
Computational Optimization and Applications (2024) 87:83–116
https://doi.org/10.1007/s10589-023-00516-w

A successive centralized circumcentered-reflection method
for the convex feasibility problem

Roger Behling1,4 · Yunier Bello-Cruz2 · Alfredo Iusem1 · Di Liu3 ·
Luiz-Rafael Santos4

Received: 25 January 2023 / Accepted: 28 July 2023 / Published online: 11 August 2023
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023

Abstract
In this paper, we present a successive centralization process for the circumcentered-
reflection method with several control sequences for solving the convex feasibility
problem in Euclidean space. Assuming that a standard error bound holds, we prove the
linear convergence of the method with the most violated constraint control sequence.
Moreover, under additional smoothness assumptions on the target sets, we establish
the superlinear convergence. Numerical experiments confirm the efficiency of our
method.
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1 Introduction

The convex feasibility problem (CFP) aims to solve:

find x∗ ∈ C :=
m⋂

i=1

Ci , (1.1)

where each Ci ⊂ Rn is closed and convex, for i = 1, 2, . . . ,m. Moreover, we assume
that C �= ∅. Convex feasibility represents a modeling paradigm for solving many
engineering and physics problems, e.g., image recovery [1], wireless sensor networks
localization [2], and gene regulatory network inference [3].

Based on the orthogonal projections, a broad class of methods is available for
solving problem (1.1); see, for instance, [4]. Two well-known algorithms among them
are the Sequential ProjectionMethod (SePM) and the Simultaneous ProjectionMethod
(SiPM), which only use the individual projections onto Ci ’s, PCi . The projection
operator for each Ci , PCi : Rn → Ci , is given by

PCi (x) = argmin
s∈Ci

‖x − s‖. (1.2)

The SePM and the SiPM operators are defined as P̄ = PCm ◦ · · · ◦ PC1 and P̂ =
1
m

∑m
i=1 PCi , respectively. Given s0, y0 ∈ Rn , we set sk+1 = P̄(sk) and yk+1 =

P̂(yk) with k ∈ N the sequences generated by SePM and SiPM, respectively. These
two iterations converge to a solution of problem (1.1) if

⋂m
i=1 Ci �= ∅. Moreover, it

is well-known that under some error bound conditions, to be discussed later, SePM
and SiPM have linear convergence rates. Further study of these two algorithms can be
found in [4, 5].

In this paper we are going to use a circumcentered-reflection scheme for solv-
ing problem (1.1). The circumcentered-reflection method (CRM) has been proposed
in [6] to solve problem (1.1) with two closed convex sets A, B ⊂ Rn . CRM was
first proposed to accelerate the Douglas–Rachford method (DRM) [7, 8], and Method
of Alternating projections (MAP) [9, 10] (which coincides with SePM introduced
above, if only two sets are considered). During the past four years, CRM has fasci-
nated researchers in the field of continuous optimization, resulting in an avalanche of
surprising results and improvements for the circumcenter scheme; see, for instance,
[11–29].

The circumcenter of three points x, y, z ∈ Rn , noted as circ(x, y, z), is the point in
Rn that lies in the affine space defined by x, y and z and is equidistant to these three
points. CRM iterates by means of the operator CA,B with respect to A, B defined as

CA,B(x) = circ(x, RA(x), RB(RA(x)), (1.3)

where RA = 2PA − Id and RB = 2PB − Id, and Id is the identity operator in Rn .
One of the limitations of CRM is that its convergence theory requires one of the

sets to be a linear manifold. A counter-example for which CRM does not converge
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for two general convex sets was found in [30]. It is worth noting that CRM can be
used for solving the CFP withm general arbitrary closed convex sets by using Pierra’s
product space reformulation [31]. This method is called CRM-Prod, which is briefly
described next. Define W:=C1 × C2 × · · · × Cm ⊂ Rnm and D:={(x, x, . . . , x) ∈
Rnm | x ∈ Rn}. One can easily see that

x∗ ∈ C ⇔ z∗:=(x∗, x∗, . . . , x∗) ∈ W ∩ D. (1.4)

Due to (1.4), solving problem (1.1) corresponds to solve

find z∗ ∈ W ∩ D.

Since D is an affine manifold, CRM operator (1.3) can be applied to the convex sets
D and W in the product space Rnm given rise to the CRM-Prod iteration, i.e.,

zk+1:=CW,D(zk) = circ(zk+1, RW(zk), RD(RW(zk)). (1.5)

Unfortunately, the numerical evidence in [14] showed that the cost of introducing the
product space is expensive.

More recently, an extension of CRM, called the centralized circumcentered-
reflection method (cCRM), was introduced in [14] for overcoming the drawback of
CRM, namely the request that one of the sets be an affine manifold. For describing
cCRM, we need some notation. Suppose that A, B ⊂ Rn are both closed convex sets
and define the alternating projection operator for SePM ZA,B : Rn → Rn as

ZA,B :=PA ◦ PB,

and the simultaneous projection operator for SiPM Z̃ A,B : Rn → Rn as

Z̃ A,B :=1

2
(PA + PB), (1.6)

with PA, PB as in (1.2). We also define operator Z̄ A,B : Rn → Rn as

Z̄ A,B :=1

2
(ZA,B + PB ◦ ZA,B) = Z̃ A,B ◦ ZA,B . (1.7)

Finally, instead of using sequential reflections as in (1.3), cCRM relies on the parallel
circumcenter operator CA,B defined by circumcentering parallel reflections, i.e., for
x ∈ Rn we have

CA,B(z):= circ(x, RA(x), RB(x)). (1.8)

With this notation, we define the cCRM operator TA,B : Rn → Rn for sets A and
B at x ∈ Rn as
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TA,B(x):=CA,B(Z̄ A,B(x))

= circ(Z̄ A,B(x), RA(Z̄ A,B(x)), RB(Z̄ A,B(x))). (1.9)

Therefore, given x0 ∈ Rn , the cCRM method is defined by the iteration

xk+1 = TA,B(xk). (1.10)

It has been proved in [14] that the sequence defined by cCRM converges to point
x∗ ∈ A∩B whenever A∩B �= ∅. Under an error bound assumption the sequence con-
verges linearly. Moreover, under some additional smoothness hypotheses and an error
bound condition, the sequence generated by cCRM was proved to have superlinear
convergence [14, Thm. 3.13].

In this paper, we will extend the cCRM to the case of CFP with m sets. The natural
way to generalize it is to choose a pair of sets among {C1,C2, . . . ,Cm} at the iteration
k and apply cCRM to this pair of sets. We define this pair as �(k) and r(k), with
�(k), r(k) ∈ {1, . . . ,m}, and then apply the operator in (1.10) to this pair. Therefore,
the successive centralized circumcentered-reflection method (s-cCRM) for CFP with
m sets is defined as

zk+1 = TCr(k),C�(k) (z
k), (1.11)

where TCr(k),C�(k) is the cCRM operator defined in (1.9) w.r.t. C�(k) and Cr(k).
The sequences {�(k)}, {r(k)}, determining which sets are used at the k-th itera-

tion, are called control sequences. In all successive projection-type methods, control
sequences considerably impact the algorithms’ performance. Indeed, strategies using
such sequences have been studied before for SePM; see, for instance, [32–34].

The following control sequences, which we will use in this paper, are classical; an
in-depth treatment of them can be found in [33].

A natural one is the cyclic control sequence, i.e., at iteration k we choose

�(k) = 1, 2, 3, . . . ,m − 1,m, 1, 2, . . . , and

r(k) = 2, 3, 4, . . . ,m − 1,m, 1, 2, 3, . . . .
(1.12)

This is the option found in the first approaches to these types of methods. A general-
ization of this control sequence is the almost cyclical control sequence, which requires
that each set is used at least once in any cycle of iterations of some predetermined
length. A limitation of cyclic and almost cyclic control sequences is that they do not
use any information available at iteration k, e.g., the distances of the present iterate to
the target sets.

An alternative option is the most violated constraint control sequence (distance
version), which chooses �(k) as the set which lies the farthest away from zk , with
the goal of getting closer to the intersection set C . The drawback is that the distance
from zk to all sets Ci must be calculated to determine �(k), which in general, is
computationally expensive.
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When the sets Ci are represented as sublevel sets of convex functions, that is,
Ci :={x ∈ Rn | fi (x) ≤ 0} where fi : Rn → R is convex, for all i = 1, 2, . . . ,m.
In this case, which happens frequently in applications, we have the option of the most
violated constraint control sequence (functional value version), where �(k) is chosen
so that f�(k)(zk) ≥ fi (zk) for all i , again with the expectation of getting closer to C .

These three options (almost cyclical and most violated constraint in distance ver-
sion, or functional value version) are mutually independent. As explained above, the
third one is expected to perform better than the second one, which is expected to per-
form better than the first one. Our numerical experiments confirm this behavior. Also,
we are able to prove linear or superlinear convergence (under adequate assumptions)
for the second and third option. We do not have results of this type for the almost
cyclical control sequence.

Next, we formally define these three control sequences.

Definition 1.1 (Control sequences) We say that the sequence {�(k)} is:
(i) Almost cyclic, if 1 ≤ �(k) ≤ m and there exists an integer Q ≥ m such that, for

all k ≥ 0 and {1, 2, . . . ,m} ⊂ {�(k + 1), �(k + 2), . . . , �(k + Q)}. An almost
cyclic control with Q = m is called cyclic;

(ii) Most violated constraint (distance version), if

�(k):= argmax
1≤i≤m

{dist(zk,Ci )},

r(k):= argmax
1≤i≤m

{dist(PC�(k) (z
k),Ci )};

(1.13)

(iii) Most violated constraint (function value version), if we assume that the sets Ci

in problem (1.1) are in the form

Ci :={x ∈ Rn | fi (x) ≤ 0}, (1.14)

where fi : Rn → R is convex for all i = 1, 2, . . . ,m, then the most violated
constraint control sequence in the function value version is given by

�(k):= argmax
1≤i≤m

{ fi (zk)},

r(k):= argmax
1≤i≤m

{ fi (PC�(k) (z
k))}. (1.15)

when the sets in the CFP are presented as in (1.14), the control sequence of the most
violated constraint (function value version) depends not only on the sets themselves
but also on the specific functions fi used to represent them, which are, of course,
not unique. The control sequence will change if we change the functions fi (keeping
the same sets Ci ). Here, we assume that the fi ’s are fixed from the onset, so that the
original problem can be seen as that of finding a point x̄ which satisfies fi (x̄) ≤ 0 for
all i ∈ {1, 2, . . .m}.
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88 R. Behling et al.

We note that Borwein and Tam, in [35, 36], introduced and analyzed a cyclic
Douglas–Rachford iteration scheme. In this paper, in addition to studying the cyclic
version of cCRM, we are going to employ the other two control sequences above.

Let us define the terminology for addressing the different algorithmic choices of the
control sequences used in s-cCRM iteration given in (1.11). Algorithm 1 is s-cCRM
with the almost cyclic control sequence presented in Definition 1.1(i); Algorithm
2 stands for s-cCRM with the most violated constraint control sequence (distance
version) introduced Definition 1.1(ii); and Algorithm 3 considers the most violated
constraint control sequence (function value version) set in Definition 1.1(iii) within
s-cCRM.

The paper is organized as follows: In Sect. 2, we give definitions and preliminaries.
In Sect. 3, we introduce and prove the global convergence of s-cCRM, under the three
control sequences defined above. In Sect. 4, we prove linear convergence for both ver-
sions of the most violated constraint control sequence under a standard error bound
assumption, and superlinear convergence under some additional smoothness assump-
tions. Section5 presents numerical experiments comparing s-cCRM with SePM and
CRM-Prod.

2 Preliminaries

Throughout this paper, we work in Rn , and the norm ‖·‖ is the norm induced by the
Euclidean scalar product 〈·, ·〉. In this section we recall several basic results needed in
our convergence analysis.

First, we introduce some orthogonal projection properties.

Lemma 2.1 (Properties of projection onto convex sets) Let C ⊂ Rn be a nonempty
closed convex set and PC be the orthogonal projection onto set C defined in (1.2).
Then, the following hold:

(i) For all x, y ∈ Rn, ‖PC (x)− PC (y)‖2 ≤ ‖x − y‖2 −‖(PC (x)− x)− (PC (y)−
y)‖2.

(ii) For all x ∈ Rn and s ∈ C, ‖PC (x) − s‖ ≤ ‖x − s‖.
(iii) For all x ∈ Rn and s ∈ C, ‖PC (x) − x‖2 + ‖PC (x) − s‖2 ≤ ‖x − s‖2.
(iv) If C := ⋂m

i=1 Ci , with Ci , i = 1 . . . ,m being closed convex sets of Rn, then
dist(PCi (x),C) ≤ dist(x,C), for all x ∈ Rn.

Proof Item (i) is by [37, Prop. 4.16], while items (ii) and (iii) are direct consequences
of (i). Regarding item (iv), if PCi (x) ∈ C we are done. Suppose it is not and let ŝ, s ∈ C
be the realizers of the distances between PCi (x) and x to C , respectively. Then, taking
into account that s ∈ Ci , we have

dist(PCi (x),C) = ∥∥PCi (x) − ŝ
∥∥ ≤ ∥∥PCi (x) − s

∥∥
≤ ‖x − s‖ = dist(x,C),

where the first inequality is by the definition of distance realizers, and the second
inequality is by item (ii). ��
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Lemma2.1(i)means that projections onto convex sets are firmly nonexpansive. Note
that this property is stronger than the well-known nonexpansiveness of projections,
that is, ‖PC (x) − PC (y)‖ ≤ ‖x − y‖, for all x, y ∈ Rn , with C ⊂ Rn being closed
and convex. Lemma 2.1(ii) indicates that projections are quasinonexpansive, while
Lemma 2.1(iii) says that projections are firmly quasinonexpansive; see [37, Def. 4.1].

We continue with several definitions and facts, beginning with the notion of Fejér
monotonicity.

Definition 2.2 (Fejér monotonicity) Suppose that M ⊂ Rn is nonempty. Let {xk} be
a sequence in Rn . We say {xk} is Fejér monotone with respect to M if ‖xk+1 − s‖ ≤
‖xk − s‖, for all s ∈ M , and for all k ∈ N.

The following lemma gives the properties of Fejér monotone sequences.

Lemma 2.3 (Fejér monotonicity properties [4, Thm. 2.16]) Suppose that M ⊂ Rn is
nonemtpy, and the sequence {xk} is Fejér monotone with respect to M. Then,

(i) {xk} is bounded.
(ii) For every s ∈ M, {‖xk − s‖} converges.
(iii) If there exists a cluster point x∗ of {xk} such that x∗ ∈ M, then {xk} converges to

x∗.
Next, we are going to present some results about the boundedness and approxima-

tion property of convex functions.

Definition 2.4 (Local Lipschitz continuity) Let f : Rn → R and U ⊂ Rn . We say
that f is locally Lipschitz continuous in U if for every z ∈ U there exist a constant
L > 0 and a neighborhood V of z, such that

‖ f (x) − f (y)‖ ≤ L‖x − y‖,

for all x, y ∈ V ∩U .

It is well-known that convex functions are locally Lipschitz continuous; see [38,
Thm. 2.1.12]. We now recall some properties on subgradients.

Definition 2.5 (Subgradient) Let f : Rn → R be a convex function. We say that a
vector v ∈ Rn is a subgradient of f at a point x ∈ Rn if, for all y ∈ Rn ,

f (y) ≥ f (x) + 〈v, y − x〉 .

The set of all subgradients of a convex function at x ∈ Rn is called the subdifferen-
tial of f at x , and is denoted by ∂ f (x). We present now a version of the mean value
theorem for convex functions.

Lemma 2.6 (Mean value theorem for convex functions [39]) Let f : Rn → R be a
convex function and let x and y be vectors in Rn. Then, there exists a vector u ∈ Rn

and a subgradient v(u) ∈ ∂ f (u) such that

f (y) = f (x) + 〈v(u), y − x〉 ,

where u = αx + (1 − α)y, and α ∈ (0, 1).
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Weend this section recalling that the subdifferential operator of the convex functions
f , ∂ f : Rn ⇒ Rn , is maximal monotone [40, Cor. 31.5.2] and locally bounded [41,
Thm. 3].

3 Convergence analysis of s-cCRM for themultiset case

We proceed to the convergence analysis of s-cCRM applied to the Convex Feasibility
Problem with m convex sets.

3.1 The cCRM for two convex sets

In this subsection we are going to present some results from [14] regrading cCRM
applied to two closed convex sets, in order to allow us to define the s-cCRM iteration
to solve problem (1.1).

First, we present the notion of centralized point in connection with cCRM.

Definition 3.1 (Centralized point) Let A, B ⊂ Rn be two nonempty closed convex
sets, and a point z ∈ Rn is said to be centralized with respect to A, B if

〈RA(z) − z, RB(z) − z〉 ≤ 0.

Now, we show that if we apply the operator Z̄ A,B :=Z̃ A,B ◦ ZA,B , given in (1.7), to
a point z ∈ Rn , then the resulting point will be centralized with respect to A and B.

Lemma 3.2 (Centralization procedure [14, Lem. 2.2]) Let A, B ⊂ Rn be two
nonempty closed convex setswith nonempty intersection. For any z ∈ Rn, then Z̄ A,B(z)
is centralized w.r.t. A and B.

We next state the firmly quasinonexpansiveness of a parallel circumcenter iteration
taken from a centralized point. This result means that parallel circumcenter steps taken
from centralized points move towards the solution of the convex feasibility problem
involving two intersecting sets.

Lemma 3.3 (Firmly quasinonexpansiveness of circumcenters at centralized points [14,
Lem. 2.5]) Let A, B ⊂ Rn be two nonempty closed convex sets with nonempty
intersection. Assume that z ∈ Rn is a centralized point with respect to A, B. Then,
CA,B(z) defined in (1.8) satisfies

‖CA,B(z) − s‖2 ≤ ‖z − s‖2 − ‖z − CA,B(z)‖2,

for all s ∈ A ∩ B.

Let us state the firmly quasinonexpansiveness of the cCRM operator. This lemma
was the key result in [14] to prove the convergence of cCRM, when CFP consists of
two sets.
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Lemma 3.4 (Firmly quasinonexpansiveness of cCRM [14, Lem. 2.6]) Let A, B ⊂ Rn

be two nonempty closed convex sets with nonempty intersection. Let z ∈ Rn. Then,
TA,B(z) defined in (1.9) satisfies

‖TA,B(z) − s‖2 ≤ ‖z − s‖2 − 1

8
‖z − TA,B(z)‖2,

for all s ∈ A ∩ B.

3.2 Successive cCRM for themultiset case

We present now the results that extend the cCRM for the multiset case, that is, to
solve problem (1.1). We consider three options for the control sequence, as explained
in Sect. 1, namely almost cyclic, most violated constraint (distance version) and most
violated constraint (function value version), giving rise to Algorithms 1, 2 and 3,
respectively.

Initially, Lemma 3.3 is extended to the multiset case.

Corollary 3.5 (Firmly quasinonexpansiveness of parallel circumcenters at centralized
points) Let C1, . . . ,Cm ⊂ Rn be nonempty closed convex sets with nonempty inter-
section. Assume i, j ∈ {1, 2, . . . ,m} and suppose z ∈ Rn is a centralized point with
respect to Ci ∩ C j . Then, CCi ,C j (z) defined as in (1.8) satisfies

∥∥CCi ,C j (z) − s
∥∥ ≤ ‖z − s‖ − ‖z − CCi ,C j (z)‖,

for all s ∈ C := ⋂m
i=1 Ci .

Proof Since C ⊂ Ci ∩ C j for any i, j ∈ {1, 2, . . . ,m}, the result is a direct
consequence of Lemma 3.3. ��

In sequel, we establish that SiPM iteration (1.6) is quasinonexpansive.

Lemma 3.6 (Quasinonexpansiveness of simultaneous projections) Let C1, . . . ,Cm ⊂
Rn be nonempty closed convex sets with C being their nonempty intersection. Assume
that z ∈ Rn is an arbitrary point. Then, we have

‖Z̃Ci ,C j (z) − s‖ ≤ ‖z − s‖,

for each s ∈ C and for every i, j ∈ {1, . . . ,m}.
Proof Observe that, for z ∈ Rn and s ∈ C ,

‖Z̃Ci ,C j (z) − s‖ = ‖1
2
(PCi + PC j )(z) − s‖

≤ 1

2
‖PCi (z) − s‖ + 1

2
‖PC j (z) − s‖

≤ ‖z − s‖,
where the second inequality holds by Lemma 2.1(ii). ��
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Next, the firmly quasinonexpansiveness of the s-cCRM iteration (1.11) is stated as
a corollary.

Corollary 3.7 (Firmly quasinonexpansiveness of s-cCRM) Let C1,C2, . . . ,Cm be
nonempty closed convex sets with nonempty intersection. Then, for all z ∈ Rn, we
have

‖TCi ,C j (z) − s‖2 ≤ ‖z − s‖2 − 1

8
‖z − TCi ,C j (z)‖2, (3.1)

for all s ∈ C := ⋂m
i=1 Ci , and for arbitrary i, j ∈ {1, . . . ,m}, with i �= j .

Proof Using the fact that C ⊂ Ci ∩C j for any i, j ∈ {1, . . . ,m}, the result is directed
yielded by Lemma 3.4. ��
We state the Fejér monotonicity of s-cCRM, which follows from (3.1) immediately.

Corollary 3.8 (Fejér monotonicity of s-cCRM) Let C1, . . . ,Cm ⊂ Rn be nonempty
closed convex sets with nonempty intersectionC, and suppose that the sequence {zk} ⊂
Rn is generated by s-cCRM defined in (1.11) with any of the control sequences given
in Definition 1.1. Then {zk} is Fejér monotone with respect to C.

Proof According to (3.1), we have

‖zk+1 − s‖ = ‖TCi ,C j (z
k) − s‖2 ≤ ‖zk − s‖2,

for all s ∈ C and for arbitrary i, j ∈ {1, . . . ,m}, with i �= j . Therefore, the sequence
{zk} is Fejér monotone with respect to C . ��

Now, the asymptotic convergence of s-cCRM is stated and proved.

Corollary 3.9 (Asymptotic convergence of s-cCRM) Let C1, . . . ,Cm ⊂ Rn be
nonempty closed convex sets, and suppose C := ⋂m

i=1 Ci �= ∅. Suppose that the
sequence {zk} ⊂ Rn is generated by s-cCRM defined in (1.11) with any of the control
sequences given in Definition 1.1. Then,

‖zk+1 − zk‖ → 0.

Proof By using Lemma 3.7, with z = zk , we get

1

8
‖TCr(k),C�(k) (z

k) − zk‖2 ≤ ‖zk − s‖2 − ‖TCr(k),C�(k) (z
k) − s‖2,

for any s ∈ C . The definition of s-cCRM for CFP with m sets gives us

1

8
‖zk+1 − zk‖2 ≤ ‖zk − s‖2 − ‖zk+1 − s‖2.

From Corollary 3.8, the sequence {zk} is Fejér monotone with respect to C . Hence,
Lemma 2.3(ii) establishes the result. ��
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The following lemma is keystone for derive convergence of our proposed algorithms.

Lemma 3.10 Let C1, . . . ,Cm ⊂ Rn be nonempty closed convex sets, and assume
C := ⋂m

i=1 Ci �= ∅. Suppose that the sequence {zk} is generated by s-cCRM, as defined
in (1.11) with any of the control sequences given in Definition 1.1. Then, we have

‖zk+1 − s‖ ≤ ‖PC�(k) (z
k) − s‖, (3.2)

for all s ∈ C.

Proof Note that, for s ∈ C ,

‖zk+1 − s‖ = ‖TCr(k),C�(k) (z
k) − s‖ ≤ ‖Z̄Cr(k),C�(k) (z

k) − s‖
≤ ‖ZCr(k),C�(k) (z

k) − s‖ = ‖PCr(k) (PC�(k) (z
k)) − s‖

≤ ‖PC�(k) (z
k) − s‖, (3.3)

where the first inequality follows from Lemma 3.2 and Corollary 3.5, the second
inequality holds by Lemma 3.6, and the last one is due to Lemma 2.1(ii). ��

According to the last results, we only need to prove that there exists a cluster point
of the s-cCRM sequence lying in the intersection of the underlying sets, in order
to achieve the convergence of the proposed method. We establish this in sequel, for
Algorithms 1, 2 and 3.

Theorem 3.11 (Convergence of Algorithm 1) Let C1, . . . ,Cm ⊂ Rn be nonempty
closed convex sets, and assume C := ⋂m

i=1 Ci �= ∅. Suppose that z0 is an arbitrary
point inRn and the sequence {zk} is generated by s-cCRM operator defined in (1.11)
with almost cyclic control sequence. Then, there exists some point x∗ ∈ C := ⋂m

i=1 Ci

such that zk → x∗.

Proof By Corollary 3.8 and Lemma 2.3(ii), we get that {zk} is a Fejér monotone
sequence w.r.t.C , so it is bounded. Hence, there exist a subsequence {zk j } of {zk} and a
point x∗ ∈ Rn such that zk j → x∗. By the definition of almost cyclic control sequence,
for each q ∈ {1, . . . ,m}, there exists a sequence {h j }which satisfies k j ≤ h j ≤ k j+Q
such that �(h j ) = q, for each j ≥ 1. By the triangle inequality,

‖zh j − zk j ‖ ≤
h j−k j−1∑

i=0

‖zk j+i+1 − zk j+i‖ ≤
Q−1∑

i=0

‖zk j+i+1 − zk j+i‖. (3.4)

Note that the rightmost side of (3.4) is a sum of Q terms, and each one of them
converges to 0 as j → ∞ by Corollary 3.9. Hence, the whole summation goes to 0,
so that

lim
j→∞‖zh j − zk j ‖ = 0. (3.5)
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Since zh j = zk j + (zh j − zk j ) and zk j → x∗, by assumption, we conclude from (3.5)
that lim j→∞ zh j − x∗ = 0. Note that

‖zh j+1 − s‖2 ≤ ‖PC�(h j )
(zh j ) − s‖2

≤ ‖zh j − s‖2 − ‖PC�(h j )
(zh j ) − zh j ‖2,

using Lemma 3.10 in the first inequality, and Lemma 2.1(iii) in the second one.
Therefore,

‖PC�(h j )
(zh j ) − zh j ‖2 ≤ ‖zh j − s‖2 − ‖zh j+1 − s‖2. (3.6)

Since for all �(h j ) = q, in view of Lemma 2.3(ii), taking limit with j → ∞ in
(3.6), we get that the right side of (3.6) goes to 0. Consequently,

‖PCq (x
∗) − x∗‖2 ≤ 0.

Hence, we obtain that PCq (x
∗) = x∗. Since q is an arbitrary index, we have that

x∗ ∈ Cq for all q ∈ {1, 2, . . . ,m}. Consequently, x∗ ∈ C . By Lemma 2.3(iii), we get
that zk → x∗ ∈ C .

��
Remark 3.12 We know that the cyclic control sequence is a special case of the almost
cyclic control sequence, so we conclude that the sequence {zk} generated by s-cCRM
defined in (1.11) will converge to some point in C if we use a cyclic control sequence.

Theorem 3.13 (Convergence of Algorithm 2) Suppose that z0 is an arbitrary point
in Rn and the sequence {zk} is generated by the s-cCRM defined in (1.11) with the
most violated constraint control sequence in distance version (1.13). Then there exists
some point x∗ ∈ C := ⋂m

i=1 Ci such that zk → x∗.

Proof Following the same lines of the proof of last theorem, Corollary 3.8 and Lemma
2.3(ii), imply that there exists a subsequence {zk j } of zk , and a point x∗ ∈ Rn such
that zk j → x∗. Take any i ∈ {1, . . . ,m}, then

dist2(zk j ,Ci ) ≤ dist2(zk j ,C�(k j )) = ‖zk j − PC�(k j )
(zk j )‖2

≤ ‖zk j − s‖2 − ‖PC�(k j )
(zk j ) − s‖2

≤ ‖zk j − s‖2 − ‖zk j+1 − s‖2,
(3.7)

using the definition of themost violated constraint control sequence in the first inequal-
ity, Lemma 2.1(ii) in the second one and Lemma 3.10 in the third one. Take j → ∞,
and use Lemma 2.3(ii) for proving that the rightmost expression in (3.7) converges to
0. Hence,

dist(x∗,Ci ) ≤ 0, ∀i ∈ {1, 2, . . . ,m}.
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Since i is an arbitrary index, we conclude that x∗ ∈ Ci for all i ∈ {1, . . . ,m}, so that
x∗ ∈ C . The result follows immediately by Lemma 2.3(iii). ��

Theorem 3.14 (Convergence of Algorithm 3) Consider problem (1.1), suppose z0 is
an arbitrary point in Rn and assume that sequence {zk} is generated by the s-cCRM
defined in (1.11) with the most violated constraint control sequence in function value
version (1.15). Then there exists some point x∗ ∈ C := ⋂m

i=1 Ci such that zk → x∗.

Proof Again, invoking Corollary 3.8 and Lemma 2.3(ii), we get a subsequence {zk j }
of zk and a point x∗ ∈ Rn such that zk j → x∗. Using the locally Lipschitz continuity
of the convex functions fi ’s, for i ∈ {1, . . . ,m}, there exists a neighborhood Vi of
x∗ such that fi is Lipschitz continuous in Vi with constant Li . Take V = ⋂m

i=1 Vi
and L = max1≤i≤m Li , so fi is Lipschitz continuous in V with constant L for each
i = 1, 2, . . . ,m.

For large enough k j , we have

fi (z
k j ) ≤ f�(k j )(z

k j ) ≤ f�(k j )(z
k j ) − f�(k j )(PC�(k j )

(zk j ))

≤ L‖zk j − PC�(k j )
(zk j )‖

≤ L(‖zk j − s‖2 − ‖PC�(k j )
(zk j ) − s‖2) 1

2

≤ L(‖zk j − s‖2 − ‖zk j+1 − s‖2) 1
2 ,

(3.8)

using the definition of the most violated control sequence in the first inequality, the
definition of orthogonal projection and (1.14) in the second, the Lipschitz continuity
in the third one, and Lemma 2.1(iii) and (3.2) in the fourth one. Taking j → ∞, we
have from Lemma 2.3(ii) that the rightmost expression in (3.8) converges to 0. Hence,

fi (x
∗) ≤ 0.

Since i is an arbitrary index, we get that fi (x∗) ≤ 0 for all i ∈ {1, . . . ,m}, and hence
x∗ ∈ C . In view of Lemma 2.3(iii) and Corollary 3.8, zk → x∗ ∈ C . ��

4 Linear and superlinear convergence rate

In this section, we first introduce two options of error bounds for CFP. Then, we review
the proofs of the linear convergence of SiPMandSePMunder these error bounds.Next,
we prove, also under these an error bound, the linear convergence of s-cCRM when
using most violated control sequences, i.e., Algorithms 2 and 3. Finally, we prove that
under a smoothness assumption on the sets Ci and a Slater condition, Algorithms 2
and 3 versions of s-cCRM achieve a superlinear convergence rate. These results are
in agreement with those established in [14] for cCRM applied to CFP with two sets.
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4.1 Error bounds for CFP

Error bound conditions are regularity assumptions under which convergence rates of
projection-type schemes to solve problem (1.1) have been studied; see, for instance,
[9, 42–45]. We start with Definition 4.1 below, regarding the error bound when two
closed convex sets are considered. This error bound is also called local (Lipschitz)
linear regularity [9, Def. 3.11], which in turn can be seen as subtransversality [46,
Thm. 1].

Definition 4.1 (Error bound for two sets)Let A, B ⊂ Rn be closed convex and assume
that A∩ B �= ∅. We say that A and B satisfy a local error bound condition if for some
point z̄ ∈ X ∩Y , there exist a real number ω ∈ (0, 1), and a neighborhood V of z̄ such
that

ω dist(z, A ∩ B) ≤ max{dist(z, A), dist(z, B)},

for all z ∈ V .

Under this condition, a point in V cannot be too close to both A and B, and at the
same time, far from A ∩ B. This assumption was used in [11, 14] to prove the linear
convergence rate for CRM and cCRM. Now we extend Definition 4.1 to the multi-set
case.

Definition 4.2 (EB 1) LetC1,C2, . . . ,Cm ⊂ Rn be nonempty closed convex sets, and
assume that C := ⋂m

i=1 Ci �= ∅. We say that C1,C2, . . . ,Cm satisfy the local error
bound condition (EB1) at a point z̄ ∈ C , if there exists a real number ω ∈ (0, 1), and
a neighborhood V of z̄ such that

ω dist(z,C) ≤ max
1≤i≤m

dist(z,Ci ), (EB1)

for all z ∈ V .

If the underlying convex sets are defined by means of convex inequalities, we may
consider the following error bound condition.

Definition 4.3 (EB 2) LetC1,C2, . . . ,Cm ⊂ Rn be nonempty closed convex sets, and
assume that C := ⋂m

i=1 Ci �= ∅, with Ci :={x ∈ Rn | fi (x) ≤ 0}, and fi : Rn → R

being convex, for all i = 1, 2, . . . ,m. We say that C1,C2, . . . ,Cm satisfy the local
error bound condition 2 (EB2) at a point z̄ ∈ C , if there exists a real numberω ∈ (0, 1),
and a neighborhood V of z̄ such that

ω dist(z,C) ≤ max
1≤i≤m

fi (z), (EB2)

for all z ∈ V \ C .

Remark 4.4 Using the definition of the most violated constraint control sequence
(1.15), equation (EB2) becomes, for all z ∈ V ,

ω dist(z,C) ≤ f�(z),
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where �:= argmax
1≤i≤m

{ fi (z)}.

Note that (EB1) and (EB2) are clearly connected. Indeed, if (EB1) holds, we can
get (EB2) satisfied by setting fi (z):= dist(z,Ci ), for i = 1, . . . ,m. Now, since convex
functions are locally Lipschitz continuous, we get that (EB2) always implies (EB1).

Definition 4.5 (Convergence rate) Let {xk} ⊂ Rn be a sequence converging to some
point x̄ ∈ Rn . Assume that xk �= x̄ for all k ∈ N. Define

ξ := lim sup
k→∞

‖xk+1 − x̄‖
‖xk − x̄‖ , and ρ:= lim sup

k→∞
‖xk − x̄‖ 1

k .

Then, the convergence of {xk} is
1. Q-linear if ξ ∈ (0, 1);
2. Q-superlinear if ξ = 0,
3. R-linear if ρ ∈ (0, 1).

It is long-familiar that Q-linear convergence is a sufficient condition for R-linear
convergence (with the same asymptotic constant), but the converse statement does not
hold true [47].

The next lemma claims the linear convergence of Fejér monotone sequences.

Lemma 4.6 (Fejér monotonicity and linear convergence [14, Prop. 3.7]) If the
sequence {xk} ⊂ Rn is Fejér Monotone with respect to a set M ⊂ Rn, and the scalar
sequence {dist(xk, M)} converges Q-linearly to 0, then {xk} converges R-linearly to
a point x̄ ∈ M.

4.2 Linear convergence rate of Algorithm 2

Before proving the linear convergence rate of Algorithm 2, we recall the proof of
the linear convergence for SePM and SiPM with the most violated constraint control
related to (1.13). We note that, taking into account Definitions 4.2 and 4.3, we assume
ω ∈ (0, 1).

Lemma 4.7 (Linear convergence of SePM and SiPM under EB1) Let C1, . . . ,Cm ⊂
Rn be nonempty closed convex sets, and suppose C := ⋂m

i=1 Ci �= ∅. Assume that
(EB1) holds at z̄ ∈ C . Let B be a ball centered at z̄ and contained in V . Let z ∈ B and
define β:=√

1 − ω2. Then,

dist(ZCr ,C�
(z),C) ≤ β2 dist(z,C), (4.1)

and

dist(Z̃Cr ,C�
(z),C) ≤

(
1 + β

2

)
dist(z,C), (4.2)

where �:= argmax
1≤i≤m

{dist(z,Ci )} and r := argmax
1≤i≤m

{dist(PC�
(z),Ci )}.
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Proof We start with the SePM case. Note that

dist2(z,C) = ‖z − PC (z)‖2 ≥ ‖PC�
(z) − PC (z)‖2 + ‖z − PC�

(z)‖2
≥ dist2(PC�

(z),C) + dist2(z,C�)

= dist2(PC�
(z),C) + max

1≤i≤m
dist2(z,Ci )

≥ dist2(PC�
(z),C) + ω2dist2(z,C),

where the first inequality holds by Lemma 2.1(iii), in the second one we use the
definition of PC�

, the last equality follows from the definition of �, and the third
inequality follows by (EB1). Hence,

dist(PC�
(z),C) ≤

√
1 − ω2 dist(z,C) = β dist(z,C). (4.3)

Since z̄ ∈ C , by the nonexpansiveness of PC�
and PCr , we have

‖PCr (PC�
(z)) − z̄‖ ≤ ‖PC�

(z) − z̄‖ ≤ ‖z − z̄‖, (4.4)

hence, PCr (PC�
(z)) ∈ B. Consequently,

dist2(PC�
(z),C) = ‖PC�

(z) − PC (PC�
(z))‖2

≥ ‖PCr (PC�
(z)) − PC (PC�

(z))‖2 + ‖PC�
(z) − PCr (PC�

(z))‖2
≥ dist2(PCr (PC�

(z)),C) + max
1≤i≤m

dist2(PCi (z),Cr )

≥ dist2(PCr (PC�
(z)),C) + ω2dist2(PC�

(z),C), (4.5)

where the first inequality follows from Lemma 2.1(iii), the second follows from the
definition of r , and the third one from (EB1). From (4.5), we obtain

dist(PCr (PC�
(z)),C) ≤

√
1 − ω2 dist(PC�

(z),C) = β dist(PC�
(z),C). (4.6)

Now combining (4.4) and (4.6), we get

dist(ZCr ,C�
(z),C) = dist(PCr (PC�

(z)),C) ≤
√
1 − ω2 dist(PC�

(z),C)

≤ (1 − ω2) dist(z,C) = β2 dist(z,C),

which establishes (4.1).
Next, we will establish the linear convergence for SiPM with (EB1). By the

nonexpansiveness of PCr , we have that

dist(PCr (z),C) ≤ dist(z,C). (4.7)
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Note that

dist(Z̃Cr ,C�
(z),C) = dist

(
1

2
[PC�

(z) + PCr (z)],C
)

≤ 1

2

[
dist(PC�

(z),C) + dist(PCr (z),C)
]

≤
(
1 + β

2

)
dist(z,C),

using the convexity of the distance function to C in the first inequality, and (4.3) and
(4.7) in the second one. Hence, we get (4.2), and the results hold. ��
Corollary 4.8 (Linear convergence of SePM and SiPM under EB1) Let
C1,C2, . . . ,Cm ⊂ Rn be nonempty closed convex sets, and assume that
C := ⋂m

i=1 Ci �= ∅. Suppose {sk} and {yk} are sequences generated by SePM and
SiPM starting from some s0 ∈ Rn and y0 ∈ Rn, respectively. Assume also {sk} and
{yk} are both infinite sequences. If (EB1) holds at the limit points s̄ of {sk}, ȳ of
{yk}, then the sequences {sk}, {yk} converge R-linearly, with asymptotic constants
bounded above by β2, 1+β

2 respectively, where β = √
1 − ω2 and ω is the constant

in Definition 4.2.

Proof Convergence of {sk} and {yk} to points s̄ ∈ C and ȳ ∈ C follows from [4,
Corollary 3.3(i)] and in [5, Theorem 3], respectively. Hence, for large enough k, sk

belongs to a ball centered at s̄ contained in V , and yk belongs to a ball centered at ȳ
contained in V .

In view of the definitions of the SePM and SiPM sequences, we get from Lemma
4.7,

dist(sk+1,C)

dist(sk,C)
≤ β2,

dist(yk+1,C)

dist(yk,C)
≤ 1 + β

2
.

Now, from Definition 4.5, we get

dist(sk,C) ≤
(
1 + β

2

)k

dist(s0,C), and dist(yk,C) ≤ β2k dist(y0,C).

Hence, both distance sequences {dist(sk,C)} and {dist(yk,C)} converge Q-linearly to
0, with asymptotic constants given by β2, 1+β

2 , respectively, since β ∈ (0, 1), because
ω ∈ (0, 1).

The fact that {sk} and {yk} are Fejér monotone with respect to C is an immediate
consequence of Lemma 2.1(ii) and Lemma 3.6, respectively. Then, the result follows
then from Lemma 4.6. ��

We now proceed to prove the linear convergence of s-cCRM. First, we show the
linear rate for the most violated constraint control (Algorithm 2) related to (1.13), in
view of (EB1).
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Lemma 4.9 (Linear convergenceof the distance for s-cCRM(Algorithm2) underEB1)
LetC1,C2, . . . ,Cm be nonempty closed convex sets, and suppose thatC :=⋂m

i=1 Ci �=
∅. Assume that (EB1) at z̄ ∈ C . Let B be a ball centered at z̄ and contained in V . Let
z ∈ B and define β:=√

1 − ω2. Then,

dist(TCr ,C�
(z),C) ≤ β2 dist(z,C),

where �:= argmax
1≤i≤m

{dist(z,Ci )} and r := argmax
1≤i≤m

{dist(PC�
(z),Ci )}.

Proof By (4.4), we know that ZCr ,C�
(z) ∈ B. Using the definition of Z̄Cr ,C�

, we have

dist(Z̄Cr ,C�
(z),C) = dist

(
1

2

(
ZCr ,C�

(z) + PC�
(ZCr ,C�

(z))
)
,C

)

≤ 1

2
dist(ZCr ,C�

(z),C) + 1

2
dist(PC�

(ZCr ,C�
(z)),C)

≤ 1

2
β2 dist(z,C) + 1

2
β2 dist(z,C)

= β2 dist(z,C), (4.8)

where the first inequality follows from the convexity of the distance function, and the
second from Lemma 2.1(iv) and (4.1).

By Corollary 3.5, we have

‖CCr ,C�
(z) − s‖ ≤ ‖z − s‖,

for any centralized point z ∈ B and for any s ∈ C . By Lemma 3.2 and (4.4), Z̄Cr ,C�
(z)

is centralized with respect to C� and Cr and belongs to B. So, taking Z̄Cr ,C�
(z), we

get

‖TCr ,C�
(z) − s‖ = ∥∥CCr ,C�

(Z̄Cr ,C�
(z)) − s

∥∥ ≤ ‖Z̄Cr ,C�
(z) − s‖,

where the inequality follows fromLemma3.3.Using the definition of distance between
TCr ,C�

(z) and C , we get

dist(TCr ,C�
(z),C) ≤ ‖Z̄Cr ,C�

(z) − s‖.

Take s = PC (Z̄Cr ,C�
(z)), then

dist(TCr ,C�
(z),C) ≤ dist(Z̄Cr ,C�

(z),C), (4.9)

for all z ∈ B. Combining (4.8) and (4.9), we obtain

dist(TCr ,C�
(z),C) ≤ β2 dist(z,C),

which establishes the result. ��
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Now, we are going to establish linear convergence of Algorithm 2, under (EB1).

Theorem 4.10 (Linear convergence of s-cCRM (Algorithm 2) under EB1) Let
C1, . . . ,Cm ⊂ Rn be nonempty closed convex sets, and suppose that C :=⋂m

i=1 Ci �=
∅. Assume that sequence {zk} is generated by s-cCRMwith themost violated constraint
control sequence (distance version) as in (1.13), starting from some z0 ∈ Rn. Assume
also that {zk} is an infinite sequence. If (EB1) holds at the limit z̄ of {zk}, then {zk}
converges to z̄ ∈ C R-linearly, with asymptotic constant bounded above β2, where
β = √

1 − ω2 and ω is the constant from Definition 4.2.

Proof The convergence of {zk} to a point z̄ ∈ C follows from Theorem 3.13. Hence,
for large enough k, zk belongs to the ball centered at z̄ and contained in V , whose
existence is ensured in (EB1).

We recall that the s-cCRM sequence is defined as zk+1 = TCr(k),C�(k) (z
k), so that it

follows from Lemma 4.9 that

dist(zk+1,C)

dist(zk,C)
≤ β2. (4.10)

Since ω ∈ (0, 1) implies that β2 ∈ (0, 1), it follows immediately from (4.10) that
the scalar sequence {dist(zk,C)} converges Q-linearly to 0 with asymptotic constant
bounded above by β2.

Finally, recall that sequence {zk} is Fejér monotone with respect toC , due to Corol-
lary 3.8. The R-linear convergence of {zk} to some point in C and the value of the
upper bound of the asymptotic follow from Lemma 4.6. ��

4.3 Linear convergence of Algorithm 3

Before proving the linear convergence of s-cCRM (Algorithm 3) under (EB2), we
need some lemmas about the relationship between (EB1) and (EB2). First we provide
a bound for the norm of subdifferentials under (EB2).

Lemma 4.11 (Bound of subdifferentials under EB2) Let C1, . . . ,Cm ⊂ Rn be
nonempty closed convex sets, and suppose that C :=⋂m

i=1 Ci �= ∅. Assume that (EB2)
holds at a point z̄ ∈ C. Then, there exists a ball B centered at z̄ and a constant ε > 0
such that

‖vi (u)‖ ≤ ε,

for all u ∈ B, all vi (u) ∈ ∂ fi (u), and all i ∈ {1, . . . ,m}.
Proof Take an arbitrary point u ∈ Rn , and let vi (u) ∈ Rn be any subgradient of fi at
u. Now, recall that the convex function fi is locally Lipschitz continuous inRn for all
i ∈ {1, . . . ,m}. Using the fact that the subdifferentials of fi ’s are locally bounded in
Rn , we establish the result. ��
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Lemma 4.12 (Relation betweem EB1 and EB2) Let C1, . . . ,Cm ⊂ Rn be nonempty
closed convex sets, and suppose that C := ⋂m

i=1 Ci �= ∅. Assume that (EB2) holds at
point z̄ ∈ C. Then, there exists ε > 0 such

fi (z) ≤ ε dist(z,Ci ), (4.11)

for all i ∈ {1, . . . ,m}, and all z in the neighborhood V of z̄ as defined in Definition
4.3. Moreover,

dist(z,C) ≤ ε

ω
dist(z,C�), (4.12)

where �:= argmax
1≤i≤m

{ fi (z)}.

Proof By Lemma 4.11, there exists a ball B contained in V , centered at z̄, and a
constant ε such that

‖vi (u)‖ ≤ ε, (4.13)

for all vi (u) ∈ ∂ fi (u), and for all u ∈ B, and for each index i ∈ {1, . . . ,m}. Take any
z ∈ B and let zi :=PCi (z). Using Lemma 2.6, we get

fi (z) = fi (zi ) + 〈vi (ui ), z − zi 〉 , (4.14)

for some ui in the line segment between z and zi and, vi (ui ) ∈ ∂ f (ui ). Since zi ∈ Ci ,
we have fi (zi ) = 0, and it follows from (4.14) that

fi (z) ≤ ‖vi (ui )‖‖z − zi‖ = ‖vi (ui )‖ dist(z,Ci ). (4.15)

By the nonexpansiveness of the orthogonal projection, we have

‖PCi (z) − PCi (z̄)‖ ≤ ‖z − z̄‖.

The definition of zi and z̄ ∈ C , yields

‖zi − z̄‖ ≤ ‖z − z̄‖,

which shows that zi ∈ B. Hence, ui ∈ B, by the convexity of the ball. In view of
(4.13) and (4.15), we have

fi (z) ≤ ε dist(z,Ci ),

for each i = 1, . . . ,m and each z ∈ B. Therefore,

f�(z) ≤ ε dist(z,C�),
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so that, in view of (EB2), it holds that

dist(z,C) ≤ ε

ω
f�(z) ≤ ε

ω
dist(z,C�),

which establishes the result. ��
Remark 4.13 With arguments very similar to those used in the previous lemma,
together with the nonexpansiveness of projection operator, we can easily get

dist(PC�
(z),C) ≤ ε

ω
dist(PC�

(z),Cr ), (4.16)

where r := argmax
1≤i≤m

{ fi (PC�
(z))}.

Lemma 4.14 (Linear convergence of the distance for SePM and SiPM under EB2) Let
C1, . . . ,Cm ⊂ Rn be nonempty closed convex sets, and suppose C :=⋂m

i=1 Ci �= ∅.
Assume that (EB2) holds at z̄ ∈ C, and that B is a ball centered at z̄ and contained

in V . Define β:=
√
1 − (

ω
ε

)2
, with ω being the constant in Definition 4.3, and ε being

the constant in Lemma 4.12. Then,

dist(ZCr ,C�
(z),C) ≤ β2 dist(z,C), (4.17)

for all z ∈ B, and

dist(Z̃Cr ,C�
(z),C) ≤ 1 + β

2
dist(z,C), (4.18)

for all z ∈ B, where �:= argmax
1≤i≤m

{ fi (z)} and r := argmax
1≤i≤m

{ fi (PC�
(z))}.

Proof We start with proving (4.17). Take z ∈ B, and note that

dist2(z,C) = ‖z − PC (z)‖2
≥ ‖PC�

(z) − z‖2 + ‖PC�
(z) − PC (z)‖2

≥ dist2(z,C�) + dist2(PC�
(z),C)

≥ dist2(PC�
(z),C) + ω2

ε2
dist2(z,C),

using Lemma 2.1(iii) in the first inequality, the definition of orthogonal projection in
the second one, and (4.12) in the third one. Hence,

dist(PC�
(z),C) ≤

√

1 − ω2

ε2
dist(z,C) = β dist(z,C). (4.19)
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By (4.4), we get PCr (PC�
(z)) ∈ B. Therefore,

dist2(PC�
(z),C) = ‖PC�

(z) − PC (PC�
(z))‖2

≥ ‖PCr (PC�
(z)) − PC (PC�

(z))‖2
+ ‖PCr (PC�

(z)) − PC�
(z)‖2

≥ dist2(PCr (PC�
(z)),C) + dist2(PC�

(z),Cr )

≥ dist2(PCr (PC�
(z)),C) + ω2

ε2
dist2(PC�

(z),C),

using Lemma 2.1(iii) in the first inequality, the definition of orthogonal projection in
the second one, and (4.16) in the third one. Thus, we obtain

dist(PCr (PC�
(z)),C) ≤ β dist(PC�

(z)),C).

Together with (4.19), we have

dist(ZCr ,C�
(z),C) = dist(PCr (PC�

(z)),C) ≤ β2 dist(z,C).

Next, we prove (4.18). By the nonexpansiveness of PCr , we have

dist(PCr (z),C) ≤ dist(z,C). (4.20)

Note that

dist(Z̃Cr ,C�
(z),C) = dist(

1

2
[PC�

(z) + PCr (z)],C)

≤ 1

2
[dist(PC�

(z),C) + dist(PCr (z),C)]

≤
(
1 + β

2

)
dist(z,C).

The first inequality holds by the convexity of the distance function, and the second
one follows by (4.20) and (4.19). ��
Corollary 4.15 (Linear convergence of SePM and SiPM under EB2) Let
C1, . . . ,Cm ⊂ Rn be nonempty closed convex sets, and assume that C :=⋂m

i=1 Ci �=
∅. Let {sk} and {yk} be sequences generated by SePM and SiPM, starting from some
s0 ∈ Rn and y0 ∈ Rn, respectively. Assume also {sk} and {yk} are both infinite
sequences. If (EB2) holds at the limit point s̄ of {sk}, ȳ of {yk}, then the sequences
{sk}, {yk} converge R-linearly, with asymptotic constants bounded above by β2, 1+β

2

respectively, where β =
√
1 − (ω

ε
)2, ω is the constant in Definition 4.3, and ε is the

constant in Lemma 4.12.

Proof We invoke again [4, Corollary 3.3(i)] and [5, Theorem 3], to get the convergence
of {sk} and {yk} to points s̄ ∈ C and ȳ ∈ C , respectively. Hence, sk belongs to a ball
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centered at s̄ contained in V , and yk belongs to a ball centered at ȳ contained in V
and, for large enough k.

In view of the definitions of the SePM and SiPM sequences, from Lemma 4.14 we
derive that

dist(sk+1,C)

dist(sk,C)
≤ β2, and

dist(yk+1,C)

dist(yk,C)
≤ 1 + β

2
.

The limits of the above inequalities (with k → ∞), together with Definition 4.5,
yield that the sequences {dist(sk,C)} and {dist(yk,C)} converge Q-linearly to 0, with
asymptotic constants given by β2 and 1+β

2 , respectively, where β =
√
1 − (ω

ε
)2, ω is

the constant in (EB2), and ε is the constant in Lemma 4.12.
Remind that {sk} and {yk} are Fejér monotone with respect to C (by Lemma 2.1(ii)

and Lemma 3.6, respectively). Hence, the result follows from Lemma 4.6. ��
Now, we present a lemma that allows us to prove the linear convergence of

Algorithm 3, under (EB2).

Lemma 4.16 (Linear convergence of distance for s-cCRM (Algorithm 3) under
EB2) Suppose C1,C2, . . . ,Cm ⊂ Rn nonempty closed convex sets and suppose
C := ⋂m

i=1 Ci �= ∅. Assume that (EB2) at z̄ ∈ C. Let B be a ball centered at z̄

and contained in V . Let z ∈ B and define β:=
√
1 − (

ω
ε

)2
, with ω being the constant

in Definition 4.3, and ε being the constant in Lemma 4.12. Then,

dist(TCr ,C�
(z),C) ≤ β2 dist(z,C),

for all z ∈ B.

Proof By (4.4), we know that ZCr ,C�
(z) ∈ B. Using the definition of Z̄Cr ,C�

, we have

dist(Z̄Cr ,C�
(z),C) = dist

(
1

2
[ZCr ,C�

(z) + PC�
(ZCr ,C�

(z))],C
)

≤ 1

2
dist(ZCr ,C�

(z),C) + 1

2
dist(PC�

(ZCr ,C�
(z)),C)

≤ 1

2
β2 dist(z,C) + 1

2
β2 dist(z,C)

= β2 dist(z,C), (4.21)

where the first inequality follows from the convexity of the distance function, and the
second from Lemma 2.1(iv) and (4.17). Combining (4.21) and (4.9), we establish the
result. ��

We finalize this section stating and proving the linear convergence of s-cCRMwith
the most violated constraint control sequence (function value version) as in (1.15),
under EB2.
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Theorem 4.17 (Linear convergence of s-cCRM (Algorithm 3) under EB2) Let
C1, . . . ,Cm ⊂ Rn be nonempty closed convex sets, and suppose that C :=⋂m

i=1 Ci �=
∅. Let the sequence {zk} be generated by s-cCRM with the most violated constraint
control sequence (function value version) as in (1.15), starting from some z0 ∈ Rn.
Assume also that {zk} is an infinite sequence. If (EB2) holds at the limit z̄ of {zk},
then {zk} converges to z̄ ∈ C R-linearly, with asymptotic constant bounded above β2,

where β =
√
1 − (ω

ε
)2, ω is the constant in Definition 4.3, and ε is the constant in

Lemma 4.12.

Proof Convergence of {zk} to a point z̄ ∈ C follows from Theorem 3.14. Hence, for
large enough k, zk belongs to the ball centered at z̄ and contained in V , whose existence
is ensured in (EB2).

We recall that the s-cCRM sequence is defined as zk+1 = TCr(k),C�(k) (z
k), so that it

follows from Lemma 4.16 that

dist(zk+1,C)

dist(zk,C)
≤ β2. (4.22)

Since β2 ∈ (0, 1), it follows immediately from (4.22) that the scalar sequence
{dist(zk,C)} converges Q-linearly to zero with asymptotic constant bounded above
by β2.

Finally, recall that the sequence {zk} is Fejér monotone with respect to C , due to
Corollary 3.8. The R-linear convergence of {zk} to some point in C and the value of
the upper bound of the asymptotic follow from Lemma 4.6. ��

4.4 Superlinear convergence of s-cCRM

In this subsection we prove superlinear convergence of Algorithms 2 and 3 versions of
s-cCRM, assuming a Slater condition and a smoothness assumption: the boundaries of
the setsCi are differentiable manifolds (of codimension 1, due to the Slater condition)
near the limit of the sequence. First, we need a lemma about differentiable manifolds.

Lemma 4.18 (Dimension of differentiable manifolds boundaries [48, Thm. 24.3]) Let
M be a k-dimensional manifold in Rn, of class C p. If the boundary of M, bd(M), is
nonempty, then bd(M) is a (k − 1)-dimensional manifold without boundary inRn, of
class C p.

Now we can demonstrate the superlinear convergence of s-cCRM.We begin by the
most violated constraint control sequence (distance version) as in (1.13) (Algorithm
2).

Lemma 4.19 (Superlinear convergence of the distance for s-cCRM (Algorithm 2)) Let
C1, . . . ,Cm ⊂ Rn be nonempty closed convex sets, and suppose that C :=⋂m

i=1 Ci �=
∅. Let sequence the {zk} be generated by s-cCRM with the most violated constraint
control sequence (distance version) as in (1.13), starting from some z0 ∈ Rn, and
converging to a point z̄ ∈ C. Assume that the interior of C is nonempty and that
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the boundaries of Ci are differentiable manifolds in a neighborhood of z̄ for each
i = 1, . . . ,m. Then, the scalar sequence {dist(zk,C)} converges to zero superlinearly.
Proof It is trivial if sequence {zk} is finite. Hence, let’s assume that it is infinite.

In order to prove the superlinear convergence rate, i.e.,

lim
k→∞

dist(zk+1,C)

dist(zk,C)
= lim

k→∞
dist(TCr(k),C�(k) (z

k),C)

dist(zk,C)
= 0, (4.23)

it suffices to show that

lim
k→∞

dist(TCr(k),C�(k) (z
k),C)

dist(Z̄Cr(k),C�(k) (z
k),C)

= 0, (4.24)

because, by (3.3) and the nonexpansiveness of orthogonal projection, we know that
dist(Z̄Cr(k),C�(k) (z

k),C) ≤ dist(zk,C), so that (4.23) follows from (4.24) immediately.
We claim that the assumption int(C) �= ∅ implies (EB1). Indeed, by Corollary 5.14

in [4], there exists k̂ ∈ N such that

ω dist(zk,C) ≤ max
1≤i≤m

{dist(zk,Ci )} = dist(zk,C�(k)), (4.25)

for all k̂ ≥ k. In addition, the nonemptyness of the interior of C , together with the
hypothesis that the boundaries of Ci are locally differentiable manifolds, proves that
these manifolds have dimension n − 1, in view of Lemma 4.18.

We remark that, when M ⊂ Rn is a differentiable manifold of dimension n − 1,
we have that if z̄ belongs to M and z ∈ Rn lies on the tangent hyperplane to M at z̄,
denoted here by TM (z̄), then

lim
z→z̄

z∈TM (z̄)

dist(z, M)

‖z − z̄‖ = 0. (4.26)

This limit is discussed in more detail in [14, Eq. 3.32].
Consider the (n−1) dimensional hyperplanes Hk

C�(k)
and Hk

Cr(k)
, which are tangent

to the manifolds, respectively at

PC�(k) (Z̄Cr(k),C�(k) (z
k)) and PCr(k) (Z̄Cr(k),C�(k) (z

k)).

Now, note that zk+1 is the circumcenter of {zk, RC�(k) (z
k), RCr(k) (z

k)}. So, zk+1 lies in
the intersection of the bisectors passing by PC�(k) (z

k) ∈ Hk
C�(k)

, and PCr(k) (z
k) ∈ Hk

Cr(k)
,

respectively. Each bisector is contained in the hyperplane Hk
C�(k)

or Hk
Cr(k)

, and hence

zk+1 ∈ Hk
C�(k)

∩ Hk
Cr(k)

. Therefore, we have, in view of (4.26),

lim
k→∞

dist(zk+1,C�(k))

‖zk+1 − PC�(k) (Z̄�(k),r(k)(zk))‖
= 0. (4.27)
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Now, using the nonexpansiveness of projections onto HC�(k) and HCr(k) , we get

‖PHC�(k)
(zk+1) − PHC�(k)

(Z̄Cr(k),C�(k) (z
k))‖ ≤ ‖zk+1 − Z̄Cr(k),C�(k) (z

k)‖.

Since zk+1 ∈ HC�(k) and PHC�(k)
(Z̄Cr(k),C�(k) (z

k)) = PC�(k) (Z̄Cr(k),C�(k) (z
k)), we get

‖zk+1 − PC�(k) (Z̄Cr(k),C�(k) (z
k))‖ ≤ ‖zk+1 − Z̄Cr(k),C�(k) (z

k)‖. (4.28)

ByLemma3.3, it holds that ‖zk+1− Z̄Cr(k),C�(k) (z
k)‖ ≤ dist(Z̄Cr(k),C�(k) (z

k),C), which
combined with (4.28), implies that

‖zk+1 − PC�(k) (Z̄Cr(k),C�(k) (z
k))‖ ≤ dist(Z̄Cr(k),C�(k) (z

k),C).

Thus, from (4.27), it follows that

lim
k→∞

dist(zk+1,C�(k))

dist(Z̄Cr(k),C�(k) (z
k),C)

= 0. (4.29)

Moreover, (4.25) yields

ω
dist(zk+1,C)

dist(Z̄Cr(k),C�(k) (z
k),C)

≤ dist(zk+1,C�(k))

dist(Z̄Cr(k),C�(k) (z
k),C)

.

Taking limits now as k → ∞, we get (4.24) and the proof is completed. ��
The next key result allows us to use the superlinear rate of a scalar distance sequence

to prove the superlinear rate of the underlying sequence.

Lemma 4.20 (Fejér monotonicity and superlinear convergence [14, Prop. 3.12]) Take
a sequence {zk} ⊂ Rn which is Fejér monotone with respect to the closed convex set
M ⊂ Rn. If the scalar sequence {dist(zk, M)} converges superlinearly to 0, then {zk}
converges superlinearly to a point z̄ ∈ M.

Next, we present the superlinear convergence result for Algorithm 2.

Theorem 4.21 (Superlinear convergence of s-cCRM (Algorithm 2)) Let
C1, . . . ,Cm ⊂ Rn be nonempty closed convex sets, and suppose that C := ⋂m

i=1 Ci is
nonempty. Let {zk} be generated by s-cCRM with the most violated control sequence
(distance version) as in (1.13), starting from some z0 ∈ Rn, and converging to a point
z̄ ∈ C. Assume that the interior of C is nonempty, and that the boundary of Ci is
a differentiable manifold in a neighborhood of z̄ for each i = 1, . . . ,m. Then, {zk}
converges to z̄ superlinearly.

Proof The result is a direct consequence of the Fejér monotonicity of {zk}with respect
to C given in Corollary 3.8, together with Lemma 4.19 and Lemma 4.20. ��

123



A successive centralized circumcentered-reflection method... 109

In the next two results we prove the superlinear convergence of Algorithm 3 under
the same assumptions.

Lemma 4.22 (Superlinear convergence of the distance for s-cCRM (Algorithm 3)) Let
C1, . . . ,Cm ⊂ Rn be nonempty closed convex sets, and suppose that C :=⋂m

i=1 Ci �=
∅. Let sequence {zk} be generated by s-cCRMwith the most violated constraint control
sequence (function value version) as in (1.15), starting from some z0 ∈ Rn, and
converging to a point z̄ ∈ C. Assume that the interior of C is nonempty and that the
boundaries of Ci are differentiable manifolds in a neighborhood of z̄ for each i =
1, . . . ,m. Also, assume that (EB2) holds at z̄. Then, the scalar sequence {dist(zk,C)}
converges to zero superlinearly.

Proof Assume that {zk} is infinite. Using the definition of (EB1) and the fact that
zk → z̄, we conclude that there exists a positive integer k̂ such that

dist(zk,C) ≤ ω

ε
dist(zk,C�(k)), (4.30)

for all k ≥ k̂, where ω and ε are the constants in EB2. By (4.30), we get

dist(zk+1,C)

dist(Z̄Cr(k),C�(k) (z
k),C)

≤ ω dist(zk+1,C�(k))

ε dist(Z̄Cr(k),C�(k) (z
k),C)

. (4.31)

Combining (4.29) and (4.31), we get (4.24) which is sufficient to guarantee (4.23).
Then the result holds. ��
Theorem 4.23 (Superlinear convergence of s-cCRM (Algorithm 3)) Let
C1, . . . ,Cm ⊂ Rn be nonempty closed convex sets, and suppose that C := ⋂m

i=1 Ci is
nonempty. Let {zk} be generated by s-cCRM with the most violated control sequence
(1.15) starting from some z0 ∈ Rn, and converging to a point z̄ ∈ C. Assume that the
interior of C is nonempty, and that the boundary of Ci is a differentiable manifold in
a neighborhood of z̄ for each i = 1, . . . ,m. Also, assume that (EB1) holds at z̄. Then,
{zk} converges to z̄ superlinearly.

Proof The result is a direct consequence of the Fejér monotonicity of {zk}with respect
to C given in Corollary 3.8, together with Lemma 4.20 and Lemma 4.22. ��

5 Numerical experiments

In this section, we present the results of the computational experiments comparing s-
cCRMwith SePM (referred as SePM) and CRM-Prod (presented in (1.5) and denoted
by CRMprod). For s-cCRM we consider Algorithm 1 (denoted by Alg1) and Algo-
rithm 3 (designated as Alg3). For Alg1 we use the cyclic control sequence given
in (1.12). In view of Lemma 4.12, we do not present results concerning Algorithm
2, since Algorithm 2 is somehow equivalent to Algorithm 3 in the presence of error
bound; see (4.11).
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We apply the aforementioned four methods to the problem of finding a point in the
intersection of m ellipsoids, i.e.,

find x∗ ∈
m⋂

i=1

ξi .

Here, each ellipsoid ξi is a set given by

ξi :={x ∈ R
n | fi (x) ≤ 0}, for i = 1, 2, . . . ,m,

with fi : Rn → R defined as

fi (x) = 〈x, Ai x〉 + 2
〈
x, bi

〉
− ci .

We consider Ai a symmetric positive definite matrix, bi a vector, and ci a positive
scalar, for each i = 1, . . . ,m.

To construct the ellipsoids we follow the steps of [13]. First, we form the ellipsoid
ξ1 by generating a matrix A1 of in the form of A1 = γ Id+B�

1 B1 with B1 ∈ Rn×n ,
γ ∈ R++. Matrix B1 is sparse with sparsity density p = 2n−1, and with components
sampled from the standard normal distribution. Vector b1 is sampled from the uniform
distribution in [0, 1], and we enforce

〈
b1, A1b1

〉
< c1, which ensures that 0 belongs

to ξ1.
Then the remaining ellipsoids, ξ2, . . . , ξm , are constructed in the following form:

ξi = {x ∈ Rn |
〈
x − xic, (A

�
i Ai )

−1(x − xic)
〉
≤ 1},

where Ai is a positive definite matrix, and xic ∈ Rn is the center of ξi for i =
2, 3, . . . ,m. To form ξ2, first randomly generate x2c of ξ2 outside ξ1. Define d2 :=
λ(Pξ1(c2) − c2) as the norm of the longest principal semi-axis of ξ2, where λ > 1 is a
constant which can decide the intersection is big or small. For ensuring this, we form a
diagonal matrix �2 = diag(‖d2‖, u) where u ∈ Rn−1 is a vector whose components
are positive and have values less than ‖d2‖, and orthogonal matrix Q2 where the first
row or column is d2‖d2‖ . Define A2 = Q2�2Q�

2 , and then the ellipsoid ξ2 is complete.
Before forming the remaining ellipsoids, we need to find a fixed point that lies in

the intersection of the m ellipsoids. Take point p = x2c + d2 ∈ ξ1 ∩ ξ2, and we will
guarantee p ∈ ξi for each i = 3, 4, . . . ,m in the following steps.

Choose an arbitrary point xic ∈ Rn which doesn’t belong to ∪i−1
j=1ξ j , define d

i =
λ(p− xic) as the norm of the longest semi-axis of ξi , and generate Ai similarly as was
done for ξ2 for each i = 3, . . . ,m. Repeat this process until we get all m ellipsoids.

The computational experiments were performed on an Intel XeonW-2133 3.60GHz
with 32GBofRAMrunningUbuntu 20.04 usingJulia v1.8 [49], and are available
at https://github.com/lrsantos11/CRM-CFP. The following conditions were used:
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Table 1 The mean ± std CPU time (in seconds) comparison per dimension and number of sets

n m Alg1 Alg3 SePM CRMprod

20 5 0.0198 ± 0.0389 0.037 ± 0.117 0.0334 ± 0.0585 0.0350 ± 0.0576

20 10 0.0098 ± 0.0102 0.0094 ± 0.0092 0.0192 ± 0.0232 0.0335 ± 0.0350

20 20 0.0096 ± 0.0087 0.0135 ± 0.0111 0.0203 ± 0.0243 0.0596 ± 0.0699

50 5 0.0417 ± 0.0280 0.0498 ± 0.0588 0.0686 ± 0.0532 0.0704 ± 0.0506

50 10 0.0372 ± 0.0293 0.0422 ± 0.0412 0.0679 ± 0.0596 0.0785 ± 0.0759

50 20 0.0372 ± 0.0233 0.0411 ± 0.0234 0.0676 ± 0.0546 0.212 ± 0.192

100 5 0.384 ± 0.611 0.354 ± 0.612 0.637 ± 0.909 0.533 ± 0.951

100 10 0.360 ± 0.620 y0.360 ± 0.625 0.623 ± 0.930 0.777 ± 0.989

100 20 60.4 ± 268.6 76.1 ± 338.5 73.7 ± 326.6 173.8 ± 772.3

1. A random initial point x0 ∈ Rn is sampled for the standard normal distribution,
ensuring that x0 /∈ ξi , for all i = 1, . . . ,m; note that for CRMprod, the initial
point is (x0, x0, . . . , x0) ∈ Rnm ;

2. We use the method described in [50, Alg. 6] to compute the projections onto
the ellipsoids. The number of projections onto ellipsoids per iteration that each
algorithm requires differs: Alg1 involves 4, Alg3 asks for 5, while both SePM
and CRMprod demand m.

3. We compare total number of projections until achieve precision and not number
of iterations, and also register CPU time (in seconds) for each algorithm.

4. A limit of 30000 total number of projections is enforced.
5. After each iteration, we calculate the current error given by

ek =
m∑

i=1

‖PCi (x
k) − xk‖,

and we establish the stopping criterion as

max{‖xk+1 − xk‖, ek} ≤ ε,

where ε = 10−6.
6. For each pair (n,m), for n ∈ {20, 50, 100} and m ∈ {5, 10, 20} we repeat the

experiment 20 times.

Tables 1and 2 summarize the results, in which we exhibit the mean and the standard
deviation of CPU running time (in seconds) and total number of projections, respec-
tively, for each algorithm. We also sum up our numerical findings in Figs. 1and 2, by
means of the so-called performance profiles from [51].Performance profiles allow one
to benchmark different methods on a set of problems with respect to a performance
measure (in our case, CPU Time and total number of projections). The vertical axis
indicates the percentage of problems solved, while the horizontal axis indicates the
corresponding factor of the performance index used by the best solver.
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Table 2 The mean ± std of total projections per dimension and number of sets

n m Alg1 Alg3 SePM CRMprod

20 5 51.0 ± 13.7 13.50 ± 4.01 32.00 ± 26.03 66.00 ± 53.18

20 10 100.0 ± 30.4 13.00 ± 4.41 64.00 ± 65.49 183.5 ± 224.0

20 20 196.0 ± 54.9 13.50 ± 4.01 121.0 ± 120.6 588.0 ± 877.0

50 5 51.0 ± 12.1 14.25 ± 4.38 34.00 ± 25.37 65.50 ± 49.34

50 10 102.0 ± 27.5 14.00 ± 4.47 66.00 ± 54.91 142.5 ± 186.4

50 20 208.0 ± 54.4 14.50 ± 4.26 142.0 ± 116.8 827 ± 1016

100 5 58.0 ± 14.4 15.25 ± 4.13 45.50 ± 26.10 66.00 ± 60.17

100 10 120.0 ± 34.3 15.50 ± 4.26 96.50 ± 64.42 255.5 ± 272.2

100 20 764.0 ± 2381.6 57.75 ± 188.86 683.0 ± 2176.3 3005.0 ± 10 336.0

Fig. 1 Performance profile of the experiments considering CPU Time (in seconds)

We briefly comment on these results. Our numerical findings show that Alg1 and
Alg3 are faster (in terms of CPU time) than their counterparts (see Table 1 and Fig. 1).
Alg3 is the one with the less number of total projections to achieve the required
tolerance, which is expected, as it uses only functional evaluation to determine the
control sequence (see Table 2 and Fig. 2). We remark that Alg1 and Alg3 perform
similarly in terms of CPU time, and when the dimension are higher, the difference
between their performance with respect to SePM and CRMprod is more evident.
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Fig. 2 Performance profile of the experiments considering total number of projections

6 Concluding remarks

In this paper we have presented the successive centralized circumcentered-reflection
method (s-cCRM) extending cCRM for solving the multiset convex feasibility prob-
lem. Our theoretical analysis encompasses the global convergence of s-cCRM and,
additionally under an error bound condition, we prove linear convergence of the
method. Moreover, we have shown that the s-cCRM is superlinearly convergent under
smoothness of the boundaries of the target sets. Furthermore, the numerical experi-
ments illustrate the proposed version of s-cCRM have better performance than SePM
and CRM-Prod. Extensions of novel circumcenter-based iterations by using more
natural centralized procedures and possible applications to structured optimization
problems are left for future research.
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