1580-1583.
- (32) Pérez-Gallent, E.; Vankani, C.; Sánchez-Martínez, C.; Anastasopol, A.; Goetheer, E. Integrating CO₂ Capture with Electrochemical Conversion Using Amine-Based Capture Solvents as Electrolytes. *Ind. Eng. Chem. Res.* **2021**, *60* (11), 4269-4278.
- (33) Guo, L.; Lamb, K. J.; North, M. Recent Developments in Organocatalysed Transformations of Epoxides and Carbon Dioxide into Cyclic Carbonates. *Green Chemistry* **2021**, *23* (1), 77-118, 10.1039/D0GC03465G.
- (34) Jin, R.; Xu, H.; Easa, J.; Chapero-Planell, A.; O'Brien, C. P. Cycloaddition of CO₂ to Epichlorohydrin over Pyridine, Vinylpyridine, and Poly(vinylpyridine): The Influence of Steric Crowding on the Reaction Mechanism. *J. Phys. Chem. C* **2023**, *127* (3), 1441-1454.
- (35) Qin, J.-J.; Chung, T.-S. Development of High-Performance Polysulfone/poly(4-vinylpyridine) Composite Hollow Fibers for CO₂/CH₄ Separation. *Desalination* **2006**, *192* (1), 112-116.
- (36) Shieh, J.-J.; Chung, T. S. Gas Permeability, Diffusivity, and Solubility of Poly(4-vinylpyridine) film. *J. Polym. Sci. B Polym. Phys.* **1999**, *37* (20), 2851-2861.
- (37) Soucy, T. L.; Dean, W. S.; Zhou, J.; Rivera Cruz, K. E.; McCrory, C. C. L. Considering the Influence of Polymer-Catalyst Interactions on the Chemical Microenvironment of Electrocatalysts for the CO₂ Reduction Reaction. *Accounts of chemical research* **2022**, *55* (3), 252-261.
- (38) Abe, T.; Yoshida, T.; Tokita, S.; Taguchi, F.; Imaya, H.; Kaneko, M. Factors Affecting Selective Electrocatalytic CO₂ Reduction with Cobalt Phthalocyanine Incorporated in A Polyvinylpyridine Membrane Coated on a Graphite Electrode. *Journal of Electroanalytical Chemistry* **1996**, *412* (1), 125-132.
- (39) Liu, Y.; McCrory, C. C. L. Modulating the Mechanism of Electrocatalytic CO₂ Reduction by Cobalt Phthalocyanine through Polymer Coordination and Encapsulation. *Nat. Comm.* **2019**, *10* (1), 1683.
- (40) Ponnurangam, S.; Yun, C. M.; Chernyshova, I. V. Robust Electroreduction of CO₂ at a Poly(4-vinylpyridine)-Copper Electrode. *ChemElectroChem* **2016**, *3* (1), 74-82.
- (41) Milella, F.; Mazzotti, M. Estimating Speciation of Aqueous Ammonia Solutions of Ammonium Bicarbonate: Application of Least Squares Methods to Infrared Spectra. *React. Chem. Eng.* **2019**, *4* (7), 1284-1302.
- (42) Stegmeier, S.; Fleischer, M.; Tawil, A.; Hauptmann, P.; Egly, K.; Rose, K. Mechanism of the Interaction of CO₂ and Humidity with

- Primary Amino Group Systems for Room Temperature CO₂ Sensors. *Procedia Chem.* **2009**, *1* (1), 236-239.
- (43) Wen, N.; Brooker, M. H. Ammonium Carbonate, Ammonium Bicarbonate, and Ammonium Carbamate Equilibria: A Raman Study. *J. Phys. Chem.* **1995**, *99* (1), 359-368.
- (44) Liu, J.; Yang, G.; Liu, Y.; Wu, D.; Hu, X.; Zhang, Z. Metal-Free Imidazolium Hydrogen Carbonate Ionic Liquids as Bifunctional Catalysts for the One-Pot Synthesis of Cyclic Carbonates from Olefins and CO₂. *Green Chemistry* **2019**, *21* (14), 3834-3838, 10.1039/C9GC01088B.
- (45) Prajapati, A.; Sartape, R.; Galante, M. T.; Xie, J.; Leung, S. L.; Bessa, I.; Andrade, M. H. S.; Somicich, R. T.; Rebouças, M. V.; Hutras, G. T.; et al. Fully-Integrated Electrochemical System that Captures CO₂ from Flue Gas to Produce Value-Added Chemicals at Ambient Conditions. *Energy Environ. Sci.* **2022**, *15* (12), 5105-5117, 10.1039/D2EE03396H.
- (46) Welch, A. J.; Dunn, E.; DuChene, J. S.; Atwater, H. A. Bicarbonate or Carbonate Processes for Coupling Carbon Dioxide Capture and Electrochemical Conversion. *ACS Energy Letters* **2020**, *5* (3), 940-945.
- (47) Xia, Q.; Zhang, K.; Zheng, T.; An, L.; Xia, C.; Zhang, X. Integration of CO₂ Capture and Electrochemical Conversion. *ACS Energy Letters* **2023**, *8* (6), 2840-2857.
- (48) Freeman, B. D. Basis of Permeability/Selectivity Tradeoff Relations in Polymeric Gas Separation Membranes. *Macromolecules* **1999**, *32* (2), 375-380.
- (49) Robeson, L. M. The Upper Bound Revisited. *J. Membr. Sci.* **2008**, *320* (1), 390-400.
- (50) Robeson, L. M. Correlation of Separation Factor versus Permeability for Polymeric Membranes. *J. Membr. Sci.* **1991**, *62* (2), 165-185.
- (51) Belaissaoui, B.; Lasseguette, E.; Janakiram, S.; Deng, L.; Ferrari, M. C. Analysis of CO₂ Facilitation Transport Effect through a Hybrid Poly(Acryl Amine) Membrane: Pathways for Further Improvement. *Membranes (Basel)* **2020**, *10* (12).
- (52) Klemm, A.; Lee, Y.-Y.; Mao, H.; Gurkan, B. Facilitated Transport Membranes With Ionic Liquids for CO₂ Separations. *Front. Chem.* **2020**, *8*, Mini Review.
- (53) Guo, H.; Wei, J.; Ma, Y.; Deng, J.; Yi, S.; Wang, B.; Deng, L.; Jiang, X.; Dai, Z. Facilitated Transport Membranes for CO₂/CH₄ Separation - State of the Art. *Adv. Membr.* **2022**, *2*, 100040.
- (54) Öztürk, T.; Yavuz, M.; Göktas, M.; Hazer, B. One-step Synthesis of Triarm Block Copolymers by Simultaneous Atom Transfer Radical and Ring-opening Polymerization. *Polymer Bulletin* **2016**, *73* (6), 1497-1513.
- (55) Shi, X.; Shi, H.; Wu, H.; Shen, H. Synthesis of Novel Perfluoroalkyl Ether Derivatives. *Research on Chemical Intermediates* **2018**, *44* (9), 5091-5105.
- (56) Saikia, B. J.; Dolui, S. K. Designing Semiencapsulation Based Covalently Self-healable Poly(methyl methacrylate) Composites by Atom Transfer Radical Polymerization. *J. Polym. Sci., Part A: Polym. Chem.* **2016**, *54* (12), 1842-1851.
- (57) Roshan, K. R.; Palissery, R. A.; Kathalikkattil, A. C.; Babu, R.; Mathai, G.; Lee, H.-S.; Park, D.-W. A Computational Study of the Mechanistic Insights into Base Catalysed Synthesis of Cyclic Carbonates from CO₂: Bicarbonate Anion as an Active Species. *Catal. Sci. Technol.* **2016**, *6* (11), 3997-4004.

TOC