

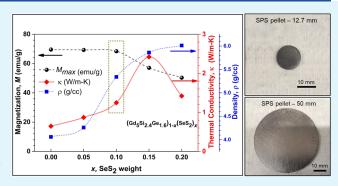
www.acsami.org Research Article

High-Performance Thermomagnetic Gd-Si-Ge Alloys

2 Saurabh Singh,* Na Liu, Yu Zhang, Amin Nozariasbmarz,* Sumanta Kumar Karan, Lavanya Raman,

3 Gagan Kumar Goyal, Shweta Sharma, Wenjie Li, Shashank Priya, and Bed Poudel*

Cite This: https://doi.org/10.1021/acsami.3c03158


ACCESS I

III Metrics & More

Article Recommendations

Supporting Information

4 ABSTRACT: Exploring low-grade waste heat energy harvesting is 5 crucial to address increasing environmental concerns. Thermo-6 magnetic materials are magnetic phase change materials that enable 7 energy harvesting from low-temperature gradients. To achieve a 8 high thermomagnetic conversion efficiency, there are three main 9 material requirements: (i) magnetic phase transition near room 10 temperature, (ii) a substantial change in magnetization with 11 temperature, and (iii) high thermal conductivity. Here, we 12 demonstrate a high-performance $Gd_5Si_{2,4}Ge_{1.6}$ thermomagnetic 13 alloy that meets these three requirements. The magnetic phase 14 transition temperature was successfully shifted to 306 K by 15 introducing Ge doping in Gd_5Si_4 , and a sharper and more

16 symmetric magnetization behavior with saturation magnetization of $M_{\rm max} = 70$ emu/g at a 2 T magnetic field was achieved in the 17 ferromagnetic state. The addition of SeS₂, as a low-temperature sintering aid, to the Gd–Si–Ge alloy improved the material's density 18 and thermal conductivity by ~45 and ~275%, respectively. Our results confirm that the $(Gd_5Si_{2.4}Ge_{1.6})_{0.9}(SeS_2)_{0.1}$ alloy is a suitable 19 composite material for low-grade waste heat recovery in thermomagnetic applications.

20 KEYWORDS: thermomagnetic, phase transition, low-grade thermal energy harvesting, magnetic alloys, gadolinium

1 INTRODUCTION

22 Low-grade waste heat harvesting is appealing as ~63% of 23 overall energy is dissipated in the form of low-grade waste heat 24 (hot-side temperature below 100 °C). 1-7 Thermomagnetic (TM) generators are a promising method for low-grade waste 26 heat recovery and will have a wide range of practical 27 applications in electronic sensors and devices. 8–11 Near 28 Curie temperature (T_c) , the temperature at which a TM 29 material (TMM) changes from the ferromagnetic (FM) state 30 to paramagnetic (PM) state and vice versa, TMMs possess 31 large magnetization (M_{cold}) , which turns into a low magnet-32 ization value (M_{hot}) above T_c . ^{12,13} In a complete TM cycle, a 33 device can harvest the magnetic energy, defined as $E_{\rm m}$ = 34 + $\mu_0 \Delta MH$, where μ_0 and H are the magnetic field constant and 35 applied external magnetic field, respectively. 14 The material's 36 efficiency for the conversion of thermal input energy (Q_{in}) into 37 useful output energy via thermomagnetic material is defined as $= \frac{E_{\rm m}}{Q_{\rm in}} = \frac{\mu_0 \Delta MH}{Q_{\rm in}}.$ From the expression of energy and 39 efficiency, it is noticeable that a large change in the magnetic 40 moment, i.e., $\Delta M = M_{\rm cold} - M_{\rm hot}$ in a small temperature 41 difference ($\Delta T = T_{\rm hot} - T_{\rm cold}$) is a key material property for an 42 efficient TM device. A TMM showing reversible and second-43 order phase transition would be a suitable choice for the 44 minimum energy loss during the TM cycle. A large value of 45 power density (P_D) , defined as $P_D = E_m f$, harvested by TM 46 devices is achieved by increasing the magnetic energy $(E_{\rm m})$ and

cycle frequency (f). This condition demands a large change in $_{47}$ the magnetic moment together with high thermal conductivity $_{48}$ (κ) for efficient and quick heat exchange in the vicinity of the $_{49}$ $_{\Delta}T$ across its magnetic phase transition. $_{8}$

In the past several years, different types of materials 51 including transition metals (Fe, Co, Ni), rare earth elements 52 (Gd, Tb), 15 intermetallic compounds (La–Fe–Co–Si–53 based), 15,16 metallic antiperovskites (Sn_{0.2}Ga_{0.8}CFe₃, 54 Ga_{0.92}CMn_{3.08}), 17,18 oxide perovskites (La_{0.67}Ba_{0.33}MnO₃, 55 La_{0.7}Nd_{0.1}Na_{0.2}MnO₃), 19,20 and amorphous glasses 56 (Gd₄₈Co₅₂) have been investigated due to their potential for 57 TM applications. 21,22 Among these, gadolinium (Gd) fulfills 58 the fundamental requirements to be used as a TMM near room 59 temperature. 37–25 With a reasonable change in the magnetic 60 moment ($\Delta M \sim 77$ emu/g with $\Delta T = 30$ K), moderate κ (6.6 61 W m⁻¹ K⁻¹), and $T_{\rm C} \sim 293$ K, Gd has been widely explored, 62 and its device performance has been investigated using 63 numerical modeling and experimental techniques. 27–33 Con-64 sidering the value of $T_{\rm C}$, pure Gd requires additional cooling 65

Received: March 4, 2023 Accepted: June 29, 2023

ACS Applied Materials & Interfaces

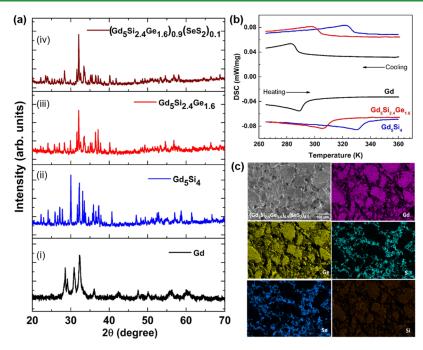


Figure 1. (a) XRD patterns of as-synthesized powder samples of (i) Gd, (ii) $Gd_{5}Si_{2,4}Ge_{1,6}$, and (iv) $(Gd_{5}Si_{2,4}Ge_{1,6})_{0.9}$ (SeS₂)_{0.1}. (b) Differential scanning calorimetry (DSC) curves for Gd, $Gd_{5}Si_{2,4}Ge_{1,6}$, and $(Gd_{5}Si_{2,4}Ge_{1,6})_{0.9}(SeS_{2})_{0.1}$ compounds. (c) SEM and EDS images of $(Gd_{5}Si_{2,4}Ge_{1,6})_{0.9}(SeS_{2})_{0.1}$ showing the distribution of Se and S in the microstructure.

66 below 300 K, which makes the device design complex. In 67 addition, Gd is brittle and forms gadolinium hydroxide in contact with cold/hot water, which degrades its mechanical, thermal, and magnetic properties.^{8,58,59} Several Gd-based $_{70}$ materials have been investigated by alloying with silicon $_{71}$ and/or germanium. $_{34-38}$ The alloying of Si/Ge with Gd to 72 form a GdSi-GdGe pseudobinary system allows the tuning of 73 magnetic phase transition $T_{\rm C}$ in a wide temperature range of 40-340 K. 39 Besides the allowed freedom of tunable magnetic properties, GdSi-GdGe pseudobinary systems make these 76 materials prominent for magnetocaloric/thermomagnetic properties; however, studies on the densification of these alloys are lacking due to the brittle nature of this material that prevents it from making the shape of cylinder or plate. Also, an 80 investigation of thermal properties is needed to determine the 81 bulk size of materials to know the applicability of these alloys 82 for thermomagnetic applications. In addition to the silicon and 83 germanium doping in Gd, making alloys of Gd with transition 84 metals (Mn, Zn, Ni, Pd) and rare earth elements (Nd and Pr) 85 has been found useful in the improvement of the thermal and 86 magnetic properties favorable for the magnetocaloric applica- 87 tions. $^{40-43}$ It is worth mentioning here that in the field of 88 magnetocaloric effect, Gd-Si-Ge alloys have been widely 89 investigated to find their potential applicability for magnetic 90 refrigeration applications, mainly below room temperature. In 91 this direction, Gebara et al. systematically investigated the 92 nature of phase transition of GdGeSi-(X)-type alloys (where x = Ni, Nd, and Pr) using heat and magnetic transport 94 techniques. 43,44 The alloys $Gd_{80}Ge_{15}Si_5$ and $Gd_{75}Ge_{15}Si_5Ni_5$ 95 have the structural phase transition, which is confirmed as a 96 first-order phase transition and shows a large magnitude of change in magnetic entropy ($\Delta S_{\rm M} \sim 12~{\rm J/kg \cdot K}$). From the 98 application perspective, such a large ΔS_{M} is good for magnetic 99 refrigeration. In the case of $Gd_{75}Ge_{15}Si_5Pr_5$ and 100 Gd₇₅Ge₁₅Si₅Nd₅, the nature of phase transition was noticed 101 as second order, with a lower value of $\Delta S_{\rm M} = \sim 5$ J/kg·K.

Besides the good magnetocaloric effect shown by Gd—Ge—Si- 102 X alloys, the phase transition temperature of all of these 103 compounds is reported at much below the room temperature 104 (300 K). On the other hand, in our daily lifestyle, plenty of 105 low-grade waste heat energy is available in the temperature 106 range of 300—320 K, which can be effectively harvested by 107 Gd—Si—Ge-based alloys by utilizing the thermomagnetic 108 effect. For this application, the material's magnetic phase 109 transition temperature should lie within the same temperature 110 region, and finding the best composition of material with such 111 magnetic properties is highly desirable. Motivated by this idea, 112 the tuning of the magnetic phase transition temperature of 113 Gd—Si—Ge materials in a temperature range of 300—320 K is 114 studied in the present work.

A comprehensive investigation of the thermal transport and 116 magnetic properties of Gd–Si–Ge-based materials with $T_{\rm C}$ 117 values near room temperature is lacking. In addition, low- 118 temperature densification and sintering methods are needed 119 that do not cause deterioration of magnetic, mechanical, and 120 thermal properties. For the materials sintered at high 121 temperatures, there are chances of decomposition, precip- 122 itation, and structural phase change that will affect the 123 magnetic properties. To overcome these problems, an 124 engineered Gd-based alloy with tuned $T_{\rm C}$ between 300 and 125 310 K, higher ΔM , improved κ , and better mechanical 126 properties is needed. 7,8,12

Here, we systematically study the effect of selenium disulfide 128 (SeS₂), as a new low-temperature sintering aid to substantially 129 improve the TM properties of Gd–Si–Ge-based alloys near 130 room temperature. We fabricated Gd₅Si₄ and Gd₅Si_{2.4}Ge_{1.6} 131 compounds through induction melting and densified the alloy 132 by optimizing the SeS₂ percentage to improve the thermal 133 conductivity by 90% while preserving the large magnetization. 134 The physical property characterization confirms that the 135 synthesized alloy is appropriate for TM applications at room 136 temperature.

138 EXPERIMENTAL PROCEDURE

139 The chunks of Gd (99.9%, MSE supplies), Si (99.9999%, Alfa Aesar), 140 and Ge (99.999%, Thermo Fisher Scientific) were weighed in a 141 stoichiometric proportion for the synthesis of Gd₅Si₄ and 142 Gd₅Si_{2.4}Ge_{1.6} compounds. The raw materials were melted by 143 induction melting in a boron nitride crucible under an argon 144 atmosphere (gas flow pressure 30 Pa). The as-melted ingot was 145 cylindrical with a dimension of ~20 mm diameter and ~5 mm height. 146 The ingot was pulverized into a fine powder by hand grinding (~20 147 min) using a mortar and pestle. The different weight percentages of 148 SeS₂ (97%, Alfa Aesar), as a low-temperature sintering agent, were 149 mixed homogeneously with Gd₅Si_{2.4}Ge_{1.6} alloys. The compositions are 150 designated as $(Gd_5Si_{2.4}Ge_{1.6})_{1-x}(SeS_2)_x$, where x = 0.05, 0.10, 0.15, 151 and 0.20. The powders were then consolidated in a cylindrical 152 graphite die with an inner diameter of 12.7 mm using the spark 153 plasma sintering (SPS) technique. The sintering temperature was 200 °C (heating rate with 1 °C/min) under a constant 40 MPa pressure 155 for 2 min of soaking time. Further, the power of SPS was switched to 156 obtain the sintered pellet at room temperature with a natural cooling 157 condition. The TM pellets with a 12.7 mm diameter, a 50 mm 158 diameter size, and an \sim 2 mm height were prepared for thermal and 159 magnetic property measurements.

Crystal structure and phase identification were studied on the 161 powder sample by X-ray diffraction (XRD) technique using a 162 PANalytical Empyrean (X-ray tube with Cu K_{α} source, wavelength 163 1.54 Å, voltage: 45 kV, current: 40 mA). The microstructure and 164 elemental mapping were analyzed by a field emission scanning 165 electron microscope (FESEM, FEI Verios), equipped with energy-166 dispersive X-ray spectroscopy (EDS, Oxford Aztec). The energy of 167 the electron beam was set to 10 keV for the SEM mapping. The 168 density (ρ) of the samples was measured using the Archimedes 169 principle. Curie temperature $(T_{\rm C})$, specific heat capacity $(C_{\rm p})$, and 170 heat flow were investigated using differential scanning calorimetry 171 (DSC, 214 polyma NETZSCH) with a heating and cooling rate of 15 172 K/min. Temperature-dependent thermal diffusivity (D) of the 173 samples was measured by using a Laser Flash instrument (LFA-467 174 HT HyperFlash). The thermal conductivity (κ) of the samples was 175 then calculated from the relationship $\kappa = \rho \cdot C_p \cdot D$. Temperature-176 dependent magnetic measurements in the range of 300-350 K were 177 performed using a vibrating sample magnetometer (VSM, Lakeshore 178 8600).

79 RESULTS AND DISCUSSION

180 The room-temperature XRD patterns of fine powders of each 181 composition in comparison to those of Gd are shown in Figure 182 1a. For the Gd₅Si₄ sample, all of the XRD peaks correspond to 183 the orthorhombic I crystal structure of Gd₅Si₄, classified by the 184 same crystal symmetry and space group as Pnma (space group 185 number 62, Pearson symbol oP36). With the doping of Ge 186 at the Si site in the Gd₅Si₄ system (Figure 1a), Gd₅Si_{2,4}Ge_{1,6} 187 possesses the same crystallographic phase as found for the $_{188}$ $Gd_{\scriptscriptstyle 5}Si_{\scriptscriptstyle 4}$ structure. In the $Gd_{\scriptscriptstyle 5}Si_{\scriptscriptstyle 2.4}Ge_{\scriptscriptstyle 1.6}$ sample, all XRD peaks 189 are consistent with the data reported in the literature. 45 No 190 structural phase change is noticed with the addition of SeS₂ 191 into Gd₅Si_{2.4}Ge_{1.6}. The only difference is in the intensity ratio 192 of peaks, mainly in the 2θ range of $25-45^{\circ}$ (Figure 1a). The 193 XRD data of Gd consist of Bragg reflection peaks, which 194 correspond to the hexagonal closed pack (hcp) structure, 195 classified by the space group P63/mmc, No. 194, and match 196 well with the earlier report.

Figure 1b shows the heat flow measurement as a function of temperature obtained from DSC measurement for Gd, Gd_5Si_4 , 199 $Gd_5Si_{2,4}Ge_{1.6}$, and $(Gd_5Si_{2,4}Ge_{1.6})_{0.9}(SeS_2)_{0.1}$ compounds. Si 200 addition shifts $T_{\rm C}$ of Gd-based TMMs toward higher temperatures, and Ge is found to move the transition toward 202 lower temperatures. The $T_{\rm C}$ of Gd, Gd_5Si_4 , and $Gd_5Si_{2,4}Ge_{1.6}$

compounds are ~290, 330, and 306 K, respectively. The phase 203 transition temperature of Gd and Gd_5Si_4 is consistent with the 204 earlier report. In $Gd_5Si_{2,4}Ge_{1,6}$, the DSC shows a drastic 205 decrement in the phase transition temperature. The phase 206 diagram of $Gd_5Si_4-Gd_5Ge_4$ suggests that Gd_5Si_4 and 207 $Gd_5Si_{2,4}Ge_{1,6}$ preserve the orthorhombic crystal structure, 208 and the earlier reports indicate that there is no change in the 209 crystal structure across the phase transition temperature of 210 Gd_5Si_4 and $Gd_5Si_{2,4}Ge_{1,6}$ compositions. Gd forms an hcp 211 structure at ambient pressure, and any change in the crystal 212 structure occurs with applied external pressure. In the 213 present investigation, all of the compounds have been studied 214 under ambient pressure. Therefore, the phase transition for all 215 compounds can be attributed to the magnetic phase transition. 216

The observation of a step-down change in the DSC heating 217 curve due to the magnetic phase transitions is similar to the 218 structural phase transition driven by thermodynamic phase 219 changes. 45–47 Likewise, a step-up change can be observed in 220 the DSC cooling curve (Figure 1). In the cooling cycle, the 221 phase transition temperatures of Gd, Gd $_{\rm S}$ Si $_{\rm 4}$, and Gd $_{\rm 5}$ Si $_{\rm 2.4}$ Ge $_{\rm 1.6}$ 222 are shifted to ~283, ~ 322, and ~298 K, respectively. The shift 223 in transition temperature toward lower temperature is mainly 224 due to the effect of the heating—cooling rate applied to the 225 dynamical thermal phase investigation using DSC measure- 226 ment.

An epoxy binder agent has been widely used as a sintering 228 aid for brittle ceramic materials owing to its excellent adhesive 229 nature. 48,49 However, due to its nonmagnetic properties, low 230 density, and low κ , it is not a preferred choice for TM 231 applications. This is mainly because of the formation of a 232 nonhomogeneous thick layer of epoxy resin with lower density 233 between the grains of TMMs. Such layers act as a scattering 234 barrier for phonons and prevent heat flow propagation in the 235 materials via grain-to-grain heat transfer. Owing to the large 236 variations in mass density and difference in phonon mean free 237 path of the activated phonon wave packets of epoxy materials 238 and inorganic TMMs, the scattering probability of phonon 239 wave packets (including low-mid and high range of 240 frequencies) increases. Here, we demonstrate SeS2 as an 241 appropriate low-temperature sintering aid for improving the 242 density and κ of TMMs. SEM image and EDS analysis of 243 $(Gd_5Si_{2.4}Ge_{1.6})_{0.9}(SeS_2)_{0.1}$ show a uniform distribution of Gd, 244 Si, and Ge elements, whereas the spaces between TMM grains 245 are Se- and S-rich (Figures 1c and S1). SeS2 binder distributes 246 throughout the alloy and fills the area between the grains.

The low-temperature consolidation of $Gd_5Si_{2.4}Ge_{1.6}$ was 248 performed at 200 °C using spark plasma sintering (SPS) for 2 249 min. SeS_2 plays a key role as a sintering aid for binding 250 $Gd_5Si_{2.4}Ge_{1.6}$ particles to each other. Such low-temperature 251 sintering prohibits phase change, grain growth, and precip- 252 itation in TMMs and maintains the magnetic properties as the 253 magnetic domain structure within each grain is not affected at 254 200 °C.

In order to demonstrate a TM device, the synthesized 256 powders need to be sintered to an appropriate desired shape. 257 Initially, we tried to densify pure $\mathrm{Gd_5Si_{2.4}Ge_{1.6}}$ through SPS; 258 however, even at temperatures above 1000 °C, it did not sinter 259 into a uniform dense sample, and more importantly, the 260 magnetic properties dropped. The sintered sample was full of 261 microcracks, and the alloy was unstable at room temperature. 262 The sintering agent, 263 with a density of 3 g/cm 3 and a 263 melting point of 111 °C, was next used to densify the powders 264 into a pellet. Figure 2 demonstrates the effect of the 265 2265 fixed 265 2265 fixed 265 2265 fixed 265 2265 2265 2265 2265 2265 2265 2265 2265 2265 2265 2265 2265 2265 2265 2265 2265 2265 2265

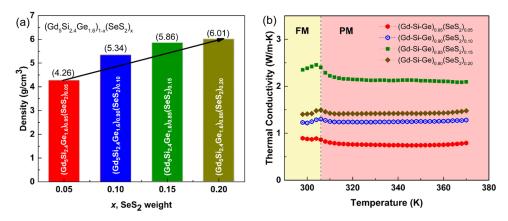
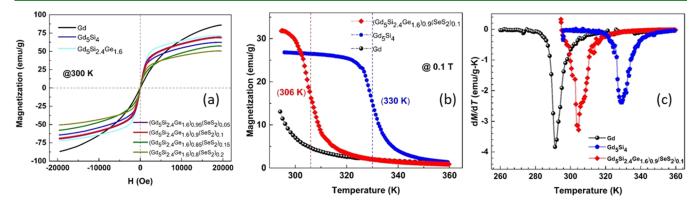
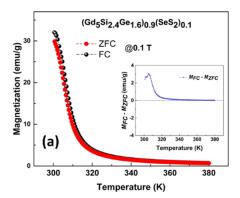


Figure 2. (a) Density evolution and (b) temperature-dependent thermal conductivity of $Gd_5Si_{2,4}Ge_{1,6}$ materials as a function of the SeS_2 weight ratio.




Figure 3. (a) Magnetization plot for induction melt ingots of Gd, $Gd_5Si_{2,4}Ge_{1,6}$, and SPS samples $(Gd_5Si_{2,4}Ge_{1,6})_{1-x}(SeS_2)_x$ (x = 0.05, 0.1, 0.15, and 0.2) measured at 300 K. (b) Magnetization versus applied field measured at 300 K, (c) magnetization versus temperature measured at 0.1 T field, and (d) the rate of change of magnetization versus temperature.

266 concentration on the density and thermal conductivity of the 267 Gd₅Si_{2.4}Ge_{1.6} alloy. The density of all compositions increases 268 monotonically with an increase in the SeS2 concentration. The 269 density of the Gd₅Si_{2.4}Ge_{1.6} alloy with epoxy (prepared as a reference sample) reaches a maximum of 4.06 g/cm³, which is the lowest value compared to that of SeS₂-contained alloys. 272 Although the prepared ingot of Gd₄Si_{2.6}Ge_{1.4} obtained from 273 induction melting is in a cylindrical shape (shown in Figure 274 S5a) and appears to be a solid shape, several cracks are formed 275 and it gets brittle while cutting into the desired shape for further measurement. The measured density of a chunky piece of $Gd_5Si_{2.4}Ge_{1.6}$ is 4.13 g/cm³. The densities of $(Gd_5Si_{2.4}Ge_{1.6})_{0.95}(SeS_2)_{0.05}, (Gd_5Si_{2.4}Ge_{1.6})_{0.9}(SeS_2)_{0.1},$ 278 $Gd_5Si_{2,4}Ge_{1,6})_{0.85}(SeS_2)_{0.15}$, and $(Gd_5Si_{2,4}Ge_{1,6})_{0.8}(SeS_2)_{0.2}$ are found to be 4.26, 5.34, 5.86, and 6.01 g/cm³, respectively. Such an improvement in density is due to the adhesive nature of 281 SeS₂ with a melting point of 111 °C, which fills the pores. 282

The measured values of specific heat and thermal diffusivity are shown in Figure S2a,b, respectively, in the Supporting Information. Temperature-dependent specific heat (C_p) of all compositions shows a kink near the phase transition temperature (Figure S2b). During the magnetic phase transition, the rearrangement of the spins inside the magnetic domain affects the magnon—phonon interactions within the domain, as well as at the grain boundaries. In the PM regime, there is a weak variation in the C_p , which might be due to the the thermal agitation effect on randomly oriented spins within the magnetic domain as well as between the different neighboring

domains. The thermal conductivity is improved by adding SeS₂ 294 in the Gd-Si-Ge alloy due to a simultaneous increase in 295 density and thermal diffusivity. The thermal conductivity 296 increases around the phase transition temperature, while 297 variation in the thermal conductivity of the FM phase (T < 298 $T_c = 306 \text{ K}$) and the PM phase $(T > T_c)$ as a function of 299 temperature is negligible. This is advantageous for the fast heat 300 exchange between the material and the working environment. 301 This tendency toward heat flow behavior suggests that 302 magnetic phase transition has a very weak effect on the 303 phonon propagation through the magnon-phonon coupling 304 once a stable magnetic phase region is achieved. In the high- 305 temperature regime, magnetic ordering breaks down, and the 306 PM phase does not affect the scattering probability of the 307 phonon wave packets. In this strong scattering limit, the 308 phonon mean free path does not get much affected and results 309 in carrying almost the same heat flow.

The phase transition in TMMs is due to the change in 311 magnetic ordering; therefore, the change in thermal con- 312 ductivity across the phase transition region is broader and has a 313 small variation in its magnitude. Structural phase change such 314 as magnetic phase transition is a time-dependent phase 315 transition and requires a specific amount of time for ordering 316 and disordering, which results in a comparatively large 317 variation in thermal diffusivity near phase transition. $^{50-5132}$ 318 The maximum thermal conductivity in the FM phase is found 319 to be $\sim 2.15~{\rm W/m\cdot K}$ in the case of the 320 $({\rm Gd}_5{\rm Si}_{2.4}{\rm Ge}_{1.6})_{0.85}({\rm SeS}_2)_{0.15}$ alloy, shown in Figure S3 in the 321

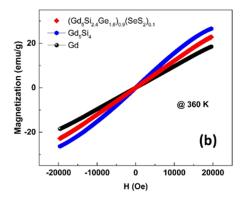


Figure 4. (a) Zero-field-cooled (ZFC) and field-cooled (FC) magnetization data with temperature for $(Gd_5Si_{2.4}Ge_{1.6})_{0.9}$ $(SeS_2)_{0.1}$ and (b) magnetization data measured at 360 K.

322 Supporting Information. The increasing trend in the 323 magnitude of the thermal conductivity is observed up to the 324 composition of $(Gd_5Si_{2,4}Ge_{1,6})_{0.85}(SeS_2)_{0.15}$ (i.e., x>0.15). A 325 further increase in the SeS₂ concentration results in a decrease 326 in the magnitude of thermal diffusivity. Such behavior might be 327 due to the optimum limit of the SeS₂ concentration in 328 $Gd_5Si_{2,4}Ge_{1,6}$ for achieving the maximum heat diffusion. Above 329 the threshold amount of SeS₂ (x>0.15), the sintering aid 330 suppresses the heat flow, even though the density of 331 $(Gd_5Si_{2,4}Ge_{1,6})_{0.8}(SeS_2)_{0.2}$ is enhanced. A large improvement 332 in the magnitude of κ is very useful for increasing the frequency 333 of the thermal cycle of TMMs at the device level. $^{53-5455}$

The isothermal magnetization (M-H) plot for the induction melt $\mathrm{Gd_5Si_{2.4}Ge_{1.6}}$ ingot and $(\mathrm{Gd_5Si_{2.4}Ge_{1.6}})_{1-x}(\mathrm{SeS_2})_x$ ($x=336\,$ 0.05, 0.1, 0.15, and 0.2) measured at 300 K in comparison with 337 Gd and $\mathrm{Gd_5Si_4}$ is shown in Figure 3a. All samples show FM 338 behavior with negligible coercivity. The M-H behavior 339 suggests that the materials have almost zero energy loss during 340 the TM cycle, and the M-H has a sharp slope around the zero 341 magnetic field and reaches the saturation magnetization (M_s) 342 value with an applied field strength of \sim 2 T. The as-melt 343 $\mathrm{Gd_5Si_{2.4}Ge_{1.6}}$ has the highest M_s value of \sim 71 emu/g. The 344 value of M_s decreases when the as-melt sample is mixed with 345 $\mathrm{SeS_2}$. This is due to the additional nonmagnetic content in the 346 matrix of TMM, which occupies a fraction of the magnetic 347 material.

Although the addition of SeS₂ downgrades the saturation 348 349 magnetization of the $Gd_5Si_{2.4}Ge_{1.6}$ alloy, the shape of the M-H350 curve and the negligible coercivity remain the same for all 351 SeS₂-contained samples. This feature reveals that the non-352 magnetic SeS₂ does not change the magnetic nature of the Gd₅Si_{2.4}Ge_{1.6} alloy rather than a small effect on the saturation 354 magnetization. As shown in Figure 3a, the shape of the 355 magnetization curve is sharper for Gd₅Si₄ and $(Gd_5Si_{2.4}Ge_{1.6})_{0.9}(SeS_2)_{0.1}$ as compared to the pure Gd 357 material. This feature of M-H behavior results in a large 358 magnetic energy (E_m) at a temperature just below the phase 359 transition. The saturation magnetization of $(Gd_5Si_{2,4}Ge_{1.6})_{0.9}(SeS_2)_{0.1}$ is found to be higher in comparison 361 to that of Gd₅Si₄ measured at the same temperature. 362 Considering the physical, thermal, and magnetic properties 363 of all samples, $(Gd_5Si_{2.4}Ge_{1.6})_{0.9}(SeS_2)_{0.1}$ shows the most 364 optimum thermomagnetic properties compared to those of Gd, 365 Gd₅Si₄, and Gd₅Si_{2,4}Ge_{1.6}.

366 Figure 3b shows the magnetization as a function of 367 temperature at an applied magnetic field of 0.1 T (=1000 368 Oe) for Gd, Gd_5Si_4 , and $(Gd_5Si_2, Ge_{16})_{0.9}(SeS_2)_{0.1}$ in the

temperature range of 293-360 K. For Gd₅Si₄ and 369 $(Gd_5Si_{2.4}Ge_{1.6})_{0.9}(SeS_2)_{0.1}$, the magnetic phase transition 370 region is clearly above room temperature, while pure Gd has 371 a lower magnetic phase transition than room temperature. The 372 addition of Si to Gd increases the $T_{\rm C}$ to 330 K, and Ge can 373 compensate for the T_{C} to lower temperatures. This strategy is $_{374}$ found to be more effective in tuning the T_c value within a 375 300-320 K temperature range, whereas the doping of 376 transition metal or rare earth elements in Gd-Si-Ge 377 suppresses the $T_{\rm c}$ values in 200–290 K, which is far below 378 the room temperature. 40 The magnetic phase transition 379 temperature for $(Gd_5Si_{2.4}Ge_{1.6})_{0.9}(SeS_2)_{0.1}$ shifts to 306 K, 380 which makes this compound attractive for low-grade waste 381 heat recovery near room temperature. This phase transition 382 temperature is consistent with that observed from the DSC 383 plot (Figure 1b). At higher-temperature regions (>360 K), the 384 values of magnetization of all samples drastically reduce to M < 3851 emu/g. Other important observations include the sharper 386 and larger change in magnetization around $T_{\rm C}$ for the 387 $(Gd_5Si_{2.4}Ge_{1.6})_{0.9}(SeS_2)_{0.1}$ alloy.

In the $(Gd_5Si_{2.4}Ge_{1.6})_{0.9}(SeS_2)_{0.1}$ alloy, the change in 389 magnetization (ΔM) across its phase transition temperature 390 is larger as compared to Gd₅Si₄, whereas its magnitude is 391 slightly smaller than that of Gd when measured at a magnetic 392 field of 0.1 T. This can also be confirmed by the dM/dT versus 393 T plot as shown in Figure 3c. It can be observed from Figure 394 3b that $(Gd_5Si_{2.4}Ge_{1.6})_{0.9}(SeS_2)_{0.1}$ has a T_C of ~ 306 K. Having 395 a $T_{\rm C}$ value closer to room temperature makes 396 $(Gd_5Si_{2,4}Ge_{1.6})_{0.9}(SeS_2)_{0.1}$ more suitable for TM application 397 in comparison to the Gd with a $T_{\rm C}$ of ~ 293 K much below 398 room temperature. The value of ΔM $(M_{\rm FM}-M_{\rm PM})$ at a 399 magnetic field of 0.1 T for $(Gd_5Si_{2.4}Ge_{1.6})_{0.9}(SeS_2)_{0.1}$ and 400 Gd₅Si₄ is equal to ~30 and ~24 emu/g, respectively. The 401 improvement in ΔM for $(Gd_5Si_{2.4}Ge_{1.6})_{0.9}(SeS_2)_{0.1}$ is ~25% as 402 compared to that for Gd_5Si_4 . Such a large ΔM observed in the 403 Gd-Si-Ge-based material near room temperature is a 404 remarkable improvement in the magnetic properties within 405 the Gd-based TM alloys. As shown in a comparative plot of 406 magnetization in both FM and PM phases of 407 $(Gd_5Si_{2.4}Ge_{1.6})_{1-x}(SeS_2)_x$ (x = 0.05, 0.1, 0.15, and 0.2) (Figure 408) S4, Supporting Information), the magnetization values are 409 decreased after x = 0.1 in the base composition. This suggests 410 that $(Gd_5Si_{2.4}Ge_{1.6})_{0.9}(SeS_2)_{0.1}$ provides good magnetic proper- 411 ties as compared to those of the alloys without SeS2.

In order to investigate the nature of magnetic behavior in the 413 vicinity of the magnetic phase transition temperature, we have 414 performed zero-field cooling (ZFC) and field cooling (FC) 415

467

494

416 magnetization measurements of the $(Gd_5Si_{2.4}Ge_{1.6})_{0.9}(SeS_2)_{0.1}$ 417 alloy at 0.1 T in the temperature range of 300-360 K as shown 418 in Figure 4a. In the PM phase regime, both ZFC and FC data 419 overlap each other above 320 K. In the PM region, the 420 magnetic moment within the domain is expected in the 421 disordered configuration due to the thermal agitation and 422 therefore has no difference in ZFC and FC data. However, 423 there is a significant difference in ZFC and FC data below 320 424 K, and this difference increases to ~3 emu/g when the material 425 reaches the state of the FM phase. This suggests that 426 (Gd₅Si_{2.4}Ge_{1.6})_{0.9}(SeS₂)_{0.1} has intrinsic magnetic characteristics 427 and goes through the PM-to-FM transition when it is cooled 428 below the Curie temperature. Also, the M-H curve for the PM 429 phase measured at high temperatures, as shown in Figure 4b, 430 confirms the PM nature of all three samples by showing an 431 almost linear behavior.

For a good TM material, large changes in the magnetic moment and Curie temperature are the most important and primary decisive physical quantities, whereas κ and ρ are secondary. Figure 5 shows a comparative plot of three main

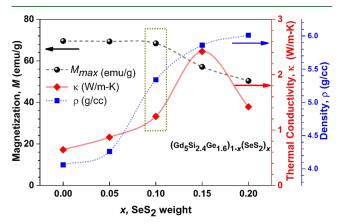


Figure 5. Comparative plot of magnetization $(M_{\rm max})$, thermal conductivity, and density as a function of the SeS₂ weight amount mixed with the ${\rm Gd}_5{\rm Si}_{2.4}{\rm Ge}_{1.6}$ alloy.

436 physical quantities measured at room temperature (i.e., 300 437 K), i.e., magnetization (M), thermal conductivity (κ), and 438 density (ρ) as a function of the SeS₂ weight percentage. The 439 values of magnetization shown in Figure 5 are reported at an 440 applied magnetic field of 2 T and a temperature of 300 K. By 441 looking at the variation in M, κ , and ρ , it can be concluded that 442 the optimized composition to achieve the best TM properties 443 is $(Gd_5Si_{2,4}Ge_{1,6})_{0,9}(SeS_2)_{0,1}$. This can be attributed to 444 preserving the large magnetization along with significant 445 improvement in the density and thermal conductivity in 446 $(Gd_5Si_{2.4}Ge_{1.6})_{0.9}(SeS_2)_{0.1}$. A similar selection strategy has been 447 previously reported by comparing the TM properties of Gd 448 and La-Fe-Co-Si compounds elsewhere. 56,57 The material 449 with a symmetrical shape of the M-H curve is more suitable 450 for magnetization and demagnetization during the TM cycle.⁵⁶ A material with a sharp M-H curve with improved ΔM is 452 considered a good candidate for TM application. Therefore, $(Gd_5Si_{2,4}Ge_{1,6})_{0,9}(SeS_2)_{0,1}$, with a large change in magnet-454 ization and magnetic phase transition near room temperature, 455 shows potential to be used for TM applications. We prepared 456 SPS pellets with two different diameters (12.7 and 50 mm) and 457 achieved similar density and thermal conductivity (Figure S5, 458 Supporting Information). The magnetization data of samples

from two different batches prepared with different diameter 459 sizes of pellets (12.7 and 50 mm diameter) is shown in Figure 460 S6. The MH curves of two independent batches of samples 461 with composition $(Gd_5Si_{2.4}Ge_{1.6})_{0.9}(SeS_2)_{0.1}$ have the same 462 magnitude and similar shape, confirming the reproducibility 463 with the scalable point of view of making samples having 464 different dimensions. This confirms that our approach can be 465 upscaled without losing the material's performance.

CONCLUSIONS

We have developed a high-performance thermomagnetic alloy 468 of $(Gd_5Si_{2.4}Ge_{1.6})_{0.9}(SeS_2)_{0.1}$ using a two-step synthesis 469 technique: (i) induction melting was initially applied to 470 synthesize the Gd₅Si_{2.4}Ge_{1.6} ingot and (ii) the melt ingot is 471 pulverized into a fine powder, SeS2 is added as a sintering aid, 472 and then the mixture is densified with low-temperature spark 473 plasma sintering (SPS). This composite alloy shows a Curie 474 temperature of ~306 K. The large change in the magnetic 475 moment within the vicinity of phase transition is preserved, 476 while density and thermal conductivity are significantly 477 improved by adding a small amount of SeS2 as a sintering 478 aid in the Gd-Si-Ge alloy. While the sintering of the Gd-Si-479 Ge alloy is challenging even at high temperatures, the low- 480 temperature sintering aid is found to be very effective in 481 processing the materials into desired shapes like pellets and 482 rings. Microscopic analysis suggests that SeS₂ is distributed at 483 the grain boundaries of the Gd-Si-Ge alloy, which is a key 484 solution in strengthening the mechanical properties and 485 achieving high density. The optimized composite materials 486 $(Gd_5Si_{2.4}Ge_{1.6})_{0.9}(SeS_2)_{0.1}$ show a high magnetic performance 487 of $M_{\rm max} \sim 67$ emu/g and a simultaneous large thermal 488 conductivity of 1.25 W/m-K at 300 K and a density of 5.34 g/ 489 cm³ in the FM state. Our study proposes that 490 $(Gd_{5}Si_{2.4}Ge_{1.6})_{0.9}(SeS_{2})_{0.1}$ can be a suitable composite material $_{491}$ for low-grade waste heat recovery in thermomagnetic 492 applications.

ASSOCIATED CONTENT

5 Supporting Information

The Supporting Information is available free of charge at 496 https://pubs.acs.org/doi/10.1021/acsami.3c03158.

SEM image and EDS mapping of 498 $(Gd_5Si_{2.4}Ge_{1.6})_{0.9}(SeS_2)_{0.1}$; temperature-dependent spe- 499 cific heat and temperature-dependent thermal diffusivity 500 of $(Gd_5Si_{2,4}Ge_{1,6})_{1-x}(SeS_2)_x$ (x = 0.05, 0.1, 0.15, and 501 0.2); variation in thermal conductivity corresponding to 502 the 300 K (FM) and 320 K, 360 K (PM) temperature; 503 variation in the magnetization values, i.e., M_{max} (at 2 T) 504 for both ferromagnetic phase (300 K) and paramagnetic 505 phase (360 K) along with the difference $M_{\rm max,300~K}$ – 506 $M_{\text{max},360 \text{ K}}$ as a function of SeS₂, x weight amount in 507 $(Gd_5Si_{2.4}Ge_{1.6})_{1-x}(SeS_2)_x$ (x = 0, 0.05, 0.1, 0.15, 0.2); 508 ingot of $Gd_5Si_{2.4}Ge_{1.6}$ obtained after induction melting; 509 SPS pellets of $(Gd_5Si_{2.4}Ge_{1.6})_{0.9}(SeS_2)_{0.1}$ having diame- 510 ters of 12.7 and 50 mm; measured density of two pellets 511 having different diameters of 12.7 and 50 mm; measured 512 thermal conductivity of the two pellets prepared with 513 SPS with different diameters; and magnetization curve of 514 the two pellets prepared with SPS with different 515 diameters, i.e., 12.7 and 50 mm (PDF)

590

62.7

517 AUTHOR INFORMATION

518 Corresponding Authors

Saurabh Singh — Department of Materials Science and
Engineering, Pennsylvania State University, University Park,
Pennsylvania 16802, United States; orcid.org/00000003-2209-5269; Email: sbs6760@psu.edu

Amin Nozariasbmarz – Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States; orcid.org/0000-0003-2789-9469; Email: aln192@psu.edu

Bed Poudel – Department of Materials Science and
Engineering, Pennsylvania State University, University Park,
Pennsylvania 16802, United States; orcid.org/00000001-7760-2016; Email: bup346@psu.edu

531 Authors

535

536

537

538

539

540

541

542

543

544

555

556

557

Na Liu – Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States

Yu Zhang — Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States

Sumanta Kumar Karan — Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States; ○ orcid.org/0000-0002-3272-3946

Lavanya Raman — Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States

Gagan Kumar Goyal – Department of Materials Science and
 Engineering, Pennsylvania State University, University Park,
 Pennsylvania 16802, United States

Shweta Sharma – Department of Materials Science and
Engineering, Pennsylvania State University, University Park,
Pennsylvania 16802, United States; orcid.org/00000002-3698-6663

Wenjie Li – Department of Materials Science and Engineering,
Pennsylvania State University, University Park, Pennsylvania
16802, United States; orcid.org/0000-0003-4509-3303

Shashank Priya – Department of Materials Science and Engineering, Pennsylvania State University, University Park, Pennsylvania 16802, United States

558 Complete contact information is available at: 559 https://pubs.acs.org/10.1021/acsami.3c03158

560 Author Contributions

561 The author S.S. led this work with conceptualization, data 562 curation, formal analysis, investigation, validation, visualization, 563 writing the original draft, review, and editing. The authors B.P., 564 A.N., and S.P. made contributions to idea development, 565 conceptualization, data curation, resources, and revising and 566 reviewing the manuscript draft. The authors B.P. and S.P. 567 played the main roles in supervision, project administration, 568 scientific guidance, and funding acquisition. The authors N.L., 569 Y.Z., S.K.K., L.R., G.K.G., S.S., and W.L. contributed to data 570 curation and revising the manuscript draft.

571 Notes

572 The authors declare no competing financial interest.

573 **ACKNOWLEDGMENTS**

574 S.S., A.N., B.P., and S.P. acknowledge the primary financial 575 support from the Army Research Office through the TE3

program (W911NF1620010), which is mainly responsible for 576 this work. Auxiliary contributions of coauthors are of wide 577 scope, spanning from material preparation, device fabrication, 578 and a wide scope of characterizations (detailed in the Author 579 Contribution section). The acknowledgments on these 580 secondary supports include N.L. and G.K.G. who acknowledge 581 the support from the Army SBIR program supported by 582 NextGen Aeronautics, Inc. S.K.K. and W.L. acknowledge the 583 financial support from the Army RIF program. Y.Z. acknowl- 584 edges the support from the Army SBIR program supported by 585 NanoOhmics. L.R. acknowledges support from ARPA-E 586 through the ULTERA program. S.S. acknowledges the financial 587 support from the National Science Foundation through the I/ 588 UCRC Program.

REFERENCES

(1) Ryu, H.; Yoon, H. J.; Kim, S. W. Hybrid energy harvesters: 591 toward sustainable energy harvesting. *Adv. Mater.* **2019**, *31* (34), 592 No. 1802898.

(2) Singh, S.; Hirata, K.; Pandey, S. K.; Takeuchi, T. Recent 594 Advances in Energy Harvesting from Waste Heat Using Emergent 595 Thermoelectric Materials. *Emerging Mater.* **2022**, 155–184.

(3) Kishore, R. A.; Priya, S. A. review on low-grade thermal energy 597 harvesting: Materials, methods and devices. *Materials* **2018**, *11* (8), 598 1433.

(4) Van Vuuren, D. P.; Bijl, D. L.; Bogaart, P.; Stehfest, E.; Biemans, 600 H.; Dekker, S. C.; Doelman, J. C.; Gernaat, D. E.; Harmsen, M. 601 Integrated scenarios to support analysis of the food—energy—water 602 nexus. *Nat. Sustainability* **2019**, 2 (12), 1132—1141.

(5) Forman, C.; Muritala, I. K.; Pardemann, R.; Meyer, B. Estimating 604 the global waste heat potential. *Renewable Sustainable Energy Rev.* 605 **2016**, 57, 1568–1579.

(6) Schierning, G. Bring on the heat. *Nat. Energy* **2018**, 3 (2), 92-607 93.

(7) Kitanovski, A. Energy applications of magnetocaloric materials. 609 Adv. Energy Mater. 2020, 10 (10), No. 1903741.

(8) Dzekan, D.; Waske, A.; Nielsch, K.; Fähler, S. Efficient and 611 affordable thermomagnetic materials for harvesting low grade waste 612 heat. *APL Mater.* **2021**, 9 (1), No. 011105.

(9) Edison, T. A. Pyromagnetic motor. U.S. patent US380100A 614(Mar. 27 1888).

(10) Edison, T. A. Pyromagnetic generator, U.S. patent US476983A 616 (June 14 1892).

(11) Srivastava, V.; Song, Y.; Bhatti, K.; James, R. D. The direct 618 conversion of heat to electricity using multiferroic alloys. *Adv. Energy* 619 *Mater.* **2011**, *1* (1), 97–104.

(12) Kishore, R. A.; Priya, S. A review on design and performance of 621 thermomagnetic devices. *Renewable Sustainable Energy Rev.* **2018**, 81, 622

(13) Chun, J.; Song, H. C.; Kang, M. G.; Kang, H. B.; Kishore, R. A.; 624 Priya, S. Thermo-magneto-electric generator arrays for active heat 625 recovery system. *Sci. Rep.* **2017**, *7* (1), No. 41383.

(14) Bozorth, R. Ferromagnetism; Wiley: Hoboken, NJ, 1993.

(15) Bjørk, R.; Bahl, C. R. H.; Katter, M. Magnetocaloric properties 628 of LaFe_{13-x-y}Co_xSi_y and commercial grade Gd. *J. Magn. Magn. Mater.* 629 **2010**, 322 (24), 3882–3888.

(16) Hu, F. X.; Gao, J.; Qian, X. L.; Ilyn, M.; Tishin, A. M.; Sun, J. 631 R.; Shen, B. G. Magnetocaloric effect in itinerant electron 632 metamagnetic systems $La(Fe_{1-x}Co_x)_{11.9}Si_{1.1}$. *J. Appl. Phys.* **2005**, 97 633 (10), No. 10M303.

(17) Lin, S.; Wang, B. S.; Lin, J. C.; Zhang, L.; Hu, X. B.; Huang, Y. 635 N.; Lu, W. J.; Zhao, B. C.; Tong, P.; Song, W. H.; Sun, Y. P. 636 Composition dependent-magnetocaloric effect and low room-temper- 637 ature coefficient of resistivity study of iron-based antiperovskite 638 compounds Sn1-xGaxCFe3 (0 \le x \le 1.0). Appl. Phys. Lett. 2011, 99 639 (17), No. 172503.

- 641 (18) Wang, B. S.; Tong, P.; Sun, Y. P.; Zhu, X. B.; Luo, X.; Li, G.; 642 Song, W. H.; Yang, Z. R.; Dai, J. M. Reversible room-temperature 643 magnetocaloric effect with large temperature span in antiperovskite 644 compounds Ga 1–xCMn3+x (x= 0, 0.06, 0.07, and 0.08). *J. Appl.* 645 *Phys.* **2009**, *105* (8), No. 083907.
- 646 (19) Zhong, W.; Chen, W.; Au, C. T.; Du, Y. W. Dependence of the 647 magnetocaloric effect on oxygen stoichiometry in polycrystalline 648 $La_{2/3}Ba_{1/3}MnO_{3-\delta}$. *J. Magn. Magn. Mater.* **2003**, 261 (1–2), 238–243. 649 (20) Hou, D. L.; Yue, C. X.; Bai, Y.; Liu, Q. H.; Zhao, X. Y.; Tang, 650 G. D. Magnetocaloric effect in $La_{0.8-x}Nd_xNa_{0.2}MnO_3$. *Solid State*
- 651 Commun. 2006, 140 (9-10), 459-463.
- 652 (21) Yu, P.; Zhang, J. Z.; Xia, L. $Fe_{87}Zr_7B_4Co_2$ amorphous alloy with 653 excellent magneto-caloric effect near room temperature. *Intermetallics* 654 **2018**, 95, 85–88.
- 655 (22) Wang, Z. W.; Yu, P.; Cui, Y. T.; Xia, L. Near room temperature 656 magneto-caloric effect of a $Gd_{48}Co_{52}$ amorphous alloy. *J. Alloys* 657 Compd. **2016**, 658, 598–602.
- 658 (23) Dan'Kov, S. Y.; Tishin, A. M.; Pecharsky, V. K.; Gschneidner, 659 K. A. Magnetic phase transitions and the magnetothermal properties 660 of gadolinium. *Phys. Rev. B* **1998**, *57* (6), 3478.
- 661 (24) Meis, C.; Froment, A. K.; Moulinier, D. Determination of 662 gadolinium thermal conductivity using experimentally measured 663 values of thermal diffusivity. *J. Phys. D: Appl. Phys.* **1993**, 26 (4), 560.
- 664 (25) Tegus, O.; Brück, E.; Zhang, L.; Dagula; Buschow, K. H. J.; De 665 Boer, F. R. Magnetic-phase transitions and magnetocaloric effects. 666 Phys. B: Condens. Matter 2002, 319 (1–4), 174–192.
- 667 (26) Pyykkö, P. Magically magnetic gadolinium. *Nat. Chem.* **2015**, 7 668 (8), 680.
- 669 (27) Kishore, R. A.; Singh, D.; Sriramdas, R.; Garcia, A. J.; 670 Sanghadasa, M.; Priya, S. Linear thermomagnetic energy harvester for 671 low-grade thermal energy harvesting. *J. Appl. Phys.* **2020**, *127* (4), 672 No. 044501.
- 673 (28) Phillips, M. R.; Carman, G. P. Numerical analysis of an active 674 thermomagnetic device for thermal energy harvesting. *J. Energy* 675 *Resour. Technol.* **2020**, 142 (8), No. 082102.
- 676 (29) Chen, H.; Ma, Z.; Liu, X.; Qiao, K.; Xie, L.; Li, Z.; Shen, J.; Dai, 677 W.; Ou, Z.; Yibole, H.; Tegus, O.; et al. Evaluation of thermomagnetic 678 generation performance of classic magnetocaloric materials for 679 harvesting low-grade waste heat. *Appl. Energy* **2022**, *306*, No. 117999.
- 680 (30) Dolejsi, D. A.; Swenson, C. A. Experimental thermal 681 expansivities for single-crystal gadolinium metal near the Curie 682 temperature. *Phys. Rev. B* **1981**, 24 (11), 6326.
- 683 (31) Seyoum, H. M.; Ghahremani, M.; ElBidweihy, H.; Bennett, L. 684 H.; Della Torre, E. Evidence of metastability near the Curie 685 temperature of polycrystalline gadolinium. *J. Appl. Phys.* **2012**, *112* 686 (11), No. 113913.
- 687 (32) Ergün, Y. A. Mechanical properties of epoxy composite 688 materials produced with different ceramic powders. *J. Mater. Sci.* 689 *Chem. Eng.* **2019**, 07 (12), 1–8.
- 690 (33) Kim, H. T. High thermal conductivity ceramics and their 691 composites for thermal management of integrated electronic pack-692 aging. In *Heat Transfer-Models, Methods and Applications*; IntechOpen, 693 2018; pp 333–359.
- 694 (34) Spichkin, Y. I.; Pecharsky, V. K.; Gschneidner, K. A. 695 Preparation, crystal structure, magnetic and magnetothermal proper-696 ties of $(Gd_xR_{S-x})Si_4$, where R= Pr and Tb, alloys. *J. Appl. Phys.* **2001**, 697 89 (3), 1738–1745.
- 698 (35) Holtzberg, F.; Gambino, R. J.; McGuire, T. R. New 699 ferromagnetic 5:4 compounds in the rare earth silicon and germanium 700 systems. *J. Phys. Chem. Solids* **1967**, 28 (11), 2283–2289.
- 701 (36) Gschneidner, K. A., Jr.; Pecharsky, V. K.; Pecharsky, A. O.; 702 Zimm, C. B. Recent developments in magnetic refrigeration. In 703 *Materials Science Forum*; Trans Tech Publications Ltd., 1999; Vol. 704 315, pp 69–76.
- 705 (37) Elbicki, J. M.; Zhang, L. Y.; Obermyer, R. T.; Wallace, W. E.; 706 Sankar, S. G. Magnetic studies of $(Gd_{1-x}M_x)_5Si_4$ alloys (M= La or Y). 707 *J. Appl. Phys.* **1991**, 69 (8), 5571–5573.
- 708 (38) Pecharsky, V. K.; Gschneidner, K. A., Jr Giant magnetocaloric 709 effect in $Gd_5(Si_2Ge_2)$. Phys. Rev. Lett. **1997**, 78 (23), 4494.

- (39) Pecharsky, A. O.; Gschneidner, K. A., Jr; Pecharsky, V. K.; 710 Schindler, C. E. The room temperature metastable/stable phase 711 relationships in the pseudo-binary $Gd_5Gi_4-Gd_5Ge_4$ system. J. Alloys 712 Compd. 2002, 338 (1–2), 126–135.
- (40) Gębara, P.; Díaz-García, A.; Law, J. Y.; Franco, V. Magneto- 714 caloric response of binary Gd-Pd and ternary Gd-(Mn, Pd) alloys. *J.* 715 *Magn. Magn. Mater.* **2020**, 500, No. 166175.
- (41) Díaz-García, A.; Law, J. Y.; Gebara, P.; Franco, V. Phase 717 deconvolution of multiphasic materials by the universal scaling of the 718 magnetocaloric effect. *JOM* **2020**, 72 (8), 2845–2852.
- (42) Law, J. Y.; Moreno-Ramírez, L. M.; Blázquez, J. S.; Franco, V.; 720 Conde, A. Gd+ GdZn biphasic magnetic composites synthesized in a 721 single preparation step: Increasing refrigerant capacity without 722 decreasing magnetic entropy change. *J. Alloys Compd.* **2016**, 675, 723 244–247.
- (43) Gębara, P.; Hasiak, M. Determination of phase transition and 725 critical behavior of the as-cast GdGeSi-(x) type alloys (where x= Ni, 726 Nd and Pr). *Materials* **2021**, *14* (1), 185.
- (44) Mishra, R.Synthesis of Materials by Induction Heating. In 728 Handbook on Synthesis Strategies for Advanced Materials: Volume-I: 729 Techniques and Fundamentals; Springer: Singapore, 2021; pp 215—730 228. DOI: 10.1007/978-981-16-1807-9 8.
- (45) Serdyuk, U. V.; Krentsis, R. P.; Geld, P. V. Interrelation of 732 specific heat and electrical resistivity in rare earth silicides R_5Si_4 . *J.* 733 *Less-Common Met.* **1985**, 111 (1–2), 347–352.
- (46) Zeng, H.; Zhang, J.; Kuang, C. In-situ reaction synthesis of pure 735 bulk gadolinium dihydride materials. *Intermetallics* **2010**, *18* (3), 369–736 373.
- (47) Samudrala, G. K.; Tsoi, G. M.; Weir, S. T.; Vohra, Y. K. 738 Structural and magnetic phase transitions in gadolinium under high 739 pressures and low temperatures. *High Pressure Res.* **2014**, 34 (4), 740 385–391.
- (48) Vijayan, P. P. Spectroscopy and X-ray Scattering Studies of 742 Epoxy Composites. *Epoxy Compos.* **2021**, 217–240.
- (49) Premchander, P.; Baskar, K.; Jayavel, R.; Arivuoli, D.; 744 Palanichamy, M. Growth and characterization of selenium sulfide 745 (SeS) and selenium tin sulfide (SeSnS₂) microcrystals. *J. Cryst.* 746 *Growth* 2004, 263 (1–4), 498–503.
- (50) Hirata, K.; Matsunaga, T.; Saurabh, S.; Matsunami, M.; 748 Takeuchi, T. Development of high-performance solid-state thermal 749 diodes using unusual behavior of thermal conductivity observed for 750 Ag₂Ch (Ch= S, Se, Te). *MATER. TRANS.* **2020**, *61* (12), 2402–751 2406.
- (51) Byeon, D.; Sobota, R.; Hirata, K.; Singh, S.; Choi, S.; Adachi, 753 M.; Yamamoto, Y.; Matsunami, M.; Takeuchi, T. Dynamical variation 754 of carrier concentration and colossal Seebeck effect in Cu₂S low- 755 temperature phase. *J. Alloys Compd.* **2020**, 826, No. 154155.
- (52) Singh, S.; Hirata, K.; Byeon, D.; Matsunaga, T.; Muthusamy, 757 O.; Ghodke, S.; Adachi, M.; Yamamoto, Y.; Matsunami, M.; 758 Takeuchi, T. Investigation of Thermoelectric Properties of Ag 2 S x 759 Se 1 x (x= 0.0, 0.2 and 0.4). *J. Electron. Mater.* 2020, 49, 2846–2854. 760 (53) Li, X.; Kim, M.; Zhai, W. Ceramic microlattice and epoxy 761 interpenetrating phase composites with simultaneous high specific 762 strength and specific energy absorption. *Mater. Des.* 2022, 223, 763 No. 111206
- (54) Olhero, S. M.; Lopes, E.; Ferreira, J. M. F. Fabrication of 76s ceramic microneedles—The role of specific interactions between 766 processing additives and the surface of oxide particles in Epoxy Gel 767 Casting. *J. Eur. Ceram. Soc.* **2016**, 36 (16), 4131–4140.
- (55) Kishore, R. A.; Davis, B.; Greathouse, J.; Hannon, A.; Kennedy, 769 D. E.; Millar, A.; Mittel, D.; Nozariasbmarz, A.; Kang, M. G.; Kang, H. 770 B.; Sanghadasa, M.; Priya, S. Energy scavenging from ultra-low 771 temperature gradients. *Energy Environ. Sci.* **2019**, 12 (3), 1008–1018. 772
- (56) Dzekan, D.; Diestel, A.; Berger, D.; Nielsch, K.; Fähler, S. Can 773 gadolinium compete with La-Fe-Co-Si in a thermomagnetic 774 generator? *Sci. Technol. Adv. Mater.* **2021**, 22 (1), 643–657.
- (57) Waske, A.; Dzekan, D.; Sellschopp, K.; Berger, D.; Stork, A.; 776 Nielsch, K.; Fähler, S. Energy harvesting near room temperature using 777

778 a thermomagnetic generator with a pretzel-like magnetic flux 779 topology. Nat. Energy 2019, 4 (1), 68–74.

780 (58) Cotton, S. Lanthanide and Actinide Chemistry; John Wiley & 781 Sons, 2013.

782 (59) Yost, D. M.; Russell, H., Jr.; Garner, C. S. The Rare-Earth 783 Elements and their Compounds; Wiley, 1947.

Ī