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Abstract

This paper is devoted to deriving the first circumcenter iteration scheme that does not
employ a product space reformulation for finding a point in the intersection of two
closed convex sets. We introduce a so-called centralized version of the circumcentered-
reflection method (CRM). Developed with the aim of accelerating classical projection
algorithms, CRM is successful for tracking a common point of a finite number of affine
sets. In the case of general convex sets, CRM was shown to possibly diverge if Pierra’s
product space reformulation is not used. In this work, we prove that there exists an
easily reachable region consisting of what we refer to as centralized points, where pure
circumcenter steps possess properties yielding convergence. The resulting algorithm
is called centralized CRM (cCRM). In addition to having global convergence, cCRM
converges linearly under an error bound condition, and superlinearly if the two target
sets are so that their intersection have nonempty interior and their boundaries are
locally differentiable manifolds. We also run numerical experiments with successful
results.
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1 Introduction

In this work we introduce a new tool for solving the following convex feasibility
problem (CFP):

findze XNY, (1.1)

where X, Y C R” are two given closed convex sets with nonempty intersection.

The circumcentered-reflection method (CRM) was presented in 2018 in [17] as
an acceleration technique for classical projection methods. Since then, a quite robust
literature related to CRM has been developed [3, 5, 11-16, 18, 19, 21, 28, 29, 39, 40,
43-47]. If one is at a point z¥ € R”, the original CRM for problem (1.1) moves to the
iterate

26k = Term(2h) = cire(2, Rx (2%), Ry Rx (")), (1.2)

where Ry, Ry : R" — R”" are the orthogonal reflectors through X, Y, defined as
Ry := 2Px —1d, Ry := 2Py — 1d, and Px, Py : R* — R" are the orthogonal
projections onto X, Y, respectively. The Euclidean circumcenter circ(z, v, w) is the
point equidistant to the vertices z, v, w € R” lying on the affine subspace determined
by the correspondent triangle (see [18, Eq. (2)]). Formally, we have the following
definition.

Definition 1.1 (Circumcenter) Let z,v,w € R" be given. The circumcenter
circ(z, v, w) € R” is a point satisfying

(i) llcire(z, v, w) — x|l = ||cire(z, v, w) — y|| = [[cire(z, v, w) — z|| and,
(i) circ(z, v, w) € aff{z, v, w} :={u € R" |u = z+a(v—2)+B(w—2z2), «, B € R}.

The pointcirc(z, v, w) is well and uniquely defined if the cardinality of the set {z, v, w}
is one or two. In the case in which the three points are all distinct, circ(z, v, w) is well
and uniquely defined only if x, y and z are not collinear [11]. Iteration (1.2) is well-
defined and leads to convergence when X and Y are affine [18]. This is also the
case for multi-set affine intersection [19, 21] or when the reflectors are substituted by
isometries [12].

CRM first aimed to speed up the Douglas-Rachford method (DRM) [7, 31, 40]
(also known as the averaged alternating reflections’ method). Later, in [19], CRM was
connected to the famous method of alternating projections (MAP) [8] whose iteration
employs a composition of projections as follows

Z]ﬁ&]p = Tmap(z") = Py Px(Z5).

In [17], Behling, Bello-Cruz and Santos pointed out that iteration (1.2) could fail
to be well defined or to approach the target set. Later on, Aragén Artacho, Campoy
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and Tam [2, Figure 10] chose an initial point in this very example for which the
correspondent CRM sequence actually diverges. Fortunately, this was overcome in [21]
by considering Pierra’s product space reformulation [48]. Pierra stated that problem
(1.1) is univocally related to the problem of finding a common point to the diagonal
subspace D := {(z, z) | z € R"} and the Cartesian convex set K = X x Y. In [21] it
was shown that a sequence of circumcenters, with initial point in D and that iterates
as

k+1 3 . k k k
ZCRMprod “ = circ(z”, Rk(z"), RpRk (z")),

converges to a point z* = (z*, z*), where z* € X N Y, that is, z* is a solution of
problem (1.1). Such a result is indeed derived in [21] for the case of a finite number
of convex sets.

In this work, we prove that a CRM step based on parallel reflections leads to
convergence as long as the iterates stay in an appropriate region. We will easily reach
this region and get a very fast CRM projection-type method for solving problem (1.1).
In our study, the following parallel CRM (pCRM) iteration will be considered

K = € = cire(@F, Ry (29), Ry (1)), (1.3)

We show that this iteration provides adequate steps for solving problem (1.1) if the
angle between the vectors Ry (zX) — z¥ and Ry (z¥) — z* is obtuse (or right). When z£
satisfies this property, we say that it is centralized. Achieving such property is possible,
for instance, by taking an appropriate projection procedure. Roughly speaking, we
show that a MAP step taken from any given z € R” helps to provide a point with the
desired feature. In fact,

zc = % (zmap + Px(z2maP)) , (1.4)

is a centralized point, that is, it satisfies (Rx (zc) — zc, Ry (zc) — z¢) < 0, where (-, -)
stands for the Euclidean inner product and zmap := Py Px (2).

A pCRM step (1.3) represents an acceleration of the Simultaneous Projections
Method (SPM), also called Cimmino’s method [26], given by

i = Top(2h) = 1 (Px(&) + Pr (@), (1.5)

known to converge to a point in X N'Y whenever X NY # (). We mention, paren-
thetically, that this method is devised for several convex sets with different weights in
the average of the projections; iteration (1.5) corresponds to the case of two sets with
equal weights.

We note that our centralization procedure (1.4) comes from the composition of the
simultaneous projection operator Tspy and the alternating projection operator Tyap-
Indeed, for any z € R”,
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4 SPM - 406 projections
oCRMprod - 238 projections
e MAP — 114 projections
¢ c¢CRM — 12 projections

A SPM — 24952 projections
oCRMprod — 35156 projections
o MAP — 12456 projections

¢ cCRM — 24 projections

(a) Nonempty interior of intersection. (b) Empty interior intersection.

Fig.1 SPM, CRMprod, MAP, and cCRM paths of iterates on two ellipsoids intersection

zc = 3 (zmap + Px(zmap))

1 (PyPx(2) + Px(Py Px(2)))

3 (Py(Py Px(2)) + Px(Py Px(2)))
Tspm(Tmapr(2))-

That said, we can now formulate the centralized circumcentered-reflection method
(cCRM). It iterates by composing MAP, SPM and pCRM given in (1.3), that is,

&L = C(Tspm(Tmar(29))). (1.6)

The goal of our paper is to study cCRM. We will prove in Theorem 2.10 that, for any
starting point z¥ € R”, the sequence generated by iteration (1.6) converges to a point
in X N Y. If an error bound condition holds for problem (1.1), we show in Theorem
3.10 that cCRM converges linearly, and we derive an upper bound for its asymptotic
error constant. Finally, Theorem 3.13 states that, in the case where X NY has nonempty
interior and the boundaries of X and Y are locally differentiable manifolds, cCCRM
actually converges superlinearly.

We presentin Fig. latwo instances which illustrate this better performance of cCCRM
when compared with SPM, CRMprod, and MAP. Note that SPM, CRMprod, and MAP
need to compute two projections (one for each set X and Y') at each iterate, while cCRM
needs four projections. Thus, we list in the pictures the number of projections that
each method takes to achieve convergence, and display correspondent paths towards
a solution. We can envision in this example the superiority of cCRM, even when the
intersection between the target sets has empty interior; see Fig. 1b. In this numerical
example, convergence is understood to occur when the distance of the iterate to the
intersection of X and Y is proportional to a tolerance of order & := 10~*. We note
that in Fig. 1a the boundaries of the sets X and Y are locally differentiable manifolds
and the interior of their intersection is nonempty; that said, the picture displays the
superlinear convergence of cCRM, proved later.
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The paper is organized as follows. In Sect. 2, we prove that cCRM converges glob-
ally to a solution of problem (1.1). We begin Sect. 3 with a discussion on error bound
conditions; then, assuming that (1.1) satisfies an error bound condition, we proceed
deriving linear convergence of cCRM and an upper bound for the linear rate; finally,
under additional hypotheses, we prove that cCCRM converges superlinearly. Section 4
exhibits numerical experiments showing cCRM outperforming CRMprod and MAP.
Section 5 presents concluding remarks.

2 Convergence of cCRM
We start this section with the definition of a centralized point.

Definition 2.1 (Centralized point) Given two closed and convex sets X,Y C R” a
point z € R" is said to be centralized with respect to X, Y if

(Rx(z) =z, Ry(z) —2) = 0. (2.1

Note that we can get an equivalent definition to the one above if we replace the
reflections by projections in (2.1). Indeed, this is true because

(Rx(zc) — zc, Ry (zc) — zc) = (2Px(z¢c) — 2z¢, 2Py (z¢) — 2z¢)
=4(Px(zc) — zc, Py(zc) — zc) -

More than that, if z is in X or Y, then it is centralized. However, points in X U Y are
not the most suitable for our algorithmic framework. Therefore, our main interest will
be on centralized points that are neither in X nor in Y. Those points will be referred
to as strictly centralized. Note that the definition of strictly centralized point does not
necessarily imply that inequality (2.1) holds strictly.

We will present a series of lemmas aiming to guarantee that the pCRM iteration
(1.3) computed from a strictly centralized point moves towards the solution set of
problem (1.1). However, a pCRM step taken from a non-centralized point may push
the next iterate away from the solution set. This behavior is depicted in Fig.2. Note
in Fig.2a that going from z to zc is already better than moving from z to ZpcRM-
Furthermore, we get even closer to the solution set with z.crm. To make this visible,
we present part of Fig.2a zoomed in Fig. 2b. In this way, we illustrate the benefit of
the combination of centralization and computation of parallel circumcenter.

The next lemma shows that the composition of SPM and MAP, mentioned in the
introduction, provides either a strictly centralized point or a solution of problem (1.1).

Lemma 2.2 (Centralization procedure) Let X, Y C R" be two closed convex sets with
nonempty intersection. For any z € R" set zmap = Py Px(2). Then, zc from (1.4), i.e.,
zZc = % (zmap + Px (zmaP)), is centralized. Moreover, zc is either strictly centralized
or it belongsto X N'Y.

@ Springer



342

R.Behling et al.

\
ZcCRM

(a) The role of the centralization procedure
Fig.2 Characterization of centralized circumcenters

(b) Zoom of the computation z.crm from zc¢

Proof Observe that Px(zc) = Px(zmap) and so z¢ = % (zmapP + Px(zc)). Hence,
(Px(zc) — zc, Py(zc) — zc)

= (2zc — 2maP — Zc, Py (zc) — zc)
= (zc — 2mapP, Pr(zc) — zc)

= (Py(zc) — zmap, Py(zc) — zc) + (zc — Py(zc), Pr(zc) — z¢)

= (zc — Py(zc), 2map — Py (z0)) — llzc — Py (zO)|I?
< (zc — Py(zc), zmaP — Py (zc)) <0,

where the last inequality follows from the characterization of projections, since zmap €
Y. This proves that zc is centralized.

Assume that z¢ € X. Since

zc = % (zmap + Px(zmap)) = % (amap + Px(zc)) = 5 (2map + 20) .

we have zc = zmap. Then, zc € Y because zyap = Py Px(z). Thus,zc € X NY.
Now, if z¢ € Y, note that

(Px(z) — zmap, Px(zMaP) — Z2MaP) =

2 (Px(z) — ZMAP, ZC — ZMAP)
2
09

(Px(z) — Py(Px(2)), zc — Py(Px(2)))

IA

respectively. The inequality is due to the characterization of the projection of Px(z)
us

2.2)
where the first and the second equalities follow from the definitions of zc and zmap,
onto Y. On the other hand, the characterization of the projection of zyap onto X gives
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(zmaP — Px(zmap), Px(z) — Px(zmap)) <0,

or equivalently,
(Px(zmap) — Px(2), Px(zmap) — zmap) < 0. (2.3)

Summing up (2.2) and (2.3), we get || Px (zmap) — zmap||> < 0, where ||-|| stands for
the norm induced by the Euclidean inner product. So, zmap = Px(zmap) and hence,
zmap € X and zc = zmap. Therefore, zc € X NY. O

Next, we are going to prove that the parallel circumcenter at a centralized point
z € R" is actually the projection of z onto the intersection of two suitable halfspaces
defined by the supporting hyperplanes to X and Y passing through Px(z) and Py(z),
respectively; see Fig. 2b.

Lemma 2.3 (Characterization of centralized circumcenters) Let X,Y C R” be two
given closed convex sets with nonempty intersection. Assume that 7 € R" is a central-
ized point with respect to X, Y. Then, the parallel circumcenter at z,

€ (z) := circ{z, Rx(2), Ry (2)},
coincides with Pg: g: (z), where
Sy ={weR" | (w— Px(z),z — Px(z)) <0},
and
Sy i={weR" [ (w— Py(z),z— Pr(z)) <0}

Proof We start proving the statement for the case in which z € R” lies in one of the
sets. Assume, without loss of generality, that z € X, i.e., z = Px(z) = Rx(z). In this
case, S5 = R" and € (z) = circ{z, z, Ry (2)} = %(Z + Ry (2)) = Py(z). Note that
Py (2) is precisely Pg: (2) = Prans: (2) = Pgsinsg (2)-

Now, assume that z is neither in X norin Y, i.e., z is strictly centralized. Thus, both
S§( and S)z, are actual half-spaces, because z — Px (z) # 0 and z — Py (z) # 0, and also
z is neither in S nor S} First, we are going to establish that z,crm is the projection
of z onto the intersection of the hyperplanes

Hi :={w e R" | (w— Px(2),z — Px(z)) =0},
and
Hj ={weR"|(w— Py(z),z— Py(z)) =0},

the boundaries of S5 and Sj, respectively. We have Hy N Hy # {, otherwise the
hyperplanes would be parallel and z would be a convex combination of Py (z) and
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Py (z), because z is strictly centralized. In this case, the half-spaces S§( and Sf, would
have empty intersection, a contradiction with the facts that X N Y # @ and X C
S; and Y C Sf,. Then, z, Rx(z) and Ry (z) are not collinear and the circumcenter
% (z) is well-defined. Moreover, Rx(z) = RH)z( (z) and Ry(z) = RH;; (z). Hence,
% (z) = circ{z, R H (2), R H (z)}. Note further that by denoting z = R HS (z), we have
2= Ryz (2) and Rp:(z) = Ryz Ry (2), s0 €(z) = circ(z, Ry (2, Rpz Ry, @)}
We do this in order to employ [21, Lemma 3], which gives us €'(z) = Py nm; ().
The fact that R H is an isometry and that Hy N Hy is an affine subspace imply
that € (z) = PH}z(ﬂH; (z). Since z is neither in S5 nor S}, PS§(ﬂSzy. (z) must lie in the
boundary of S; N S;, which on the other hand consists of points that are either in H f(
or in Hy. Therefore, three possibilities for Pg:ng: (2) arise: Pg:ng: (2) = Py (2),
Pging: (2) = Pyz (2) or Pging: (2) = Puznpz (2)-

Suppose that Psg(m S5 (z) = PH§( (z). In particular, PH)z( (z) € S}. Bearing in mind
that PH)Z( (z) = Px(z) we get

0> (Px(z) — Pr(2),z— Py(2))
=(Px(2) —z,2— Py(2) + {z — Pr(2), 2 — Py (2))
=—(Px() =z, Py(2) —2) + |z — Py @I
> —(Px(z) —z, Py(2) — 2),

which contradicts the hypothesis that z is centralized. If we assume that Pz 55 (z) =
PH)z, (z), then we get a similar contradiction. Thus, Psg(m S5 () = PH;"(n H (z), proving
the lemma. O

We are going to state now a Fejér-type property regarding a step from z € R” to
the centralized point zc. This property is quite natural, if one bears in mind that our
centralization procedure comes from the composition of SPM and MAP.

Lemma 2.4 (Firm quasi-nonexpansiveness of the centralization procedure) Let X, Y C
R™ be two given closed convex sets with nonempty intersection. Then, for any z € R”,
the centralized procedure zc given in (1.4) satisfies

lzc = slI* < llzmap — s1I* — Slzmap — Px (zmap) 1%, (2.4)
and
2 -tz = zcll?, (2.5)

2
llzc = sl” < llz = sl

foralls e XNY.
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Proof For any s € X N'Y, we have

lzc = s = 15 (zmap + Px (@map)) — s> = 3 (zmap — ) + 3(Px (@map) — )2
= Jllzmap — sl + 31 Px (zmap) — slI* — $1l(@zmap — 5) — (Px(zmap) — 5)II*
< Sllzmap — s + 31 Px (zmap) — Px ()|
< llzmap — 51 = 3 llzmap — Px (2map) |12

<llz—sl* = 3z — zmap* — Sllzmap — Px (zmap) |l

= llz = sI? = 3llz — 2mapl* = 2[5 (emap — Px emap))l1?

= llz =50 = 31z — zmapl® = 2llzc — zmapll*. (2:6)
In the first equality we use the definition of z¢ and the second one is obvious. The
third equality follows from the identity in [10, Corollary 2.15]. In the first inequality
we take into account the fact that s = Px(s), and the nonnegativity of the last term.
The second inequality follows from the firm nonexpasiviness of projections, and we
get (2.4). In the last inequality we use [10, Proposition 4.35(iii)], since the projections

are 1/2-averaged. Finally, in the last equality we use again the definition of zc.
Note further that [10, Corollary 2.15] gives us

1 2,1 2
3llz = zmarll” + 3 llzc — zmapll
1 1 2 1 2
= [|5(z — zmaP) + 5(zc — zmaP)II” + 711(z — zmaP) — (zc — 2maP) |l

1 2
> zllz = zcll”,
or, equivalently,
1 2.1 21 2
3llz = zmarll” = zllz — zcll” = 3llzc — zmar|™
Combining the last inequality with (2.6), we get

2 2 1 2,1 2 2
lzc —slI” < llz = slI” — zllz — zcll” + 3 llzc — zmaprll” — 2llzc — 2maPl
2 1 2
< llz=sl” = zllz = zcll*
This proves (2.5), and hence the lemma. O

The next lemma establishes a result similar to the previous one, but now concerning
PCRM steps taken from centralized points.

Lemma 2.5 (Firm quasi-nonexpansiveness of circumcenters at centralized points) Let
X, Y C R" be two closed convex sets with nonempty intersection. Assume that 7 € R"
is a centralized point with respect to X, Y. Then, the parallel circumcenter at 7, namely
€ (z) := circ{z, Rx(2), Ry (z)}, satisfies
2 2 2
1€@) = slI” < llz=sl” =z = €@I",

foralls e XNY.
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Proof Consider S5 and S} as in Lemma 2.3. Now, for any s € X N'Y, we have

1% ) = 511> = | Ps; s (2) = sI?
= I Psz 53 (2) — Pz s ()17
2
< llz=s1P = | @ = Pgysg (@) — & = Ps; ()

=lz—slI*—llz = C@I>%

where the first equality follows from Lemma 2.3, because z is centralized. The second
equality follows from the fact thats € X N'Y C S5 N S}. In the inequality, we invoke
the firm nonexpansiveness of projections, and in the last equality, we use the fact that
§ = Pgz s (5), and Lemma 2.3 again. O

Finally, we can derive firm quasi-nonexpansiveness of full cCRM steps by bonding
Lemmas 2.4 and 2.5.

Lemma 2.6 (Firm quasi-nonexpansiveness of cCCRM) Let X, Y C R”" be two closed
convex sets with nonempty intersection. Let z € R". Then, the parallel circumcenter
at zc := 3 (2map + Px (zmap)), namely

T(z) := € (zc) = circ{zc, Rx(zc), Ry (z0)},
satisfies
IT) —sl* < llz—sl* — §lz — T

foralls e XNY.

Proof By Lemma 2.2, zc is centralized. Therefore, Lemma 2.5 can be applied and
implies that

1€ ze) = sI” < llzc = 51* = llzc = €O,
forall s € X NY. Now, using Lemma 2.4 in the previous inequality, we have
1€ ze) = sI” < lz =51 = zllz = zcl* = llzc = € zo)I1*. @7
Note further that [10, Corollary 2.15] gives us

iz —zcl? + Slze — € o)I?
= 4z — z0) + $(zc = CI* + 1z — z0) — (z¢c — € (z)II*
Hz=%¢@ol*

v

which can be written as

i 2.1 21 2
illz —zcll” = gllz = €olI” — zllzc — €O
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Combining the last inequality with (2.7), we obtain

1€ (zc) = sl* < llz = sI? = &llz = €@OI* + §llzc — €@OI* = lzc — € 2o
= llz—sl* = §lz = €@OI* — 3lzc — €O

21 2
=z =sl" = gllz = €@,

proving the lemma. O

Next, we show that X N Y is precisely the set of fixed points of the opera-
tor ¢ : dom(%¥) ¢ R" — R”", when X N Y # (. Here, dom(%’) consists of
the points of R” for which (1.3) is well-defined, i.e., dom(%) = {z € R" |
z, Rx(z), and Ry (z) are not collinear}.

Lemma 2.7 (Fixed points of the parallel circumcenter operator) Let X, Y C R” be two
given closed convex sets with nonempty intersection. Consider the parallel circumcen-
ter operator € : dom(%) C R* — R" defined as € (z) := circ{z, Rx(z), Ry(2)}.
Let Fix ¢ := {z € R" | €(2) = z} be the set of its fixed points. Then,

Fix=XnNY.

Proof If z € X NY, it is easy to see that z € Fix ¢. Now, suppose z € Fix . By
Definition 1.1 of circumcenter we get that

lz = @I =1Rx (@) = €@ = Ry (2) = €@l

By definition of fixed points, we have z = €(z), which gives us Rx(z) = €(z) = z
and Ry (z) = €(z) = z. Therefore, because Fix Ry = X and Fix Ry = Y, we get
z € X NY, as required. O

Lemma 2.8 (Fixed points of the centralized circumcenter reflection operator) Let
X, Y C R” be two closed convex sets with nonempty intersection. Consider the cen-
tralized circumcentered-reflection operator T : R" — R" at z € R" defined, as in
Lemma 2.6,

and the set of fixed points of T, namely, FixT := {z € R" | T(2) = z}. Then,

FixT =XNY.
Proof If 7z € X NY, we clearly get that z € Fix T. Conversely, suppose z € Fix T.
Since by Lemma 2.2 zc is centralized, Lemma 2.5 applies to it, that is, for any
seXNnNy,
1€(z0) = 511 < llzc = 51” = llzc = €z I*.

Moreover, as € (zc) = T (z) = z, we get

2 2 2
lz —sl” < llzc = slI” = llzc —zlI

2 1 2 2
<llz—=sl” = zllz — zcll” — llzc — zl

’
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where in the second inequality we used (2.5). Thus, ||zc —z|| = 0, i.e., zc = z. In this
case,

7z = T(z) = circ{zc, Rx(zc), Ry (zc)} = circ{z, Rx(2), Ry (2)} = €' (2)

and so z € Fix . Hence, Lemma 2.7 gives us that z € X N Y. |

Before arriving at the main result of our paper, we recall the notion of Fejér mono-
tonicity.

Definition 2.9 (Fejér monotonicity) A sequence (w*)rew C R” is Fejér monotone
with respect to a set M C R" when H wkt! — wH < H wk — wl|, forall w € M and
forall k € IN.

We will now state that if we iterate the cCRM operator 7', with any choice of initial
pointin R”, we end up with a sequence whose limit point exists and belongs to X NY.
In other words, cCRM solves problem (1.1). The convergence is derived upon the
Fejér monotonicity with respect to X NY of the sequence generated by cCRM, which
is directly implied by Lemma 2.6.

Theorem 2.10 (Convergence of cCRM) Let X, Y C R" be two closed convex sets
with nonempty intersection. Then, for any starting point z° € R”, the sequence
defined by X! = T(*) = <K(ZI(‘:) = circ{z’é, Rx(zl(‘:), Ry(Zlé)}, where z'é =
% (Z&AP + Px (zﬁ,lAP)) and z§,p 1= Py Px ("), is Fejér monotone with respect to
X NY, and converges to a pointin X N Y.

Proof For alls € X NY and k € IN, we get from Lemma 2.6 that

1
k+1 _ k2 k 2 k+1 2
gIIZ+ —20F < 125 = s )2 = 1 =) (2.8)

and, therefore,
125 — s | < 112F = sl 2.9)

Inequality (2.9) provides the Fejér monotonicity, with respect to X N Y, of sequence
(zF)rew, and we get the first claim. Moreover, appealing to [10, Proposition 5.4(i)],
(z5) ke is also bounded. To complete the proof, it suffices to show that every cluster
point of (zX)ze belongs to X N Y, because then the Fejér monotonicity of (2 ke
implies its convergence to a point in X N Y, taking into account [10, Theorem 5.5].
We proceed to establish the claim. First note that using inequality (2.8) and the
fact that sequence (||zF — s|)xew converges [10, Proposition 5.4(ii)], we conclude
that K+ — Z& converges to 0, as k — +o00. Furthermore, using Lemma 2.5 and the
nonexpansiveness of the centralized procedure z¢ given in Lemma 2.4, we have
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k+1 k2 k k2
2 = 2802 = 16z — 26
k 2 k 2
<llz¢c = slI* = 1€ (z¢) — sl
k 2 k+1 2
= llz& —sI® = 12T = sl

k 2 k+1 2
<l = sl = 12" =512

N

This last inequality, again by the convergence of (||z% —s||)xew, implies that zA+1 — z](‘:

converges to 0 as k — +o0.

Now, let z be any cluster point of the sequence (Z) ke and denote (z’k)‘de an
associated subsequence convergent to 2. Since z'* — z**1 — 0 and z/*+! — Zle
ir+1

— 0,

we have z — Z and zié - Z.
We claim that 7 € X N Y. In fact, by the definition of 4, we have

i i1 i i i i ; -
Izl = 21 = 12 = GO = IRx ) = C DI = IRx (@) = 2.

Thus, Ry (zic") — ikt converges to 0. Taking limits as k — 400, it follows from the
continuity of the reflection onto X that Z = Rx(Z). Hence, Z € X. Since ||RX(le") -

2%t = ||Ry (zick — 2+, we conclude by the same token that 2 = Ry (Z) and so
z € Y, proving the claim, which completes the proof. O

We have just proven the global convergence of cCRM. In the next section we study
the convergence rate of cCRM under an error bound condition.

3 Convergence order of cCRM

The aim of this section is three-fold. We present a discussion on error bound condi-
tions, which are regularity assumptions widely employed in continuous optimization.
Under such hypothesis, we derive linear convergence of cCRM, and we provide an
upper bound for its asymptotic constant. Then, under additional mild assumptions, we
establish superlinear convergence of cCRM.

3.1 Error bound condition

The analysis of the convergence speed of the sequence generated by cCRM is going
to be carried out under an additional assumption on the problem. We will assume a
fairly standard local error bound (EB) condition, also called linear regularity [8, 9] or
subtransversality [37].

Definition 3.1 (Error bound) Let X, Y C R” be closed convex sets and assume that
X NY # (. We say that X and Y satisfy a local error bound condition if for some
point z € X NY there exist a real number w € (0, 1) and a neighborhood V of z such
that

wdist(z, X N'Y) < max{dist(z, X), dist(z, Y)}, (EB)

forallz e V.
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The condition given by Definition 3.1 means that a point in V cannot be too close to
both X and Y and at the same time far from X N Y. More than that, roughly speaking,
the constant w emulates the sine of the “angle” between X and Y. This condition will
be required in our convergence rate analysis and referred to as Assumption EB.

Assumption EB is equivalent to asking the existence of a constant ¥ € (0, 1) such
that

k dist(z, X N Y) < dist(z, X) @3.1)

for all z € Y sufficiently close to z € X N Y. This equivalence was discussed in [20,
Section 3.2] and is a consequence of [8, Lemma 4.1]. The error bound version (3.1)
was used in [4] for establishing linear convergence of the CRM method (1.2). In that
paper, Y is assumed to be an affine manifold, and the whole CRM sequence staysin Y.
We relate next, Assumption EB with other error bounds found in the literature. If the
problem at hand consists of solving H(z) = 0 with a smooth H : R" — R™, a
classical regularity condition demands that m = n and the Jacobian matrix of H be
nonsingular at a solution z*, in which case Newton’s method, for instance, is known to
enjoy superlinear or quadratic convergence. This condition implies local uniqueness
of the solution z*. For problems with m # n or with nonisolated solutions, a less
demanding assumption is the notion of calmness (see [52], Chapter 8, Section F),
which requires that

dist(z, $*) < 6 |H(2)|| (3.2)

forall z € R"\ S* and some 6 > 0, where S* is the solution set, i.e., the set of zeros of
H. Calmness, also called upper-Lipschitz continuity (see [50]), is a classical example
of error bound, and it holds in many situations (e.g., when H is affine, by virtue
of Hoffman’s Lemma, [34]). It implies that the solution set is locally a Riemannian
manifold (see [22]), and it has been used for establishing superlinear convergence of
Levenberg-Marquardt methods in [36].

We will present next an error bound for systems of inequalities and a result estab-
lishing that this error bound holds whenever the system of inequalities satisfies some
well known constraint qualifications. This result is a particular instance of a theorem
in [49].

We recall first the Mangasarian-Fromovitz constraint qualification (MFCQ) for a
system of nonlinear inequalities. Let g; : R” — R, (i = 1, ..., m) be continuously
differentiable and convex functions, and define § C R" as § := {z € R" | gi(z) <
0,i=1,...,m}. Takez € Sandlet I(z) = {i € {l,...,m} | gi(z) = 0}. MFCQ
is said to hold at z if Zie,(z) AiVgi(z) = 0with A; > 0 for all i € I(z) implies that
Xi = 0 foralli € I(z). Note that if MFCQ holds at z then Vg;(z) # 0 for all i; if
Vgi(z) = 0 then the statement of MFCQ fails if we take A; = 1 and A; = 0, for
J e 1)\ {i}.

Proposition 3.2 (Mangasarian-Fromovitz implies calmness) Let g; : R* — R, (1 <
i < m) be continuously differentiable and convex functions. Fix z € S, with S as
above. Define g;r :R" - Ras g;“(z) = max{0, g;(z)} and g* : R" — R™ as
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g7 (@) = (g (@), ..., & @). If MFCQ holds at 7 then there exists a neighborhood
U of 7 and a constant 0 > 0 such that

dist(z, §) <0 gt (2)

forallz € U.

Proof The result is a simplified version of Example 2.92 in [24] (which also includes
equality constraints and an additional parameter), which is itself a particular case of
Theorem 2.87 in the same reference, taken from [49]. m]

When dealing with convex feasibility problems, as in this paper, it seems reasonable
to replace the right-hand side of (3.2) by the distance from z to some convex sets, giving
rise to EB. Similar error bounds for feasibility problems can be found, for instance,
in [6, 8, 9, 32, 37]. To our knowledge, no extension of Proposition (3.2) to these error
bounds has been proved. We proceed to establish such an extension for Assumption
EB.

Although we deal in this paper with the intersection of just two convex sets, we
will present the result for the more general case of m convex sets X1, ..., X;;. Let
X* := ('L, X;. For this case, Assumption EB becomes the following condition:
given 7 € X*, there exists a neighborhood V of z and a real number w € (0, 1) such
that

wdist(z, X*) < max {dist(z, X;)} (3.3)
<i<m

for all z € V. We prove now that condition (3.3) holds around z under reasonable reg-
ularity assumptions on the convex sets. We assume that X; = {z € R" | g;(z) < 0} for
some continuously differentiable convex function g; : R” — R. This assumption, in
principle, entails no loss of generality; we can always take g; (z) := ”Z — Px,(2) ||2 =
dist? (z, X;), which defines a convex and continuously differentiable function. The
second assumption is that MFCQ holds at z, and is a rather standard regularity con-
dition;we mention that in most cases the representation of X; with the above defined
function g; fails to satisfy MFCQ. The result is as follows.

Theorem 3.3 (Mangasarian-Fromovitz implies error bound) If X; = {z € R" :
gi(2) < 0} for some convex and continuously differentiable g; : R" — R and

MFCQ holds at some point z € X* := (i, X; then condition (3.3) holds around Z.

Proof By Proposition 3.2 there exists a neighborhood U of 7z such that
dist(z, X*) <0 [|g* ()| (34

forallz e U.
Since all the g;’s are continuously differentiable, there exists o > 0 such that the
open ball B(z, p) C U and that ||[Vg;(2)|| < 2|Vgi(2)| foralli e {1,...,m} and
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all z € B(z, p). Take any z € B(z, p) and let z; := Py, (z). Expanding g; around z;,
we have

8i(x) =gi(zi) +(Vgi(yi), z — zi) (3.9

for some y; in the segment between z and z;. Since z; € X;, we have g;(z;) < 0, and
it follows from (3.5) that

8i(2) = IVgi (Il llz — zill = IIVgi (i) Il dist(z, X;). (3.6)

Since 7z € X; for all i, the definition of orthogonal projection implies that ||z — z; || <
llz — z||, so that z; € B(z, p), and hence y; € B(Z, p), by convexity of the ball. By
definition of p we have that |Vg;(y;)|| <2 [|Vgi(2)|l. Define now o; :=2|Vg;(2)|;
because MFCQ holds at z, we get Vg;(z) # 0 and so o; > 0. Thus, we conclude from
(3.6) that

8i(2) < odist(z, X;) 3.7

foralli € {1,...,m}andall z € B(Z, p), witho : —max{o; | 1 <i < m}. Now we
replace the 2-norm by the co-norm in (3.4), obtaining

dist(z, X*) <0 |gT @) =6vn g7 @], - (3.8)

Note that (3.3) holds trivially when z € X* because in such a case all distances vanish.
Hence, we may assume that there exists ¢ such that g¢(z) > 0, and so || gt (@ ”OO =
maxj<;<m{gi(z)}. Combining (3.7) and (3.8) we obtain

dist(z, X*) < 64/n max {g;(z)} < 00+/n max {dist(z, X;)}
I<i<m 1<i<m

for all z € B(z, p), so that condition (3.3) holds at z with V = B(z, p) and v =
(00/n)"L. o

We recall now another widely used constraint qualification, namely Slater’s, which
in most cases is easier to check than MFCQ. Slater’s condition holds when there exists
Zz € X*suchthat g;(Z) < Ofori =1, ..., m.Itis well known that in the convex case
Slater’s condition implies MFCQ, and hence Theorem 3.3 holds if we assume Slater’s
condition instead of MFCQ.

3.2 Linear convergence of cCRM

We prove in this subsection the linear convergence of cCRM under Assumption EB.
We start deriving the linear convergence and associated rates of MAP and SPM under
EB with associate rates. These results for MAP and SPM are known to hold under
assumptions akin to EB, but we include their proofs here for the sake of completeness
and self-containment.

First, remind the definition of Q-linear, Q-superlinear and R-linear convergence.
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Definition 3.4 (Convergence rate) Let (w®)rcv C R” be a sequence converging to .
Assume that w¥ = w for all k € IN. Define

k+1 1k
— 1 k _ =
, and r :=limsup Hu) wH .

k— 00

N ]
q = lim sup

koo [Jwk — o]

Then, the convergence of (WM ren is

(1) Q-linear ifq € (0, 1),
(ii) Q-superlinear if g =0,
(i) R-linear ifr € (0, 1).

The values g, r are called asymptotic constants of (w*)ien.

It is well known that Q-linear convergence implies R-linear convergence (with the
same asymptotic constant), but the converse statement does not hold true [42].

We also recall that for all z € R", we have Tyap(z) = zmapr = Py Px(2),
Tspm(z) = zspm = 5(Px(2) + Py (2)).

Proposition 3.5 (Linear rate of MAP and SPM) Assume that EB holds around 7z €
XNY, withw € (0,1) and neighborhood V. Let B be a ball centered at 7 and
contained in V. Define B := /1 — w?. Then,

dist(zmap, X NY) < B%dist(z, X NY) (3.9)

forallz € Y N B, and
. 1+8Y ..
dist(zspm, X NY) < T dist(z, X NY) (3.10)

forall z € B.

Proof We start with the MAP case. Note that

dist*(z, X N Y) = |z = Pxry @1* = [Px(2) = Pxry @I + 2 — Px(@)|?
> dist>(Px(z), X NY) + o> dist’(z, X N Y), (3.11)
using the firm nonexpansiveness of Py in the first inequality, and Assumption EB,

together with the fact that z € Y N B, so that max{|lz — Px(2)|l, llz — Py (DI} =
llz — Px(z)]l, in the second inequality.It follows from (3.11) that

dist(Px(z), X NY) < V1 — w?dist(z, X NY) = Bdist(z, XNY). (3.12)

Observe now that, since 7 € X NY, we have ||Py(Px(z)) —zll < |Px(z) —z|l <
llz — z||, so that Py (Px(z)) € B. Hence, with the same argument used for (3.12),

dist(zmap, X NY) = dist(Py(Px(z)), X NY) < Bdist(Px(z), X NY), (3.13)
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and (3.9) follows combining (3.12) and (3.13). Now we proceed to establish
(3.10). Assume without loss of generality that max{||z — Px(2)|, llz — Py (2)|l} =
llz — Px(2)||. Since Px(z) € B, we get, with the same argument used for proving
(3.12),

dist(Px(z), X N Y) < Bdist(z, X N Y). (3.14)

Now, let § := Pxny(z). Then,

dist(Py(z), X NY) < | Py(x) = §|| = | Pr(2) — Py(®)| < [z = §| = distz, X N Y),
(3.15)

where the first inequality is due to definition of distance and the last inequality is due
to the nonexpansiveness of Py.
Finally, note that

1
dist(zspm(z), X NY) = dist (E(Px(z) + Py(2)), XN Y)

IA

% (dist(Px(z), X NY) +dist(Py(z), X N'Y))

<#) dist(z, X NY), (3.16)

using the convexity of the distance function to X NY in the first inequality, and (3.14)
and (3.15) in the second one, so the result holds. O

We remind that MAP generates a sequence (yk)ke]N given by yk+l = Tmap (yk),
starting from some y° € Y, while SPM generates a sequence (s%);cny given by s*1 =
Tsppm(s¥), starting from any s° € R”. We have the following corollary of Propositio
3.5.

Corollary 3.6 (Linear convergence of the distance for MAP and SPM) Assume that X N
Y #0. Let (yk)ke]N, (sF) ke be the sequences generated by MAP and SPM starting
from some yo € Y and some, s° € R” respectively. Assume also that (yk)ke]N, (sk)ke]N
are infinite sequences. If EB holds at the limits ¥ of (y*)rew, 5 of (s)rew, then the
sequences (dist(y*, X N Y))ren, (dist(s¥, X N Y))ren C R converge Q-linearly
to 0, with asymptotic constants given by B2, # respectively, where B = /1 — w?
and w is the constant in Assumption EB (with a slight abuse of notation, the sets and
constants guaranteed by EB around both y and s will be called V and w).

Proof Convergence of (yk)ke]N and (s")ken to pointsy € XNYands € XNY
respectively is well known (see, e.g., [8]). Hence, for large enough k, y* belongs to
a ball centered at j contained in V and s* belongs to a ball centered at § contained
onV.

In view of the definitions of the MAP and SPM sequences, we get from Proposition
3.5,

dist(y*t1, X N'Y) e dist(s*t1, X NY) _1+8
disthyk, X ny) — 77 distsk, xny)y — 2~
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and the result follows from Definition 3.4, noting that

dist(yk, X NnY) < g dist(y?, X N'Y),

1 k
dist(s*, X nY) < [%’3} dist(s°, X N'Y),

so that both sequences converge to 0, since 8 € (0, 1), because w € (0, 1). |
We state now a result on linear convergence of Fejér monotone sequences.

Proposition 3.7 (Fejér monotonicity and linear convergence) If a sequence (WErew C
R™ is Fejér monotone with respect to a closed convex set M C R" and the scalar
sequence (dist(w*, M))ken converges Q-linearly to 0, then (WX ke converges R-
linearly to a point w € M.

Proof See Lemma 3.4 in [4], cf. Theorem 5.12 in [10]. O

Corollary 3.8 (Linear convergence of MAP and SPM) Assume that X N'Y # (. Let
(YO)rew, (s5)kew be the sequences generated by MAP and SPM starting from some
y9 € Y and some s° € R” respectively. Assume also that (y*)rew, (s)kew are infinite
sequences. If EB holds around the limits y of(yk)ke]N and s of(sk)ke]N withw € (0, 1)
and neighborhood V, then the sequences (yk)ke]N, (sk)ke]N converge R-linearly, with
asymptotic constants bounded above by B, % respectively. Here, B := /1 — w?,

and w is the constant in Assumption EB.

Proof The fact that ( yk YeelN, (sF) ke are Fejér monotone with respectto X NY is well
known and is an immediate consequence of the firm nonexpansiveness of Py, Py.
Then, the result follows from Corollary 3.6and Proposition 3.7. O

We remark that the MAP sequence converges quite faster than the SPM one, in
terms of the upper bound of their asymptotic error constants, since g2 < %, and the
difference becomes more significant as 8 approaches 0. However, SPM may be faster
in the presence of parallel processors. Observe first that the expensive steps in both
algorithms are the computation of Px, Py. In the absence of parallel processors, each
iteration of either MAP or SPM requires two projections (one onto X and one onto
Y), and the work per iteration is about the same for both methods. On the other hand,
in MAP both projections must be computed sequentially, while in SPM they can be
computed simultaneously if two parallel processors are available. In such a situation,
one step of MAP is equivalent to two of SPM, and the asymptotic constants, in terms
of the number of projections, become 8 and # respectively. Yet, MAP wins over
SPM, which turns out to be indeed competitive when used for finding a point in the
intersection of m sets (m > 3). In this case, assuming that m parallel processors are
available, one step of MAP is equivalent to m steps of SPM. For more information on
sequential versus simultaneous methods; see [25].

We establish now the R-linear convergence of the cCRM sequence under EB, and
give an upper bound for the asymptotic constant in terms of the constant » in EB.
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Recall that, given z € R”", we denote z¢c = %(ZMAP + Px(zmapr)), T(z) =
circ{zc, Rx(zc), Ry(zc)}, with zmap as in the previously defined. The cCRM
sequence (zX)rew C R” is given by z¢+!1 = T (%), for any z° € R™.

Next, we present an upper bound for the advance ratio of a cCRM step towards the
solution set.

Proposition 3.9 (Linear convergence of the distance for cCCRM) Assume that EB holds
around z € X NY with w € (0, 1) and neighborhood V. Let B be a ball centered at
zZ and contained in V. Define B = /1 — w?. Then,

1
dist(T(z), X NY) < B2 (#) dist(z, X N'Y),
forall z € B.
Proof By nonexpansiveness of Py, we get similarly as in (3.15) that
dist(Px(z), X NY) < dist(z, X NY). (3.17)
Note that nonexpansiveness of Py, Py imply that |[zmap — Z [|<||z — Z|| for all 7 €
X NY,sothat zyap € B whenever z € B. With the same argument used in the proof
of Proposition 3.5 for establishing (3.12), we get
dist(zmap, X NY) < Bdist(Px(z), X NY), (3.18)
and
dist(Px(zmap), X NY) < ;‘32 dist(Px(z), X NY). (3.19)
Again, nonexpansivenes of Px ensures that Py (zpap) is closer than zyap to any point

in X N'Y, so that Px(zmap) belongs to B whenever z € B. Hence, with the same
argument as in the proof of Proposition 3.5 for establishing (3.16), we get

. . 1
dist(zc, X NY) = dist <§(ZMAP + Px(zmaP)), X N Y)

IA

1
3 (dist(zmap, X NY) + dist(Px(zmap), X NY))

IA

%ﬂ(l + B dist(Px(z), X NY), (3.20)

using (3.18)and (3.19) in the last inequality. We invoke now Lemma 2.3 for zc,

which implies that T(z) = Pgcqgc(ze). Recall that S§° = {w € R" |

X Y

(w — Px(zc), zc — Px(z¢)) < 0}and §;° = {w € R" | (w — Py(z¢), zc — Py (zc))

< 0}, so we easily get that Px (zmap) = Pgic (zmap). Since T'(2) € S§(C n S§C C S§'(C,
X

we get that
IT(z) — zcll = IPx(zc) — zcll - (3.21)
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We claim that || Px(zc) — zcll = || Py (zc) — zc||. Indeed, since zc is the midpoint
between Px(zmapr) and zmap, we get that Py (zc) = Px(zmap) and also

I Px(zc) — zcll = IPx (zmaP) — zcll = llzmap — zcll = | Py (zc) — zcll,
using the fact that zmap € Y in the last inequality. The claim holds, and hence
max{|| Px (zc) — zcll, 1Py (zc) — zcll} = 1Px(zc) — zcll -

It follows from Lemma 2.6 that z¢ belongs to B whenever z € B. Hence, we invoke
EB, which implies that

| Px(zc) — zcll = edist(zc, X NY). (3.22)
Combining (3.21) and (refeb5) we get
IT(z) — zcll = wdist(zc, X NY). (3.23)

Moreover, since T'(z) = Pgicqgic (zc) and X NY C S5 N S°, we have that
X Y

IT(z) — slI* < llzc — sI* = IIT (z) — zcl?
forall s € X NY, so that

dist>(T'(z), X N Y) < dist’(zc, X NY) — |T(2) — zc|?
<dist’(zc, X NY) — w? dist>(zc, X N Y)
= B2 dist’(zc, X NY), (3.24)

using (3.23) in the last inequality. It follows from (3.24) that
dist(T(z), X NY) < Bdist(zc, X NY). (3.25)

Combining (3.17),(3.20),and (3.25), we get

dist(T(z), X NY) < Bdist(zc, X NY) < %,32(1 + B) dist(Px(z), X NY)
< %ﬂz(l + B)dist(z, X NY),

which establishes the result. O

In the following, we get from Proposition 3.9 the R-linear convergence result for
the cCRM sequence, in a way similar to the proof of R-linear convergence of the MAP
and SPM in Corollary 3.8.
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Theorem 3.10 (Linear convergence of cCRM) Assume that X N'Y # §. Let (zX)ren
be the sequence generated by cCRM starting from some z° € R". Assume also that
(2 ke isan infinite sequence. If EB holds around the limit 7 of(zk)ke]N withw € (0, 1)
and neighborhood V, then the sequence (z*)rew converges R-linearly to some point

in X NY, with asymptotic constant bounded above by > (#), where B = /1 — w?

and w is the constant in Assumption EB.

Proof Convergence of (Z")gew to a point 7 € X NY follows from Theorem 2.10.
Hence, for large enough k, z¥ belongs to the ball centered at Z and contained in V,
whose existence in ensured by Assumption EB.
We recall that the cCRM sequence is defined as z5T! = T'(z), so that it follows
from Proposition 3.9 that
dist**!, XNy 1
M < ﬂ2 Lﬁ ) (3.26)
dist(zF, X NY) 2
Since w € (0, 1) implies thatﬂz(#) € (0, 1), itfollows immediately from (3.26) that
the scalar sequence (dist(zk, X N Y))kew converges Q-linearly to O with asymptotic
constant bounded above by 2 (%)

Finally, recall that sequence (ke is Fejér monotone with respectto X NY, due
to heorem 2.10. The R-linear convergence of (zk )keIN to some point in X N Y and the
value of the upper bound of the asymptotic constant follow then from Proposition 3.7.

O

In addition to establishing linear convergence of cCRM under the error bound
condition,Theorem 3.10 provides an upper bound for cCRM’s linear rate that is the
product of the reduction factors of MAP, namely 8 2 and SPM, namely # In view of
the superlinear convergence result that we are going to present in the next subsection
and our numerical results, the actual asymptotic constant for cCCRM seems to be quite
smaller than the upper bound presented in Proposition 3.7 and Theorem 3.10. The
issue of improving this upper bound deserves further research.

3.3 Superlinear convergence of cCRM

In previous works it was discussed that circumcentering-type schemes have a Newto-
nian flavor, meaning that superlinear convergence could be expected. This was derived
in a very limited setting, namely, for CRM as a root finder of smooth convex functions
in [4, Corollary 4.11]. Another reference that addresses particular examples show-
ing superlinear convergence of circumcentering techniques is [29]. With our novel
approach of centralizing CRM, we are able to cover a way broader class of convex
feasibility problems, including nonsmooth ones, for which we get superlinear conver-
gence. Our result states that if the boundaries of X and Y are locally differentiable
manifolds, and the interior of X N Y is nonemtpy, cCRM converges superlinearly
to a solution of the CFP (1.1). The main theorem relies on forthcoming lemma and
proposition.
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Lemma 3.11 (Superlinear convergence of the distance for cCRM) Let X, Y C R" be
closed, convex and suppose X N'Y # @. Let (zX) e be the sequence generated by
cCRM starting from some z° € R", and converging to a point 7 € X NY. Assume that
the interior of X NY is nonempty, and that the boundaries of X and Y are differentiable
manifolds in a neighborhood of z. Then, the scalar sequence (dist(zF, X N Y))ren
converges to zero superlinearly.

Proof 1If the sequence (z¥)xen is finite then the announced result follows trivially. So,
let us assume that it is infinite.
In order to prove the superlinear convergence stated in the lemma, i.e.,

dist(z**, X Ny
im M =0, (3.27)
k—oo dist(zk, X NY)

it suffices to show that

dist**!, xny) 0

im ——— (3.28)
k—oo dist(zg, X NY)

where z]é is the centralized point associated to 7%, Indeed, if we prove (3.28), then
(3.27) follows since dist(z, X N'Y) < dist(zF, X N'Y), by the Fejér monotonicity of
the centralization procedure guaranteed in Lemma 2.4.

Recall that

= G (k) = cire{zX, Rx (z5), Ry (z5)),

1

and because z](‘: is strictly centralized, z*T! was characterized in Lemma 2.3 as

k k
PH§QH¢ (zlé), where H)k( = H)Z(C and H)]ﬁ = H;,'C are the hyperplanes passing through

Px (z](‘:) and Py (zl(‘:) that are orthogonal to z’é — Px (z’(‘:) and z’é — Px (z’é), respectively.
Therefore, since z5+! € H § N H’;, Pythagoras gives us

et = 41 - et
which implies
|41 = P = |1 -2k (3.29)
By the same token, we also get
sz“ ~ Py(2h) H < Hz"“ 2k H . (3.30)

The hypothesis int(X N Y) # ¢ gives us an error bound @ € (0, 1) as in EB. In
particular, there exists k € IN such that

wdist(z5, X N'Y) < max{dist(z*, X), dist(z, Y)}, (3.31)
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for all k > 12; see Corollary 5.14 of [9].

In addition, the nonemptiness of the interior of X NY, together with the hypothesis
that the boundaries of X and Y are locally differentiable manifolds, imply that these
manifolds have dimension n — 1.

Now, we claim that if M C IR" is a differentiable manifold of dimension n — 1,
Z belongs to M C R” and z € R" belongs to the tangent hyperplane to M at z, say
Ty (Z), then

dist(z, M)

lim =0. (3.32)

=z flz—Zll

This result follows, with an elementary analysis argument, from the well known fact
that M can be locally written as {z € R" | g(z) = 0} for some function g : R" — R of
class C! with g(z) = 0, Vg(z) # 0, so that Ty (Z) := {z € R" | (Vg(2), z — ) = 0}.

Thus, the hyperplanes H § and H’;, which have dimension n — 1 each, are tangent
to the manifolds [51, Theorems 23.2 and 25.1], for all large k, respectively at Py (z’é)
and Py (z]é). Since z*! lies in both H)k( and H{}, we have, in view of (3.32),

dist(z¥1, X)
im ———— 22— (3.33)
e [T = P D]

and

_ dist(zF+1, v)
lim —— "~ _ — . (3.34)
e [T Ry @]

From Lemma 2.5, it holds that sz“ — z’é ” < dist(z’é, X N'Y), which combined
with the previous inequalities (3.29) and (3.30), implies that

|41 = Prib| = distel, x )
and

Hz"“ - Py(z]é)H < dist(z5, X N Y).
Hence, from (3.33) and (3.34) we get

dist(zF*!, X)
m ——— =
k—oco dist(zq, X NY)

and

dist(zFt1, v)
m —— =
k—oo dist(z5, X NY)
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Note that (3.31) yields

dist(zF, X nY) dist(z¥, X) dist(z¥, Y)
O———————— < max | —— ST .
dist(zg, X NY) dist(z, X NY) dist(zs, X NY)

Taking limits as k — oo, we obtain (3.28) and the proof is completed. O

Similarly to Proposition 3.7, we establish now a result stating that if a sequence
is Fejér monotone with respect to a given closed convex set and the distance of the
sequence to that said set converges superlinearly to zero, then the sequence itself also
converges superlinearly to a point in the corresponding set.

Proposition 3.12 (Fejér monotonicity and superlinear convergence) If a sequence
(wk)ke]N C R" is Fejér monotone with respect to a closed convex set M C R" and
the scalar sequence (dist(wk , M))rew converges superlinearly to 0, then (wk)kE]N
converges superlinearly to a point w € M.

Proof Let (w*)rew C R” be a Fejér monotone sequence with respect to the closed
convex set M C RR". Suppose that the scalar sequence (dist(w*, M))ken converges
superlinearly to 0, that is, that

dist k+]’ M
j SIS M) (3.35)
k—oo dist(wk, M)

Assumption (3.35) promptly yields dist(w*, M) — 0, and then appealing to [10,

Theorem 5.11] we get that (wk)kG]N has a limit point w € M.
Note now that, for any m, k € IN, we have

H WAL ket H < H Wk PM(wk+1)H X me+k+1 _ PM(wk+l)H
< Hwk+1 _ PM(wkH)H + Hwk+1 _ PM(wkH)H

= 2dist(w**!, M), (3.36)

where, in the second inequality, we use m times the Fejér monotonicity of sequence
(W) ken. Taking the limit as m — oo in (3.36) gives us, for all k € IN,

H wht! — wH < 2dist(wtt!, M),
Since dist(wk, M) < || wk —w || we conclude that

[wktt — w|| - dist(w* 1, M)
[whk —w| —° dist(wk, M)

Finally, the limit, as k — oo, of the right-hand side of this inequality goes to zero,
due to (3.35). Therefore, we get the superlinear convergence of (wk)kG]N to w, as
required. O
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We can now prove the superlinear convergence cCRM, when the interior of the
intersection of X and Y is nonempty, and the boundaries of X and Y are locally
smooth manifolds.

Theorem 3.13 (Superlinear convergence of cCRM) Let X, Y C R” be closed, convex
and suppose X N'Y # @. Let (z")ren be the sequence generated by cCRM starting
from some z° € R", and converging to a point 7 € X N Y. Assume that the interior of
X N'Y is nonempty, and that the boundaries of X and Y are differentiable manifolds
in a neighborhood of 7. Then, (zX)rew converges to 7 superlinearly.

Proof The theorem is a direct consequence of the Fejér monotonicity of (zk )kelN With
respect to X NY given in Theorem 2.10, together with Lemma 3.11 and Proposition
3.12. O

To the best of our knowledge, Theorem 3.13 is so far the strongest result regarding
the convergence rate of circumcenter-type methods.

4 Numerical experiments

In this section, we study the performance of cCRM by means of numerical comparisons
with two other methods, namely, MAP and CRMprod. Since we are not using parallel
computation, it is well-known that SPM underperforms when compared with MAP,
thus we do not include SPM in our report.

The experiments address two classes of non-affine convex intersection problems.
We first seek a common point of two ellipsoids, and then we consider the problem of
finding a point in the intersection of a second order cone and a polyhedron. In the first
class of experiments we are able to illustrate the superlinear convergence of cCRM
stated in Theorem 3.13 since the boundary of an ellipsoid is a differentiable manifold.
The numerical results for the second class of problems show much faster convergence
of cCRM in comparison to MAP and CRMprod.

We remark that each iteration of cCRM requires four orthogonal projections. In
principle, they seem to be five: we compute three sequential projections from z = z£
onto X, Y and again onto X for obtaining zymap, and then we project zyap onto X
and Y for getting zc. However, as observed above, Px(zc) = Px(zmap), because z¢
is in the segment between zyap and Px(zmap). On the other hand, both MAP and
CRMprod require just two projections per iteration. Therefore, for a fair comparison
we count the number of projections required by each method in order to achieve the
desired precision. We also mention that the cost of the step from z¢ to 7'(z) is indeed
negligible because the computation of a circumcenter reduces to solving a 2 x 2 system
of linear equations. Explicit formulas for computing even more general circumcenters
are presented in [11, Theorem 4.1] and [18, Section 3].

The computational experiments were carried out on an Intel Xeon W-2133 3.60GHz
with 32GB of RAM running Ubuntu 20.04. The codes were implemented in Julia
programming language v1.8 [23], and are available at https://github.com/Irsantos11/
CRM-CFP.
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4.1 Intersection of two ellipsoids

In this subsection, we consider cCRM, MAP and CRMprod for solving the particular
CFP of finding a common point in the intersection of two ellipsoids, that is, finding

ze&E:=&ENE CRY 4.1)
where each ellipsoid &; is set as
& ={zeR"|gi(zx) <0}, fori =1,2,

where g; : R" — R is defined as gi(z) = (z, Aiz) + 2(z,b') — a;, each A; is
a symmetric positive definite matrix, b’ is an n-vector, and ; is a positive scalar.
Problem (4.1) has importance on its own; see [35, 38].

To run the tests, we randomly produce instances of (4.1) with the following pro-
cedure. We first form ellipsoid £ by generating a matrix A; of the form A} =
y1d +B1TB1, with By € R"™", y € Ry4. Matrix Bj is sparse with sparsity den-
sity p = 2n~! and its components are sampled from the standard normal distribution.
Vector b! is sampled from the uniform distribution in the interval [0, 1]. We then
choose each o so that ¢ > (b') T Ab!, which ensures that 0 belongs to &;. Next, we
construct & by randomly choosing its center ¢, outside £, then we project ¢2 onto
&1. We define d := A(Pg,(c2) — c2) as the principal axis of the ellipsoid correspon-
dent to the least value of semi-axis. In order to get this, we form a diagonal matrix
A = diag(||d|| , u), where u € R*~! is a vector whose components are positive and
have values greater than ||d||, and an orthogonal matrix Q where the first column
is d/ ||d||. Finally, we set Ay := QT A%>Q and g,(z) := (z — ¢2, A2(z — ¢2)). For
all methods and instances, the initial point z° is sampled from the standard normal
distribution guaranteeing that its norm is at least 5 and also that z° ¢ £ N &s.

The projections onto ellipsoids are computed using an alternating direction method
of multipliers (ADMM) built suited for this end [35]. For testing the methods, we
generate two types of instances, with n = 100. In the first group, £; N &, has nonempty
interior, and in the second one £ N &, is a singleton.

4.1.1 &1 N &, with nonempty interior

We first randomly generate 30 instances where the intersection has nonempty interior.
For that, we set A = 1.1 such that d := 1.1 (Pg, (c2) — ¢2). The rationale here is that
though & N & has indeed nonempty interior, the 1.1 multiplying factor guarantees
that the intersection is not too large (otherwise the problems are very easy to solve).

In the examples of this subsection the fact that the ellipsoids have their intersec-
tion with nonempty interior guarantees that the Slater condition holds. Moreover, the
boundaries of ellipsoids are differentiable manifolds, so Theorem 3.13 applies, and we
get superlinear convergence of cCRM, which is not achievable by MAP. Therefore,
there is no surprise in seeing in Fig. 3 and Table 1 cCRM vastly outperforming MAP.
We note that cCRM also outperforms CRMprod by far.
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Fig.3 Performance profile of experiments with ellipsoidal feasibility

Remind that we are considering the total number of projections employed by each
method to achieve convergence upon the desired tolerance using the following criteria.
For each sequence (w*);cny yielded by the considered methods, we use as tolerance
¢ := 107 and as stopping criteria the gap distance

I Pg, (w*) — w*|| <.

This is a reliable measure of infeasibility because the Slater condition implies that
Assumption EB holds. We also set a budget of 10000 total number of allowed projec-
tions for each method.

Figure 3 is a performance profile [30]. Performance profiles allow one to benchmark
different methods on a set of problems with respect to a performance measure (in our
case, the number of projections). The vertical axis indicates the percentage of problems
solved, while the horizontal axis indicates, in log-scale, the corresponding factor of
the performance index used by the best solver. The picture clearly shows that cCCRM
always does better than the other two methods, being faster and more robust (MAP
and CRMprod did not solve one instance). In addition, MAP and CRMprod took more
than 2° times the number of projections that cCRM used to solve all problems.

We conclude this examination by discussing Table 1, which presents the following
descriptive statistics of the benchmark: mean + standard deviation (std), median,
minimum (min), and maximum (max) of total projections count. As expected, cCRM
outstandingly handles both MAP and CRMprod. In fact, the superlinear convergence
of cCRM is translated numerically as it takes, on average, 31 times fewer projections
than MAP while taking almost 49 times fewer projections than CRMprod.
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Table 1 Statistics of the experiments (in number of projections) with int £ #

Mean=+Std Median Min Max
cCRM 26.13+44.28 16.0 16.0 260.0
MAP 817.20+1802.54 308.0 140.0 10000.0
CRMprod 1295.07+£1912.92 610.0 276.0 10000.0

4.1.2 & N & isasingleton

We now run the methods in 15 more challenging instances. For that, we set A = 1.0,
that is, d := Pg (c2) — ¢ is the principal axis related to the smallest semi-axis of
&. Therefore, £ N & = {Pg,(c2)}, i.e., we have a singleton. This is now a harder
problem to solve because of the lack of regularity since the interior of the intersection
is empty (there is no Slater point in it and hence EB is not fulfilled). Thus, we use as
tolerance & := 103, Note that we have in hand the unique solution 7 := Pg, (c2), s0
we set as stopping criteria the distance to the solution, that is, we stop whenever

1z -2 < e.

We also allow the methods to go further and take up to 500,000 total number of
projections.

This time, MAP and CRMprod could not achieve the desired tolerance (1073 in
any of the instances, that is, in all cases those methods reached the maximum number
of projections allowed (500,000). On average, the distance to the solution with this
amount of projections for MAP was 1.2765 x 10% & 2.45 x 1073, Those findings
were, in fact, expected, for MAP was shown to have, at best, sublinear convergence
rate when there is no Lipschitzian regularity between the underlying sets [33, Theorem
2.2].

In contrast to MAP and CRMprod, cCRM seems to converge linearly, even
with EB failing to hold. We report that our proposed method took, on average,
28770.1+40343.4 projections to stop to the tolerance, whereas the total projections for
each instance ranges from 1068 (minimum) to 143,368 (maximum). Here, the appar-
ent linear convergence of cCRM over the sublinear behavior of MAP agrees with
the examples in [4], where in an affine/convex context without error bound, CRM
converges linearly, opposed to MAP’s sublinear convergence. This situation certainly
deserves a deeper study.

4.2 Intersection of a second order cone with a polyhedron

In the following experiments, we want to find z € R” that lies in

S:=02NnC,,

@ Springer



366 R. Behling et al.

where 2 := {w € R" | Aw < b}, with A € R™*" and b € R, is a polyhedron and
Cy, is the standard second-order cone of dimension n defined as

Chi={t,u) eR" |lu e R" 1 R, |lu| <t}.

The closed convex set C,, is also called the ice-cream cone or the Lorentz cone. This
problem, called second-order conic system feasibility, arises in the second-order cone
programming (SOCP) [1, 41], in which a linear function is minimized over the inter-
section of a polyhedral set and the intersection of second-order cones, and where an
initial feasible point needs to be found [27].

In order to execute our tests, we randomly generate instances of the polyhedron 2,
where n is fixed as 200 and m is a random value between /3 and n. We guarantee that
S is nonempty by the following procedure. We sample a nonzero point u € R"~! from
the standard normal distribution, assuring its norm lies between 5 and 15, and form the
vectors Z := (||lu||, u), which clearly belongs to C,,, and d:= (= llu]l , u). Note that Z
and d are orthogonal. Next, we sample, from the standard normal distribution, unitary
vectors a; € R",i = 1, ..., m, such that {qa;, cf) < 0, i.e., the correspondent angles
are strictly obtuse. Each ¢; is set as a row of matrix A, while b := A(Z — rc?), where
7 € [0, 1]. In this way, £2 is a polyhedron and Z € 2, guaranteeing the nonemptiness
of S, as required. Observe that the a;’s are the generators of the polar cone of §2 at
2 —1d. By construction, if T € (0, 1], the interior of S is nonempty and, in particular,
Assumption EB is satisfied. If ¢ := 0, Assumption EB may fail to be fulfilled. In fact,
we verified that whenever we ran an instance where t was zero the error bound did
not hold; this was checked by exploring the structure of the problem.

Each of the instances we generate is run for 4 initial random points. Each initial
point is also sampled from the standard normal distribution, with norms ranging from
5 and 15, and is accepted as long as it is not in S. In order to handle the projections
onto the convex sets C, and §2, we employ in our implementation the open source
Julia package ProximalOperators.jl [53].

4.2.1 Instances where int S is nonempty

We create 50 instances, summing up to 200 individual tests, taking 7 := %; this value
of t assures that the interior of S is nonempty, so that the error bound condition
EB holds. Let (w¥);e be any of the three sequences that we monitor, generated by
¢CRM, MAP, and CRMprod. We considered as tolerance ¢ := 10~° and employed as
stopping criteria the gap distance, given by

| Po (W) — Pe, ()|l < e, (4.2)

which is reliable measure of infeasibility in view of EB being satisfied. The projections
computed to measure the gap distance can be utilized in the next iteration, thus this
calculation does not add any extra cost.

The results displayed in Fig.4 and Table 2 clearly show a better performance of
cCRM over MAP and CRMprod. Recall that, cCRM uses four projections at each
step; thus, from Table 2 we can conclude the new proposed method takes, in average,

@ Springer



On the centralization of the circumcentered... 367

1.00 _—

0.75 | : o g

Fraction of problems solved

025 | L o 4

—— ¢CRM
--- MAP
- [P0 R RITEE CRMprod
[ Logeremn?770 Z I T
0'0020 0.5 9l 915 92 92.5

Within this factor of the best (log scale)

Fig.4 Performance profile of experiments considering a polyhedron and a second order cone withint S # ¢

TabIeVZ StatIStICS. of t'he Mean =+ Std Median Min Max

experiments considering a

polyhedron and a second order ¢CRM 19.8 + 3.80 20.0 8.0 28.0

cones with int S # ¢ (in number

of projections) MAP 40.62 £ 10.20 39.0 24.0 72.0
CRMprod 73.38 £21.94 70.0 28.0 140.0

4.95 iterations to converge. Of course, this was expected due to the result in Theorem
3.13, stating the superlinear convergence of cCRM.

4.2.2 Instances where intS = 0

We report now the numerical experiments for instances in which t := 0, i.e., intS
is empty; this is a possible more challenging scenario because EB may be violated.
We still use the gap distance (4.2) as a measure of infeasibility, even though not as
reliable as in the last experiments, due to the possible lack of EB. Again, 50 instances
are generated, so we gather the results of 200 tests.

The performance profile of Fig.5 once again shows that cCRM is faster and more
robust than its counterparts. In Table 3, we can see that cCRM took on average almost
3 times fewer projections than MAP while outperforming CRMprod, being more than
4 times faster, in number of projections required, to achieve the desired precision.

5 Concluding remarks

Circumcenter-type methods have been attracting substantial interest in the last few
years. In the present work, we introduce and study the centralized circumcentered-
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Fig.5 Performance profile of experiments with polyhedral and second order cones feasibility withint S = ¢

Table 3 Statistics of the Mean - Std Median Min Max
experiments with polyhedral and

second order cones with ¢CRM 75.14 £32.82 68.0 240 1880
int S = @ (in number of

projections) MAP 201.87+91.78 185.0 62.0  490.0

CRMprod 396.231+184.47 364.0 120.0 990.0

reflection method (cCRM) for finding a point in the intersection of two closed convex
sets. Global convergence of cCRM is established, as well as linear convergence under
an error bound condition. Moreover, superlinear convergence of cCRM is derived
under local smoothness of the boundaries of the sets and the assumption that their
intersection has nonemtpy interior. We note that cCRM does not employ any prod-
uct space reformulation, which is a significant advance in the theory of generalized
circumcenters. Our numerical tests are consistent with the theory we developed and
reassure the Newtonian flavor of circumcenter schemes. An interesting topic for future
research is the development of multi-set centralization techniques.
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