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Abstract
This paper is devoted to deriving the first circumcenter iteration scheme that does not
employ a product space reformulation for finding a point in the intersection of two
closed convex sets.We introduce a so-called centralized version of the circumcentered-
reflection method (CRM). Developed with the aim of accelerating classical projection
algorithms, CRM is successful for tracking a common point of a finite number of affine
sets. In the case of general convex sets, CRMwas shown to possibly diverge if Pierra’s
product space reformulation is not used. In this work, we prove that there exists an
easily reachable region consisting of what we refer to as centralized points, where pure
circumcenter steps possess properties yielding convergence. The resulting algorithm
is called centralized CRM (cCRM). In addition to having global convergence, cCRM
converges linearly under an error bound condition, and superlinearly if the two target
sets are so that their intersection have nonempty interior and their boundaries are
locally differentiable manifolds. We also run numerical experiments with successful
results.

Keywords Convex feasibility problem · Circumcentered-reflection method ·
Projection methods

B Roger Behling
rogerbehling@gmail.com

Yunier Bello-Cruz
yunierbello@niu.edu

Alfredo N. Iusem
iusp@impa.br

Luiz-Rafael Santos
l.r.santos@ufsc.br

1 School of Applied Mathematics, Fundação Getúlio Vargas, Rio de Janeiro, RJ 22250-900, Brazil

2 Department of Mathematical Sciences, Northern Illinois University, DeKalb, IL 60115-2828,
USA

3 Department of Mathematics, Federal University of Santa Catarina, Blumenau, SC 89065-300, Brazil

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10107-023-01978-w&domain=pdf
http://orcid.org/0000-0002-5473-4654
http://orcid.org/0000-0002-7877-5688
http://orcid.org/0000-0002-5748-2501
http://orcid.org/0000-0002-0083-5871


338 R. Behling et al.

Mathematics Subject Classification 49M27 · 65K05 · 65B99 · 90C25

1 Introduction

In this work we introduce a new tool for solving the following convex feasibility
problem (CFP):

find z ∈ X ∩ Y , (1.1)

where X ,Y ⊂ Rn are two given closed convex sets with nonempty intersection.
The circumcentered-reflection method (CRM) was presented in 2018 in [17] as

an acceleration technique for classical projection methods. Since then, a quite robust
literature related to CRM has been developed [3, 5, 11–16, 18, 19, 21, 28, 29, 39, 40,
43–47]. If one is at a point zk ∈ Rn , the original CRM for problem (1.1) moves to the
iterate

zk+1
CRM = TCRM(zk) := circ(zk, RX (zk), RY RX (zk)), (1.2)

where RX , RY : Rn → Rn are the orthogonal reflectors through X ,Y , defined as
RX := 2PX − Id, RY := 2PY − Id, and PX , PY : Rn → Rn are the orthogonal
projections onto X ,Y , respectively. The Euclidean circumcenter circ(z, v, w) is the
point equidistant to the vertices z, v, w ∈ Rn lying on the affine subspace determined
by the correspondent triangle (see [18, Eq. (2)]). Formally, we have the following
definition.

Definition 1.1 (Circumcenter) Let z, v, w ∈ Rn be given. The circumcenter
circ(z, v, w) ∈ Rn is a point satisfying

(i) ‖circ(z, v, w) − x‖ = ‖circ(z, v, w) − y‖ = ‖circ(z, v, w) − z‖ and,
(ii) circ(z, v, w) ∈ aff{z, v, w} := {u ∈ Rn | u = z+α(v−z)+β(w−z), α, β ∈ R}.
The point circ(z, v, w) is well and uniquely defined if the cardinality of the set {z, v, w}
is one or two. In the case in which the three points are all distinct, circ(z, v, w) is well
and uniquely defined only if x , y and z are not collinear [11]. Iteration (1.2) is well-
defined and leads to convergence when X and Y are affine [18]. This is also the
case for multi-set affine intersection [19, 21] or when the reflectors are substituted by
isometries [12].

CRM first aimed to speed up the Douglas-Rachford method (DRM) [7, 31, 40]
(also known as the averaged alternating reflections’ method). Later, in [19], CRMwas
connected to the famous method of alternating projections (MAP) [8] whose iteration
employs a composition of projections as follows

zk+1
MAP = TMAP(z

k) := PY PX (zk).

In [17], Behling, Bello-Cruz and Santos pointed out that iteration (1.2) could fail
to be well defined or to approach the target set. Later on, Aragón Artacho, Campoy
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and Tam [2, Figure 10] chose an initial point in this very example for which the
correspondentCRMsequence actually diverges. Fortunately, thiswas overcome in [21]
by considering Pierra’s product space reformulation [48]. Pierra stated that problem
(1.1) is univocally related to the problem of finding a common point to the diagonal
subspace D := {(z, z) | z ∈ Rn} and the Cartesian convex set K = X × Y . In [21] it
was shown that a sequence of circumcenters, with initial point in D and that iterates
as

zk+1
CRMprod := circ(zk, RK(zk), RDRK(zk)),

converges to a point z∗ = (z∗, z∗), where z∗ ∈ X ∩ Y , that is, z∗ is a solution of
problem (1.1). Such a result is indeed derived in [21] for the case of a finite number
of convex sets.

In this work, we prove that a CRM step based on parallel reflections leads to
convergence as long as the iterates stay in an appropriate region. We will easily reach
this region and get a very fast CRM projection-type method for solving problem (1.1).
In our study, the following parallel CRM (pCRM) iteration will be considered

zk+1
pCRM = C (zk) := circ(zk, RX (zk), RY (zk)). (1.3)

We show that this iteration provides adequate steps for solving problem (1.1) if the
angle between the vectors RX (zk) − zk and RY (zk) − zk is obtuse (or right). When zk

satisfies this property, we say that it is centralized. Achieving such property is possible,
for instance, by taking an appropriate projection procedure. Roughly speaking, we
show that a MAP step taken from any given z ∈ Rn helps to provide a point with the
desired feature. In fact,

zC := 1
2 (zMAP + PX (zMAP)) , (1.4)

is a centralized point, that is, it satisfies 〈RX (zC) − zC, RY (zC) − zC〉 ≤ 0, where 〈·, ·〉
stands for the Euclidean inner product and zMAP := PY PX (z).

A pCRM step (1.3) represents an acceleration of the Simultaneous Projections
Method (SPM), also called Cimmino’s method [26], given by

zk+1
SPM = TSPM(zk) := 1

2

(
PX (zk) + PY (zk)

)
, (1.5)

known to converge to a point in X ∩ Y whenever X ∩ Y �= ∅. We mention, paren-
thetically, that this method is devised for several convex sets with different weights in
the average of the projections; iteration (1.5) corresponds to the case of two sets with
equal weights.

We note that our centralization procedure (1.4) comes from the composition of the
simultaneous projection operator TSPM and the alternating projection operator TMAP.
Indeed, for any z ∈ Rn ,
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z0

SPM – 406 projections
CRMprod – 238 projections

MAP – 114 projections
cCRM – 12 projections

(a) Nonempty interior of intersection.

z0

SPM – 24952 projections
CRMprod – 35156 projections

MAP – 12456 projections
cCRM – 24 projections

(b) Empty interior intersection.

Fig. 1 SPM, CRMprod, MAP, and cCRM paths of iterates on two ellipsoids intersection

zC = 1
2 (zMAP + PX (zMAP))

= 1
2 (PY PX (z) + PX (PY PX (z)))

= 1
2 (PY (PY PX (z)) + PX (PY PX (z)))

= TSPM(TMAP(z)).

That said, we can now formulate the centralized circumcentered-reflection method
(cCRM). It iterates by composing MAP, SPM and pCRM given in (1.3), that is,

zk+1
cCRM = C (TSPM(TMAP(z

k))). (1.6)

The goal of our paper is to study cCRM.Wewill prove in Theorem 2.10 that, for any
starting point z0 ∈ Rn , the sequence generated by iteration (1.6) converges to a point
in X ∩ Y . If an error bound condition holds for problem (1.1), we show in Theorem
3.10 that cCRM converges linearly, and we derive an upper bound for its asymptotic
error constant. Finally, Theorem 3.13 states that, in the casewhere X∩Y has nonempty
interior and the boundaries of X and Y are locally differentiable manifolds, cCRM
actually converges superlinearly.

Wepresent inFig. 1a two instanceswhich illustrate this better performanceof cCRM
when comparedwith SPM, CRMprod, andMAP.Note that SPM, CRMprod, andMAP
need to compute two projections (one for each set X andY ) at each iterate,while cCRM
needs four projections. Thus, we list in the pictures the number of projections that
each method takes to achieve convergence, and display correspondent paths towards
a solution. We can envision in this example the superiority of cCRM, even when the
intersection between the target sets has empty interior; see Fig. 1b. In this numerical
example, convergence is understood to occur when the distance of the iterate to the
intersection of X and Y is proportional to a tolerance of order ε := 10−4. We note
that in Fig. 1a the boundaries of the sets X and Y are locally differentiable manifolds
and the interior of their intersection is nonempty; that said, the picture displays the
superlinear convergence of cCRM, proved later.
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The paper is organized as follows. In Sect. 2, we prove that cCRM converges glob-
ally to a solution of problem (1.1). We begin Sect. 3 with a discussion on error bound
conditions; then, assuming that (1.1) satisfies an error bound condition, we proceed
deriving linear convergence of cCRM and an upper bound for the linear rate; finally,
under additional hypotheses, we prove that cCRM converges superlinearly. Section 4
exhibits numerical experiments showing cCRM outperforming CRMprod and MAP.
Section5 presents concluding remarks.

2 Convergence of cCRM

We start this section with the definition of a centralized point.

Definition 2.1 (Centralized point) Given two closed and convex sets X ,Y ⊂ Rn a
point z ∈ Rn is said to be centralized with respect to X ,Y if

〈RX (z) − z, RY (z) − z〉 ≤ 0. (2.1)

Note that we can get an equivalent definition to the one above if we replace the
reflections by projections in (2.1). Indeed, this is true because

〈RX (zC) − zC, RY (zC) − zC〉 = 〈2PX (zC) − 2zC, 2PY (zC) − 2zC〉
= 4 〈PX (zC) − zC, PY (zC) − zC〉 .

More than that, if z is in X or Y , then it is centralized. However, points in X ∪ Y are
not the most suitable for our algorithmic framework. Therefore, our main interest will
be on centralized points that are neither in X nor in Y . Those points will be referred
to as strictly centralized. Note that the definition of strictly centralized point does not
necessarily imply that inequality (2.1) holds strictly.

We will present a series of lemmas aiming to guarantee that the pCRM iteration
(1.3) computed from a strictly centralized point moves towards the solution set of
problem (1.1). However, a pCRM step taken from a non-centralized point may push
the next iterate away from the solution set. This behavior is depicted in Fig. 2. Note
in Fig. 2a that going from z to zC is already better than moving from z to zpCRM.
Furthermore, we get even closer to the solution set with zcCRM. To make this visible,
we present part of Fig. 2a zoomed in Fig. 2b. In this way, we illustrate the benefit of
the combination of centralization and computation of parallel circumcenter.

The next lemma shows that the composition of SPM and MAP, mentioned in the
introduction, provides either a strictly centralized point or a solution of problem (1.1).

Lemma 2.2 (Centralization procedure) Let X ,Y ⊂ Rn be two closed convex sets with
nonempty intersection. For any z ∈ Rn set zMAP = PY PX (z). Then, zC from (1.4), i.e.,
zC := 1

2 (zMAP + PX (zMAP)), is centralized.Moreover, zC is either strictly centralized
or it belongs to X ∩ Y .
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Fig. 2 Characterization of centralized circumcenters

Proof Observe that PX (zC) = PX (zMAP) and so zC = 1
2 (zMAP + PX (zC)). Hence,

〈PX (zC) − zC, PY (zC) − zC〉
= 〈2zC − zMAP − zC, PY (zC) − zC〉
= 〈zC − zMAP, PY (zC) − zC〉
= 〈PY (zC) − zMAP, PY (zC) − zC〉 + 〈zC − PY (zC), PY (zC) − zC〉
= 〈zC − PY (zC), zMAP − PY (zC)〉 − ‖zC − PY (zC)‖2
≤ 〈zC − PY (zC), zMAP − PY (zC)〉 ≤ 0,

where the last inequality follows from the characterization of projections, since zMAP ∈
Y . This proves that zC is centralized.

Assume that zC ∈ X . Since

zC = 1
2 (zMAP + PX (zMAP)) = 1

2 (zMAP + PX (zC)) = 1
2 (zMAP + zC) ,

we have zC = zMAP. Then, zC ∈ Y because zMAP = PY PX (z). Thus, zC ∈ X ∩ Y .
Now, if zC ∈ Y , note that

〈PX (z) − zMAP, PX (zMAP) − zMAP〉 = 2 〈PX (z) − zMAP, zC − zMAP〉
= 2 〈PX (z) − PY (PX (z)), zC − PY (PX (z))〉
≤ 0, (2.2)

where the first and the second equalities follow from the definitions of zC and zMAP,
respectively. The inequality is due to the characterization of the projection of PX (z)
onto Y . On the other hand, the characterization of the projection of zMAP onto X gives
us
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〈zMAP − PX (zMAP), PX (z) − PX (zMAP)〉 ≤ 0,

or equivalently,

〈PX (zMAP) − PX (z), PX (zMAP) − zMAP〉 ≤ 0. (2.3)

Summing up (2.2) and (2.3), we get ‖PX (zMAP) − zMAP‖2 ≤ 0, where ‖·‖ stands for
the norm induced by the Euclidean inner product. So, zMAP = PX (zMAP) and hence,
zMAP ∈ X and zC = zMAP. Therefore, zC ∈ X ∩ Y . ��

Next, we are going to prove that the parallel circumcenter at a centralized point
z ∈ Rn is actually the projection of z onto the intersection of two suitable halfspaces
defined by the supporting hyperplanes to X and Y passing through PX (z) and PY (z),
respectively; see Fig. 2b.

Lemma 2.3 (Characterization of centralized circumcenters) Let X ,Y ⊂ Rn be two
given closed convex sets with nonempty intersection. Assume that z ∈ Rn is a central-
ized point with respect to X ,Y . Then, the parallel circumcenter at z,

C (z) := circ{z, RX (z), RY (z)},

coincides with PSzX∩SzY
(z), where

SzX := {w ∈ Rn | 〈w − PX (z), z − PX (z)〉 ≤ 0},

and

SzY := {w ∈ Rn | 〈w − PY (z), z − PY (z)〉 ≤ 0}.

Proof We start proving the statement for the case in which z ∈ Rn lies in one of the
sets. Assume, without loss of generality, that z ∈ X , i.e., z = PX (z) = RX (z). In this
case, SzX = Rn and C (z) = circ{z, z, RY (z)} = 1

2 (z + RY (z)) = PY (z). Note that
PY (z) is precisely PSzY (z) = PRn∩SzY

(z) = PSzX∩SzY
(z).

Now, assume that z is neither in X nor in Y , i.e., z is strictly centralized. Thus, both
SzX and SzY are actual half-spaces, because z− PX (z) �= 0 and z− PY (z) �= 0, and also
z is neither in SzX nor SzY . First, we are going to establish that zpCRM is the projection
of z onto the intersection of the hyperplanes

Hz
X := {w ∈ Rn | 〈w − PX (z), z − PX (z)〉 = 0},

and

Hz
Y := {w ∈ Rn | 〈w − PY (z), z − PY (z)〉 = 0},

the boundaries of SzX and SzY , respectively. We have Hz
X ∩ Hz

Y �= ∅, otherwise the
hyperplanes would be parallel and z would be a convex combination of PX (z) and
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PY (z), because z is strictly centralized. In this case, the half-spaces SzX and SzY would
have empty intersection, a contradiction with the facts that X ∩ Y �= ∅ and X ⊂
SzX and Y ⊂ SzY . Then, z, RX (z) and RY (z) are not collinear and the circumcenter
C (z) is well-defined. Moreover, RX (z) = RHz

X
(z) and RY (z) = RHz

Y
(z). Hence,

C (z) = circ{z, RHz
X
(z), RHz

Y
(z)}. Note further that by denoting ẑ = RHz

X
(z), we have

z = RHz
X
(ẑ) and RHz

Y
(z) = RHz

Y
RHz

X
(ẑ), so C (z) = circ{ẑ, RHz

X
(ẑ), RHz

Y
RHz

X
(ẑ)}.

We do this in order to employ [21, Lemma 3], which gives us C (z) = PHz
X∩Hz

Y
(ẑ).

The fact that RHz
X
is an isometry and that Hz

X ∩ Hz
Y is an affine subspace imply

that C (z) = PHz
X∩Hz

Y
(z). Since z is neither in SzX nor SzY , PSzX∩SzY

(z) must lie in the
boundary of SzX ∩ SzY , which on the other hand consists of points that are either in Hz

X
or in Hz

X . Therefore, three possibilities for PSzX∩SzY
(z) arise: PSzX∩SzY

(z) = PHz
X
(z),

PSzX∩SzY
(z) = PHz

Y
(z) or PSzX∩SzY

(z) = PHz
X∩Hz

Y
(z).

Suppose that PSzX∩SzY
(z) = PHz

X
(z). In particular, PHz

X
(z) ∈ SzY . Bearing in mind

that PHz
X
(z) = PX (z) we get

0 ≥ 〈PX (z) − PY (z), z − PY (z)〉
= 〈PX (z) − z, z − PY (z)〉 + 〈z − PY (z), z − PY (z)〉
= − 〈PX (z) − z, PY (z) − z〉 + ‖z − PY (z)‖2
> −〈PX (z) − z, PY (z) − z〉 ,

which contradicts the hypothesis that z is centralized. If we assume that PSzX∩SzY
(z) =

PHz
Y
(z), then we get a similar contradiction. Thus, PSzX∩SzY

(z) = PHz
X∩Hz

Y
(z), proving

the lemma. ��

We are going to state now a Fejér-type property regarding a step from z ∈ Rn to
the centralized point zC. This property is quite natural, if one bears in mind that our
centralization procedure comes from the composition of SPM and MAP.

Lemma 2.4 (Firmquasi-nonexpansiveness of the centralizationprocedure)Let X ,Y ⊂
Rn be two given closed convex sets with nonempty intersection. Then, for any z ∈ Rn,
the centralized procedure zC given in (1.4) satisfies

‖zC − s‖2 ≤ ‖zMAP − s‖2 − 1
2‖zMAP − PX (zMAP)‖2, (2.4)

and

‖zC − s‖2 ≤ ‖z − s‖2 − 1
4‖z − zC‖2, (2.5)

for all s ∈ X ∩ Y .
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Proof For any s ∈ X ∩ Y , we have

‖zC − s‖2 = ‖ 1
2 (zMAP + PX (zMAP)) − s‖2 = ‖ 1

2 (zMAP − s) + 1
2 (PX (zMAP) − s)‖2

= 1
2‖zMAP − s‖2 + 1

2‖PX (zMAP) − s‖2 − 1
4‖(zMAP − s) − (PX (zMAP) − s)‖2

≤ 1
2‖zMAP − s‖2 + 1

2‖PX (zMAP) − PX (s)‖2
≤ ‖zMAP − s‖2 − 1

2‖zMAP − PX (zMAP)‖2
≤ ‖z − s‖2 − 1

2‖z − zMAP‖2 − 1
2‖zMAP − PX (zMAP)‖2

= ‖z − s‖2 − 1
2‖z − zMAP‖2 − 2‖ 1

2 (zMAP − PX (zMAP))‖2
= ‖z − s‖2 − 1

2‖z − zMAP‖2 − 2‖zC − zMAP‖2. (2.6)

In the first equality we use the definition of zC and the second one is obvious. The
third equality follows from the identity in [10, Corollary 2.15]. In the first inequality
we take into account the fact that s = PX (s), and the nonnegativity of the last term.
The second inequality follows from the firm nonexpasiviness of projections, and we
get (2.4). In the last inequality we use [10, Proposition 4.35(iii)], since the projections
are 1/2-averaged. Finally, in the last equality we use again the definition of zC.

Note further that [10, Corollary 2.15] gives us

1
2‖z − zMAP‖2 + 1

2‖zC − zMAP‖2
= ‖ 1

2 (z − zMAP) + 1
2 (zC − zMAP)‖2 + 1

4‖(z − zMAP) − (zC − zMAP)‖2
≥ 1

4‖z − zC‖2,

or, equivalently,

1
2‖z − zMAP‖2 ≥ 1

4‖z − zC‖2 − 1
2‖zC − zMAP‖2.

Combining the last inequality with (2.6), we get

‖zC − s‖2 ≤ ‖z − s‖2 − 1
4‖z − zC‖2 + 1

2‖zC − zMAP‖2 − 2‖zC − zMAP‖2
≤ ‖z − s‖2 − 1

4‖z − zC‖2.

This proves (2.5), and hence the lemma. ��
The next lemma establishes a result similar to the previous one, but now concerning

pCRM steps taken from centralized points.

Lemma 2.5 (Firm quasi-nonexpansiveness of circumcenters at centralized points) Let
X ,Y ⊂ Rn be two closed convex sets with nonempty intersection. Assume that z ∈ Rn

is a centralized point with respect to X ,Y . Then, the parallel circumcenter at z, namely
C (z) := circ{z, RX (z), RY (z)}, satisfies

‖C (z) − s‖2 ≤ ‖z − s‖2 − ‖z − C (z)‖2,

for all s ∈ X ∩ Y .
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Proof Consider SzX and SzY as in Lemma 2.3. Now, for any s ∈ X ∩ Y , we have

‖C (z) − s‖2 = ‖PSzX∩SzY
(z) − s‖2

= ‖PSzX∩SzY
(z) − PSzX∩SzY

(s)‖2

≤ ‖z − s‖2 −
∥∥∥(z − PSzX∩SzY

(z)) − (s − PSzX∩SzY
(s))

∥∥∥
2

= ‖z − s‖2 − ‖z − C (z)‖2,

where the first equality follows from Lemma 2.3, because z is centralized. The second
equality follows from the fact that s ∈ X ∩Y ⊂ SzX ∩ SzY . In the inequality, we invoke
the firm nonexpansiveness of projections, and in the last equality, we use the fact that
s = PSzX∩SzY

(s), and Lemma 2.3 again. ��
Finally, we can derive firm quasi-nonexpansiveness of full cCRM steps by bonding

Lemmas 2.4 and 2.5.

Lemma 2.6 (Firm quasi-nonexpansiveness of cCRM) Let X ,Y ⊂ Rn be two closed
convex sets with nonempty intersection. Let z ∈ Rn. Then, the parallel circumcenter
at zC := 1

2 (zMAP + PX (zMAP)), namely

T (z) := C (zC) = circ{zC, RX (zC), RY (zC)},

satisfies

‖T (z) − s‖2 ≤ ‖z − s‖2 − 1
8‖z − T (z)‖2,

for all s ∈ X ∩ Y .

Proof By Lemma 2.2, zC is centralized. Therefore, Lemma 2.5 can be applied and
implies that

‖C (zC) − s‖2 ≤ ‖zC − s‖2 − ‖zC − C (zC)‖2,

for all s ∈ X ∩ Y . Now, using Lemma 2.4 in the previous inequality, we have

‖C (zC) − s‖2 ≤ ‖z − s‖2 − 1
4‖z − zC‖2 − ‖zC − C (zC)‖2. (2.7)

Note further that [10, Corollary 2.15] gives us

1
2‖z − zC‖2 + 1

2‖zC − C (zC)‖2
= ‖ 1

2 (z − zC) + 1
2 (zC − C (zC))‖2 + 1

4‖(z − zC) − (zC − C (zC))‖2
≥ 1

4‖z − C (zC)‖2,

which can be written as

1
4‖z − zC‖2 ≥ 1

8‖z − C (zC)‖2 − 1
4‖zC − C (zC)‖2.
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Combining the last inequality with (2.7), we obtain

‖C (zC) − s‖2 ≤ ‖z − s‖2 − 1
8‖z − C (zC)‖2 + 1

4‖zC − C (zC)‖2 − ‖zC − C (zC)‖2
= ‖z − s‖2 − 1

8‖z − C (zC)‖2 − 3
4‖zC − C (zC)‖2

≤ ‖z − s‖2 − 1
8‖z − C (zC)‖2,

proving the lemma. ��
Next, we show that X ∩ Y is precisely the set of fixed points of the opera-

tor C : dom(C ) ⊂ Rn → Rn , when X ∩ Y �= ∅. Here, dom(C ) consists of
the points of Rn for which (1.3) is well-defined, i.e., dom(C ) := {z ∈ Rn |
z, RX (z), and RY (z) are not collinear}.
Lemma 2.7 (Fixed points of the parallel circumcenter operator) Let X ,Y ⊂ Rn be two
given closed convex sets with nonempty intersection. Consider the parallel circumcen-
ter operator C : dom(C ) ⊂ Rn → Rn defined as C (z) := circ{z, RX (z), RY (z)}.
Let FixC := {z ∈ Rn | C (z) = z} be the set of its fixed points. Then,

FixC = X ∩ Y .

Proof If z ∈ X ∩ Y , it is easy to see that z ∈ FixC . Now, suppose z ∈ FixC . By
Definition 1.1 of circumcenter we get that

‖z − C (z)‖ = ‖RX (z) − C (z)‖ = ‖RY (z) − C (z)‖ .

By definition of fixed points, we have z = C (z), which gives us RX (z) = C (z) = z
and RY (z) = C (z) = z. Therefore, because Fix RX = X and Fix RY = Y , we get
z ∈ X ∩ Y , as required. ��
Lemma 2.8 (Fixed points of the centralized circumcenter reflection operator) Let
X ,Y ⊂ Rn be two closed convex sets with nonempty intersection. Consider the cen-
tralized circumcentered-reflection operator T : Rn → Rn at z ∈ Rn defined, as in
Lemma 2.6,

and the set of fixed points of T , namely, Fix T := {z ∈ Rn | T (z) = z}. Then,

Fix T = X ∩ Y .

Proof If z ∈ X ∩ Y , we clearly get that z ∈ Fix T . Conversely, suppose z ∈ Fix T .
Since by Lemma 2.2 zC is centralized, Lemma 2.5 applies to it, that is, for any

s ∈ X ∩ Y ,

‖C (zC) − s‖2 ≤ ‖zC − s‖2 − ‖zC − C (zC)‖2.

Moreover, as C (zC) = T (z) = z, we get

‖z − s‖2 ≤ ‖zC − s‖2 − ‖zC − z‖2
≤ ‖z − s‖2 − 1

4‖z − zC‖2 − ‖zC − z‖2,
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where in the second inequality we used (2.5). Thus, ‖zC − z‖ = 0, i.e., zC = z. In this
case,

z = T (z) = circ{zC, RX (zC), RY (zC)} = circ{z, RX (z), RY (z)} = C (z)

and so z ∈ FixC . Hence, Lemma 2.7 gives us that z ∈ X ∩ Y . ��

Before arriving at the main result of our paper, we recall the notion of Fejér mono-
tonicity.

Definition 2.9 (Fejér monotonicity) A sequence (wk)k∈N ⊂ Rn is Fejér monotone
with respect to a set M ⊂ Rn when

∥∥wk+1 − w
∥∥ ≤ ∥∥wk − w

∥∥, for all w ∈ M and
for all k ∈ N.

We will now state that if we iterate the cCRM operator T , with any choice of initial
point inRn , we end up with a sequence whose limit point exists and belongs to X ∩Y .
In other words, cCRM solves problem (1.1). The convergence is derived upon the
Fejér monotonicity with respect to X ∩Y of the sequence generated by cCRM, which
is directly implied by Lemma 2.6.

Theorem 2.10 (Convergence of cCRM) Let X ,Y ⊂ Rn be two closed convex sets
with nonempty intersection. Then, for any starting point z0 ∈ Rn, the sequence
defined by zk+1 := T (zk) = C (zkC) = circ{zkC, RX (zkC), RY (zkC)}, where zkC :=
1
2

(
zkMAP + PX (zkMAP)

)
and zkMAP := PY PX (zk), is Fejér monotone with respect to

X ∩ Y , and converges to a point in X ∩ Y .

Proof For all s ∈ X ∩ Y and k ∈ N, we get from Lemma 2.6 that

1

8
‖zk+1 − zk‖2 ≤ ‖zk − s‖2 − ‖zk+1 − s‖2. (2.8)

and, therefore,

‖zk+1 − s‖ ≤ ‖zk − s‖. (2.9)

Inequality (2.9) provides the Fejér monotonicity, with respect to X ∩ Y , of sequence
(zk)k∈N, and we get the first claim. Moreover, appealing to [10, Proposition 5.4(i)],
(zk)k∈N is also bounded. To complete the proof, it suffices to show that every cluster
point of (zk)k∈N belongs to X ∩ Y , because then the Fejér monotonicity of (zk)k∈N
implies its convergence to a point in X ∩ Y , taking into account [10, Theorem 5.5].

We proceed to establish the claim. First note that using inequality (2.8) and the
fact that sequence (‖zk − s‖)k∈N converges [10, Proposition 5.4(ii)], we conclude
that zk+1 − zk converges to 0, as k → +∞. Furthermore, using Lemma 2.5 and the
nonexpansiveness of the centralized procedure zC given in Lemma 2.4, we have
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‖zk+1 − zkC‖2 = ‖C (zkC) − zkC‖2
≤ ‖zkC − s‖2 − ‖C (zkC) − s‖2
= ‖zkC − s‖2 − ‖zk+1 − s‖2
≤ ‖zk − s‖2 − ‖zk+1 − s‖2.

This last inequality, again by the convergence of (‖zk −s‖)k∈N, implies that zk+1− zkC
converges to 0 as k → +∞.

Now, let ẑ be any cluster point of the sequence (zk)k∈N and denote (zik )k∈N an
associated subsequence convergent to ẑ. Since zik − zik+1 → 0 and zik+1 − zikC → 0,

we have zik+1 → ẑ and zikC → ẑ.
We claim that ẑ ∈ X ∩ Y . In fact, by the definition of C , we have

‖zikC − zik+1‖ = ‖zikC − C (zikC )‖ = ‖RX (zikC ) − C (zikC )‖ = ‖RX (zikC ) − zik+1‖.

Thus, RX (zikC ) − zik+1 converges to 0. Taking limits as k → +∞, it follows from the

continuity of the reflection onto X that ẑ = RX (ẑ). Hence, ẑ ∈ X . Since ‖RX (zikC ) −
zik+1‖ = ‖RY (zikC ) − zik+1‖, we conclude by the same token that ẑ = RY (ẑ) and so
ẑ ∈ Y , proving the claim, which completes the proof. ��

We have just proven the global convergence of cCRM. In the next section we study
the convergence rate of cCRM under an error bound condition.

3 Convergence order of cCRM

The aim of this section is three-fold. We present a discussion on error bound condi-
tions, which are regularity assumptions widely employed in continuous optimization.
Under such hypothesis, we derive linear convergence of cCRM, and we provide an
upper bound for its asymptotic constant. Then, under additional mild assumptions, we
establish superlinear convergence of cCRM.

3.1 Error bound condition

The analysis of the convergence speed of the sequence generated by cCRM is going
to be carried out under an additional assumption on the problem. We will assume a
fairly standard local error bound (EB) condition, also called linear regularity [8, 9] or
subtransversality [37].

Definition 3.1 (Error bound) Let X ,Y ⊂ Rn be closed convex sets and assume that
X ∩ Y �= ∅. We say that X and Y satisfy a local error bound condition if for some
point z̄ ∈ X ∩ Y there exist a real number ω ∈ (0, 1) and a neighborhood V of z̄ such
that

ω dist(z, X ∩ Y ) ≤ max{dist(z, X), dist(z,Y )}, (EB)

for all z ∈ V .

123



350 R. Behling et al.

The condition given by Definition 3.1 means that a point in V cannot be too close to
both X and Y and at the same time far from X ∩ Y . More than that, roughly speaking,
the constant ω emulates the sine of the “angle” between X and Y . This condition will
be required in our convergence rate analysis and referred to as Assumption EB.

Assumption EB is equivalent to asking the existence of a constant κ ∈ (0, 1) such
that

κ dist(z, X ∩ Y ) ≤ dist(z, X) (3.1)

for all z ∈ Y sufficiently close to z̄ ∈ X ∩ Y . This equivalence was discussed in [20,
Section 3.2] and is a consequence of [8, Lemma 4.1]. The error bound version (3.1)
was used in [4] for establishing linear convergence of the CRM method (1.2). In that
paper, Y is assumed to be an affine manifold, and the whole CRM sequence stays in Y .
We relate next, Assumption EB with other error bounds found in the literature. If the
problem at hand consists of solving H(z) = 0 with a smooth H : Rn → Rm , a
classical regularity condition demands that m = n and the Jacobian matrix of H be
nonsingular at a solution z∗, in which case Newton’s method, for instance, is known to
enjoy superlinear or quadratic convergence. This condition implies local uniqueness
of the solution z∗. For problems with m �= n or with nonisolated solutions, a less
demanding assumption is the notion of calmness (see [52], Chapter 8, Section F),
which requires that

dist(z, S∗) ≤ θ ‖H(z)‖ (3.2)

for all z ∈ Rn \ S∗ and some θ > 0, where S∗ is the solution set, i.e., the set of zeros of
H . Calmness, also called upper-Lipschitz continuity (see [50]), is a classical example
of error bound, and it holds in many situations (e.g., when H is affine, by virtue
of Hoffman’s Lemma, [34]). It implies that the solution set is locally a Riemannian
manifold (see [22]), and it has been used for establishing superlinear convergence of
Levenberg-Marquardt methods in [36].

We will present next an error bound for systems of inequalities and a result estab-
lishing that this error bound holds whenever the system of inequalities satisfies some
well known constraint qualifications. This result is a particular instance of a theorem
in [49].

We recall first the Mangasarian-Fromovitz constraint qualification (MFCQ) for a
system of nonlinear inequalities. Let gi : Rn → R, (i = 1, . . . ,m) be continuously
differentiable and convex functions, and define S ⊂ Rn as S := {z ∈ Rn | gi (z) ≤
0, i = 1, . . . ,m}. Take z ∈ S and let I (z) = {i ∈ {1, . . . ,m} | gi (z) = 0}. MFCQ
is said to hold at z if

∑
i∈I (z) λi∇gi (z) = 0 with λi ≥ 0 for all i ∈ I (z) implies that

λi = 0 for all i ∈ I (z). Note that if MFCQ holds at z then ∇gi (z) �= 0 for all i ; if
∇gi (z) = 0 then the statement of MFCQ fails if we take λi = 1 and λ j = 0, for
j ∈ I (z) \ {i}.
Proposition 3.2 (Mangasarian-Fromovitz implies calmness) Let gi : Rn → R, (1 ≤
i ≤ m) be continuously differentiable and convex functions. Fix z̄ ∈ S, with S as
above. Define g+

i : Rn → R as g+
i (z) = max{0, gi (z)} and g+ : Rn → Rm as

123



On the centralization of the circumcentered... 351

g+(z) = (g+
1 (z), . . . , g+

m (z)). If MFCQ holds at z̄ then there exists a neighborhood
U of z̄ and a constant θ > 0 such that

dist(z, S) ≤ θ
∥∥g+(z)

∥∥ ,

for all z ∈ U.

Proof The result is a simplified version of Example 2.92 in [24] (which also includes
equality constraints and an additional parameter), which is itself a particular case of
Theorem 2.87 in the same reference, taken from [49]. ��

When dealingwith convex feasibility problems, as in this paper, it seems reasonable
to replace the right-hand side of (3.2) by the distance from z to some convex sets, giving
rise to EB. Similar error bounds for feasibility problems can be found, for instance,
in [6, 8, 9, 32, 37]. To our knowledge, no extension of Proposition (3.2) to these error
bounds has been proved. We proceed to establish such an extension for Assumption
EB.

Although we deal in this paper with the intersection of just two convex sets, we
will present the result for the more general case of m convex sets X1, . . . , Xm . Let
X∗ := ⋂m

i=1 Xi . For this case, Assumption EB becomes the following condition:
given z̄ ∈ X∗, there exists a neighborhood V of z̄ and a real number ω ∈ (0, 1) such
that

ω dist(z, X∗) ≤ max
1≤i≤m

{dist(z, Xi )} (3.3)

for all z ∈ V . We prove now that condition (3.3) holds around z̄ under reasonable reg-
ularity assumptions on the convex sets.We assume that Xi = {z ∈ Rn | gi (z) ≤ 0} for
some continuously differentiable convex function gi : Rn → R. This assumption, in
principle, entails no loss of generality; we can always take gi (z) := ∥∥z − PXi (z)

∥∥2 =
dist2(z, Xi ), which defines a convex and continuously differentiable function. The
second assumption is that MFCQ holds at z̄, and is a rather standard regularity con-
dition;we mention that in most cases the representation of Xi with the above defined
function gi fails to satisfy MFCQ. The result is as follows.

Theorem 3.3 (Mangasarian-Fromovitz implies error bound) If Xi = {z ∈ Rn :
gi (z) ≤ 0} for some convex and continuously differentiable gi : Rn → R and
MFCQ holds at some point z̄ ∈ X∗ := ⋂m

i=1 Xi then condition (3.3) holds around z̄.

Proof By Proposition 3.2 there exists a neighborhood U of z̄ such that

dist(z, X∗) ≤ θ
∥∥g+(z)

∥∥ (3.4)

for all z ∈ U .
Since all the gi ’s are continuously differentiable, there exists ρ > 0 such that the

open ball B(z̄, ρ) ⊂ U and that ‖∇gi (z)‖ ≤ 2 ‖∇gi (z̄)‖ for all i ∈ {1, . . . ,m} and
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all z ∈ B(z̄, ρ). Take any z ∈ B(z̄, ρ) and let zi := PXi (z). Expanding gi around zi ,
we have

gi (z) = gi (zi ) + 〈∇gi (yi ), z − zi 〉 (3.5)

for some yi in the segment between z and zi . Since zi ∈ Xi , we have gi (zi ) ≤ 0, and
it follows from (3.5) that

gi (z) ≤ ‖∇gi (yi )‖ ‖z − zi‖ = ‖∇gi (yi )‖ dist(z, Xi ). (3.6)

Since z̄ ∈ Xi for all i , the definition of orthogonal projection implies that ‖z − zi‖ ≤
‖z − z̄‖, so that zi ∈ B(z̄, ρ), and hence yi ∈ B(z̄, ρ), by convexity of the ball. By
definition of ρ we have that ‖∇gi (yi )‖ ≤ 2 ‖∇gi (z̄)‖. Define now σi := 2 ‖∇gi (z̄)‖;
because MFCQ holds at z̄, we get ∇gi (z̄) �= 0 and so σi > 0. Thus, we conclude from
(3.6) that

gi (z) ≤ σ dist(z, Xi ) (3.7)

for all i ∈ {1, . . . ,m} and all z ∈ B(z̄, ρ), with σ : −max{σi | 1 ≤ i ≤ m}. Now we
replace the 2-norm by the ∞-norm in (3.4), obtaining

dist(z, X∗) ≤ θ
∥∥g+(z)

∥∥ ≤ θ
√
n

∥∥g+(z)
∥∥∞ . (3.8)

Note that (3.3) holds trivially when z ∈ X∗ because in such a case all distances vanish.
Hence, we may assume that there exists � such that g�(z) > 0, and so

∥∥g+(z)
∥∥∞ =

max1≤i≤m{gi (z)}. Combining (3.7) and (3.8) we obtain

dist(z, X∗) ≤ θ
√
n max
1≤i≤m

{gi (z)} ≤ σθ
√
n max
1≤i≤m

{dist(z, Xi )}

for all z ∈ B(z̄, ρ), so that condition (3.3) holds at z̄ with V = B(z̄, ρ) and ω =
(σθ

√
n)−1. ��

We recall now another widely used constraint qualification, namely Slater’s, which
in most cases is easier to check thanMFCQ. Slater’s condition holds when there exists
ẑ ∈ X∗ such that gi (ẑ) < 0 for i = 1, . . . ,m. It is well known that in the convex case
Slater’s condition implies MFCQ, and hence Theorem 3.3 holds if we assume Slater’s
condition instead of MFCQ.

3.2 Linear convergence of cCRM

We prove in this subsection the linear convergence of cCRM under Assumption EB.
We start deriving the linear convergence and associated rates of MAP and SPM under
EB with associate rates. These results for MAP and SPM are known to hold under
assumptions akin to EB, but we include their proofs here for the sake of completeness
and self-containment.

First, remind the definition of Q-linear, Q-superlinear and R-linear convergence.
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Definition 3.4 (Convergence rate) Let (wk)k∈N ⊂ Rn be a sequence converging to w̄.
Assume that wk �= w̄ for all k ∈ N. Define

q := lim sup
k→∞

∥∥wk+1 − w̄
∥∥

∥∥wk − w̄
∥∥ , and r := lim sup

k→∞

∥∥∥wk − w̄

∥∥∥
1/k

.

Then, the convergence of (wk)k∈N is

(i) Q-linear if q ∈ (0, 1),
(ii) Q-superlinear if q = 0,
(iii) R-linear if r ∈ (0, 1).

The values q, r are called asymptotic constants of (wk)k∈N.

It is well known that Q-linear convergence implies R-linear convergence (with the
same asymptotic constant), but the converse statement does not hold true [42].

We also recall that for all z ∈ Rn , we have TMAP(z) := zMAP = PY PX (z),
TSPM(z) := zSPM = 1

2 (PX (z) + PY (z)).

Proposition 3.5 (Linear rate of MAP and SPM) Assume that EB holds around z̄ ∈
X ∩ Y , with ω ∈ (0, 1) and neighborhood V . Let B be a ball centered at z̄ and
contained in V . Define β := √

1 − ω2. Then,

dist(zMAP, X ∩ Y ) ≤ β2 dist(z, X ∩ Y ) (3.9)

for all z ∈ Y ∩ B, and

dist(zSPM, X ∩ Y ) ≤
(
1 + β

2

)
dist(z, X ∩ Y ) (3.10)

for all z ∈ B.

Proof We start with the MAP case. Note that

dist2(z, X ∩ Y ) = ‖z − PX∩Y (z)‖2 ≥ ‖PX (z) − PX∩Y (z)‖2 + ‖z − PX (z)‖2
≥ dist2(PX (z), X ∩ Y ) + ω2 dist2(z, X ∩ Y ), (3.11)

using the firm nonexpansiveness of PX in the first inequality, and Assumption EB,
together with the fact that z ∈ Y ∩ B, so that max{‖z − PX (z)‖ , ‖z − PY (z)‖} =
‖z − PX (z)‖, in the second inequality.It follows from (3.11) that

dist(PX (z), X ∩ Y ) ≤
√
1 − ω2 dist(z, X ∩ Y ) = β dist(z, X ∩ Y ). (3.12)

Observe now that, since z̄ ∈ X ∩ Y , we have ‖PY (PX (z)) − z̄‖ ≤ ‖PX (z) − z̄‖ ≤
‖z − z̄‖, so that PY (PX (z)) ∈ B. Hence, with the same argument used for (3.12),

dist(zMAP, X ∩ Y ) = dist(PY (PX (z)), X ∩ Y ) ≤ β dist(PX (z), X ∩ Y ), (3.13)
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and (3.9) follows combining (3.12) and (3.13). Now we proceed to establish
(3.10). Assume without loss of generality that max{‖z − PX (z)‖ , ‖z − PY (z)‖} =
‖z − PX (z)‖. Since PX (z) ∈ B, we get, with the same argument used for proving
(3.12),

dist(PX (z), X ∩ Y ) ≤ β dist(z, X ∩ Y ). (3.14)

Now, let ŝ := PX∩Y (z). Then,

dist(PY (z), X ∩ Y ) ≤ ∥∥PY (z) − ŝ
∥∥ = ∥∥PY (z) − PY (ŝ)

∥∥ ≤ ∥∥z − ŝ
∥∥ = dist(z, X ∩ Y ),

(3.15)

where the first inequality is due to definition of distance and the last inequality is due
to the nonexpansiveness of PY .

Finally, note that

dist(zSPM(z), X ∩ Y ) = dist

(
1

2
(PX (z) + PY (z)), X ∩ Y

)

≤ 1

2
(dist(PX (z), X ∩ Y ) + dist(PY (z), X ∩ Y ))

≤
(
1 + β

2

)
dist(z, X ∩ Y ), (3.16)

using the convexity of the distance function to X ∩Y in the first inequality, and (3.14)
and (3.15) in the second one, so the result holds. ��

We remind that MAP generates a sequence (yk)k∈N given by yk+1 = TMAP(yk),
starting from some y0 ∈ Y , while SPM generates a sequence (sk)k∈N given by sk+1 =
TSPM(sk), starting from any s0 ∈ Rn . We have the following corollary of Propositio
3.5.

Corollary 3.6 (Linear convergence of the distance forMAP and SPM)Assume that X∩
Y �= ∅. Let (yk)k∈N, (sk)k∈N be the sequences generated by MAP and SPM starting
from some y0 ∈ Y and some, s0 ∈ Rn respectively. Assume also that (yk)k∈N, (sk)k∈N
are infinite sequences. If EB holds at the limits ȳ of (yk)k∈N, s̄ of (sk)k∈N, then the
sequences (dist(yk, X ∩ Y ))k∈N, (dist(sk, X ∩ Y ))k∈N ⊂ R+ converge Q-linearly
to 0, with asymptotic constants given by β2, 1+β

2 respectively, where β = √
1 − ω2

and ω is the constant in Assumption EB (with a slight abuse of notation, the sets and
constants guaranteed by EB around both ȳ and s̄ will be called V and ω).

Proof Convergence of (yk)k∈N and (sk)k∈N to points ȳ ∈ X ∩ Y and s̄ ∈ X ∩ Y
respectively is well known (see, e.g., [8]). Hence, for large enough k, yk belongs to
a ball centered at ȳ contained in V and sk belongs to a ball centered at s̄ contained
on V .

In view of the definitions of the MAP and SPM sequences, we get from Proposition
3.5,

dist(yk+1, X ∩ Y )

dist(yk, X ∩ Y )
≤ β2,

dist(sk+1, X ∩ Y )

dist(sk, X ∩ Y )
≤ 1 + β

2
,
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and the result follows from Definition 3.4, noting that

dist(yk, X ∩ Y ) ≤ β2k dist(y0, X ∩ Y ),

dist(sk, X ∩ Y ) ≤
[
1 + β

2

]k
dist(s0, X ∩ Y ),

so that both sequences converge to 0, since β ∈ (0, 1), because ω ∈ (0, 1). ��
We state now a result on linear convergence of Fejér monotone sequences.

Proposition 3.7 (Fejérmonotonicity and linear convergence) If a sequence (wk)k∈N ⊂
Rn is Fejér monotone with respect to a closed convex set M ⊂ Rn and the scalar
sequence (dist(wk, M))k∈N converges Q-linearly to 0, then (wk)k∈N converges R-
linearly to a point w̄ ∈ M.

Proof See Lemma 3.4 in [4], cf. Theorem 5.12 in [10]. ��
Corollary 3.8 (Linear convergence of MAP and SPM) Assume that X ∩ Y �= ∅. Let
(yk)k∈N, (sk)k∈N be the sequences generated by MAP and SPM starting from some
y0 ∈ Y and some s0 ∈ Rn respectively. Assume also that (yk)k∈N, (sk)k∈N are infinite
sequences. If EB holds around the limits ȳ of (yk)k∈N and s̄ of (sk)k∈N withω ∈ (0, 1)
and neighborhood V , then the sequences (yk)k∈N, (sk)k∈N converge R-linearly, with
asymptotic constants bounded above by β2, 1+β

2 respectively. Here, β := √
1 − ω2,

and ω is the constant in Assumption EB.

Proof The fact that (yk)k∈N, (sk)k∈N are Fejér monotone with respect to X ∩Y is well
known and is an immediate consequence of the firm nonexpansiveness of PX , PY .
Then, the result follows from Corollary 3.6and Proposition 3.7. ��

We remark that the MAP sequence converges quite faster than the SPM one, in
terms of the upper bound of their asymptotic error constants, since β2 ≤ 1+β

2 , and the
difference becomes more significant as β approaches 0. However, SPM may be faster
in the presence of parallel processors. Observe first that the expensive steps in both
algorithms are the computation of PX , PY . In the absence of parallel processors, each
iteration of either MAP or SPM requires two projections (one onto X and one onto
Y ), and the work per iteration is about the same for both methods. On the other hand,
in MAP both projections must be computed sequentially, while in SPM they can be
computed simultaneously if two parallel processors are available. In such a situation,
one step of MAP is equivalent to two of SPM, and the asymptotic constants, in terms
of the number of projections, become β and 1+β

2 respectively. Yet, MAP wins over
SPM, which turns out to be indeed competitive when used for finding a point in the
intersection of m sets (m ≥ 3). In this case, assuming that m parallel processors are
available, one step of MAP is equivalent to m steps of SPM. For more information on
sequential versus simultaneous methods; see [25].

We establish now the R-linear convergence of the cCRM sequence under EB, and
give an upper bound for the asymptotic constant in terms of the constant ω in EB.
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Recall that, given z ∈ Rn , we denote zC = 1
2 (zMAP + PX (zMAP)), T (z) =

circ{zC, RX (zC), RY (zC)}, with zMAP as in the previously defined. The cCRM
sequence (zk)k∈N ⊂ Rn is given by zk+1 = T (zk), for any z0 ∈ Rn .

Next, we present an upper bound for the advance ratio of a cCRM step towards the
solution set.

Proposition 3.9 (Linear convergence of the distance for cCRM) Assume that EB holds
around z̄ ∈ X ∩ Y with ω ∈ (0, 1) and neighborhood V . Let B be a ball centered at
z̄ and contained in V . Define β = √

1 − ω2. Then,

dist(T (z), X ∩ Y ) ≤ β2
(
1 + β

2

)
dist(z, X ∩ Y ),

for all z ∈ B.

Proof By nonexpansiveness of PX , we get similarly as in (3.15) that

dist(PX (z), X ∩ Y ) ≤ dist(z, X ∩ Y ). (3.17)

Note that nonexpansiveness of PX , PY imply that ‖zMAP − z̄ ‖≤‖ z − z̄‖ for all z̄ ∈
X ∩ Y , so that zMAP ∈ B whenever z ∈ B. With the same argument used in the proof
of Proposition 3.5 for establishing (3.12), we get

dist(zMAP, X ∩ Y ) ≤ β dist(PX (z), X ∩ Y ), (3.18)

and

dist(PX (zMAP), X ∩ Y ) ≤ β2 dist(PX (z), X ∩ Y ). (3.19)

Again, nonexpansivenes of PX ensures that PX (zMAP) is closer than zMAP to any point
in X ∩ Y , so that PX (zMAP) belongs to B whenever z ∈ B. Hence, with the same
argument as in the proof of Proposition 3.5 for establishing (3.16), we get

dist(zC, X ∩ Y ) = dist

(
1

2
(zMAP + PX (zMAP)), X ∩ Y

)

≤ 1

2
(dist(zMAP, X ∩ Y ) + dist(PX (zMAP), X ∩ Y ))

≤ 1

2
β(1 + β) dist(PX (z), X ∩ Y ), (3.20)

using (3.18)and (3.19) in the last inequality. We invoke now Lemma 2.3 for zC,
which implies that T (z) = PSzCX ∩S

zC
Y

(zC). Recall that SzCX = {w ∈ Rn |
〈w − PX (zC), zC − PX (zC)〉 ≤ 0} and SzCY = {w ∈ Rn | 〈w − PY (zC), zC − PY (zC)〉
≤ 0}, so we easily get that PX (zMAP) = PSzCX

(zMAP). Since T (z) ∈ SzCX ∩ SzCY ⊂ SzCX ,
we get that

‖T (z) − zC‖ ≥ ‖PX (zC) − zC‖ . (3.21)
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We claim that ‖PX (zC) − zC‖ ≥ ‖PY (zC) − zC‖. Indeed, since zC is the midpoint
between PX (zMAP) and zMAP, we get that PX (zC) = PX (zMAP) and also

‖PX (zC) − zC‖ = ‖PX (zMAP) − zC‖ = ‖zMAP − zC‖ ≥ ‖PY (zC) − zC‖ ,

using the fact that zMAP ∈ Y in the last inequality. The claim holds, and hence

max{‖PX (zC) − zC‖ , ‖PY (zC) − zC‖} = ‖PX (zC) − zC‖ .

It follows from Lemma 2.6 that zC belongs to B whenever z ∈ B. Hence, we invoke
EB, which implies that

‖PX (zC) − zC‖ ≥ ω dist(zC, X ∩ Y ). (3.22)

Combining (3.21) and (refeb5) we get

‖T (z) − zC‖ ≥ ω dist(zC, X ∩ Y ). (3.23)

Moreover, since T (z) = PSzCX ∩S
zC
Y

(zC) and X ∩ Y ⊂ SzCX ∩ SzCY , we have that

‖T (z) − s‖2 ≤ ‖zC − s‖2 − ‖T (z) − zC‖2

for all s ∈ X ∩ Y , so that

dist2(T (z), X ∩ Y ) ≤ dist2(zC, X ∩ Y ) − ‖T (z) − zC‖2
≤ dist2(zC, X ∩ Y ) − ω2 dist2(zC, X ∩ Y )

= β2 dist2(zC, X ∩ Y ), (3.24)

using (3.23) in the last inequality. It follows from (3.24) that

dist(T (z), X ∩ Y ) ≤ β dist(zC, X ∩ Y ). (3.25)

Combining (3.17),(3.20),and (3.25), we get

dist(T (z), X ∩ Y ) ≤ β dist(zC, X ∩ Y ) ≤ 1

2
β2(1 + β) dist(PX (z), X ∩ Y )

≤ 1

2
β2(1 + β) dist(z, X ∩ Y ),

which establishes the result. ��
In the following, we get from Proposition 3.9 the R-linear convergence result for

the cCRM sequence, in a way similar to the proof of R-linear convergence of theMAP
and SPM in Corollary 3.8.
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Theorem 3.10 (Linear convergence of cCRM) Assume that X ∩ Y �= ∅. Let (zk)k∈N
be the sequence generated by cCRM starting from some z0 ∈ Rn. Assume also that
(zk)k∈N is an infinite sequence. If EBholds around the limit z̄ of (zk)k∈Nwithω ∈ (0, 1)
and neighborhood V , then the sequence (zk)k∈N converges R-linearly to some point

in X ∩Y , with asymptotic constant bounded above by β2
(
1+β
2

)
, where β = √

1 − ω2

and ω is the constant in Assumption EB.

Proof Convergence of (zk)k∈N to a point z̄ ∈ X ∩ Y follows from Theorem 2.10.
Hence, for large enough k, zk belongs to the ball centered at z̄ and contained in V ,
whose existence in ensured by Assumption EB.

We recall that the cCRM sequence is defined as zk+1 = T (zk), so that it follows
from Proposition 3.9 that

dist(zk+1, X ∩ Y )

dist(zk, X ∩ Y )
≤ β2

(
1 + β

2

)
. (3.26)

Sinceω ∈ (0, 1) implies thatβ2(
1+β
2 ) ∈ (0, 1), it follows immediately from (3.26) that

the scalar sequence (dist(zk, X ∩ Y ))k∈N converges Q-linearly to 0 with asymptotic

constant bounded above by β2
(
1+β
2

)
.

Finally, recall that sequence (zk)k∈N is Fejér monotone with respect to X ∩ Y , due
to heorem 2.10. The R-linear convergence of (zk)k∈N to some point in X ∩ Y and the
value of the upper bound of the asymptotic constant follow then from Proposition 3.7.

��
In addition to establishing linear convergence of cCRM under the error bound

condition,Theorem 3.10 provides an upper bound for cCRM’s linear rate that is the
product of the reduction factors ofMAP, namely β2, and SPM, namely 1+β

2 . In view of
the superlinear convergence result that we are going to present in the next subsection
and our numerical results, the actual asymptotic constant for cCRM seems to be quite
smaller than the upper bound presented in Proposition 3.7 and Theorem 3.10. The
issue of improving this upper bound deserves further research.

3.3 Superlinear convergence of cCRM

In previous works it was discussed that circumcentering-type schemes have a Newto-
nian flavor, meaning that superlinear convergence could be expected. This was derived
in a very limited setting, namely, for CRM as a root finder of smooth convex functions
in [4, Corollary 4.11]. Another reference that addresses particular examples show-
ing superlinear convergence of circumcentering techniques is [29]. With our novel
approach of centralizing CRM, we are able to cover a way broader class of convex
feasibility problems, including nonsmooth ones, for which we get superlinear conver-
gence. Our result states that if the boundaries of X and Y are locally differentiable
manifolds, and the interior of X ∩ Y is nonemtpy, cCRM converges superlinearly
to a solution of the CFP (1.1). The main theorem relies on forthcoming lemma and
proposition.
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Lemma 3.11 (Superlinear convergence of the distance for cCRM) Let X ,Y ⊂ Rn be
closed, convex and suppose X ∩ Y �= ∅. Let (zk)k∈N be the sequence generated by
cCRM starting from some z0 ∈ Rn, and converging to a point z̄ ∈ X ∩Y . Assume that
the interior of X∩Y is nonempty, and that the boundaries of X and Y are differentiable
manifolds in a neighborhood of z̄. Then, the scalar sequence (dist(zk, X ∩ Y ))k∈N
converges to zero superlinearly.

Proof If the sequence (zk)k∈N is finite then the announced result follows trivially. So,
let us assume that it is infinite.

In order to prove the superlinear convergence stated in the lemma, i.e.,

lim
k→∞

dist(zk+1, X ∩ Y )

dist(zk, X ∩ Y )
= 0, (3.27)

it suffices to show that

lim
k→∞

dist(zk+1, X ∩ Y )

dist(zkC, X ∩ Y )
= 0, (3.28)

where zkC is the centralized point associated to zk . Indeed, if we prove (3.28), then
(3.27) follows since dist(zkC, X ∩ Y ) ≤ dist(zk, X ∩ Y ), by the Fejér monotonicity of
the centralization procedure guaranteed in Lemma 2.4.

Recall that

zk+1 = C (zkC) = circ{zkC, RX (zkC), RY (zkC)},
and because zkC is strictly centralized, zk+1 was characterized in Lemma 2.3 as

PHk
X∩Hk

Y
(zkC), where Hk

X := H
zkC
X and Hk

Y := H
zkC
Y are the hyperplanes passing through

PX (zkC) and PY (zkC) that are orthogonal to zkC− PX (zkC) and zkC− PX (zkC), respectively.
Therefore, since zk+1 ∈ Hk

X ∩ Hk
Y , Pythagoras gives us

∥∥∥zk+1 − PX (zkC)

∥∥∥
2 =

∥∥∥zk+1 − zkC

∥∥∥
2 −

∥∥∥zkC − PX (zkC)

∥∥∥
2
,

which implies

∥∥∥zk+1 − PX (zkC)

∥∥∥ ≤
∥∥∥zk+1 − zkC

∥∥∥ . (3.29)

By the same token, we also get

∥∥∥zk+1 − PY (zkC)

∥∥∥ ≤
∥∥∥zk+1 − zkC

∥∥∥ . (3.30)

The hypothesis int(X ∩ Y ) �= ∅ gives us an error bound ω ∈ (0, 1) as in EB. In
particular, there exists k̂ ∈ N such that

ω dist(zk, X ∩ Y ) ≤ max{dist(zk, X), dist(zk,Y )}, (3.31)
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for all k ≥ k̂; see Corollary 5.14 of [9].
In addition, the nonemptiness of the interior of X ∩Y , together with the hypothesis

that the boundaries of X and Y are locally differentiable manifolds, imply that these
manifolds have dimension n − 1.

Now, we claim that if M ⊂ Rn is a differentiable manifold of dimension n − 1,
z̄ belongs to M ⊂ Rn and z ∈ Rn belongs to the tangent hyperplane to M at z̄, say
TM (z̄), then

lim
z→z̄

dist(z, M)

‖z − z̄‖ = 0. (3.32)

This result follows, with an elementary analysis argument, from the well known fact
thatM can be locally written as {z ∈ Rn | g(z) = 0} for some function g : Rn → R of
class C1 with g(z̄) = 0,∇g(z̄) �= 0, so that TM (z̄) := {z ∈ Rn | 〈∇g(z̄), z − z̄〉 = 0}.

Thus, the hyperplanes Hk
X and Hk

Y , which have dimension n − 1 each, are tangent
to the manifolds [51, Theorems 23.2 and 25.1], for all large k, respectively at PX (zkC)

and PY (zkC). Since zk+1 lies in both Hk
X and Hk

Y , we have, in view of (3.32),

lim
k→∞

dist(zk+1, X)∥∥zk+1 − PX (zkC)
∥∥ = 0 (3.33)

and

lim
k→∞

dist(zk+1,Y )∥∥zk+1 − PY (zkC)
∥∥ = 0. (3.34)

From Lemma 2.5, it holds that
∥∥zk+1 − zkC

∥∥ ≤ dist(zkC, X ∩ Y ), which combined
with the previous inequalities (3.29) and (3.30), implies that

∥∥∥zk+1 − PX (zkC)

∥∥∥ ≤ dist(zkC, X ∩ Y )

and
∥∥∥zk+1 − PY (zkC)

∥∥∥ ≤ dist(zkC, X ∩ Y ).

Hence, from (3.33) and (3.34) we get

lim
k→∞

dist(zk+1, X)

dist(zkC, X ∩ Y )
= 0

and

lim
k→∞

dist(zk+1,Y )

dist(zkC, X ∩ Y )
= 0.
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Note that (3.31) yields

ω
dist(zk, X ∩ Y )

dist(zkC, X ∩ Y )
≤ max

{
dist(zk, X)

dist(zkC, X ∩ Y )
,

dist(zk,Y )

dist(zkC, X ∩ Y )

}
.

Taking limits as k → ∞, we obtain (3.28) and the proof is completed. ��
Similarly to Proposition 3.7, we establish now a result stating that if a sequence

is Fejér monotone with respect to a given closed convex set and the distance of the
sequence to that said set converges superlinearly to zero, then the sequence itself also
converges superlinearly to a point in the corresponding set.

Proposition 3.12 (Fejér monotonicity and superlinear convergence) If a sequence
(wk)k∈N ⊂ Rn is Fejér monotone with respect to a closed convex set M ⊂ Rn and
the scalar sequence (dist(wk, M))k∈N converges superlinearly to 0, then (wk)k∈N
converges superlinearly to a point w̄ ∈ M.

Proof Let (wk)k∈N ⊂ Rn be a Fejér monotone sequence with respect to the closed
convex set M ⊂ Rn . Suppose that the scalar sequence (dist(wk, M))k∈N converges
superlinearly to 0, that is, that

lim
k→∞

dist(wk+1, M)

dist(wk, M)
= 0. (3.35)

Assumption (3.35) promptly yields dist(wk, M) → 0, and then appealing to [10,
Theorem 5.11] we get that (wk)k∈N has a limit point w̄ ∈ M .

Note now that, for any m, k ∈ N, we have

∥∥∥wk+1 − wm+k+1
∥∥∥ ≤

∥∥∥wk+1 − PM (wk+1)

∥∥∥ +
∥∥∥wm+k+1 − PM (wk+1)

∥∥∥
≤

∥∥∥wk+1 − PM (wk+1)

∥∥∥ +
∥∥∥wk+1 − PM (wk+1)

∥∥∥
= 2 dist(wk+1, M), (3.36)

where, in the second inequality, we use m times the Fejér monotonicity of sequence
(wk)k∈N. Taking the limit as m → ∞ in (3.36) gives us, for all k ∈ N,

∥∥∥wk+1 − w̄

∥∥∥ ≤ 2 dist(wk+1, M).

Since dist(wk, M) ≤ ∥∥wk − w̄
∥∥ we conclude that

∥∥wk+1 − w̄
∥∥

∥∥wk − w̄
∥∥ ≤ 2

dist(wk+1, M)

dist(wk, M)
.

Finally, the limit, as k → ∞, of the right-hand side of this inequality goes to zero,
due to (3.35). Therefore, we get the superlinear convergence of (wk)k∈N to w̄, as
required. ��
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We can now prove the superlinear convergence cCRM, when the interior of the
intersection of X and Y is nonempty, and the boundaries of X and Y are locally
smooth manifolds.

Theorem 3.13 (Superlinear convergence of cCRM) Let X ,Y ⊂ Rn be closed, convex
and suppose X ∩ Y �= ∅. Let (zk)k∈N be the sequence generated by cCRM starting
from some z0 ∈ Rn, and converging to a point z̄ ∈ X ∩ Y . Assume that the interior of
X ∩ Y is nonempty, and that the boundaries of X and Y are differentiable manifolds
in a neighborhood of z̄. Then, (zk)k∈N converges to z̄ superlinearly.

Proof The theorem is a direct consequence of the Fejér monotonicity of (zk)k∈N with
respect to X ∩ Y given in Theorem 2.10, together with Lemma 3.11 and Proposition
3.12. ��

To the best of our knowledge, Theorem 3.13 is so far the strongest result regarding
the convergence rate of circumcenter-type methods.

4 Numerical experiments

In this section,we study the performance of cCRMbymeans of numerical comparisons
with two other methods, namely, MAP and CRMprod. Since we are not using parallel
computation, it is well-known that SPM underperforms when compared with MAP,
thus we do not include SPM in our report.

The experiments address two classes of non-affine convex intersection problems.
We first seek a common point of two ellipsoids, and then we consider the problem of
finding a point in the intersection of a second order cone and a polyhedron. In the first
class of experiments we are able to illustrate the superlinear convergence of cCRM
stated in Theorem 3.13 since the boundary of an ellipsoid is a differentiable manifold.
The numerical results for the second class of problems show much faster convergence
of cCRM in comparison to MAP and CRMprod.

We remark that each iteration of cCRM requires four orthogonal projections. In
principle, they seem to be five: we compute three sequential projections from z = zk

onto X ,Y and again onto X for obtaining zMAP, and then we project zMAP onto X
and Y for getting zC. However, as observed above, PX (zC) = PX (zMAP), because zC
is in the segment between zMAP and PX (zMAP). On the other hand, both MAP and
CRMprod require just two projections per iteration. Therefore, for a fair comparison
we count the number of projections required by each method in order to achieve the
desired precision. We also mention that the cost of the step from zC to T (z) is indeed
negligible because the computation of a circumcenter reduces to solving a 2×2 system
of linear equations. Explicit formulas for computing even more general circumcenters
are presented in [11, Theorem 4.1] and [18, Section 3].

The computational experimentswere carried out on an Intel XeonW-2133 3.60GHz
with 32GB of RAM running Ubuntu 20.04. The codes were implemented in Julia
programming language v1.8 [23], and are available at https://github.com/lrsantos11/
CRM-CFP.
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4.1 Intersection of two ellipsoids

In this subsection, we consider cCRM, MAP and CRMprod for solving the particular
CFP of finding a common point in the intersection of two ellipsoids, that is, finding

z̄ ∈ E := E1 ∩ E2 ⊂ Rn, (4.1)

where each ellipsoid Ei is set as

Ei := {
z ∈ Rn | gi (z) ≤ 0

}
, for i = 1, 2,

where gi : Rn → R is defined as gi (z) = 〈z, Ai z〉 + 2
〈
z, bi

〉 − αi , each Ai is
a symmetric positive definite matrix, bi is an n-vector, and αi is a positive scalar.
Problem (4.1) has importance on its own; see [35, 38].

To run the tests, we randomly produce instances of (4.1) with the following pro-
cedure. We first form ellipsoid E1 by generating a matrix A1 of the form A1 =
γ Id+B�

1 B1, with B1 ∈ Rn×n , γ ∈ R++. Matrix B1 is sparse with sparsity den-
sity p = 2n−1 and its components are sampled from the standard normal distribution.
Vector b1 is sampled from the uniform distribution in the interval [0, 1]. We then
choose each α1 so that α1 > (b1)�A1b1, which ensures that 0 belongs to E1. Next, we
construct E2 by randomly choosing its center c2 outside E1, then we project c2 onto
E1. We define d := λ(PE1(c2) − c2) as the principal axis of the ellipsoid correspon-
dent to the least value of semi-axis. In order to get this, we form a diagonal matrix
Λ := diag(‖d‖ , u), where u ∈ Rn−1 is a vector whose components are positive and
have values greater than ‖d‖, and an orthogonal matrix Q where the first column
is d/ ‖d‖. Finally, we set A2 := Q�Λ2Q and g2(z) := 〈z − c2, A2(z − c2)〉. For
all methods and instances, the initial point z0 is sampled from the standard normal
distribution guaranteeing that its norm is at least 5 and also that z0 /∈ E1 ∩ E2.

The projections onto ellipsoids are computed using an alternating direction method
of multipliers (ADMM) built suited for this end [35]. For testing the methods, we
generate two types of instances, with n = 100. In the first group, E1∩E2 has nonempty
interior, and in the second one E1 ∩ E2 is a singleton.

4.1.1 E1 ∩ E2 with nonempty interior

We first randomly generate 30 instances where the intersection has nonempty interior.
For that, we set λ = 1.1 such that d := 1.1

(
PE1(c2) − c2

)
. The rationale here is that

though E1 ∩ E2 has indeed nonempty interior, the 1.1 multiplying factor guarantees
that the intersection is not too large (otherwise the problems are very easy to solve).

In the examples of this subsection the fact that the ellipsoids have their intersec-
tion with nonempty interior guarantees that the Slater condition holds. Moreover, the
boundaries of ellipsoids are differentiable manifolds, so Theorem 3.13 applies, and we
get superlinear convergence of cCRM, which is not achievable by MAP. Therefore,
there is no surprise in seeing in Fig. 3 and Table 1 cCRM vastly outperforming MAP.
We note that cCRM also outperforms CRMprod by far.
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Fig. 3 Performance profile of experiments with ellipsoidal feasibility

Remind that we are considering the total number of projections employed by each
method to achieve convergence upon the desired tolerance using the following criteria.
For each sequence (wk)k∈N yielded by the considered methods, we use as tolerance
ε := 10−6 and as stopping criteria the gap distance

‖PE1(wk) − wk‖ < ε.

This is a reliable measure of infeasibility because the Slater condition implies that
Assumption EB holds. We also set a budget of 10000 total number of allowed projec-
tions for each method.

Figure3 is a performance profile [30]. Performance profiles allow one to benchmark
different methods on a set of problems with respect to a performance measure (in our
case, the number of projections). The vertical axis indicates the percentage of problems
solved, while the horizontal axis indicates, in log-scale, the corresponding factor of
the performance index used by the best solver. The picture clearly shows that cCRM
always does better than the other two methods, being faster and more robust (MAP
and CRMprod did not solve one instance). In addition, MAP and CRMprod took more
than 26 times the number of projections that cCRM used to solve all problems.

We conclude this examination by discussing Table 1, which presents the following
descriptive statistics of the benchmark: mean ± standard deviation (std), median,
minimum (min), and maximum (max) of total projections count. As expected, cCRM
outstandingly handles both MAP and CRMprod. In fact, the superlinear convergence
of cCRM is translated numerically as it takes, on average, 31 times fewer projections
than MAP while taking almost 49 times fewer projections than CRMprod.
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Table 1 Statistics of the experiments (in number of projections) with int E �= ∅
Mean±Std Median Min Max

cCRM 26.13±44.28 16.0 16.0 260.0

MAP 817.20±1802.54 308.0 140.0 10000.0

CRMprod 1295.07±1912.92 610.0 276.0 10000.0

4.1.2 E1 ∩ E2 is a singleton

We now run the methods in 15 more challenging instances. For that, we set λ = 1.0,
that is, d := PE1(c2) − c2 is the principal axis related to the smallest semi-axis of
E2. Therefore, E1 ∩ E2 = {PE1(c2)}, i.e., we have a singleton. This is now a harder
problem to solve because of the lack of regularity since the interior of the intersection
is empty (there is no Slater point in it and hence EB is not fulfilled). Thus, we use as
tolerance ε := 10−3. Note that we have in hand the unique solution z̄ := PE1(c2), so
we set as stopping criteria the distance to the solution, that is, we stop whenever

‖z̄ − zk‖ < ε.

We also allow the methods to go further and take up to 500,000 total number of
projections.

This time, MAP and CRMprod could not achieve the desired tolerance (10−3) in
any of the instances, that is, in all cases those methods reached the maximum number
of projections allowed (500,000). On average, the distance to the solution with this
amount of projections for MAP was 1.2765 × 102 ± 2.45 × 10−3. Those findings
were, in fact, expected, for MAP was shown to have, at best, sublinear convergence
rate when there is no Lipschitzian regularity between the underlying sets [33, Theorem
2.2].

In contrast to MAP and CRMprod, cCRM seems to converge linearly, even
with EB failing to hold. We report that our proposed method took, on average,
28770.1±40343.4 projections to stop to the tolerance, whereas the total projections for
each instance ranges from 1068 (minimum) to 143,368 (maximum). Here, the appar-
ent linear convergence of cCRM over the sublinear behavior of MAP agrees with
the examples in [4], where in an affine/convex context without error bound, CRM
converges linearly, opposed to MAP’s sublinear convergence. This situation certainly
deserves a deeper study.

4.2 Intersection of a second order cone with a polyhedron

In the following experiments, we want to find z̄ ∈ Rn that lies in

S := Ω ∩ Cn,
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where Ω := {w ∈ Rn | Aw ≤ b}, with A ∈ Rm×n and b ∈ Rm , is a polyhedron and
Cn is the standard second-order cone of dimension n defined as

Cn := {(t, u) ∈ Rn | u ∈ Rn−1, t ∈ R, ‖u‖ ≤ t}.

The closed convex set Cn is also called the ice-cream cone or the Lorentz cone. This
problem, called second-order conic system feasibility, arises in the second-order cone
programming (SOCP) [1, 41], in which a linear function is minimized over the inter-
section of a polyhedral set and the intersection of second-order cones, and where an
initial feasible point needs to be found [27].

In order to execute our tests, we randomly generate instances of the polyhedron Ω ,
where n is fixed as 200 andm is a random value between n/3 and n. We guarantee that
S is nonempty by the following procedure.We sample a nonzero point u ∈ Rn−1 from
the standard normal distribution, assuring its norm lies between 5 and 15, and form the
vectors ẑ := (‖u‖ , u), which clearly belongs to Cn , and d̂ := (−‖u‖ , u). Note that ẑ
and d̂ are orthogonal. Next, we sample, from the standard normal distribution, unitary
vectors ai ∈ Rn , i = 1, . . . ,m, such that 〈ai , d̂〉 < 0, i.e., the correspondent angles
are strictly obtuse. Each ai is set as a row of matrix A, while b := A(ẑ − τ d̂), where
τ ∈ [0, 1]. In this way, Ω is a polyhedron and ẑ ∈ Ω , guaranteeing the nonemptiness
of S, as required. Observe that the ai ’s are the generators of the polar cone of Ω at
ẑ − τ d̂ . By construction, if τ ∈ (0, 1], the interior of S is nonempty and, in particular,
Assumption EB is satisfied. If τ := 0, Assumption EB may fail to be fulfilled. In fact,
we verified that whenever we ran an instance where τ was zero the error bound did
not hold; this was checked by exploring the structure of the problem.

Each of the instances we generate is run for 4 initial random points. Each initial
point is also sampled from the standard normal distribution, with norms ranging from
5 and 15, and is accepted as long as it is not in S. In order to handle the projections
onto the convex sets Cn and Ω , we employ in our implementation the open source
Julia package ProximalOperators.jl [53].

4.2.1 Instances where intS is nonempty

We create 50 instances, summing up to 200 individual tests, taking τ := 1
4 ; this value

of τ assures that the interior of S is nonempty, so that the error bound condition
EB holds. Let (wk)k∈N be any of the three sequences that we monitor, generated by
cCRM, MAP, and CRMprod. We considered as tolerance ε := 10−6 and employed as
stopping criteria the gap distance, given by

‖PΩ(wk) − PCn (w
k)‖ < ε, (4.2)

which is reliablemeasure of infeasibility in view of EB being satisfied. The projections
computed to measure the gap distance can be utilized in the next iteration, thus this
calculation does not add any extra cost.

The results displayed in Fig. 4 and Table 2 clearly show a better performance of
cCRM over MAP and CRMprod. Recall that, cCRM uses four projections at each
step; thus, from Table 2 we can conclude the new proposed method takes, in average,
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Fig. 4 Performance profile of experiments considering a polyhedron and a second order conewith int S �= ∅

Table 2 Statistics of the
experiments considering a
polyhedron and a second order
cones with int S �= ∅ (in number
of projections)

Mean ± Std Median Min Max

cCRM 19.8 ± 3.80 20.0 8.0 28.0

MAP 40.62 ± 10.20 39.0 24.0 72.0

CRMprod 73.38 ± 21.94 70.0 28.0 140.0

4.95 iterations to converge. Of course, this was expected due to the result in Theorem
3.13, stating the superlinear convergence of cCRM.

4.2.2 Instances where intS = ∅

We report now the numerical experiments for instances in which τ := 0, i.e., intS
is empty; this is a possible more challenging scenario because EB may be violated.
We still use the gap distance (4.2) as a measure of infeasibility, even though not as
reliable as in the last experiments, due to the possible lack of EB. Again, 50 instances
are generated, so we gather the results of 200 tests.

The performance profile of Fig. 5 once again shows that cCRM is faster and more
robust than its counterparts. In Table 3, we can see that cCRM took on average almost
3 times fewer projections than MAP while outperforming CRMprod, being more than
4 times faster, in number of projections required, to achieve the desired precision.

5 Concluding remarks

Circumcenter-type methods have been attracting substantial interest in the last few
years. In the present work, we introduce and study the centralized circumcentered-
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Fig. 5 Performance profile of experimentswith polyhedral and second order cones feasibilitywith intS = ∅

Table 3 Statistics of the
experiments with polyhedral and
second order cones with
int S = ∅ (in number of
projections)

Mean ± Std Median Min Max

cCRM 75.14 ±32.82 68.0 24.0 188.0

MAP 201.87±91.78 185.0 62.0 490.0

CRMprod 396.23±184.47 364.0 120.0 990.0

reflection method (cCRM) for finding a point in the intersection of two closed convex
sets. Global convergence of cCRM is established, as well as linear convergence under
an error bound condition. Moreover, superlinear convergence of cCRM is derived
under local smoothness of the boundaries of the sets and the assumption that their
intersection has nonemtpy interior. We note that cCRM does not employ any prod-
uct space reformulation, which is a significant advance in the theory of generalized
circumcenters. Our numerical tests are consistent with the theory we developed and
reassure the Newtonian flavor of circumcenter schemes. An interesting topic for future
research is the development of multi-set centralization techniques.
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