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Phonon eigenfunctions of inhomogeneous lattices: Can you hear the shape of a cone?
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We study the phonon modes of interacting particles on the surface of a truncated cone resting on a plane
subject to gravity, inspired by recent colloidal experiments. We derive the ground-state configuration of the
particles under gravitational pressure in the small-cone-angle limit and find an inhomogeneous triangular lattice
with spatially varying density but robust local order. The inhomogeneity has striking effects on the normal
modes such that an important feature of the cone geometry, namely its apex angle, can be extracted from the
lattice excitations. The shape of the cone leads to energy crossings at long wavelengths and frequency-dependent
quasilocalization at short wavelengths. We analytically derive the localization domain boundaries of the phonons
in the limit of small cone angle and check our results with numerical results for eigenfunctions.
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I. INTRODUCTION

“Can you hear the shape of a drum?” is a classic problem
formulated by Mark Kac: Can we determine the geometry
of a two-dimensional membrane from the eigenvalues of the
Laplace equation [1]? This seminal work led to a prolifera-
tion of studies on extracting geometrical information from a
system’s normal modes. For example, Ref. [2] examines how
the geometry of the pore-grain interface in a porous media
can be recovered from the eigenvalues and eigenfunctions of
the diffusion propagator. These works have focused on the
membrane as a continuous medium. In this paper, we study
the effect of a discrete periodic lattice structure with a slowly
varying lattice constant on problems of this category. We
focus on truncated cones and ask in particular whether the
fundamental shape parameter of the cone angle can be inferred
from the normal modes.

When interacting particles ordered in a two-dimensional
plane are under inhomogeneous strains (e.g., due to a gravita-
tional pressure), they can in general remove the extra energy
cost, a form of geometrical frustration, in at least two dis-
tinct ways: by forming topological defects in an otherwise
homogeneous lattice, or by maintaining a defect-free lattice
by curving into the third dimension [3–5]. We study here the
latter scenario. As we shall see, the overall shape of the curved
membrane is coupled with lattice spacings that can generally
be nonuniform, converting the lattice into an inhomogeneous
crystal.

Inhomogeneous crystals are collections of particles with
nonuniform equilibrium densities but robust well-ordered
local structures. Experimentally, such lattices have been ob-
served in plasmas under gravitational or flow fields [6–8],
foams between curved surfaces [9], ions in laser traps [10],
and, most recently, colloidal particles confined by an applied
electric field [11]. However, a complete understanding of
inhomogeneous crystals remains elusive because the inho-
mogeneity of the lattice seems incompatible with ideas from

condensed-matter physics that typically assume perfect peri-
odicity.

In this paper, we study a two-dimensional (2d) inhomoge-
neous crystal consisting of interacting particles that deform
from a cylindrical shell into a truncated cone under gravita-
tional hydrostatic pressure. In the spirit of inverse problems,
can we infer information on the shape of this cone (such as
the inclination angle) from its normal modes (in this case,
the in-plane phonons of an inhomogeneous lattice)? We an-
swer in the affirmative. Slow adiabatic changes in the lattice
spacing, controlled by the cone angle, manifest at long wave-
lengths as a reordering of low-energy eigenmodes, and at short
wavelengths as quasilocalization due to a spatially varying
local band edge, the maximum energy (or frequency) beyond
which lattice phonons cannot propagate. Our results could
be checked experimentally, for example, on systems of over-
damped density-mismatched colloidal particles adsorbed onto
conical surfaces [12,13].

The paper is organized as follows: In Sec. II, as a
simplified warm-up problem, we illustrate inhomogeneity-
induced quasilocalization of lattice excitations using a one-
dimensional (1d) model of dislocation pileups [14,15], which
exhibits the same phenomenon as the 2d conic sheet studied
in the main body of the paper. In Sec. III, we argue that a
truncated cone with a slowly varying lattice constant is the
ground state of interacting particles with cylindrical boundary
conditions under gravitational pressure. In Sec. IV, we study
the effect of inhomogeneity on the in-plane phonons. We
find that low-frequency phonons exhibit interesting energy
crossings as a function of the cone angle (Sec. IVB) and high-
frequency phonons are localized inside spatial domains whose
sizes depend on the cone angle. We derive the localization
domain boundaries as a function of the phonon frequency and
the angle of the cone by using two complementary methods:
We recover this boundary (1) in momentum space by identify-
ing the spatially varying band edge (Sec. IVC), and (2) in real
space by a mapping to Schrödinger’s equation and applying
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an inverted Wentzel-Kramers-Brillouin (WKB) analysis (or
the Liouville-Green method, also due to Jeffreys) [16–20]
(Sec. IVD).

While it is well known that quasilocalized eigenmodes
exist in disordered condensed-matter systems and amorphous
solids [21–23], these previous studies commonly focused on
ensemble averages of the density of states of the quasilo-
calized eigenmodes and the distribution of their localization
lengths. In contrast, our work analyzes quasilocalization in
lattices where the inhomogeneity is not random but instead
is slowly varying and precise and analytically determines the
locations of the localization domains.

Finally, quasilocalized modes have also been found in
crystals with defects, where the thermal excitations local-
ize around defects that are already existent in the zero-
temperature ground state [3,4,11]. The inhomogeneous lattice
studied in this paper is defect-free and thus shows a different
mechanism for quasilocalized excitations in crystals.

II. ONE-DIMENSIONAL EXAMPLE:
DISLOCATION PILEUPS

We expect that the localization effect we find for inhomo-
geneous cones (Secs. III and IV) occurs more generally in
inhomogeneous lattices. Here, we illustrate this phenomenon
in a relatively simple one-dimensional inhomogeneous lattice
with long-range interactions and only longitudinal phonons,
inspired by the physics of dislocation pileups [14,15].
Specifically, we show that the normal modes of 1d dis-
location pileups, a type of defect assembly embedded in
two-dimensional crystals [14], exhibit quasilocalization as a
function of the phonon frequency, due to a position-dependent
band edge. Readers are referred to Appendix A for details and
may skip ahead to Sec. III without loss of continuity.

Dislocation pileups exemplify an intriguing class of 1d
inhomogeneous lattices, whose constituents are not particles
but point-like edge dislocation defects in a two-dimensional
host crystal [14]. The dislocations, once emitted in response
to a stress field, all have the same Burgers vector topological
charge and interact via a long-ranged logarithmic potential,
with an average dislocation density determined by the form of
the external shear stress [15].

Figure 1 shows the eigenfunctions for two types of pileups,
resulting from applied stress fields in the two-dimensional
host lattice that are uniform [Fig. 1(a)] and linearly varying
[Fig. 1(b)] in space. The eigenfunctions are stacked vertically
according to their eigenenergies !. For both types of pileup,
the eigenfunctions become more localized as ! increases,
with a localization domain concentrated within the densest
parts of the pileup as the eigenmode frequency increases.

We find the localization domain boundaries of the longi-
tudinal pileup phonon modes by calculating the band edge of
the phonon dispersion for a uniform pileup (see Appendix A
or Ref. [15]), given by the simple condition

!edge =
Yb2π
16D2

, (1)

where D is the average dislocation spacing of the pileup, Y
is the Young’s modulus of the 2d host crystal, and b is the
magnitude of the dislocation Burgers vector. Eigenmodes with

FIG. 1. The localization boundaries in one dimension predicted
by Eq. (2) (thick red lines) and the numerical phonon eigenfunctions
(thin blue lines) for two types of pileups with different average
dislocation densities n(x̄), where x̄ ≡ x/(L/2), plotted in gray and
illustrated by schematics of dislocations. The eigenfunctions are
stacked vertically according to their rescaled eigenenergies !. As
predicted by Eq. (2), the localization boundaries are proportional to
n(x)2: the eigenfunctions localize towards the densest parts of the
dislocation lattice [the edges in panel (a) and the center in panel (b)]
as ! increases.

frequencies above this threshold! > !edge enter the band gap
and decay exponentially since the dislocation lattice cannot
resolve and propagate the phonon, instead generating strong
backscattering (Bragg diffraction in one dimension). When
the dislocation lattice spacing is space-dependent, D = D(x),
as in the case for the pileups shown in Fig. 1, the local band
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edge becomes slowly varying in space, with ! = !(x). On
using Eq. (1), the localization domain [x−, x+] and energy !
of the band edge satisfies

!(x±) = Yb2π
16

n(x±)2. (2)

where n(x) is the average dislocation charge density, related
to the dislocation lattice spacing via D(x) = |n(x)|−1.

To illustrate the result in Eq. (1), we take for example
the double pileup and the semicircle pileup, whose average
dislocation charge densities, nD(x) and nSC(x), respectively,
are given by [14,15]

nD(x) =
4σ0

Yb
x

√( L
2

)2 − x2
, (3)

nSC(x) =
4σ0

Yb

√

1 −
(

x
L/2

)2

, (4)

where b is the signed magnitude of the dislocation Burgers
vector, and σ0 is the strength of the applied shear stress.
The densities and eigenfunctions of these pileups are plotted
in Fig. 1. Note that the domain of localization tracks the
square of the dislocation density profile ≈n(x)2. Equation (2)
is plotted in red Fig. 1 and shows good agreement with the
localization domains of our numerical eigenfunctions for the
two dislocation densities shown.

Nonlinear interactions between the dislocation degrees of
freedom is essential for the quasilocalization phenomena. In
contrast, a chain of balls and springs with constant stiffness
on an inclined surface, which also assumes an inhomogeneous
configuration, does not exhibit quasilocalization because the
interaction strengths embodied in the spring constants are
independent of the inhomogeneous lattice spacing (see Ap-
pendix B for details).

III. CONE SHAPE

In this section, we introduce a particularly simple two-
dimensional microscopic model with an inhomogeneous
lattice constant: particles initially within a 2d cylindrical sheet
interacting via a Lennard-Jones (LJ) pair potential, which then
deforms under gravitational pressure (Sec. III A below). Un-
like a sheet in the flat plane with gravity pointing downwards
in the plane of the sheet (see Appendix C), a cylindrical shell
subjected to a weak gravitational field parallel to the cylinder
axis relieves its frustration by transforming into a truncated
cone with an inhomogeneous lattice spacing (see Sec. III B).
In Sec. III C, we map our discrete particle model onto contin-
uum elasticity theory to derive the cone angle as a function of
the microscopic parameters and the spatially varying lattice
spacing as a function of the cone surface coordinates. (In
Sec. IV, we show that information about the cone angle can
also be inferred from the phonon spectrum.)

A. Microscopic model

Consider a 2d system of particles interacting via a pair
potential Vint and experiencing an external one-body potential

Vext:

H[{r⃗n}] =
∑

n ̸=m

Vint(r⃗n, r⃗m)+
N∑

n=1

Vext(r⃗n), (5)

where N is the total number of particles and n,m are particle
indices. For concreteness, we work with an isotropic interac-
tion potential Vint(r⃗, r⃗ ′) = Vint(|r⃗ − r⃗ ′|) of the Lennard-Jones
form

Vint (r) = ε

[(
a0
r

)12

− 2
(
a0
r

)6]
, (6)

which has both a repulsive and an attractive component, with
a potential minimum at r = a0. [Upon setting σ ≡ 2−1/6a0,
Eq. (6) can be rewritten in the usual way,Vint (r) = 4ε[( σ

r )
12 −

( σ
r )

6].] Without an external potential, particles in the ground
state form a triangular lattice with a uniform lattice constant
a0 [see Fig. 2(a)] [24]. However, as shown in the next section,
the classical ground state can be distorted in an interesting
way by a nonzero gravitational potential,

Vext(r⃗ ) = mgz, (7)

wherem is the effective particle mass and g is the gravitational
acceleration. In colloidal experiments, m can be changed by
tuning the density mismatch between the colloid and the sol-
vent. The pair potential in Eq. (5) is assumed to act in three
dimensions, along a chord connecting atoms embedded in a
cone or cylinder. In settings where the colloids are adsorbed
onto a cylindrical or conical substrate, the effective bend-
ing rigidity is made very large by the attractive interaction
between the colloids and the substrate surface, so flexural
phonons are frozen out. (For example, when the depletant
concentration is fixed, the interaction strength between the
colloidal particles, and between a particle and the substrate,
is the depletion force, which is proportional to the associated
overlap volume. When the substrate is smooth and much
larger than the particle, the particle-substrate interaction is
always much stronger than the particle-particle interaction
according to overlap volume geometry [25,26].) Henceforth,
we ignore flexural phonons and focus only on the physics of
in-plane fluctuations in Sec. IV.

The microscopic model in Eq. (5)–(7) can be mapped at
long wavelengths onto continuum elasticity theory. We use the
latter tool to calculate the inhomogeneous equilibrium lattice
positions under the gravitational potential in the next section
and elaborate on the details of this mapping in Sec. III C.

B. Elasticity theory

We first examine a 2d cylindrical sheet with uniform elastic
coupling constants using continuum elasticity theory and then
calculate the equilibrium displacements under gravitational
pressure. As detailed in Appendix D, these displacements hold
for the lattice of interacting particles in Eq. (5) when the
gravitational pressure is sufficiently weak such that

α0

2B
Lz
2

≪ 1, (8)

where B = µ+ λ is the bulk modulus of the unperturbed
crystal and α0 is proportional to the gravitational constant
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(c) (d)

(a)

(b)

FIG. 2. (a) The ground-state configuration of N particles inter-
acting via the Lennard-Jones potential in a cylindrical sheet is a
triangular lattice with lattice constant a0, height Lz, and rim circum-
ference Lx . (b) Under gravitational pressure, the cylinder deforms
into a truncated cone with length r0. The coordinates of the cone
are the azimuthal angle φ, the longitudinal length along the surface
r. The cross-sectional radius R = R(r) increases as a function of r.
(c) The sector angle ( of the rolled out cone is related (d) to the apex
angle θ by θ = (/π . The numerical parameters used in this figure
are (Lz, Lx, a0,N, θ ) = (13

√
3, 24, 1, 648, 1.1◦).

g controlling the hydrostatic pressure of, say, density-
mismatched colloids in a solvent [see Eq. (34) below] such
that α0(L − z) is the isotropic pressure experienced by the
elastic sheet. In the limit described by Eq. (8), the resulting
configuration describes a truncated cone [Fig. 2(b)], with the
precise correspondence shown in Eqs. (22)–(26) below. Thus,
a cylinder whose circular base is free to slide on the flat sur-
face on which it rests collapses downward and inward under
gravitational pressure, resulting in the cylinder base being
smaller and denser than its less-deformed upper end.

A two-dimensional cylindrical sheet with periodic bound-
ary conditions imposed along x and the axis of symmetry
pointing along z, under a gravitational potential can be studied
as for the similar problem of a three-dimensional (3d) elastic
solid subject to gravity, as discussed in Ref. [27]. Under an
isotropic pressure that increases with decreasing vertical co-
ordinate z (lower portions of the sheet bear more weight from

above), the cylindrical sheet’s free energy is given by

F = 1
2

∫
d2r

[
2µu2ik + λu2ii + 2α0(Lz − z)uii

]
, (9)

where ui j = 1
2 (

∂ui
∂r j

+ ∂u j

∂ri
) is the strain tensor, µ and λ are the

first and second 2d Lamé coefficients, and u⃗(r⃗ ) is the displace-
ment of the sheet from its α0 = 0 equilibrium configuration at
position r⃗. The nondeformed (α0 = 0) cylindrical sheet has
a height of Lz and a rim circumference of Lx. The natural
boundary conditions for this problem are (1) anchoring the
bottom edge of the sheet at the base, which requires that the
vertical displacements uz vanish at z = 0, and (2) the stresses
vanish at the upper edge z = Lz of the truncated cone.

In the absence of pressure (α0 = 0), the free energy in
Eq. (9) is minimized when the equilibrium displacements ūi
vanish and the strain tensor ūi j = 0 for all i, j. We now cal-
culate the equilibrium positions under nonzero α0 by finding
the set of uniform strains ūi j that minimize Eq. (9). Since the
gravitational term is isotropic and does not depend on uzx, we
immediately have ūzx = 0. Upon setting the derivatives of the
free energy F with respect to uzz and uxx to zero and using
the boundary conditions ūzz = ūxx = 0 at z = Lz, we obtain
the polar projection of the displacements as [see Fig. 2(c) and
Appendix C for details]

ūz =
α0

2B

(
z2

2
− Lzz − x2

2

)
, (10)

ūx =
α0

2B
(z − Lz )x, (11)

where B = µ+ λ is the 2d bulk modulus. Upon assuming
the gravitational pressure to be sufficiently weak [Eq. (8)]
and imposing periodic boundary conditions by wrapping the
sheet around in the x direction to form a cone, we obtain
the axial and azimuthal displacements in terms of the surface
coordinates as (see Appendix E for details)

ūr =
α0

2B

(
r2

2
− r0r

)
, (12)

ūφ = α0

2B
Lx
2π

(r − r0)φ, (13)

where r is the longitudinal coordinate along the surface, r0
is the longitudinal length of the truncated cone, φ is the
azimuthal angle around the cone axis [see Fig. 2(b)], and
the zero displacement boundary condition at the bottom edge
ūr = 0 at r = 0 is now satisfied, in contrast with Eq. (10).

Upon redefining ui → ui − ūi in Eq. (9), where ūi is the
equilibrium displacement of the cone relative to the cylinder,
we can eliminate (gauge away) the pressure term in the free
energy (see Appendix F 1 for details) and obtain, up to an
additive constant,

F = 1
2

∫
d2r

(
2µu2ik + λu2ii

)
. (14)

We now calculate the apex angle θ of the cone [Fig. 2(d)],
as a function of the gravitational pressure coefficient α0 and
elastic constants µ and λ, from the sector angle of an unfolded
cone given by [see Fig. 2(c)]

tan
(

2
= +x

+z
, (15)
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where,

+x = ūx
(
x = Lx

2
, z = Lz

)
− ūx

(
x = Lx

2
, z = 0

)
,

+z = ūz
(
x = Lx

2
, z = Lz

)
− ūz

(
x = Lx

2
, z = 0

)
+ Lz.

(16)
Upon substituting Eqs. (10) and (11) into Eq. (16), we obtain,
as a function of α0, the cone dimensions, and the bulk modulus
B = µ+ λ,

+x = α0

2B
LxLz
2

, (17)

+z = − α0

2B
L2
z

2
+ Lz. (18)

The sector angle is then given by, using Eq. (15),

tan
(

2
=

α0
2BLx

2
(
1 − α0

2B
Lz
2

) . (19)

If the gravitational pressure is weak enough such that Eq. (8)
holds, we can approximate ( to first order in α0 as

( ≈ α0

2B
Lx + O

[(
α0

2B
Lz
2

)2]
, (20)

plotted as red dashed lines in Fig. 2(c). The apex angle
[Fig. 2(d)] in this weak pressure regime is then given by
θ = (/π as,

θ ≈ α0

2πB
Lx. (21)

We now determine the smoothly varying lattice spacing
a(z) produced by this cone angle, using Eq. (11), as

a(z) = a0 + ūx(x = a0, z) − ūx(x = 0, z) (22)

= a0

[
1+ α0

2B
(z − Lz )

]
, (23)

where a0 is the lattice constant of the truncated cone at its
upper edge, i.e., height z = Lz. The vertical coordinate z of the
unrolled flat sheet is proportional to the longitudinal coordi-
nate r climbing up along the surface of the truncated cone [see
Fig. 2(b)]. When the gravitational pressure is weak enough
such that the approximation in Eq. (20) holds, we can rewrite
Eq. (23) as

a(r) = a0

[
1+ θ

π

Lx
(r − r0)

]
, (24)

where r0 is the total length of the cone along its inclined
surface, as indicated in Fig. 2(b), and we have written r0 =
Lz(1 − θ π

2
Lz
Lx
) ≈ Lz, an approximation accurate to first order

in θ = (/π .
The spatially varying lattice spacing in Eq. (24), derived

using the elasticity solution in Eq. (11), is precisely that of a
cylindrical lattice deformed isotropically onto the surface of a
cone with apex angle θ given by

a(r)
a0

= R(r)
R0

= r sin (θ/2)
Lx/2π

(25)

≈ 1+ θ
π

Lx
(r − r0), (26)

where R ≡ r sin θ
2 is the radius of the horizontal cross section

of the cone [see Fig. 2(d)], and R0 is the cross-sectional radius
at the top of the truncated cone. Finally, Eqs. (11) and (24)
show that the lattice constants at the top of the cone are
not distorted, since the gravitational pressure −2α0(Lz − z)uii
vanishes there in our model, as is reasonable because there
are no particles above this top rim exerting gravitation forces.
Hence, the circumference Lx of the cylindrical rim is equal to
the circumference of the top end of the truncated cone.

Finally, we note that, in arriving at the solutions above, we
have assumed constant effective coupling coefficients µ and
λ. In the case of interaction potentialsVint(r) which depend on
the interparticle distance, inhomogeneity in the ground-state
lattice would render the Lamé coefficients space-dependent.
This nonlinear feedback would manifest in Eq. (9) as

F = 1
2

∫
d2r

[
2µ(r⃗ )u2i j + λ(r⃗ )u2ii + 2α0(Lz − z)uii

]
. (27)

However, we show in Appendix D that this nonlinearity
can be neglected in the small-angle regime [i.e., Eq. (8)],
where the ground-state equilibrium displacements are well-
approximated by those provided by the linear solutions in
Eqs. (10) and (11). However, as the numerical calculations
in Sec. IV show, this inhomogeneity in the elastic coefficients
have a non-negligible effect on the normal modes and is key
to the physics of fluctuations.

C. Connection between elasticity theory
and a microscopic model

We now further detail the mapping between the micro-
scopic model in Sec. III A and the elastic free energy in
Sec. III B. In the following sections, we express the pressure
coefficient α0 and elastic constantsµ, λ in Eq. (9) and the cone
angle θ in Eq. (21) in terms of the parameters of the specific
microscopic Hamiltonian (5) by using a Lennard-Jones pair
potential.

1. Gravitational pressure

Upon integrating the gravitational part of the continuum
free energy (9) by parts, we obtain

Fext = α0

∫
d2r(Lz − z)uii (28)

= −α0

∫
d2r[∂i(Lz − z)]ui(r⃗ )+ S. (29)

The surface term S vanishes, as can be seen by evaluating

S = α0

[∫
dz(Lz − z)ux

∣∣∣∣
x=Lx

x=0
+

∫
dx(Lz − z)uz

∣∣∣∣
z=Lz

z=0

]
(30)

= α0

{∫
(Lz − z)[ux(x = Lx, z) − ux(x = 0, z)]dz

+Lx[(Lz − Lz )uz(x, z = Lz ) − (Lz − 0)uz(x, z = 0)]

}

.

(31)
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The first term vanishes by our cylindrical boundary conditions
along x and the last term vanishes by the fixed boundary con-
dition at z = 0. The free energy due to the external potential
then becomes

Fext = α0

∫
d2rδizui(r⃗ ) (32)

= α0a2
∑

n

zn + const. (33)

Upon identifying

α0 =
mg
a2

, (34)

where g is the gravitational acceleration and m is the effective
mass of one particle, we see that Fext corresponds to Hext
from the microscopic Hamiltonian in Eq. (7) up to an additive
contribution to the energy.

2. Effective Lamé coefficients

To find the effective elastic coefficients corresponding to
the microscopic Hamiltonian such as Eq. (5), we first recall
that the dispersion relations at long wavelengths for a ho-
mogeneous lattice with short-range interactions is given by
elasticity theory as [29]

!T = mω2
T = µ(qa)2, (35)

!L = mω2
L = (2µ+ λ)(qa)2, (36)

where q is the momentum, ωL and ωT are the longitudinal
and transverse phonon frequencies, respectively, and !L and
!T are the corresponding eigenenergies. As shown later in
Sec. IVC (see also Appendix F 2), for particles in a triangular
lattice interacting via the Lennard-Jones potential in Eq. (6),
the dispersion curves at long wavelengths are

mω2
T = (qa)2ε

27
a2

, (37)

mω2
L = (qa)2ε

3 × 27
a2

. (38)

Thus, the effective Lamé coefficients for our microscopic
Lennard-Jones model are given by

µ = λ = 27
ε

a2
. (39)

We immediately see that the elastic constants are spatially
varying if the lattice spacing a = a(r) is spatially varying,
as in the case of the cone. Note that the corresponding Pois-
son ratio ν = λ/(2µ+ λ) is equal to 1/3, which satisfies the
Cauchy condition for isotropic interaction potentials [28]. [We
note that, for systems of particles with sufficiently long-range
repulsive interactions such as Vint (r) ∼ 1/r, the effective λ
becomes infinite in the long-wavelength limit [29,30]. This
is equivalent to the observation that the Wigner crystal is
incompressible [29].]

3. Cone angle

Upon combining Eqs. (20), (34), and (39), we obtain the
apex angle of the cone in terms of the microscopic Lennard-

Jones pair potential parameter ε as

θ = Lxmg
108πε

. (40)

Thus, under a gravitational field parallel to the axis of sym-
metry, a cylindrical shell of circumference Lx consisting of
particles with effective mass m interacting via the LJ potential
in Eq. (6) with strength ε, will assume the shape of a cone
with angle θ given by Eq. (40).

IV. CONE PHONONS: FREQUENCY-DEPENDENT
LOCALIZATION

Can you hear the shape of a cone? In this section, we exam-
ine the eigenmodes of a 2d lattice in the shape of a truncated
cone. We find that the cone shape, namely its apex angle θ ,
controls level crossings at long wavelengths and eigenfunction
quasilocalization at short wavelengths.

In Sec. IVA, we study the fluctuation energy to second
order in particle displacements. In Sec. IVB, we show that the
low-frequency normal modes have robust vortex and antivor-
tex configurations in their eigenfunctions and exhibit changes
in energy ordering as a function of the cone angle θ .

In the upper half of the phonon spectrum, we find that
eigenmodes at high frequencies are confined towards the bot-
tom of the cone, where the lattice is most compressed. We use
two methods to identify the analytical relation between the
eigenenergy ! and the position r∗ of the localization domain
boundary, measured from the base up the flanks of the cone. In
Sec. IVC, we find the space-dependent local band edge (the
maximum eigenenergy above which all modes decay expo-
nentially) by calculating the dispersion relation. In Sec. IVD,
we map our equations of motion onto Schrödinger’s equation
and find the turning point using an upside-down WKB analy-
sis. These two methods give identical results: the localization
domains [0, r∗] of the high-frequency eigenfunctions on a
cone with small apex angle θ are given, in terms of the pa-
rameters ε and a0 specifying the Lennard-Jones pair potential
[Eq. (6)], by

r∗(!; θ ) = r0 +
3

62π
Lx
θ
[C(ε, a0) − ln!], (41)

where r0 is the total length along the cone flank, C(ε, a0) =
ln(432ε/a20) is a constant, and Lx and a0 are the circumference
and lattice constant, respectively, of the undeformed cylinder.
(The parameter a0 is also the lattice constant along the top rim
of the truncated cone where the lattice is undeformed by the
gravitational field.) Thus, given the phonon eigenenergy !,
Eq. (41) predicts the location r∗ above which its eigenfunction
decays exponentially. Note that r and r∗ in Eq. (41) can be
replaced with z and z∗ to first order in θ . Finally, Eq. (41), eval-
uated when r∗ = r0, also gives the threshold eigenfrequency
!deloc below which all eigenfunctions are delocalized,

ln!deloc = C(ε, a0). (42)

The criterion embodied in Eq. (41) is plotted in green in Fig. 3
and shows good agreement with the numerical eigenfunctions.

A. Phonon spectrum

To examine the fluctuations about the conical ground state
in Figs. 2(b) and 2(c), we decompose the position of the nth
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(a) (b)

r0 r0

FIG. 3. Localization of high-frequency eigenfunctions for N particles interacting via a LJ potential on the surface of a cone, with
geometrical parameters (Lz, Lx,N, θ ) = (13

√
3, 24, 648, 1.1◦), longitudinal cone length r0 ≈ 21.25, and undeformed lattice constant a0 = 1.

(a) The longitudinal component and (b) absolute magnitude of the numerical eigenfunctions stacked up vertically according to the logarithm of
their eigenenergies. In panel (a), ur (r,φ = 0) is the longitudinal displacement at one value of φ and ⟨|u⃗(r,φ)|⟩φ is the displacement magnitudes
in each row of the cone averaged over the azimuthal angle θ (e.g., for lattice sites with the same r coordinate). The thick green line is Eq. (41),
which clearly identifies the localization domain boundaries of the eigenmodes as a function of !. !deloc marks the eigenenergy below which
all eigenfunctions are delocalized. The inset on the right plots the eigenenergies ! as a function of the eigenmode index. The blue (dark) points
highlight the range of eigenenergies whose corresponding eigenmodes experience quasilocalization.

particle as r⃗n = R⃗n + u⃗n, where R⃗n is its equilibrium position
and u⃗n is its displacement away from equilibrium. Henceforth,
i, j, k = 1, 2 will be used as direction indices and n,m =
1, . . . ,N as particle indices.

Upon expanding the fluctuation energy to second order in
displacements u⃗n, the linear terms vanish by force balance.
The gravitational potential, although it determines the spatial
variation of the lattice constant in the ground state, drops
out. Upon neglecting constant terms, we obtain the fluctuation
energy as

+E =
∑

n ̸=m

1
2
/i j (R⃗n − R⃗m)(un − um)i(un − um) j, (43)

where, for the Lennard-Jones interaction potential in Eq. (6),
/i j (+R⃗) is given by

/i j (+R⃗) = ε

[
a120

(
12(12+ 2)

+Ri+Rj

|+R⃗|12+4
− 12

δi j

|+R⃗|12+2

)

−2a60

(
6(6+ 2)

+Ri+Rj

|+R⃗|6+4
− 6

δi j

|+R⃗|6+2

)]
. (44)

As a check, we compare our analytical results in Secs. IVC
and IVD against numerical eigenfunctions. These eigenfunc-
tions are obtained by solving the real-space eigenproblem,

Mu(α) = !αu(α), (45)
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Cylinder Cone

1

2

(3, 4)

5

(4, 5)

3

2
1

(degrees)

FIG. 4. The central plot shows the five lowest energy levels of the cone as a function of increasing apex angle θ . The corresponding
eigenmodes are shown in the cylindrical limit θ = 0◦ (left) and at θ = 2.4◦ (right). The enlarged black arrows indicate the displacements at
selected lattice sites. The blue and red lines indicate zeros of the horizontal displacements ux and vertical displacements uz, respectively. The
level crossing between the (T, nr = 1, nφ = 0) mode and the (T, nr = 1, nφ = 1), (T, nr = 1, nφ = −1) doublet (shown as the thick line in
the central plot) occurs at θ ≈ 1.5◦. As discussed in the text, T specifies a transverse long-wavelength mode, while nr and nφ are integers
specifying node numbers.

with fixed boundary conditions at the lower rim, where α
indicates the αth normal mode and the dynamical matrix M
depends on /i j (see Appendix F 4 for details).

B. Properties of low-frequency eigenmodes

The low-frequency normal modes exhibit interesting be-
havior as a function of apex angle θ . Figure 4 shows the
five lowest eigenenergies and their eigenfunctions at θ = 0
(the limit of the cylinder) and θ ≈ 2.42◦. We can classify the
eigenfunctions by node counting. The blue lines mark where
the horizontal displacement ux crosses 0 and the red lines
mark where the vertical displacement uz crosses zero. Note
that the crossing of two longitudinal node lines of different
orientations [i.e., a horizontal blue (ux = 0) line and a vertical
red (uz = 0) line] coincides with a vortex-like texture in the
displacement field, while the crossing of two transverse node
lines of difference orientations [i.e., a vertical blue (ux = 0)
line and a horizontal red (uz = 0) line] corresponds to an an-
tivortex configuration in the displacement field. These vortices
and antivortices in the eigenfunctions are stable to perturba-
tions, or in other words, topologically protected. These vortex
configurations are thus preserved as we tune the apex angle
away from zero. In contrast, the crossing between a transverse
node line and a longitudinal node line (i.e., two red lines or
two blue lines) are not robust and can easily vanish under a
slight conical deformation.

Since the vortex configurations stay robust under the con-
ical perturbation, we can use them to identify and track the
eigenmodes as we tune θ adiabatically. For a cylinder (θ =
0), the number of nodes along the x and z directions, nx

and nz, determine the wave numbers of the eigenfunctions at
long wavelengths. For periodic boundary conditions along x
and bottom-clamped boundary conditions along z, these wave
functions behave according to

u(x, z) ∼ sin (kzz) cos (kxx), (46)

where,

kz =
π

Lz

(
nz +

1
2

)
, nz = 0, 1, 2, . . . , (47)

kx =
2π
Lx

nx, nx = 0,±1,±2, . . . . (48)

Note that in cone coordinates, we have nz → nr and nx → nφ .
Additionally, since we are in two dimensions, the eigenmodes
at low energies split into two branches, transverse and lon-
gitudinal (see Fig. 5). To combine this information, we can
classify each low-energy normal mode by identifying whether
it is transverse (T) or longitudinal (L), and then counting the
number of nodes along r (nr) and φ (nφ ). For example, in
the cylindrical limit θ = 0, the eigenmodes, in order of in-
creasing frequency, are (T, nr = 0, nφ = 0), (L, nr = 0, nφ =
0), (T, nr = 1, nφ = 0), (T, nr = 1, nφ = 1), (T, nr = 1, nφ =
−1).

In contrast, at θ = 2.42◦, this ordering changes to (T, nr =
0, nφ = 0), (L, nr = 0, nφ = 0), (T, nr = 1, nφ = 1), (T, nr =
1, nφ = −1), (T, nr = 1, nφ = 0). That is, eigenmode three
swaps order with eigenmodes four and five. As shown in
Fig. 4, this level crossing occurs at approximately θ ≈ 1.52◦.
Note that eigenmodes four and five at θ = 0 (eigenmodes
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FIG. 5. Phonon dispersion curves for a uniform triangular lattice
resulting from nearest-neighbor interactions under the Lennard-
Jones potential along the 0-K-M-0′ loop of the first Brillouin zone,
as shown in the inset. Near the Brillouin-zone center 0, lower (or-
ange) phonon branches have transverse characteristics and higher
(blue) phonon branches have longitudinal characteristics. High-
frequency modes (gray) along the Brillouin-zone boundary (K-M)
have mixed transverse and longitudinal properties.

three and four after the level crossing) are degenerate dou-
blets.

This level crossing is interesting for two reasons. First, it
suggests that we can probe the angle of the cone by measuring
the ordering of its lowest-energy eigenmodes. Second, we
know that for Hermitian matrices, level crossings for a sys-
tem with k parameters can only occur on a (k − 2) manifold
[31–33]. Since our conical system has only one parameter
(θ ), level crossings are not allowed unless some symmetry is
present to relax the condition. What accidental symmetry in
this system allows the eigenvalues to cross when θ ≈ 1.5◦ is
an interesting question for future investigations.

C. Moving band edges

In this section, we derive the localization domain boundary
of the high-frequency phonons on the cone by first calculating
the band edge of the dispersion relations for the interacting
particles on a uniform triangular lattice. Provided the lattice
parameter varies slowly in space (i.e., if the external grav-
itational field is weak), we can compute a local band edge
that varies spatially throughout the cone as a function of r,
giving us a stopping criterion for a fixed phonon eigenenergy
!. We compare the predicted domain boundary to numerical
eigenfunctions and see good agreement.

Since the Lennard-Jones (LJ) interaction potential is short
ranged, we truncate to nearest-neighbor interactions in the
following calculations. (As detailed in Appendix F 2, the ad-
dition of next-nearest-neighbor interactions has a negligible
effect on the band edge.) Upon rewriting the summation in
Eq. (43) as a sum over center sites {R⃗m} and their nearest
neighbors {R⃗m + n⃗α|α = 1, . . . , 6}, where {n⃗α} are the six
nearest-neighbor lattice vectors, we obtain

+E = 1
2

∑

m

∑

i j

∑

α=1,...,6

/i j (n⃗α )[ui(R⃗m + n⃗α ) − ui(R⃗m)]

× [u j (R⃗m + n⃗α ) − uj (R⃗m)]. (49)

After incorporating the dynamical term
∑

n
m
2 | ˙⃗un|

2 in the
Hamiltonian, calculating the equations of motion, and assum-
ing a wave-like solution of the form

ui(R⃗m) = eiq⃗·R⃗meiωt ui(q⃗ ), (50)

where q⃗ is the momentum and ω is the physical frequency of
the in-plane phonons, we arrive at the following eigenvalue
problem:

!(q⃗ )ui(q⃗ ) = Di j (q⃗ )u j (q⃗ ), (51)

where the dynamical matrix Di j (q⃗ ) is given by

Di j (q⃗ ) =
∑

α=1,...,6

/i j (n⃗α )[1 − cos (n⃗α · q⃗ )], (52)

and !(q⃗ ) = mω(q⃗ )2 are its eigenvalues.
Calculation of the dynamical matrix and its eigenvalues

is detailed in Appendix F 2. Figure 5 shows the analytical
dispersion curves in the first Brillouin zone.

As shown in Appendix F 2, the upper band edge of the
spectrum (i.e., the symmetry point M in Fig. 5) for a uniform
lattice with a LJ pair potential and lattice constant a0 is simply

!edge = 432
ε

a20
. (53)

For a slowly varying inhomogeneous lattice with a = a(r), we
expect that the band edge becomes space-dependent as

!edge[a(r)] =
6ε

a(r)2

[
152

(
a0
a(r)

)12

− 80
(

a0
a(r)

)6]
. (54)

Upon substituting Eq. (24) for the lattice spacing a(r) of
the cone into the band-edge criterion in Eq. (54), taking the
logarithm of both sides of the equation, and expanding to first
order in θ , we have

ln!edge(r) = ln
(
432ε
a20

)
− 62

3
π

Lx
θ (r − r0). (55)

Upon inverting the expression above, we recover the localiza-
tion condition for small cone angles displayed in Eq. (41).

D. Effective potential and inverted Wentzel-Kramers-Brillouin

In this section, we obtain further insights by identifying
a change of variable that smooths out the rapidly varying
displacement field of the phonon at the band edge. This trans-
formation allows us to map our eigenvalue equation in the
continuum limit onto a Schrödinger-like equation with the
momentum transformation p → ip. We then apply an inverted
1d WKB analysis to the cone along the r direction to arrive at
an alternative derivation of Eq. (41).

Figure 6(a) shows the highest-frequency eigenmode for the
cylinder. The short-wavelength patterns of the displacement
varies rapidly in space on the scale of the lattice constant,
and gradually vanishes near the top and bottom edges. By
applying a change of variables that flips the sign of the dis-
placement in every other row and every other column [marked
by the colored sites in the inset of Fig. 6(a)], we arrive at a
configuration where the displacements in every other row are
identical in orientation and similar in magnitude, while the
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(a)

(b)

FIG. 6. (a) The displacements corresponding to the highest-
energy eigenmode of the cylinder with a free boundary at the top
and a fixed boundary at the bottom. The inset illustrates the trans-
formation of variables described in the main text for a central site
and its six nearest neighbors: the presence of a colored shape at a
site indicates that the sign of the displacement there is to be flipped.
A red circle (blue square) indicates that the flipped displacement at
that site is purely vertical (horizontal). Note that overall, this results
in flipping the displacement at every other site along each vertical
stripe in the triangular lattice, such as those highlighted in red or
blue in the main figure. (b) The highest-energy eigenmode after the
change of variables illustrated in the inset of panel (a).

rows alternate between pure vertical displacements and pure
horizontal displacements [Fig. 6(b)].

Upon applying this change of variables to the band-edge
eigenfunction in Fig. 6(a), the transformed displacement field
in Fig. 6(b) has two key characteristics: (1) displacements

FIG. 7. Vertical stretching of a pair of sites aligned in the hori-
zontal direction by +z. The effective spring constant k1d is extracted
from the elongation energy of the four affected bonds {n⃗b|b =
1, . . . , 4}.

within the same row are identical, and (2) displacements in
every other row vary smoothly along the vertical direction. In
Fig. 6(b), the red (blue) stripes highlights the sites aligned in
the horizontal direction, interleaved by rows where there is
zero vertical (horizontal) displacement.

Hence, we reduce the two-dimensional eigenfunction prob-
lem to a one-dimensional one along the z coordinate of the
cylinder (i.e., the r coordinate along the flank of the cone),
as indicated by the vertical stripes in Fig. 6(b). We then
“integrate out” the intercepting row, where the displacement
direction abruptly rotates by 90◦, by calculating an effec-
tive spring constant between two horizontally aligned sites.
As shown in Fig. 7, to calculate the effective longitudinal
spring constant of the triangular lattice, we imagine stretching
the vertical distance between the two sites by +z. We then
calculate the elastic energy +Es from this stretching +ui =
±δi2+z/2 using Eq. (44) as follows:

+Es(+z) =
∑

b=1,...,4

/i j (n⃗b)
(

δ2i
+z
2

)(
δ2 j

+z
2

)
, (56)

where {n⃗b} consists of the four bonds (labeled in Fig. 7)
whose lengths are elongated by the vertical stretching. Upon
rewriting the elastic energy in the form of Hooke’s law,

+Es(+z) ≡ 1
2k1d(+z)2, (57)

we extract the effective spring constant as

k1d(r) =
3
2

ε

a(r)2

[
152

(
a0
a(r)

)12

− 80
(

a0
a(r)

)6]
, (58)

where the spatially varying lattice constant a = a(r) for the
cone is given by Eq. (24).

We can now model the vertical stripe in Fig. 6(b) as a 1d
chain of springs with the effective spring constant given in
Eq. (58). The resulting Lagrangian is given by

L[u] =
∑

n

[
m
2
u̇2n − 1

2
k1d [a(rn)](un − un+1)2

]
, (59)

where un is the displacement scalar of the nth site along the
vertical strip. We can choose to model the red or blue strip
in Fig. 6(b), for which un would represent the vertical or
horizontal component of the displacement; these quantities
have the same equations of motion, which is given by

−!un + kn(un − un+1)+ kn−1(un − un−1) = 0. (60)
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To make further progress, we wish to write down the
continuum limit of these equations of motion. As explained
in the following paragraphs, this will allow us to map our
equations of motion onto the Schrödinger equation and thus
obtain insight about the localization behavior. Upon approx-
imating kn ≈ kn+1, it may be tempting to identify the sum of
the second and third term in Eq. (60), kn(2un − un+1 − un−1),
as a second derivative in space k(x)∂2

x u(x). However, Fig. 6
shows that in the highest-energy eigenmode, neighboring
sites aligned in the longitudinal direction have opposite dis-
placements from one another. In other words, the excitation
wavelength is on the order of the lattice constant. Thus, a
continuous limit cannot be taken directly from Eq. (60). In-
stead, we need to implement a change of variables such that
the resulting displacement field varies smoothly and limits in
the continuum can be taken appropriately. As highlighted in
Fig. 6(a), the natural change of variables is then to flip the
displacement at every other site in each 1d longitudinal chain:
un−1, un+1 → −un−1,−un+1. Upon applying this change of
variables, the equations of motion simplify to

(−! + 4kn)un + kn(un+1 − 2un + un−1) = 0, (61)

where ! ≡ mω2 as before, kn ≡ k1d (rn), and we have approx-
imated kn ≈ (kn + kn−1)/2. Upon taking the continuum limit
by setting ∂2

r u(rn) = (un−1 − 2un + un+1)/a2n, where an =
a(rn), we arrive at the following equation of motion in the
continuum limit:

1
2meff (r)

∂2
r u(r)+Veff (r)u(r) = !u(r), (62)

where

Veff (r) = 4k1d (r), meff (r) = [2a(r)2k1d (r)]
−1. (63)

Equation (62) compares directly with the 1d time-
independent Schrödinger’s equation,

− h̄2

2m
d2

dr2
1(r)+V (r)1(r) = E1(r), (64)

whose local wave vector or decay rate of the wave function 1
is given by WKB analysis as [16–20]

p =
{±i

√
2m[V (r) − E ] if E < V (r)

±
√
2m[E −V (r)], if E > V (r).

(65)

However, Eq. (62), compared with Eq. (64), has a flipped
sign in front of the double derivative term, corresponding to
momentum transformation p → ip. The local wave vector or
decay rate of a phonon of the cone is thus given by

p =
{±

√
2meff (r)[Veff (r) − !], if ! < Veff (r)

±i
√
2meff (r)[! −Veff (r)], if ! > Veff (r).

(66)

Since meff(r) > 0 is always positive, the turning point r∗ for
an eigenmode with eigenfrequency ! is given by

! = Veff(r∗) = 4k1d (r
∗). (67)

The WKB domain boundary for the phonons of a cone is thus,

! = 6
ε

a(r∗)2

[
152

(
a0

a(r∗)

)12

− 80
(

a0
a(r∗)

)6]
. (68)

Equation (68) is exactly equivalent to the band-edge criterion
in Eq. (54), which again becomes Eq. (41) in the limit of small
cone angle.

V. CONCLUSION

We demonstrate the intriguing effects that smooth vari-
ations in lattice parameters can have on a discrete ordered
system. In particular, we show that a two-dimensional sheet
of interacting particles with cylindrical boundary conditions
collapses into a truncated cone under gravitational pressure.
We find that the cone shape, namely its apex angle θ , con-
trols level crossings at long wavelengths as well as the
quasilocalization of normal modes at short wavelengths, with
localization domains modulated by the inhomogeneous den-
sity profile. In the regime of small cone angles θ , we predict
the boundaries of these domains as a function of θ in Eq. (41).

The system studied in this paper can be realized in exper-
iments, for example, by a two-dimensional colloidal crystal
(possibly in a liquid solvent) with colloids adsorbed onto
the surface of a cone [12,13,34,35] at the appropriate cone
angle, given by Eq. (20) as a function of the colloid’s effective
mass in the solvent. In this work, we have examined inertial
dynamics m

2 u̇
2 for concreteness, but other types of (possibly

overdamped) dynamics can also be studied by similar meth-
ods.

Similar localization phenomena may be found in other
types of inhomogeneous lattices in both two and three di-
mensions. Equation (54) and calculations in Appendix F 2 for
power-law interaction potentials suggest a general qualitative
property of inhomogeneous lattices: phonons get localized
to the denser regions of the lattice as their corresponding
eigenenergy increases. The precise way that this localiza-
tion happens then depends on the spatial dependence of the
lattice constant a(r) and the form of the interaction poten-
tial between particles. In particular, it will be interesting to
explore the analog of Eq. (41) in conformal lattices, e.g.,
flux-line lattices under magnetic-field gradients [3,4], where
the inhomogeneity can act not only through local dilation
or contraction but also through local rotation. It is also
widely known that density-mismatched bulk colloidal crys-
tals in three dimensions exhibit smaller lattice constants at
the bottom [36–38], as the colloids further below become
increasingly more crushed by the weight of the colloids and
solvent above. Metamaterials and synthetic systems also pro-
vide a rich playing ground for engineering and designing the
localized domains of vibrational modes [39,40]. It would be
interesting to investigate the normal modes of these systems
and see whether eigenfunction localization domains again
appear at short wavelengths. Finally, in systems where the
membrane is free-standing and out-of-plane fluctuations are
important [41], it may be worthwhile to investigate how in-
plane inhomogeneity affects the flexural phonons.
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FIG. 8. Schematic illustration of the numerical determination of
dislocation positions for the (a) double pileup and (b) semicircle
pileup. Gray shadings plot the absolute value of the dislocation
charge densities nD(x) and nSC(x) in Eqs. (3) and (4). xi indicates the
position of the ith dislocation site from the origin, and ai indicates
the lattice constant corresponding to the ith dislocation site.
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APPENDIX A: DISLOCATION PILEUPS

The dynamical Hamiltonian for a one-dimensional dislo-
cation pileup embedded in a two-dimensional host crystal is
given by [14]

H[{xn}] =
N∑

n=1

m
2
ẋ2n +

N∑

n=1

b(xn)σ0U (xn)

− Y
8π

∑

n ̸=m

b(xn)b(xm) ln |xn − xm|, (A1)

where Y is the 2d Young’s modulus controlling the repul-
sive pair potential, b(x) = ±b is the Burgers vector, m is
the effective mass of the dislocation, and N is the total
number of dislocations in the pileup. In the second term,
σ0U (x) =

∫ x
−L/2 dx

′σ (x′) comes from the Peach-Koehler
force due to the applied shear stress σ (x), where σ0 measures
the strength of the shear stress and U (x), with dimensions of
length, is the spatial profile of the potential experienced by the
dislocations due to the shear stress.

1. Numerical determination of dislocation sites

The pileups in Figs. 1(a) and 1(b) of the main text, referred
to respectively as the double pileup and the semicircle pileup,
each experience the following forms of shear stress,

σD(x) = σ0, (A2)

σSC(x) = σ0
x

L/2
, (A3)

where L is the length of the pileup, and the average dislocation
charge densities are given by Eqs. (3) and (4) [14,15] and
plotted in Fig. 8.

Note that, for the double pileup, the sign of the de-
fect charge changes across the origin. Additionally, although
nD(x) is singular near x = ±L/2, these defect densities vary
smoothly elsewhere.

We now extract the equilibrium lattice positions numer-
ically from the charge densities in Eqs. (3) and (4). Since
the absolute value of both distributions are symmetric about
the pileup centers, we compute the dislocation sites on the
right half of the dislocation pileup (positive x axis) and reflect
across the vertical axis at x = 0 (see Fig. 8).

On writing the dislocation positions as

xi = xi−1 + 1
2 [D(xi−1)+ D(xi )], (A4)

where D(xi ) = |n(xi )|−1 is the lattice constant at position xi of
the ith dislocation, and rescaling spatially by half of the total
length of the dislocation pileup, we have

x̄i = x̄i−1 + 1
2 [D̄(x̄i−1)+ D̄(x̄i )], (A5)

where x̄ = x/(L/2), D̄ = D/(L/2). Since the dislocation den-
sity vanishes at the center for the double pileup and at the
edge for the semicircle pileup, we solve for the dislocation
positions iteratively starting from the center for the semi-
circle pileup and the edge for the double pileup, where the
charge densities are finite. Upon using Eqs. (3) and (4) and
defining fi ≡ x̄i + 1

2 D̄(x̄i ) and gi ≡ x̄i − 1
2 D̄(x̄i ), the position

x̄i of the ith dislocation can be computed from the position of
the (i − 1)st [or (i + 1)st] dislocation by numerically solving
for the root of these quartic equations, starting from their
respective boundary conditions,

x̄4i,D − 2g(x̄i+1,D)x̄3i,D

+
[(

Yb
4Lσ0

)2

+ g(x̄i+1,D)
]
x̄2i,D

−
(

Yb
4Lσ0

)2

= 0, x̄N/2,D = 1, (A6)

x̄4i,SC − 2 fi−1x̄3i,SC

− [1 − f (x̄i−1,SC)2]x̄2i − 2 f (x̄i−1,SC)x̄i

− f (x̄i−1,SC)2 − Yb
8Lσ0

= 0, x̄1,SC = 0. (A7)

2. Dynamical matrix and real-space eigenfunctions

On decomposing the dislocation position as xn = Rn + un
(where Rn is the equilibrium location and un is the displace-
ment from the equilibrium lattice site) and assuming the
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displacements to be small relative to the lattice spacing at
low temperatures, we expand the Hamiltonian up to quadratic
order in un as

H[{un}] =
N∑

n=1

m
2
u̇2n +

∑

n,m

Mnmunum, (A8)

where the diagonal Mn,n and off-diagonal Mn,m ̸=n matrix ele-
ments for the double pileup are given by

MD
n,n =

σ0b
N

∑

m ̸=n

sign(RnRm)

(Rn − Rm)2
, (A9)

MD
n,m ̸=n = −σ0b

N
sign(RnRm)

(Rn − Rm)2
, (A10)

and those of the semicircle pileup by

MSC
n,n = σ0b

(

1+ 1
N

∑

m ̸=n

1
(Rn − Rm)2

)

, (A11)

MSC
n,m ̸=n = −σ0b

N
1

(Rn − Rm)2
, (A12)

where the pileup lengths have been normalized such that x ∈
(−1, 1). Normalization conditions can be found in Table I of
Ref. [15]. Upon parametrizing un(t ) = une−iωt , we obtain the
equations of motion as

!un =
∑

m

Mnmum, (A13)

where ! ≡ mω2 is the eigenenergy.
As mentioned above, to obtain the matrix elements in

Eqs. (A9)–(A12), we compute the equilibrium dislocation
positions {Rn} by placing a dislocation at the center of the
pileup x = 0 and using Eqs. (3) and (4) to solve iteratively
for the positions of its neighboring dislocations until the edge
is reached. We then numerically compute the normal modes
by solving the following eigenproblem:

Mu(α) = !αu(α), (A14)

where M is the dynamical matrix with elements Mn,m, and
!α ≡ mω2

α and u(α) are the eigenenergies and eigenfunctions
of the αth eigenmode.

3. Phonon spectrum and band edge

The full dispersion relation for a uniform one-dimensional
pileup is given by [15]

!(q) = 1
D2

Yb2

4π

∞∑

n=1

1 − cos (nqD)
n2

(A15)

= 1
D2

Yb2

8π

{
π2

3
− [Li2(e−iqD)+ Li2(eiqD)]

}
, (A16)

where Lin(z) is the polylogarithmic function (or Jonquière’s
function) [42], D is the average dislocation spacing, Y is the
Young’s modulus of the 2d host crystal, and b is the magnitude
of the Burgers vector. The band edge, which occurs at the
boundary of the first Brillouin zone q = π/D, is then obtained
from Eq. (1) according to Eq. (A16).

We show the evolution of the localization domains for the
double pileup and the semicircle pileup in Fig. 1. According

to Eqs. (2)–(4), the localization domains (x−
α , x

+
α ) for these

pileups satisfy

!α = πσ 2
0

Y

⎧
⎨

⎩

x2α
( L
2 )

2−x2α
, double pileup

1 −
( xα

L/2

)2
, semicircle.

(A17)

Note thatY and σ0 have units of E/L2 in 1d, so the dimensions
on both sides of the equation match. As shown in Fig. 1,
the band edge shown in Eq. (A17) agrees with the numer-
ical eigenfunctions. As the energy of the excitation mode
increases, the eigenfunction becomes increasingly more local-
ized towards the densest parts of the lattice. For the semicircle
pileup, this corresponds to the middle of the pileup, while for
the double pileup, this is the region near the pileup edges.

APPENDIX B: ONE-DIMENSIONAL CHAIN OF BALLS
AND SPRINGS UNDER GRAVITY

An instructive toy model is a one-dimensional chain of
balls of massm, connected by springs with stiffness ks, subject
to gravity on a plane inclined by angle θ with respect to
the ground. Although that the gravitational force causes the
density of the masses to be inhomogeneous along the inclined
plane, the equations of motion and thus the phonons remain
identical to that of the homogeneous lattice without the effects
of gravity. Thus, for this purely harmonic problem, all effects
of the lattice inhomogeneity can be redefined away.

The energy that leads to phonon dynamics in this system is

H[{xn}] =
N∑

n=1

[
m
2
ẋ2n +

1
2
ks(xn+1 − xn − a)2 − m′gxn

]
,

(B1)

where m′ = m sin θ , g is the gravitational acceleration, and xn
is the position (along the inclined plane) of the nth ball. The
lowest point of the inclined plane is met by a wall such that
the first ball (indexed by n = 0) has fixed position centered at
x0 = 0 (see Fig. 9). Upon writing the new equilibrium position
as x∗

n = na+ u∗
n, minimizing the energy, and applying the

following boundary conditions (zero displacement at n = 0
and zero stress at n = N),

u∗(n = 0) = 0,
∂u∗(n)

∂n

∣∣∣∣
N
= 0, (B2)

we obtain the equilibrium lattice positions {x∗
n} as

x∗(n) = na+ m′g
2ks

[n2 − 2Nn]. (B3)

Upon decomposing the mass position in Eq. (B1) as
xn = x∗

n + un, where un is the displacement away from the
equilibrium position x∗

n , and noting that terms linear in dis-
placement vanish due to force balance, we are left with

H[{xn}] =
∑

n

m
2
u̇2n +

∑

n

ks
2

(
u2n+1 + u2n − 2un+1un

)

−
∑

n

m′gx∗
n . (B4)

Since the gravitational term in Eq. (B4) only contributes a
constant shift to the energy, it does not appear in the equations
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(a)

(b)

FIG. 9. Schematic for 1d problem of springs and masses (a) on
a flat surface and (b) on an inclined plane of angle θ . a is the
equilibrium distance between two neighboring balls on a flat plane.
xn denotes the position of the nth ball along the inclined plane from
the bottom-most ball at x0 = 0

of motion

−mün = ks(2un − un+1 − un−1), (B5)

which are identical to the equations of motion for a homo-
geneous chain of balls and springs. The phonon spectrum,
upon assuming wave-like solutions un = 1√

N
eiqnaeiωt , is also

unchanged,

ω2(q) = 4
ks
m

sin2
(
qa
2

)
. (B6)

Note that the band edge at q = π/a is independent of the
lattice spacing a, so the system does not exhibit the quasilocal-
ization phenomena described in the main body of this paper.
In summary, the inhomogeneity in this toy problem does not
affect the phonon spectrum because it does not appear in
the interaction strengths. However, if the stiffness ks of the
spring connecting two masses were to depend on the distance
between them, then ks → ks(x∗

n ) in the presence of inhomo-
geneity and that could change the equations of motions in
interesting ways.

APPENDIX C: ELASTIC DEFORMATION OF A FLAT
ELASTIC SHEET SUBJECTED TO GRAVITATIONAL

PRESSURE IN THE PLANE OF THE SHEET

We examine a 2d sheet in the flat plane with uniform elastic
coupling constants under gravitational pressure using contin-
uum elasticity theory and show that the gravitational potential
frustrates the ground state when the particles are constrained
to remain on a flat plane parallel to the gravitational force. In
contrast, as shown in the main text, when we allow the sheet
of particles to escape into the third dimension by imposing
cylindrical boundary conditions, the frustration can be gauged
away, i.e., eliminated by a change of variables.

The free energy of a two-dimensional sheet in the x-z plane
under an isotropic pressure that increases with decreasing

(a) (b)

FIG. 10. (a) The unfrustrated ground-state configuration of N
particles interacting via the Lennard-Jones potential in the flat plane
is the triangular lattice with lattice constant a0, height Lz, and width
Lx . (b) When experiencing an isotropic gravitational pressure, the
flat sheet becomes geometrically frustrated, curving the upper and
lower boundaries and rendering solutions from simple linear elastic-
ity theory invalid. As discussed in the main text, this frustration can
be avoided by wrapping the top and bottom boundaries around to
form a truncated cone.

vertical coordinate z is given by

F = 1
2

∫
d2r

[
2µu2ik + λu2ii + 2α0(Lz − z)uii

]
, (C1)

where δp = α0(L − z) is an isotropic z-dependent pressure,
ui j = 1

2 (
∂ui
∂r j

+ ∂u j

∂ri
) is the strain tensor, and µ and λ are the

first and second 2d Lamé coefficients. Here α0 is proportional
to the gravitational constant g [see Eq. (34)] and u⃗(r⃗ ) is
the displacement of the sheet from its α0 = 0 equilibrium
configuration at position r⃗. The nondeformed (α0 = 0) sheet
extends from [0,Lz] along z and from [−Lx/2, Lx/2] along x
[Fig. 10(a)]. The natural boundary conditions for this problem
are anchoring the flat bottom edge of the sheet at the base,
which requires that the vertical displacements uz vanish at
z = 0 and the stresses vanish at z = Lz.

We now find the set of strains ūi j that minimize Eq. (C1).
First, since the gravitational term is isotropic and does not
depend on uzx, we immediately have

ūzx = 0. (C2)

Next, upon setting the derivatives of the free energy F with
respect to uzz and uxx to zero as

0 = (2µ+ λ)ūzz(r)+ ūxx(r)+ α0(Lz − z), (C3)

0 = (2µ+ λ)ūxx(r)+ ūzz(r)+ α0(Lz − z), (C4)

we obtain

ūzz = ūxx =
α0(z − Lz )

2B
, (C5)

where B = µ+ λ is the 2d bulk modulus of the sheet.
Since ūzz = ūxx = 0 at z = Lz, the stresses σzz and σxx

also vanish there, so the free boundary condition at z = Lz is
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satisfied. Upon directly integrating Eq. (C5), we obtain

ūz =
α0

2B

(
z2

2
− Lzz

)
+ φ(x), (C6)

ūx =
α0

2B
(z − Lz )x + ξ (z). (C7)

To determine φ(x) and ξ (z), we use Eq. (C2),

ūzx = 0 = dφ(x)
dx

+ α0

2B
x + dξ (z)

dz
, (C8)

which leads to

ξ (z) = c, (C9)

φ(x) = − α0

2B
x2

2
+ d, (C10)

where c and d are constants, and Eqs. (C6) and (C7) become

ūz =
α0

2B

(
z2

2
− Lzz − x2

2

)
+ d, (C11)

ūx =
α0

2B
(z − Lz )x + c. (C12)

However, we immediately see that the fixed displacement
boundary condition at the bottom edge of a planar sheet (as
would be the case if it rested on a flat surface) cannot be
satisfied, because there is no choice of c and d in Eqs. (C11)
and (C12) such that ūz(x, z = 0) = ūx(x, z = 0) = 0 for all
x ∈ [−Lx/2, Lx/2].

As an approximation, we can set c = d = 0 in Eqs. (C11)
and (C12) such that only the (x, z) = (0, 0) point has zero
displacement. Figure 10(b) then plots the triangular lattice
sites displaced according to

ūz =
α0

2B

(
z2

2
− Lzz − x2

2

)
, (C13)

ūx =
α0

2B
(z − Lz )x. (C14)

The curl of the 2d displacement field (ux, uz ) shows that the
bond angles ϑ between nearest neighbors on the lattice are in
fact rotating as a function of x,

ϑ (x) = 1
2

(
∂uz
∂x

− ∂ux
∂z

)
= − α0

2B
x. (C15)

Since Eqs. (C13) and (C14) cannot satisfy the bottom
boundary conditions, the elasticity solutions are not valid near
the bottom of the sheet. This problem also arises in three
dimensions for rods deforming under a gravitational field par-
allel to the rod axis, where planar boundary conditions at the
bottom render linear elastic solutions invalid near the lower
end of the rod [27]. Thus, for flat 2d sheets in the flat x-z plane,
there is no smooth deformation that can minimize the free
energy in Eq. (C1). In other words, we cannot “gauge away”
the effect of gravitational pressure in the 2d plane. In this
situation, the extra strain energy for this wedge-shaped sheet
might possibly be reduced by introducing defects, such as a
vertical grain boundary at x = 0 [25,43]. However, we show
in the main text that, remarkably, this geometric frustration
can be removed entirely by wrapping the horizontal direction
x around to form a cylinder and thus allowing the sheet to
curve into the third dimension.

APPENDIX D: FORCE BALANCE FOR PARTICLES WITH
NONLINEAR INTERACTION POTENTIALS

In this section, we show that, under a gravitational poten-
tial, the equilibrium displacements of a lattice with elastic
coefficients µ(r), λ(r) that depend on the local lattice spacing
is the same as that of a lattice with constant elastic coefficients
µ, λ, provided that the gravitational pressure is sufficiently
weak. This latter condition corresponds exactly to the small-
cone-angle limit.

To examine the nonlinear feedback between an inhomoge-
neous lattice and elastic constants that depend on the local
lattice spacing, we write the local Lamé coefficients λ(r⃗ )
and µ(r⃗ ) in terms of the strain tensor. We first write the xth
component of the lattice spacing ax,n of the nth particle as

ax,n = a0 + (ūx,n+1x − ūx,n) ≈ a0(1+ ūxx ), (D1)

where a0 is the lattice constant of the undeformed sheet (α0 =
0). Here, ūx,n is the xth component of the displacement of the
nth particle from its position in the unpressurized lattice, and
n+ 1x denotes the index of its neighbor in the êx direction. A
similar expression follows for ay,n.

To reduce notational clutter, we show the calculation
explicitly for interaction potentials of the power-law form
V (r⃗ ) = A/|r⃗ |t . The results can then be transcribed to the
Lennard-Jones potential, which is a sum of two power-law
terms with t = 6 and 12. Upon using Eqs. (39) and (C5),
the space-dependent elastic coupling coefficients for Lennard-
Jones particles on a cone may be written as

λ(r⃗ ) = λ0
[
1+ α0

B0
(z − Lz )

]t+2 , (D2)

µ(r⃗ ) = µ0
[
1+ α0

B0
(z − Lz )

]t+2 , (D3)

where B0 = λ0 + µ0 and µ0, λ0 are the elastic constants of
the undeformed lattice.

Having determined the form of the nonlinear elastic cou-
pling coefficients λ(r⃗ ) and µ(r⃗ ), we want to solve for the
equilibrium positions {Rn} of the particles under gravitational
pressure by minimizing the following free energy:

F = 1
2

∫
d2r

[
2µ(r⃗ )u2i j + λ(r⃗ )u2ii + 2α0(Lz − z)uii

]
. (D4)

Taking derivatives of F with respect to the components of
the strain tensor ui j yields, upon using Eq. (D1) for the local
lattice spacing,

0 = [2µ(r⃗ )+ λ(r⃗ )]ūxx + λ(r⃗ )ūzz + α0(Lz − z)

− [2µ(r⃗ )+ λ(r⃗ )]
2

t + 2
2

ū2xx + ū2zz
1+ ūxx

− λ(r⃗ )
2

t + 2
2

(ūzz + ūxx )2

1+ ūzz
,

0 = [2µ(r⃗ )+ λ(r⃗ )]ūzz + λ(r⃗ )ūxx + α0(Lz − z)

− [2µ(r⃗ )+ λ(r⃗ )]
2

t + 2
2

ū2xx + ū2zz
1+ ūzz

− λ(r⃗ )
2

t + 2
2

(ūzz + ūxx )2

1+ ūxx
.
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Upon defining the quantity,

γ (z) ≡ α0(Lz − z)
2B0

= θ
z − Lz
Lx

, (D5)

we can rewrite Eq. (D5) as

0 = 2µ(r⃗ )+ λ(r⃗ )
B0

ūxx +
λ(r⃗ )
B0

ūzz + γ (z)

− [2µ(r⃗ )+ λ(r⃗ )]
2B0

t + 2
2

ū2xx + ū2zz
1+ ūxx

− λ(r⃗ )
2B0

t + 2
2

(ūzz + ūxx )2

1+ ūzz
,

0 = 2µ(r⃗ )+ λ(r⃗ )
B0

ūzz +
λ(r⃗ )
B0

ūxx + γ (z)

− [2µ(r⃗ )+ λ(r⃗ )]
2B0

t + 2
2

ū2xx + ū2zz
1+ ūzz

− λ(r⃗ )
2B0

t + 2
2

(ūzz + ūxx )2

1+ ūxx
.

When the perturbation is small, the strains ūxx and ūzz are on
the order of γ (z),

|ūzz| = |ūxx| ∼ |γ (z)| !
∣∣∣∣θ

Lz
Lx

∣∣∣∣ ≪ 1, (D6)

and we can eliminate the higher-order quadratic terms ≈ū2ii in
Eq. (D6) and retrieve the linear approximation displayed in
Eqs. (C5):

ūzz = ūxx =
α0(z − Lz )

2B0
+ O(γ 2). (D7)

The condition in Eq. (D6), for an approximately square sheet
Lx ≈ Lz, precisely corresponds to the small-angle condition in
Eq. (8). Thus, when the gravitational pressure is sufficiently
weak, nonlinear effects can be neglected and the equilibrium
deformation of particles with power-law pair interactions is
identical to that of the two-dimensional sheet with uniform
elasticity constants. Since the Lennard-Jones potential is the
sum of two power-law terms, the previous statements also
hold for the system studied in the main text, where the par-
ticles interact via the LJ potential in Eq. (6).

APPENDIX E: DISPLACEMENTS UNDER HYDROSTATIC
COMPRESSION IN CONE COORDINATES

In this section, we derive the displacements in terms of
cone coordinates r [Eqs. (12) and (13)] using the displace-
ments in the Cartesian frame (x, z). First, we show that the
inner edge of an annulus on the polar plane corresponds to the
bottom edge of our deformed sheet in the small-cone-angle
limit. Next, we calculate the azimuthal displacement ūφ using
the polar cone angle and the circumference of the bottom
edge of the truncated cone. Finally, upon requiring that the
compression must be isotropic along both the azimuthal and
axial directions, we extract the longitudinal displacement ūr .

Recall that the displacements in the flat plane under hydro-
static compression are given by Eqs. (10) and (11) in the main

FIG. 11. Schematic illustration of the quantities mentioned in
text. The solid black lines bound a 2d planar crystal deformed in
the (x, z) plane by hydrostatic compression. Although the boundary
conditions at the bottom can only be satisfied at the single point
(x, z) = (0, 0) in the plane, this problem vanishes when we wrap this
crystal around to form a small-angle truncated cone with polar angle
(. Here, r is the distance up the flanks of the cone from its base.

text as

ūz =
α0

2B

(
z2

2
− Lzz − x2

2

)
, ūx =

α0

2B
(z − Lz )x, (E1)

and the polar cone angle in the small-angle limit is given by
Eq. (20) as

( = α0

2B
Lx + O

((
α0

2B
Lz

)2)
. (E2)

Note that this polar cone angle vanishes when the gravitational
pressure ≈α0 → 0 and when the material becomes incom-
pressible B = µ+ λ → 0.

Upon letting r1 denote the inner radius of the annulus (the
polar projection of a truncated cone, see Fig. 11), the inner
annular rim is given by

x2 + (z + r1)2 = r21 , (E3)

from which it follows that

x2 = −2zr1

(
1+ z

2r1

)

≈ −2zr1, (E4)

where for small cone angles, z ≪ r1, so the second term can
be neglected to lowest order. We calculate r1 specifying the
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tip of the cone from

(r1 = C1, (E5)

where C1 is the circumference of the cross- section of the
cone at r = 0 (see Fig. 11). Upon using Eqs. (E1),C1 is given
approximately by
(
C1

2

)2

≈
(
Lx
2

+ ūx(x = Lx/2, z = 0)
)2

+ ūz(x = Lx/2, z = 0)2

=
(
Lx
2

)2{
1 − 2

α0

2B
Lz + O

[(
α0

2B
Lz

)2

,

(
α0

2B
Lx

)2]}
,

(E6)

which, to linear order in the cone angle, gives

C1 ≈ Lx

(
1 − α0

2B
Lz

)
. (E7)

Upon substituting Eq. (E7) into Eq. (E5) and using Eq. (E2),
we then obtain

r1 =
(
1 − α0

2BLz
)

α0
2B

. (E8)

Upon inserting Eq. (E8) into Eq. (E4), we have

z = − x2

2r1

= −x2

2

α0
2B(

1 − α0
2BLz

)

≈ −x2

2
α0

2B
+ O

(
Lx

(
α0Lx
2B

)(
α0Lz
2B

))
, (E9)

so Eq. (E9) is indeed equivalent to ūz(x, z = 0) in Eq. (E1),

ūz(x, z = 0) = −x2

2
α0

2B
. (E10)

In the small-cone-angle limit where r1 ≫ r and r1 ≫ z, we
approximate the circumferenceC(r) as a function of r and the
polar cone angle ( as (see Fig. 11)

C(r) = ((r1 + r) = C1 + (r = Lx

[
1+ α0

2B
(r − Lz )

]
.

(E11)

We can then solve for the radial displacement ūR(r) as

2π ūR(r) = C(r) − Lx =
α0

2B
(r − Lz )Lx, (E12)

which leads to

ūR(r) =
1
2π

α0

2B
(r − Lz )Lx. (E13)

Note that the radial displacement becomes more negative as
one moves down the flanks of the cone by decreasing r. The
radial displacement can be written as the usual azimuthal dis-
placement ūφ (r,φ) around the axis of the cone on its tangent
plane as

ūφ (r,φ) = φūR(r). (E14)

To obtain the other component of the displacement field,
we note that, since the gravitational pressure is isotropic, the
compression factor has to be the same along both the axial r
and azimuthal φ directions:

dūr (R)
dr

= dūφ (r,φ)
d (Lxφ/2π )

= α0

2B
(r − Lz ). (E15)

Upon integrating and imposing cylindrical boundary condi-
tions, the axial displacement ūr is given by

ūr (r) =
α0

2B

(
r2

2
− Lzr

)
. (E16)

Using the fact that Lz is well approximated by the longitudinal
cone length r0 in Eqs. (E14) and (E16) to linear order in the
cone angle, we obtain Eqs. (12) and (13) in the main text.

APPENDIX F: PHONON SPECTRUM DERIVATIONS

1. Free-energy functional of the cone

Upon letting uik = ūik + δuik , the free energy in Eq. (9)
becomes

F = 1
2

∫
d2r

[
2µ

(
ū2ik + 2ūikδuik + δu2ik

)

+ λ
(
ū2ii + 2ū j jδuii + δu2ii

)
+ 2α0(Lz − z)(ūii + δuii )

]
.

(F1)

Upon grouping the terms linear and quadratic in δuik ,

F = F0 +
1
2

∫
d2r2δuik[2µūik + λū j jδik + α0(Lz − z)δik]

+ 1
2

∫
d2r

[
2µδu2ik + λδu2ii

]
, (F2)

where F0 is the energy of the equilibrium configuration with-
out displacements,

F0 =
1
2

∫
d2r

[
2µū2ik + λū2ii + 2α0(Lz − z)ūii

]
, (F3)

we see that the coefficient of the term linear in δuik vanishes
according to Eq. (C3). Hence, the change in free energy due
to displacements away from equilibrium becomes,

F = F0 + δF = F0 +
1
2

∫
d2r

[
2µδu2ik + λδu2ii

]
, (F4)

and δF (δuik ) as a function of the new displacements takes
the same form as that of the free energy of the unpressurized
uniform 2d sheet. Thus, for a system with constant elastic
coefficients µ and λ, the phonon spectrum of the deformed
lattice would be the same as the undeformed lattice. How-
ever, for particles interacting via the Lennard-Jones potential,
the inhomogeneous equilibrium configuration causes the elas-
tic constants to become nonuniform µ, λ → µ(r⃗ ), λ(r⃗ ). As
shown in Sec. IV, this has significant effects on the normal
modes.
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2. Results for Power-Law Interaction Potentials

In this section, we derive several key quantities for particles
interacting via a power-law potential of the following form:

Vint(x⃗n, x⃗m) =
A

|x⃗n − x⃗m|t
, (F5)

where A is some constant coefficient and t is the exponent of
the power law. Since the Lennard-Jones potential is the sum
of two power-law terms, the results are readily applied to the
system in the main text.

Note that, when t = 3, Eq. (F5) captures the physics of
experimentally relevant systems such as magnetic colloids,
whose pair potential takes the form [44],

U (r) = µ0(χB)2

8π
1
r3
, (F6)

where r is the distance between two colloids, χ is the
magnetic susceptibility, B is the magnitude of the external
magnetic field, and µ0 is the permeability constant. However,
note that particles experiencing a purely repulsive interaction
potential such as Eq. (F6) require an external potential to
prevent them from flying apart. In contrast, since the Lennard-
Jones potential has both a repulsive component ≈1/r12 and
an attractive component ∼1/r6, a separate external potential
is not needed to confine the particles.

a. Dispersion relation

For interaction potentials of the form V (r) = A/|r|t (t >
0), the matrix element in Eq. (43) becomes

/i j (+R⃗) = A
[
t (t + 2)

+Ri+Rj

|+R⃗|t+4
− t

δi j

|+R⃗|t+2

]
. (F7)

To reduce notational clutter in the upcoming calculations, we
abbreviate Eq. (F7) as

/i j (R⃗) = γ
RiRj

|R⃗|t+4
− ρ

δi j

|R⃗|t+2
, (F8)

where

γ ≡ At (t + 2), ρ ≡ At . (F9)

Upon following the procedure delineated in Sec. IVC,
summing over the nearest-neighbor lattice vectors {n⃗α}, and
using the following trigonometric identities:

cos (a+ b)+ cos (a − b) = 2 cos (a) cos (b), (F10)

cos (a+ b) − cos (a − b) = −2 sin (a) sin (b), (F11)

cos (2a) = 2 cos2 (a) − 1, (F12)

the dynamical matrix in momentum space Di j (q⃗ ) [see e.g.,
Eq. (52)] takes the following form:

D(q⃗ ) = 4
at+2

(
(γ − ρ)

(
1 − c2x

)
+

(
γ
4 − ρ

)
(1 − cxcz ) γ

√
3
4 sxsz

γ
√
3
4 sxsz −ρ

(
1 − c2x

)
+

( 3γ
4 − ρ

)
(1 − cxcz )

)

, (F13)

where

cx ≡ cos
(
qx

a
2

)
, cz ≡ cos

(
qza

√
3
2

)
(F14)

sx ≡ sin
(
qx

a
2

)
, sz ≡ sin

(
qza

√
3
2

)
. (F15)

The eigenenergies near the Brillouin-zone center (see
Fig. 5), e.g., along the 0-K line (qxa = qa ≪ 1, qza = 0) and
along the 0-M line (qza = qa ≪ 1, qxa = 0), are given by

!T = (qa)2
3
8

γ − 4ρ
at+2

= (qa)2
3
8
t2 − 2t
at+2

, (F16)

!L = (qa)2
9
8

γ − 4
3ρ

at+2
= (qa)2

9
8

t2 − 2
3 t

at+2
. (F17)

Note that here, the longitudinal eigenenergy is not equal to
three times the transverse eigenenergy. This change arises
because the usual Cauchy condition [28] is modified by the
requirement of an external pressure to prevent the particles,
which are interacting here via a purely repulsive potential,
from flying apart.

The band edge at point M in the Brillouin zone on the
longitudinal dispersion curve is given by

!edge(A, t ) =
6

at+2

(
γ − 4

3
ρ

)
= 6A

at+2

(
t2 + 2

3
t
)
, (F18)

where we have used the values of γ and ρ from Eq. (F9). It
is now straightforward to calculate the band edge for the LJ
potential in Eq. (6) as

!edge = !
(
A = εa120 , t = 12

)
− !

(
A = 2εa60, t = 6

)
,

(F19)

which gives Eq. (54) in the main text.

b. Effect of next-nearest neighbors

Because the Lennard-Jones potential falls off rapidly with
distance, corrections to the spectrum due to further neighbors
are expected to be small. Here, we examine the effects of in-
corporating next-nearest-neighbor (NNN) interactions on the
spectrum, in particular the dispersion near the zone center and
the band edge.
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For power-law interactions of the form V (r) = A/|r|t , the next-nearest-neighbor (see dashed lines in Fig. 12) contribution to
the dynamical matrix is

DNNN(q⃗ ) = 4

(
√
3a)t+2

(
−ρ

(
1 − c̄2z

)
+

( 3γ
4 − ρ

)
(1 − c̄x c̄z ) γ

√
3
4 s̄x s̄z

γ
√
3
4 s̄x s̄z (γ − ρ)

(
1 − c̄2z

)
+

(
γ
4 − ρ

)
(1 − c̄x c̄z )

)

, (F20)

where

c̄x ≡ cos (3qxa/2), c̄z ≡ cos(qza
√
3/2), (F21)

s̄x ≡ sin (3qxa/2), s̄z ≡ sin(qza
√
3/2). (F22)

Near the zone center (e.g., qz = 0, qx = q ≈ 0), the contri-
bution to the dynamical matrix from next-nearest neighbors is
equal to the nearest-neighbor contribution scaled by an overall
constant,

DNNN(q ≈ 0) = 1
3t/2

DNN(q ≈ 0). (F23)

Thus, the addition of next-nearest-neighbor interactions scales
the slopes of both dispersion branches near the zone center by
the same constant factor and does not alter the Poisson ratio.

The shift in band edge due to NNN interactions is

+!NNN
edge (A, t ) =

2A

(
√
3a)t+2

(t2 − 2t ). (F24)

For a uniform lattice (a = a0) of particles with LJ interactions
[Eq. (6)], the NNN modification becomes

+!NNN
edge = −784

729
ε

a20
≈ −1.0754

ε

a20
, (F25)

which is indeed very small compared with the nearest-
neighbor contribution in Eq. (53). We thus neglect the effect
of next-nearest neighbors in our calculations.

3. Longitudinal and transverse character of phonons

In Fig. 13, we plot the magnitude of the normalized
longitudinal component of the phonon eigenfunctions for a
triangular lattice of particles interacting via the Lennard-Jones

FIG. 12. Schematic indication of the nearest-neighbor (solid
lines) and next-nearest-neighbor (dashed lines) interactions in real
space on a triangular lattice.

potential,

fL(k⃗) =
|u⃗(k⃗) · k⃗modG⃗|2

|u⃗(k⃗) · k⃗ mod G⃗|2 + |u⃗(k⃗) × k⃗ mod G⃗|2
. (F26)

As shown in Fig. 13, the lower band and upper band are
purely transverse and purely longitudinal, respectively, along
the 0-K direction in momentum space. Upon reaching the K
point, the upper and bottom bands touch, leading to an infi-
nite set of linear combinations of degenerate eigenfunctions.
Both bands then exhibit mixed transverse and longitudinal
character along the K-M direction before returning to purely
transverse and purely longitudinal along the M-0 direction.
Note that, upon following a single band smoothly in a loop
along the 0-K-M-0 path in momentum space (see Fig. 5),
a transverse branch (orange) transforms into a longitudinal
branch (blue) upon returning to 0, and vice versa.

FIG. 13. (a) Contour plots of fL (k⃗), the magnitude of the normal-
ized longitudinal component in Eq. (F26), for phonon eigenfunctions
in the lower band (left) and upper band (right). (b) Close-up of
contour levels of fL (k⃗) near the K point located at k⃗ = (4π/3a0, 0)
for the lower band (left) and upper band (right). (c) fL (k⃗) along the
reduced Brillouin zone path 0-K-M-0′.
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The behavior described above is consistent with the
fact that phonons can have purely longitudinal or purely
transverse characteristics when the momentum k⃗ lies on a
high-symmetry direction (i.e., 0-K, 0-M), but can generally
have mixed character along nonsymmetry directions [24].

4. Real-space dynamical matrix M

The eigenvalue problem in Eq. (45) can be solved by diag-
onalizing the dynamical matrix M given by

M =
[
!̃11 !̃12

!̃21 !̃22

]

. (F27)

For fixed displacement boundary conditions at the bottom,
each !̃ij is a block matrix of size (N − Nrow)(N − Nrow),
where Nrow ≡ Lx/a0 is the number of particles in one hor-
izontal row (the triangular lattice is oriented such that the
top and bottom edges are flat). Diagonalizing M then gives

us a total of 2(N − Nrow) normal modes. The off-diagonal
elements /̃

(n ̸=m)
i j are given by

!̃(nm)
ij = /i j (R⃗n − R⃗m), (F28)

where /i j (R⃗) is given in Eq. (44), R⃗n is the equilibrium posi-
tion of the nth particle, and n and m only include the N − Nrow
particle indices that exclude those in the bottom fixed row. The
diagonal elements are given by

!̃(nn)
ij = −

∑

m′ ̸=n

/i j (R⃗n − R⃗m′ ), (F29)

where m′ is summed over all N particle indices, including
those in the bottom row. Finally, the eigenvector u(α) takes
the form

uT (α) =
[
u(α)1 (R⃗1), . . . , u

(α)
1 (RN−Nrow ),

u(α)2 (R⃗1), . . . , u
(α)
2 (RN−Nrow )

]
. (F30)
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