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Abstract

We study the response of the optimal investment problem to small changes of the
stock price dynamics. Starting with a multidimensional semimartingale setting of
an incomplete market, we suppose that the perturbation process is also a general
semimartingale. We obtain second-order expansions of the value functions, first-order
corrections to the optimisers, and provide the adjustments to the optimal control that
match the objective function up to the second order. We also give a characterisation
in terms of the risk-tolerance wealth process, if it exists, by reducing the problem
to the Kunita—Watanabe decomposition under a change of measure and numéraire.
Finally, we illustrate the results by examples of base models that allow closed-form
solutions, but where this structure is lost under perturbations of the model where our
results allow an approximate solution.
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1 Introduction

For the problem of optimal investment from expected terminal wealth, we study
the second-order dependence of value functions and the first-order dependence of
optimisers with respect to small perturbations of the stock price dynamics. More
precisely, if the (return) of the stock price dynamics depends on a small parameter ¢ as

R = R +¢R,

we study the following questions:

1) How does the value function (indirect utility) change up to the first order in £?

2) What are the derivatives of the optimal wealth process in €, and do they exist?

3) What are the corrections to the optimal strategy needed to match the indirect
utility up to the second order?

By considering both R (the base model return) and R (the perturbation) to be
general semimartingales, our model allows in a unified piece of analysis

(a) perturbations of both the finite-variation and the local martingale parts, includ-
ing new sources of randomness in ﬁ;

(b) both the base model R and the perturbation processes R to have jumps;

(c) general multidimensional models.

These questions appear important because while utility maximisation theory is
mathematically well understood, the exact statistics of the stock price model is
mostly a theoretical assumption. In other words, as an investor does not know ex-
actly the model, understanding how optimal investment decisions change in the
neighbourhood of a base model is desirable.

To the best of our knowledge, the existing answers in similar studies are partial,
and they are obtained under particular forms of both R and R by considering only
one-dimensional models with continuous paths and allowing only perturbations of
the market price of risk (or, closely related, the volatility); see for example Mostovyi
and Sirbu [37].

Mathematically and even on the heuristic level, establishing asymptotic analysis
results for processes with jumps and general perturbations is more difficult than in
continuous settings, which is itself nontrivial compared to only perturbing the market
price of risk or volatility.

Our results include a second-order expansion of the value function, first-order cor-
rections to the optimisers, and explicit formulas for the corrections of the optimal
strategies. The latter are particularly difficult to obtain. We also work with a general
utility function, as in Horst et al. [17], Kramkov and Sirbu [31], Santacroce and Triv-
ellato [43]. For this reason, we have to study the dependence on the initial wealth x
and the model parameter ¢ jointly by analysing the two-dimensional value function
u(x, ¢) and the corresponding optimal investment strategies. We show that the re-
sponse of the value function is linear up to the first order in &, whereas up to the
second order, it is nonlinear.

Four auxiliary quadratic stochastic control problems govern the second-order ex-
pansion of u(x, €). These quadratic optimisation problems appear naturally. Indeed,
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Optimal investment under perturbations of the market model 555

as the indirect utility depends jointly on (x, €), the dual value function v(y, ¢) de-
pends on (y, €), where the Lagrange multiplier y has the natural meaning of the dual
state in the model ¢. The four quadratic optimisation problems describe the local
second-order dependence of the primal value function on x and ¢ and of the dual value
function on y and ¢, respectively. This joint structure allows second-order asymptotic
expansion formulas for both value functions. Moreover, we give a characterisation of
the asymptotic expansions in terms of the risk-tolerance wealth process. In the case
when it exists, the problem can be reduced to the Kunita—Watanabe decomposition.

One of the applications of our results is to study perturbations of models which
allow explicit solutions and typically lose this property under perturbations, which
can result for example from statistical inference/calibration procedures. For models
which allow closed-form solutions, we refer to Kallsen [22], Zariphopoulou [46],
Goll and Kallsen [10], Hu et al. [18], Liu [33], Guasoni and Robertson [13], Horst
et al. [17], Kallsen and Muhle-Karbe [24], Kramkov and Sirbu [31], Santacroce and
Trivellato [43] and Bank and Korber [3]. A special structure is also exhibited by
asymptotically complete models; see Robertson [42] and Robertson et al. [1].

Mathematically, to establish results, we have to deviate from the existing papers
where primal-dual expansions are used. We first develop elements of the calculus
of numéraire changes for both primal and dual problems to understand how the dual
and primal domains change with respect to (x, €) and (y, ¢), respectively. This de-
pendence is described by some key auxiliary processes that are represented in terms
of the semimartingale characteristics of the driving processes. Based on the explicit
dependence of the dual and primal domains on the parameters, we construct candi-
date nearly optimal processes explicitly establishing one-sided bounds for both pri-
mal and dual problems. This allows building the corrections to the optimal strategies
that match the value function up to the second order, relying on auxiliary estimates
and reformulations. A primal—dual approach for asymptotic analysis in mathemati-
cal finance has been introduced in Henderson [14], Henderson and Hobson [15] and
Kallsen [23].

To obtain the four quadratic minimisation problems that govern the second-order
corrections in tractable forms, we need to make some additional reformulations.
These are not needed for the analysis of perturbations of the market price of risk
or volatility in continuous-process settings which allowed a special structure. For our
general class of base and perturbed models, these technical steps are at the core of
our analysis, and they make the domains of the four quadratic minimisation problems
to be sets of martingales under an appropriate change of measure and numeéraire. The
quadratic minimisation problems are related to the ones in Gouriéroux et al. [12],
Laurent and Pham [32], Pham et al. [38], Kramkov and Sirbu [30, 31], Cerny and
Kallsen [5], Czichowsky and Schweizer [6], Jeanblanc et al. [21], Monoyios [34],
Mostovyi [36], Mostovyi and Sirbu [37].

The change of both measure and numéraire is needed to make the natural domains
of the four quadratic optimisation problems into sets of martingales which exhibit
an orthogonal and complementary structure in the sense below. Indeed, a change of
measure is needed to obtain martingales. However, as one could attempt to only use
such a change of measure, a simultaneous change of numéraire is also needed because
technically, the dual optimal elements for the base model may fail to be martingales,
which complicates the analysis for this approach.
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556 0. Mostovyi, M. Sirbu

As mentioned, our approach relies on an increase of dimensionality of the value
functions u(x, €) and v(y, ¢) that is necessary to handle the general utility, similarly
to Mostovyi and Sirbu [37]. The key process which governs the derivative in & of
the dual optimiser is characterised via implicit differentiation lemmas, which were
pivotal in handling the multidimensional stock-price case (in contrast to the settings in
[37]). The integrability condition on the perturbation processes is related to entropic
submartingales introduced in Barrieu and El Karoui [4] in continuous settings.

The asymptotic analysis of stochastic control problems under perturbations of the
model is a challenging problem. The majority of such existing results for optimal in-
vestment are obtained under the assumption of continuity of the stock price, and they
only include particular changes of the driving controlled process, such as perturba-
tions of the finite-variation part. For example, the results in Herrmann et al. [16],
Veraguas and Silva [2] and [37] neither include models where R or R allow jumps
nor can they handle the situation when the martingale part of Rhasa component or-
thogonal to the martingale part of R. Also, the existing results study one-dimensional
models; see [16] and [37].

We point out that the semimartingale property of R® is necessary for the absence
of arbitrage; see Delbaen and Schachermayer [7] for NFLVR, Karatzas and Kar-
daras [26] for the case of NUPBR and Karatzas and Kardaras [27, Chap. 2] for an
overview. In other words, one cannot consider a more general perturbed model.

The remainder of the paper is organised as follows. In Sect. 2, we introduce the
model, and in Sect. 3, we provide some elements of the calculus of numéraire changes
which is central to the analysis. Section 4 contains the expansion theorems, whose
proofs are given in Sect. 5. We build a connection of the expansion results to the
Kunita—Watanabe decomposition in Sect. 6. (One can also describe the correction
terms via utility-based prices. This characterisation is omitted for brevity of exposi-
tion.) In Sect. 7, we provide an example of perturbations of the Black—Scholes model
and a Lévy process-based model, and we discuss connections to other models allow-
ing explicit solutions. Finally, in the Appendix, we give a technical characterisation
of the approximating sets for the primal and dual domains which is important for our
analysis.

2 The model

Consider a complete stochastic basis (2, F, F = (F)se0,77. P), where T e (0, 00)
is the time horizon, F satisfies the usual conditions and Fg is trivial. We suppose
that there are d + 1 traded securities, d stocks and a bank account with zero interest
rate. For the base model, we suppose that the returns of d stocks satisfy the struc-
ture condition from Follmer and Schweizer [9], that is, they are given by a special
semimartingale R whose dynamics is

R:M—i—/d(M)k, Ry =0, 2.1)
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Optimal investment under perturbations of the market model 557

where M is a locally P-square-integrable local P-martingale and A a predictable
process such that

T
/ A d(M)shy <00 P-as. (2.2)
0

Note that the absolute continuity of the finite-variation part with respect to (M) in the
semimartingale decomposition for R is known as the structure condition, a notion
going back to Schweizer [44] and formally introduced in Schweizer [45].

2.1 Parametrisation of perturbations
The family of perturbed models has returns of the form

RE=R+eR,  R=0,¢¢ (—&020), (2.3)
where R is another semimartingale of the form (2.5) below and g9 > 0 is a constant.
2.1.1 Preliminary discussion

Adopting the notations in Jacod and Shiryaev [19, Chap. I] for stochastic integration,
we start by assuming that

R=¢ - M+M*-+FV, (2.4)
for some predictable matrix-valued process ¢ and some local martingale M~ or-
thogonal to M and an adapted process F'V of finite variation. By orthogonality in a
multidimensional setting, we mean that every component of M is orthogonal to every

component of M L. The form of R in (2.4) is consistent with the GKW decomposition.
In view of no-arbitrage considerations, it is natural to suppose that

FV=/d<M>¢+/d<ML>;L

for some processes ¢ and ¢+ which are predictable and integrable with respect to
(M) and (M), respectively. Therefore, we can rewrite (2.3) as

R¢ = R+s<¢ M+ Mt +/d<M)§ +/d(ML>§L)-
Note that for a bounded ¢ and every ¢ sufficiently close to 0, on the set

(0=d((+ep)- M+eM* )} ={0= (I +ep)d(M)(I +ep)" + e2d(M™1)},

where I is the identity matrix, we have d (M) = d (M=) = 0 so that
d(/d(M)(A+e{) —l—s/d(ML){l) =0.
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558 0. Mostovyi, M. Sirbu

In view of the absolute continuity of (M) with respect to (M) imposed in As-
sumption 4.5, which is key for the expansions below, we can further suppose that
¢+ = 0 without loss of generality. Therefore the structure condition from Follmer
and Schweizer [9] holds for R?, i.e., the finite-variation part of R? is absolutely
continuous with respect to the predictable quadratic covariation of its martingale part.

2.1.2 The exact form of R

To summarise, in view of the discussion above and Assumption 4.5 below, we
suppose that

R=¢-M+M* +/d(M>;, RE =0, ¢ € (—¢0, £0), 2.5)

where M is a locally P-square-integrable local P-martingale orthogonal to M and ¢
is a predictable process such that for some constant C’ > 0, we have

18] < C'|Al, t €[0,T], P-as. (2.6)

Note that (2.2) and (2.6) imply that

T
/ ¢ d(M)¢s < 0o P-a.s.
0

2.2 Primal problem

The family of admissible wealth processes is defined, for (x, €) € (0, 00) X (—&g, &9)
(where gp > 0 is specified in (2.3)), as

X(x,e):={X>0:X=x+ H-R®, His R°-integrable}.

Assumption 2.1 The utility function U on (0, 0o) is strictly increasing, strictly con-
cave, twice continuously differentiable, and its relative risk aversion is bounded away
from 0 and oo, that is, there exist positive constants ¢y and ¢, such that

U//
*U (%) < ¢y, x > 0. 2.7

c1 = A(x) = — Ut =

The function A is the relative risk aversion. The family of indirect utility functions
is given by

u(x,e):= sup E[UX7)], (x,¢) € (0,0) x (—e&g, €0). (2.8)
XeX(x,e)

‘We use the convention
E[U(X7)] := —oc0 ifE[U(X7)] = o0,

where U~ denotes the negative part of U.
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2.3 Dual problem

For every (y, ¢) € (0, 00) x (—e&g, €0), we first specify the dual feasible set as

Y(y,¢e) :={Y > 0:Y is a supermartingale such that Yo = y
and XY = (X;Y:)/e[0,7] 1S a supermartingale

forevery X € X(1, ¢)}.

Note that for every ¢ € (—&o, €9), this is the usual formulation of the dual domain as
in Kramkov and Schachermayer [28, 29].
Next, we define the convex conjugate of U as

V(y) = sul()) (U(x) — xy), y >0,

and we note that it follows from (2.7) that

yV"(y)
B(y) i= ===, 0,
V'(y)
is well defined and satisfies
1 1
— < B(y) < —, y>0
c2 Cl
We also have
1
AXx) = ——, x >0,
B(U’(x))

so that B(U’(x)) is the relative risk-tolerance of U computed at x, and

1

—m, x> 0.

V'(U'(x)) =
The dual value function is defined as
v(y, &) = Yeij?(g,e)E[V(YT)], (y,€) € (0,00) x (—¢0,€0). (2.9
Here we use the convention
E[V(Yr)]l:=00  ifE[VF(Yr)] = o0,
where V7 is the positive part of V.
2.4 Assumptions on the base model

As our main results provide asymptotics around € =0 and some x >0, we need to im-
pose conditions on the base model that allow expansion results as well as some condi-
tions on perturbations. In order for the base model to be well defined, we assume that

V(1,0) # 9. (2.10)
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560 0. Mostovyi, M. Sirbu

We also need the following condition.

Assumption 2.2 The dual value function for the base model is finite-valued, that is,

v(y, 0) < oo, y > 0.

Condition (2.10) is necessary for the absence of arbitrage in the sense of NUPBR
introduced in Karatzas and Kardaras [26], whereas Assumption 2.2 is necessary for
the standard conclusions of utility maximisation theory as in Kramkov and Schacher-
mayer [29]. We also refer to the abstract theorems in Mostovyi [35] for the case when
the condition of existence of local martingale measures fails. Under (2.10) and As-
sumption 2.2, and with the utility function satisfying Assumption 2.1, we deduce the
existence and uniqueness of the optimisers to (2.8) and (2.9) for ¢ = 0, denoted by
X (x,0) and ?(y, 0), respectively, for every positive x and y, and we get continuous
differentiability of u( -, 0) and v(-, 0) as well as the duality relation

Yr(ux(x,0),0) = U'(Xr(x,0)), x> 0.
We note that u, (-, 0) is well defined by the abstract theorems in [35]. Also, the prod-
uct X (x, 0)Y (ux(x,0),0) is a martingale, which allows defining a new probability

measure R(x, 0) via

dR(x,0)  Xr(x,0)¥7(us(x,0),0)
P xty(x, 0) '

As usual R(x, 0) plays an important role in the second-order expansions of the primal
and dual value functions; see Kramkov and Sirbu [30, 31], Mostovyi and Sirbu [37]
and Mostovyi [36], among others. Below, we fix x > 0 and set y = u,(x, 0), which
is well defined in the present setting. We also write

X(x,0) = xE(7 - R) (2.11)
for some R-integrable process . As computations get technically involved, we de-

note for brevity X(x,0) by X and ¥ (uy(x,0),0) = Y (v, 0) by Y below. Likewise,
we denote R(x, 0) by R.

Assumption 2.3 We assume that
?(y,O):Y:yE(—)»-M+,3-MJ‘+L) (2.12)

for some predictable process 8 with fOT ﬂST d(M+)sBs < oo P-as. and for some
L € H2 (PP) which is orthogonal to every component of both M and M.

loc
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Optimal investment under perturbations of the market model 561

We also set
Hi=—A-M+B-M-+1L (2.13)

so that Y = yE(H). We remark that the form of Y in (2.12) is fairly natural. It is
consistent with most models in the literature from the introduction, whereas building
a model where such a form of Y fails to hold requires a special effort.

3 Elements of the change of numéraire calculus

Recall from Sect. 2.4 the primal and dual optimisers X = X (x,0) = xE(7 - R) and
Y= ?( v,0)=yE(H); see (2.11) and (2.12). The key role in the second-order analysis
is played by the sets M? and V2 of complementary and orthogonal martingales under
R. These sets are introduced in Kramkov and Sirbu [30] in a two-step procedure. First,
while the original assets are (1, ERY), ..., E(RY)), we change numéraire to

1 d
oX (1 xE(RY) xE(R ))’ G.1)

Y x T x
and second, we define
M?=(M ¢ ’H%(R) : M = H - ¥ for some H},

where H(Z) (R) is the set of square-integrable martingales under R with initial value O.
The complement of M?2in 7_[(2) (R) is denoted by N- 2 that is,

N?:=(N e ’H%(R) : MN is an R-martingale for every M e M?}.

Following [30], let us denote by M the family of uniformly bounded wealth
processes under the numéraire X with initial value O, that is, the family of semi-
martingales M such that for some § = §(M) > 0, we have

X(1+6M)eX(x,00 and X(1—8M) e X(x,0).

By N, we denote the family of semimartingales N such that for some
8 =68(N) > 0, we have

Y(1+36N) € Y(y,0) and Y(1-6N)eV(,0).

The Appendix provides a characterisation of these sets in the present setting.

We need a representation of R in terms of its predictable characteristics.
We follow Jacod and Shiryaev [19, Sect. 1I.2] and fix the truncation function
h(x) = x1yx <1y and denote by R the continuous martingale part of R, by B the
predictable finite-variation part of R corresponding to the truncation function A, by
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562 0. Mostovyi, M. Sirbu

w the jump measure of R, that is, the random counting measure on [0, T'] x R?
defined by

p(0, 11 x E) := Y Limop(ARy),  1€[0,T],ECRY,

O<s<t

where 1 is the indicator function of a set E and v is the predictable compensator
of yu, that is, a predictable random measure on [0, 7] x R? such that in particu-
lar, (x1{xj<1}) * (u — v) is a purely discontinuous local martingale. Defining the
quadratic covariation process C := [R¢, R¢] of R¢, we call (E, C, n) the triplet of
predictable characteristics of R associated with the truncation function 4. By [19,
Theorem I1.2.34], the semimartingale R can be represented in terms of (B, C, n) as

R =R+ B+ (xljy<1)) * (i — v) + (x1{xj=1)) * 1.

Define the predictable scalar-valued locally integrable increasing process A as

A= ZVar(Ei) + Z C + (min(1, |x[)) * v,

i<d i<d

where Var(Ei) denotes the variation process of §i, i=1,...,d. Then §, Cand v
are absolutely continuous with respect to A, and therefore we have

E:bu& C:c~;4v, v:n~g,

where b is a predictable R¢-valued process, ¢ is a predictable process with values in
the set of positive semidefinite matrices, and v is a predictable Lévy-measure-valued
process. Further, since one can write X = x&(r - R) for some R-integrable process
7, following Karatzas and Kardaras [26, Lemma 3.4], let us set

o ~ 7TT.X
R :R—(CT[)A— mx * .

One can see that R™ is a semimartingale. It is shown in Mostovyi [36, Lemma 4.1]
that every element of M can be represented as a stochastic integral with respect to
R” by relying on the formula

E(x-R) _

which holds in particular for every predictable and R-integrable process o« such that
the left-hand side of (3.2) is bounded and positive. Equivalently, the process R™ can
be described as follows. For any semimartingale K, let us consider the transformation

s AR

K" =K —[K 7 R]— Y Ak, 20
(K RI= ) T+ 1, AR,

O<s<-
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Optimal investment under perturbations of the market model 563

Particularly important cases correspond to K = 7’ - R for some predictable and
R-integrable process 7/, in which case we have

nSAR

7 -R"=a"-R—[n"-R° m- R T A

O<s<-
andto K = 7 - R, where 7 is predictable and E-integrable, so that
~ ~ Ty AR
¥ R =% -R—[% R, m-R]— AR, —1228
7 7 [#-R°.m RI— > 7 T AR, (3.3)

O<s<-

While the dual problem does not have a numéraire, a very similar transformation
is needed; we call it the dual numéraire change. It can be described as follows. For a
semimartingale K, with H being defined in (2.13) and where % = E(H) is the dual
numéraire, we set ’

AH.
K" := K —[K H]— AK,—2
[ ) AR Ag

O<s<-

which is also a semimartingale.

Remark 3.1 If £(H + K) is non-vanishing, K can be thought of as excess return of
K™ under the (dual) numéraire £(H), that is,

E(K + H)

EE = E(H)

The transformations - 7 and -™ are central in our analysis. If K is a continu-
ous process of finite variation, we have K H — g7 — K. We provide additional
characterisations below, in particular in Lemma 5.13.

4 Expansion theorems

4.1 Assumptions on the perturbations

We begin by introducing the remaining assumptions needed for the second-order
asymptotics. With k := Z?:l (M"'), we have (M) = A - k for some process A.

Assumption 4.1 We suppose that A, is invertible for every ¢ € [0, T], P-a.s.
Assumption 4.2 The processes R™, E”, MH and M-H are sigma-bounded.
Remark 4.3 Requiring R™ to be sigma-bounded is exactly the sigma-boundedness
condition from Kramkov and Sirbu [30, Assumption 2], which is needed to ensure

that u (-, 0) allows a second-order expansion in x.
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564 0. Mostovyi, M. Sirbu

Remark 4.4 A sufficient condition for Assumption 4.2, which ensures that every semi-
martingale on the probability space is sigma-bounded, see [30, Theorem 3], can be
formulated as follows. There is a d-dimensional local martingale M such that any
bounded, purely discontinuous martingale N is a stochastic integral with respect to
M, that is,

N=No+H-M

for some predictable and M-integrable H. We recall that this condition was intro-
duced in [30, Assumption 4]. We note that it is invariant with respect to an equivalent
choice of reference probability measure; see [30, Remark 3].

We impose a structure-type condition on the orthogonal local martingale M~ of
the perturbed model.

Assumption 4.5 We suppose that
(M*) = v - (M) for some bounded and predictable matrix-valued process v,
and that M (and therefore also M) is quasi-left-continuous.

Remark 4.6 In Mostovyi and Sirbu [37] and the volatility uncertainty part in Herr-
mann et al. [16], Assumption 4.5 holds due to the special parametrisations of pertur-
bations. We also note that Assumption 4.5 typically holds in the standard case of Itd
semimartingales, where both (M) and (M 1) are absolutely continuous with respect
to time.

Assumption 4.7 We suppose that ¢ is bounded, where ¢ is introduced in (2.5).
A central role in our analysis is played by the process
g = AT A — AT G A + 4. 1€(0,T], .1
We characterise g in Lemma 5.2 below; see also Remark 5.3.
Remark 4.8 1f d = 1, that is, if there is only one risky asset, g reduces to
g=vB—Pr+¢.
For the perturbations, we need to impose the following condition, which is needed

to ensure that candidate nearly optimal elements of the primal and dual domains have
enough integrability. It is consistent with the integrability condition in [37].

Assumption 4.9 We suppose that fOT n)d (M), s < 00 so that under the assump-

tions above, 7 - R™ and g - M H are well defined. Further, we suppose that there exists
¢ > 0 such that

Er[exp (c(| - RF| + [ - R™I7 + [g - MT11))] < 0.
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Optimal investment under perturbations of the market model 565

The following assumption is needed to ensure the admissibility of the candidate
nearly optimal elements of the primal and dual domains.

Assumption 4.10 The jumps of 7 - R™ and of g - M* are bounded.

We state below the first-order expansion in Theorem 4.11 under the same assump-
tions as the second-order expansion in Theorem 4.15. This is for brevity, even though
some assumptions in Theorem 4.11 can be relaxed, such as the sigma-boundedness
in Assumption 4.2.

Theorem 4.11 Let x > 0 be fixed and suppose M and M* are in ’HIZOC(IF’) and
that (2.2), (2.6) and (2.10) and Assumptions 2.1-2.3, 4.1, 4.2, 4.5, 4.7, 4.9 and
4.10 hold true. Set y = uy(x,0), which is well defined by the abstract theorems
in Mostovyi [35]. Then there exists &y > 0 such that for every ¢ € (—&o, &9), we have

ux,e) e R, x>0, and v(y,e) eR, y=>0.

Further, u and v are jointly differentiable (and thus continuous) at (x, 0) and (y, 0),
respectively. We also have

Vu(x,0) = (ug()yc 0)>’ Vo(y, 0) = (vg(_ny)>’ 4.2)

where
us (x, 0) = xyEr[7 - RE] = v:(y, 0) = xyEr[g - M¥] 4.3)
and g is defined in (4.1).

Remark 4.12 This remark provides a characterisation of 7 - Ié’T’ as an excess return.
Similarly to Remark 3.1, we can further characterise 7 - R} as the stochastic logarithm

of 5(”#’?;5”, provided that the latter exists. If A(rx - (sﬁ + R)) # —1 for some

constant &, we have

o = o SR 0)
T

E(™-R)

This expression provides the return of £ (i - (sﬁ + R)) under the numeraire £( - R),
where Log denotes the stochastic logarithm. If A(;r - (R + R)) # —1, (4.3) reads

7 -(R+R
ug(x,0) = xyEgr |:E0g (%) Ti| .
Remark 4.13 Theorem 4.11 provides the first-order in & (thus linear) response of the
value functions to small perturbations of the stock price. Thus in particular, pertur-
bations of the drift, volatility and the orthogonal martingale part could be considered
separately, and the proof of Theorem 4.11 could be implemented by matching the
associated terms in the primal and dual representations for the first-order derivatives
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given by (4.3) (under sufficient integrability). The proof of Theorem 4.15 is signifi-
cantly more involved as it provides a second-order expansion, which corresponds to
the quadratic in ¢ (thus nonlinear) response of the value functions to perturbations of
the stock price.

4.2 Minimisation problems for u,, and u.,

Having specified the structure of M?, we are ready to state the auxiliary minimisation
problems that govern the second-order expansion terms for u. We define

a(x,x):= _inf Er[AX7)(1 + Mr)?], (4.4)
MeM:?
d(e.e) = _inf Er[A(X7)(Mr + x7 - RE)? — 2Mr(xg - M), 4.5)
MeM
2

T
T, := —ER[ (/ JTSTd (M), gs)
0

T
+z(/ nld (M), gs)
0
x (n : (d) "R+ M*— /d<Ml>ﬂ)i>], (4.6)

a(e, &) == adle, &) + x°Ty. .7
Using standard techniques of the calculus of variations, one can show the existence
and uniqueness of the optimisers to (4.4) and (4.5), which we denote by M* and M?,
respectively. Let us now set

a(x,e) = Er[A(X7)(M} + x71 - ﬁ?)(M; +1)—(xg- Mﬁ)(M% +1]. 4.8)

4.3 Minimisation problems for v, and v,

We recall g from (4.1) and set

b(y,y):= inf Ep[B(Yr)(1+ Nr)?, (4.9)
NeN?
b(e. ) = Jinf Ex[BD)(Nr = yg - M{)? +2N7 (y - RP)], (4.10)
T 2 T
Ty = ER[ (/ mld <M>sgs) -2 (f )l d <M>Sgs) (g- M)
0 0
T
- 2/ 7, psd (M), gs], (4.11)
0
b(e, ) = 5(8, &)+ szz. 4.12)
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With N7 and N? denoting the unique solutions to (4.9) and (4.10), respectively, we
define

b(y, ) := Er[B(YT)(N& — yg - MEY(NY + 1) + (y - RE)(NJ + D). (4.13)

We remark that the minimisation problems (4.4) and (4.9) have been introduced in
Kramkov and Sirbu [30], whereas the minimisation problems (4.5) and (4.10) that
govern the corrections in ¢ are new to the best of our knowledge.

4.4 The joint structure of four auxiliary value functions and their optimisers

The following theorem establishes relations between the auxiliary value functions
and between the optimisers to auxiliary minimisation problems.

Theorem4.14 Fix x > 0 and set y = uy(x, 0). Under the conditions of Theorem 4.11
and with M*, M¢, N7 and N°¢ denoting the solutions to (4.4), (4.5), (4.9) and (4.10),
respectively, we have

a(x,x) 0\ (b(y,y) 0\ _(1 0
<a(x78) —§)<b(y,8) —%)‘(0 1) .19

Ya(e, ) + Sb(e, &) = a(x, £)b(y, ). (4.15)
x y

and

Further, we have

1+ M7 _(a&x.x) 0 14 Ny
A(XT) (xn R +M§> = <a(x,5) S TACE R (4.16)

or, equivalently,

1+ N b(y,y) 0 1+ M
B(r ! = , o). @7
o (—yg My +N?,> (b(y,s) —2 ) \am - R} + M§, (“4.17)

4.5 Second-order expansions of the value functions
The following theorem establishes second-order expansions of the value functions.

Theorem 4.15 Fix x > 0 and set y = u,(x,0). Assume the conditions of Theo-
rem 4.11 and recall (4.2). Then with

H,(x,0) := _Y <a(x,x) a(x,s))

x \a(x,e) af(ee)
and a(x, x), a(x, €), a(e, g) given by (4.4), (4.8) and (4.7), respectively, we have
u(x + Ax,e) =u(x,0)+ (Ax ¢&)Vu(x,0)

4 %(Ax €)H, (x, 0) (A:) +o(Ax? + &Y,
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where Ax? is a shorthand for (Ax)2. Likewise, with

_ X (b(y,y) b(y,e)
Hy(y,0) := y (b(y,g) b(e, 8))

and b(y, ), b(y, €), b(e, &) given by (4.9), (4.13) and (4.12), respectively, we have

v(y+ Ay, e) =v(y,0) 4+ (Ay ¢&)Vu(y,0)

1
+ E(Ay e)Hy(y, 0) (Agy> +o(Ay? +&?).

4.6 Derivatives of the optimisers
The following theorem provides derivatives of the optimisers.

Theorem 4.16 Fix x > 0 and set y = u,(x,0). Assume the conditions of Theo-
rem 4.11. Then we have, with convergence in P-probability, that

0= Im ——
|Ax|+le|—0|Ax]| + |&]

X fT(x + Ax, ¢g)

-~ ’
i ( ) ( Ax(l Mx]) E(MSI +'(: . RT)) ( .18)
and

1
0= lim ——
[Ay|+le| 0| Ay| + |&]

x |Yr(y + Ay, ¢)

7 ,
_ L;’O) (y+Ay(1+N%)+s(N%—yg-M§’)>'- (4.19)

4.7 Corrections to the optimal strategies

With M* € M? and M? € M? denoting the solutions to (4.4) and (4.7), respectively,
we can approximate these optimisers by bounded processes in M such that

lim ]\;I;’” =M7 and lim M;’” = M7 P-a.s.
n—oo n—0oo

We also refer to Lemma 5.10 below, where a construction of this type is made explic-
itly. Without loss of generality, we may suppose that M*-" is bounded by n, n € N,
and then we can further localise M*" by taking

T =inf{t > 0: [M*"], > k}, keN,neN.
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Then in particular, [Mx’"],ATkn < k + 4n?. Thus if we set

irX.n . xX,n
M;" = AT te[0,T],neN,

then M*" is bounded by n, its quadratic variation is bounded by n + 4n? and its
jumps are bounded by 2n. Further, by this construction, we have

lim M2" = M¥ P-a.s.

nl>oo T T
We can construct a similar approximating sequence for M*®, which we denote by
M?®", n € N. Now Mostovyi [36, Lemma 4.1] implies the existence of predictable
R -integrable processes 7*" and 7 %" such that

Mx,n M&n
" R = ——, 7n®".RT = , n e N.
X X

Remark 4.17 In the above representations, the dimensions match in the sense that,
on the one hand, the elements of M® are stochastic integrals with respect to the
(d + 1)-dimensional process SX defined in (3.1). On the other hand, the elements of
M can also be represented as stochastic integrals with respect to the d-dimensional
process R™; see [36, Lemma 4.1].

With these preliminaries, define the family ()?Ax*s'”)(Ax,m)e(,x,oo)X(,SO,EO)xN of
semimartingales by

iAx,e‘n = (x + Ax)E ((7{ + Axa™" 4 ex®™) . Rs) . (4.20)

Theorem 4.18 Fix x > 0. Under the conditions of Theorem 4.11, we have:
1) For every n € N, there exists ¢ = ¢(n) > 0 such that

XA%Em ¢ X(x + Ax,g),  (Ax, &) € Byn)(0,0),
where Bg ;) (0, 0) denotes the ball of radius e(n) centered at (0, 0).
2) There exists a function n : (—x, 00) X (—&g, €0) — N, (Ax, ¢) — n(Ax,¢)
such that

E[U (X555 A0)] = u(x + Ax, ) — o(Ax? + &2).

3) With n = n(Ax, ¢), the process XAXEN invests in the corresponding traded
assets the proportions

7+ Axat" 4 en®".

Remark 4.19 We note that the results of Theorem 4.18 are consistent with Mostovyi
and Sirbu [37, Theorem 3.1], where

XANAE = (x + Ax)é’((n +Axy?f +e( +y9) - RS>. (4.20)
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If we consider perturbations as in [37] and a continuous one-dimensional stock (also
as in [37]), the difference between (4.20) and (4.19) is due to the difference in the
notations. In particular, we can obtain that 75" = v 4 y % (modulo a slightly
different localisation procedure).

5 Proofs of the expansion theorems
5.1 Preliminary results

We begin with the following result, where we establish characterisations needed in
the proofs of Lemmas 5.6, 5.8 and 5.21 below.

Lemma 5.1 Consider a local martingale M with 1\~40 = 0, with jumps bounded by a
constant A, i.e., |AM| < A’, and whose quadratic variation has some exponential
moments, i.e., there exists ¢ > 0 such that

E[eMIT] < oo, (5.1)
Then M is a martingale, and for ¢’ = min(ﬁ, 4) > 0, we have
E[e"/WT'] < 0.

Proof First observe that the choice of ¢’ allows ensuring that the jumps of 2¢’ M are
bounded by %, and thus we have both

EQIM) >0  P-as. (5.2)
and

> llog(l +2¢ AMy) — 2 AM| < Y (2dAM,)*  Pas.  (5.3)
O0<s<T O<s<T

Let us observe that

E[EC/MT] _ EI:eC’MT—[C/MC]T+% Y05 <1 (log(1+2¢’ AM;)—2¢ AM)

% ¢ M=% ZOQET(log(1+20/AIl~45)—2c’AIl7s)i|.

Applying the Cauchy—Schwarz inequality, we get

E[EC,MT] < E[ek’ﬁlr—%[20’A7["]T+ZO<S5T(log(l+2c’A1\73)—26’A1\~4s)i|7

~ - ~ a1
x B[ 21 Terzr fos(1426 A2 AN ) 2 (5.4)
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We observe that the first factor on the right-hand side of (5.4) is bounded by 1, as
ezc’MT—%[2{:’1\71"]r+20<ssr(1og(1+2c’AMS)—2c’AA71S) _ 8(2c’A7I)T,
which in view of (5.2) is the terminal value of a nonnegative local martingale, thus

supermartingale, starting from 1. To bound the second factor in (5.4), we use (5.3) to
deduce that

EI:EZIC/MC]T*ZO<A‘§T(10g(1+2c/A1\7S)720/A11N45)j| < ]E[ezlc/ﬁflr+20<sgr(2c/AMS)2]
< E[e*)1MIr
< ]E[eC[M]T] < 00.
We deduce that in (5.4), we have
Efe“ ] < E[eMIT]3 < 0.
Similarly, we can obtain
]E[e*"/MT] < 00.
We conclude that
Efe171] < Ble'Mr] 4+ Ble=¥7] < oo,

Finally, from (5.1) via Protter [40, Corollary I1.3], we deduce that M is a true
martingale. |

5.1.1 Implicit differentiation

The following Lemmas 5.2 and 5.4 are crucial for handling the multidimensionality
of the stock price process in the context of the proofs of the results from Sect. 4. The
following lemma provides the first-order implicit differentiation formulas.
Lemma5.2 Fixx > 0, set y = uy(x, 0) and assume the conditions of Theorem 4.11.

Then there exists € > 0 such that for every & € (=%, ), the families of vector-valued
processes 1 and matrix-valued processes G® that are given (implicitly) via

/d<M><x+e;> _ /(1 +o)d (M) 2°,

/(1 +ep)d (M) (G5)T = ¢ [ vd (M) (5.5)

are well defined. Further, for every predictable process a such that
/aTd(M)g, /aTqbd (M) 1, faTvd (M) B
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are well defined and finite-valued P-a.s., we have
/aTd (M) (A0 = /aTd(M)g — faT¢d (M) A,

f a'd (M) G g = f a'lvd(M)B  P-as., (5.6)

where the (implicit) derivatives (with respect to €) above are given by
O = =AD" p Ak + &, (G T =ATNwAL 1el0,T], (57

and B is the process from (2.12). Further, we have
/an (M) (A% +(G%' ") = /an (M) g. (5.8)

Remark 5.3 In view of Assumption 4.1 and the assertions of Lemma 5.2, in particular
(5.8), the process g can be characterised in the (convenient) form

g =G TR +0,  tel0,T)
where (G?)’ and (A?)’ are given by (5.7).
Proof of Lemma 5.2 First we observe that at ¢ = 0,
AM=x and G°=0

satisfy (5.5), which shows that for square matrices with small off-diagonal elements,
the eigenvalues are close to the diagonal elements. From the boundedness of ¢ and
the Gershgorin theorem (see Golub and Van Loan [11, Theorem 7.2.1]), we deduce
that there exists € > 0 such that for every ¢ € (—%,%), I + €¢ is invertible and
(I 4+ e¢)~! is bounded. Using Assumption 4.1 or the vector and matrix-valued ver-
sions of the Radon—-Nikodym theorem, see e.g. Robertson and Rosenberg [41, The-
orem 5.1], ensures that for every ¢ € (—%, %), the vector-valued process A® and the
matrix-valued process G° given through (5.5) are well defined IP-a.s. Now combining
(5.5) and Assumption 4.1, we deduce (5.7).
Next, by invertibility of I + £¢, one can rewrite (5.5) for every ¢ € (—¢,¢) as

/(1 +ed) d(M)Y(\ +eg) = /d<M> A8

/d (M) (G5 T = 8/(1 +e¢) " vd (M) . (5.9)

Let &5, n € N, be a sequence converging to 0. Considering the quotients of the form

&n __ en) T
/aTd (M) A ’\, /aTd (M) (GO

&n &n

and using (5.9), we obtain (5.6). Equation (5.8) can be obtained similarly, where we
note that [P-a.s. finiteness of the right-hand side of (5.8) follows from Assumption 4.9
and Lemma 5.6. U
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The proof of the following result, which provides the second-order implicit differ-
entiation formulas, is similar to that of Lemma 5.2; it is skipped for brevity.

Lemma5.4 Fixx > 0, set y = uy(x, 0) and assume the conditions of Theorem 4.11.
Then for every predictable process a such that

/ aTpd (M), / aTpdd (M) 1., / a"gvd (M) B

are well defined and finite-valued P-a.s., and with A* and G® given (implicitly) via
(5.5), we have

[aTawn a0y =2 [asawnc +2 [ o opd 2.
/ ald (M) G Tp=-2 / al¢vd (MYB  P-as.
and thus
/ ald (M) (G T+ (00") = / a'gd (M)g.
The following result gives a representation used in the proof of Lemma 5.20 below.

Lemma 5.5 Under the conditions of Lemma 5.2, we have
T "
fo nld (M) (G2 T8 + (10
T
_ /0 7T s (vyd (M) By +d (M) ¢y — dsd (M), )
T
=-2 /0 7y sd (M), gs. (5.10)
As a consequence, we have
14 T
Er[((A%)" +(G°) TB) - Mf'] = —2Eg [ /0 ) dsd (M), gs} . (5.11)

Proof First, (5.10) can be proved similary to Lemma 5.2. For (5.11), we observe that
under the conditions of Lemma 5.2, one can show the integrability of the random
variable (A°)” + (G®)" T B) - MY and that ((.°)" + (G®)" TB) - (M — [ d (M) m)"
is an R-martingale. Then (5.11) follows from completing (A9 + (GO)” ). M
to an R-martingale. (|

@ Springer



574 0. Mostovyi, M. Sirbu

The following result provides characterisations of the key terms appearing in The-
orem 4.11, see (4.3), and Theorem 4.16, see (4.18) and (4.19). These terms also
govern the auxiliary value functions; see (4.5), (4.8), (4.10) and (4.13).

Lemma 5.6 Fix x > 0 and set y = u,(x,0). Under the conditions of Theorem 4.11,
we have

-~ =n-(¢-R+Ml—fd(ML)ﬂ> +fan<M>g, (5.12)

where each term is well defined, 7 - (¢ - R + M+ — f d(M*)B)™ is an R-martingale
and there exists ¢"" > 0 such that
Er [ exp (5/ ’(

T
/0 gl d (M), | +1g - ME|

i ‘n . <¢.R+ML —/d(MHﬁ)ZD)] <00 (5.13)

and |g - (M — f d (M) JT)IT{ | also has exponential moments under R.

Remark 5.7 Assumption 4.9 and Lemma 5.6 allow us to characterise ¢ - R™ and
cm-(p-R+M*t— [dM LYB)™ as R-entropic submartingales in the terminology
of Barrieu and El Karoui [4, Sect. 3], for a sufficiently small and positive con-
stant c. We recall that a process X with sufficient exponential integrability is called
an entropic submartingale if for all stopping times o and T witho < 7 < T, we
have X, < ps(X;) P-as., where ps(X;) = log Er[exp(X;)|Fs]. The operator p
is known as the entropic process and is studied in the context of risk measures; see
the references in [4]. Further, following [4], our integrability assumption can be re-
stated in terms of the key driving entropic (sub)martingales being in the class of
R-martingales whose stochastic exponential is a uniformly integrable martingale. In
turn, this can also be characterised, through the class Léxp (R) of random variables Z
with exp(|Z]) € L' (R), that is, the random variables appearing in Assumption 4.9

must be in Léxp (R). Again, we refer to [4, Sect. 3] for more details.

Proof of Lemma 5.6 Using Lemma 5.2, by direct computations, 7 - R™ can be repre-

sented as in (5.12), where each term is well defined. Thus with quasi-left-continuity
of (M), we have

7 R*]= [n-(¢~R+Ml—/d<ML>ﬁ) ] (5.14)

and together with Assumption 4.10, we deduce that the jumps of the process L de-
finedby L :=m-(¢p- R+ M+ — fd(MJ-),B)” are bounded. By Assumption 4.2, L
can be written as a stochastic integral with respect to a sigma-bounded local martin-
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gale. Therefore, together with the boundedness of the jumps as above, we deduce via
the Ansel-Stricker theorem, see Delbaen and Schachermayer [8, Theorem 7.3.7], that
L is a local martingale. As a result, Assumption 4.9, (5.14) and Protter [40, Corol-
lary I1.3] imply that L is an R-martingale. As [7 - R™17 has exponential moments
under R by Assumption 4.9, Assumption 4.10, (5.14) and Lemma 5.1 imply that |L7|
also has exponential moments under R. This further implies via Holder’s inequality
from Assumption 4.9 and (5.12) that | fOT gSTd (M), s| has exponential moments
under R.
Similarly, representing

H
g.MH:g-(M—/d(M)n) +/gTd(M)7T

and using Assumptions 4.9, 4.10 and Lemma 5.1, we deduce that the random vari-
able |g - (M — f d (M) n)¥ | has exponential moments under R. Consequently, via
Assumption 4.9 and Holder’s inequality, we deduce that |g- M. ﬁ | also has exponential
moments under R. Thus (5.13) holds. O

The following result establishes an equality (see (5.15)) that is needed for Theo-
rem 4.11; see (4.3).

Lemma 5.8 Fix x > 0 and set y = u,(x,0). Under the conditions of Theorem 4.11,
we have

Egrlm - R7] = Erlg - MH]. (5.15)
Proof Let us observe that
» T
7-R™ =n-¢-R”+n-<Ml—/d(ML),B) +/an(M)g.
Assumption 4.9 implies that

T T
T <¢> "R+ M+ — /d(ML),s) e H2(R), f nld (M), g5 € L*(R).
0

We deduce that
Eglr - RE] = ER[n : <¢ "R+ M+ — /d(MHﬁ) }
T
T
+ Er [/ md (M), gs}
0
T
— By [ [ eTaun, m} . (5.16)
0
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Now, as g - M. ﬁ € L?>(R) by Lemma 5.6, we can rewrite the latter expression as

T H
]ER|:/ nSTd<M)sgs}=]ER[g-(/d(M)n—M> +g~M§I]
0 T

= Egrlg - M7'], (5.17)

where we have used that g - (f d(M)ym — M)H € H*(R) due to Assumption 4.9 and
Lemma 5.1. Comparing (5.16) and (5.17), we deduce (5.15). O

Remark 5.9 The equality u.(x,0) = v.(x, 0) will follow from the proof of Theo-
rem 4.15. Here we discuss the implications of the two matching representations in
(4.3), in particular the linear structure of u. (x, 0) = v, (x, 0) with respect to the indi-
vidual components entering the process R ,thatis, ¢ - M, M L and the finite-variation
term [d (M) ¢.

From Lemma 5.6, we have

T
Eg H fo oTd (M), 7,

] <

and that g - (M — f d(M)m)H is a true martingale under R. This allows rewriting
ve(y, 0) as

H T
v (y, 0) ER[g.<M—/d(M)T[) }—l—IER[/ gId(Mm}
Xy T 0
T

T
= ER[ / md(M) (1Y) + (G?)/Tﬂs)} (5.18)
0

where in the last equality, we have used Lemma 5.2; see (5.8). For the purpose of
giving the intuition in this remark, assuming the needed integrability of the individual
components of g, using Lemma 5.2, we can rewrite (5.18) as

T T
000 _ g [ / T d(M)x(G?)/T,Bsi|+ER [ / T d(Mm?)/}
Xy 0 0
T T
=ER[/ nvad<M>s/ss}+ERU njd(Mm}
0 0

T
—Er [ / ) ¢sd<M>sxs} : (5.19)
0
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Likewise, assuming the needed integrability, we can rewrite u.(x, 0) as

ug(x,0)
Xy

= Eg[r - R}]

T
— Eg (¢Tn>-M¥+/O njd<M>s;s+n.M;ﬂ}

_ . T
=Eg | (¢ 7)- (M +/d<M>/\) } — Eg [/ FTST¢sd(M)s)»s]
L T 0

— T T
+Egr / njd(M)sgs] +Egp [n : (ML—/d(ML),B) }
0 T

T
+ Er / 7TsTd<MJ_>s.3s:|
0

T T
— Ex / njvsd<M>Sﬂs]+ERU an<M>s;s]
LJO 0

T
—Eg [ / o ¢Sd(M)S/\S} ) (5.20)
0

Comparing the last expressions in (5.19) and (5.20), we conclude that heuristically,
we can get v (y, 0) = u.(x,0) by matching terms corresponding to three different
types of perturbations, represented by an orthogonal martingale term v, a perturbation
¢ of the volatility term, and a perturbation ¢ of the finite-variation term. The contri-
butions of v, ¢ and ¢ in v.(y, 0) and u.(x, 0), on a heuristic level, can be matched
separately. This ends Remark 5.9.

5.2 Constructing a second-order bound for the primal problem

Below, we construct a family of admissible wealth processes that provides an asymp-
totic lower bound, quadratic in Ax and &, for the primal value function, in the sense
of Lemma 5.17. For bounded and predictable 7% and 7’, let us set

K2 .= (r + Axn’ +en’)- R =7 - R
= (Axn’+en’) - R+em-R+e(Axn®+en')-R. (5.21)
We drop the superscript Ax, & in K%¢ and write K instead for brevity of notation.

We note that the boundedness and predictability of 70 and 7’ ensure that 7° - R™ and
7’ - R™ are well defined.

Lemma5.10 Fix x > 0 and set y = u,(x, 0). Under the conditions of Theorem 4.11,
consider bounded and predictable processes 7° and w' such that the following
processes are bounded:
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D#® R™ and ' - R™;

2) [7'[0 - R™] and [7 - R™];

3) 70 . R*, 7' - R*, (p'x)) - R*, n’ - (M+ — [dMY)B)", [¢Td(M)n'
fn’Tgbd YA andfn/TdWL)ﬁ

4) [0 R, [<¢T ). R™], [x- (ML JfdM) ™

5) [m - R™, 7 R”] and [ - R™, 7’ R”]

6) [ - E”, “R™land [7 - R™, 7 - R™].
Then there exists a constant § > 0 such that for every (Ax, €) € Bs(0, 0), we have

X
ZEKRAYET) € X(1, ),
X

where K is given by (5.21) and, similarly to (3.3), KAXET s given by

s AR
KAx,s,n — KAx,s _ KAx,s,c AKAX g _ts/=ts
[ - 2. AK; 1+mAR 22

O<s<-

Proof 1t follows from the calculus of stochastic exponentials that

E((r 4+ Axn® 4+ en’) - R?)
E(m-R)

— g(I(A)C,E,?T)7

where the positivity of £(K2%7) follows from Assumption 4.10 and the choice of
8 in Bs(0, 0). O

Now, under the transformation (5.22), for 79 and 7/ as in Lemma 5.10, we have
K208 — (Axn® + en’) - R™ + e(Axn® + en’) - R™ + en - R7,
where (Ax7? + ex’) - R"e M, (Ax7® + en’) - R™ is bounded and 7 - R™ has

exponential moments under R and bounded jumps by Assumptions 4.9 and 4.10.
We need the following lemma from Mostovyi and Sirbu [37, Corollary 4.13].

Lemma 5.11 Under Assumption 2.1, for every z > 0 and x > 0, we have
U'(zx) < max(z™2, DU'(x) < (272 + DU’ (),

—V/(zx) < max(z ‘1 1)( V/(x)) < (z_% + 1)( — V/(x)).

The following result provides auxiliary representation formulas needed in the
proof of Lemma 5.16.
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Lemma5.12 Fix x > 0 and set y = u,(x, 0). Under the conditions of Theorem 4.11,
let both 1° and ' satisfy the assumptions of Lemma 5.10. Then we have

E[U”(XT)<XT(£ 470, R?))z

1 2 1
+ U’(XT>XT<(; +70-RY) - 5 -’ R”]T)}

2
- —%E[A(Xﬂ(l +xm0. R¥> } (5.23)

as well as
E[U"(XT)(x' - R} + 7 - R})?
+U' X)Xt Rf 47 RE)? 421 - Rf —[n' - R" + 7 - K17 ]
= —xyEr[(A(X7) — 1) (7 - R} + 7 - R})?
—21" RF +[n-R" +7' - R"Ir]. (5.24)
Proof As 7. R is a bounded martingale under R, we deduce that

1 2 1
E[U/(XT)XT<<; + 0. R?) a2 [7°- RH]T>1|

2
= xyERI:;JTO RE+ (2" RE)? —[2°- Rn]Ti|
= 0. (5.25)

Using the definition of R, we also get

E[U”(XT) (XT (}C +70. R’;)>2] - —%ER[A(XT)(l + 7% RE?LL (5.26)
Combining (5.25) and (5.26), we deduce (5.23). (5.24) can be obtained similarly. [
5.3 Preliminaries for representing a(e, ¢) and a(x, ¢)

To obtain the representations in (4.7) and (4.8), we will need some auxiliary results.
The following lemma provides an auxiliary representation needed in the proof of

Lemma 5.14.

Lemma5.13 Fix x > 0 and set y = u,(x, 0). Under the conditions of Theorem 4.11,
let ' satisfy the assumptions of Lemma 5.10. Then we have

T H
Eg [/0 n;Td(M)Sgs]=ER[(n’.Rg)(g-(M—/d(Mm)T)] (5.27)

@ Springer



580 0. Mostovyi, M. Sirbu

X_Y_

Proof First, let us observe that 7’ - M and g - M are in ’HIZOC(]P’). As o is left-
continuous, by Protter [40, Theorem I11.29], the process
X Y_
-(/n’Td[Md]g —/n’Td(Md)g> (5.28)
xy

is a local P-martingale, where M = M¢+M is the decomposition of M into continu-
ous and purely discontinuous parts; see e.g. Jacod and Shiryaev [19, Theorem 1.4.18].
Let 7,, n € N, be a localising sequence for the local P-martingale in (5.28) and such
that ([ 7' Td(M¢)g)™ and ([ =’ Td(M?)g)™ are bounded for each n € N. The ex-
istence of such a sequence follows from Assumption 4.5. Fix n € N, consider an
arbitrary stopping time o and set T := o A 1,. Next, recalling the definitions of the
transformations - © and - 7/ and using the Kunita—Watanabe inequality, we get

ER[W - RZ><g (M- fd<M>n):')}

:ER[[n’ R—[n R 7 -R1= Y w]AM,

O<s<-

g~<M—/d(M)7r)—[g.<M_/d<M)n_)C7Hc]

s AR
1+ m, ARy’

O<s<
7y AR
—F [’M— IAM, B2
R[” 2 MAMT R,
0<SS'
AH,
M- ‘AMi] . 5.29
8 Oggi.gs 7 T AH, ] ( )

One can rewrite the last expectation in (5.29) as

t . 'AM, AM.
ER[ / 2 d(MC) gy + Y et SO
0 <s<

=T +D.
r1+7rSARs1~|—AHs:| 1+ 4

0

The computations above show that both T} and T are finite. Let us observe that by
Lemma 5.6, both 7’ - R" and g - (M — fd(M)n)H are in H2(R), and thus we have

T/ AM; \? .
ER[ > (m) }SER[[” ‘R™];] < o0 (5.30)

O<s<t
and
ER[ 3 (%)2} EER[[g~(M—/d(M)n)H] ] <00, (531)
O<s<t § '
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Further, since

1 AR = d 1 AHg = g
+ = s =+ s =
s s XS_ * YS_

)

and using (5.30), (5.31), localisation and integration by parts, one can rewrite 72 as

- X, Y,
T = E[ > “xys n;AMggsAMg] (5.32)

O<s<t
By Protter [40, Theorem I1.28], we have
/n’Td[Md]g =[r" M g M= > mAMg,AM;. (5.33)
O<s<-

As the process in (5.28) is a true P-martingale on [0, t], from (5.33), one can further

rewrite 7> in (5.32) as
~ T X, Y,
T, = E[/ — n;Td<Md>sgs].
0 xy

Next, using localisation and [19, Theorem 1.4.49] (noting that for 7} Td (Md)s gs 1S
P-integrable by the construction of 7), one can further rewrite 7> as

T
% = Eg [ /O n;Td<Md>sgs} .

We recapitulate that Er[ (" - RT ) (g- (M — f d(M)n)f)] in (5.29) can be rewritten as

ER[m’-R;’)(g-(M—/d(M)n)f)}

=f1+f2

= Eg [ / ' n;Td<MC>sgs] +Er [ / ’ n;Td<Md>sgs]
0 0

= Eg [/Tn;Td (M), gs:|.
0

As 7T is an arbitrary stopping time valued in [0, 7,] and t,, n € N, is a localising
sequence, we conclude that fot 7’ Td (M) g is the predictable quadratic covariation
of the pair (" - R™, g - (M — [d(M)7)H) (under R).

Now, using Lemma 5.6, we observe that both 7/ - R™ and g - (M — fd(M)n)H
are in %2 (R). Therefore [19, Theorem 1.4.2] asserts that

H T
(rr’-R”)(g-(M—/d(M)n) )—/n’ d(M)g
is a true martingale under R, which implies (5.27). (|
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The following result provides a representation needed in the proof of Lemma 5.15.

Lemma5.14 Fix x > 0 and set y = u,(x, 0). Under the conditions of Theorem 4.11,
let v’ be as in Lemma 5.10. Then we have

~ H
Eplr' - RE] = ER[(T{’ : R’;)<g : (M — /d(M)n)T)]. (5.34)
Proof From Lemmas 5.6 and 5.2, we get
T
Egln’ - RF] = ER[:T’ (@ R+M*-—p- (M) +f 7 'd (M), g]
0
(5.35)

The construction of 7/ implies that 7’ - (¢ - R + M+ — g - (M+))™ € H*(R), and
thus

Erln' (¢ R+ M* —p- (MT)E]=0.

Consequently, in (5.35), we obtain

T
Er[z’- R7] = ER[/ myTd (M) gs].

0
Comparing (2.11) to (5.27) in Lemma 5.13 gives (5.34). U

Lemma5.15 Fix x > 0 and set y = u,(x, 0). Under the conditions of Theorem 4.11,
let v’ be as in Lemma 5.10. Then we have

—Er[(1 —AXp)) (@' - RF +7- R} + 20 -RF —[n-R™ + 7' - R"Ir]
= Er[A(X7)(n' - R} + 7 - R})? =21’ - Rig-ME1+ 1, (5.36)

where Ty is given in (4.6) and g in (4.1). For 70 as in Lemma 5.10, we also have
r T
0= ER[xg ME 4+ (xn® R’;)<x/0 g d (M)Sm>
— (1 +x7° - RE)(xn' - R} + x7 - RF)
+[14+x7° R",xn' - R™ +xn-§”]7i|. (5.37)
(This is used later for the representation of a(x, €).)

Proof First, using the representation in Lemma 5.6 and the square-integrability of
L La\"
(n/-R¥+n-(¢-R+M —/d<M) ﬁ>T>
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under R, we get, using (4.6), that

]ER[z(n -RT )/ Td (M), g — (n' - RE 47 RE) + [n/-R”+n~ié”]T]

T 2
ER[zm’-R% / gy d (M) my — ( f g  d (M), m)
0 0
T T
—2[ ng<M>sns<n’-R;+n-(¢-R+ML—/d<M>H3) )]
0 T
T 2
=—ER[< / old <M>sns)
0
T T
+2(/ gSTd(M)Sns)<n-(¢-R+ML—/d(M>L,3> )]
0 T

=T. (5.38)

Note that the representation in (5.38) does not depend on the choice of 7’ (which
still has to be as in Lemma 5.10). Next, consider the left-hand side of (5.36). Using
Lemma 5.14, we can rewrite it as

—Er[(1 — AXp)) (' - RE +7-R})*+ 20 -RE —[n-R™ + 7' - R"Ir]
=BrlA(X7)(t' - RF +7 - RF)? —2(x' - R7)(g - M{")]

+]ER[2(71 RT )/ s — (' R} +7 - R} +[n-R" +7- R”]}
= Er[AX7)(" - R} 4+ 7 - RE)? —2(n' - RE)(g - ME) + T,

where the second equality uses (5.38). The computations for (5.37) are similar. [

The following result establishes a quadratic (in Ax and ) expansion associated
with a family of wealth processes parametrised by Ax and ¢ as in Lemma 5.10.

Lemma5.16 Fix x > 0and set y = u,(x, 0). Under the conditions of Theorem 4.11,
let 70 and 7' be as in Lemma 5.10; the associated K is defined in (5.21). Then
consider

V(Ax, g) = (1 + %) E(KAYETY (Ax, ¢) € Bs(0, 0),

where § > 0 is chosen to be sufficiently close to 0 so that for every (Ax, €) € Bs(0,0),
we have %8(1(“’8’”) € X(1,¢) by Lemma 5.10 and the jumps of K27 take
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values in [—%, %]. Define
w(Ax, ) =E[U(Xry(Ax, 8))], (Ax, €) € Bs(0,0).

Then w admits at (0, 0) the expansion

1 Ax 2, .2
w(Ax,e) = w(0,0) + (Ax &)Vw(0,0) + E(Ax &)H,, ( . > + o(Ax~ + &%),

where
wax(0,0) = ux(x,0),
we(0,0) = xyEglr - RF],
H, = <waAx(07 0)  waxe (0, 0))
waxe(0,0)  we:(0,0)
and

waxax(0.0) = =2 ER[ACX7)(1 +x7° - RF)),
Ware(0,0) = —%]ER[A(XT)(I +xn® RE)(xm' - RE + xm - RE)
— (xg - M- RF + D],
Wee (0, 0) = —%ER[A(XT)(xnl R+ xm - RE)?
— 20! RE)(xg - M) + X%

Proof Let us consider

1
S(KA)C,E,JT)T = exp (Kﬁx,e,n _ E[KAx,s,n]%

+ ) (log(1+AKSAx’8'”)—AKSAX’S’”)) (5.39)
O0<s<T

As |log(1 + x) — x| < x2 for every x € [—%, %], we observe that in (5.39), the

series ) o <7 (log(l + AKSYETY - AKAYSTY converges absolutely for every
(Ax, ¢) € Bs(0,0), P-a.s., and we have

D7 (log(l+ AKAYET) — AKAET) < [KAET]p,
O0<s<T

Hence one can find a constant C > 0 such that for every (Ax, ¢) € Bs(0, 0), we have

E(KAST)p < Cexp (lelC(Im - RF |+ [ - R™1r))  P-as.
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We observe that the series of term-by-term partial derivatives of

> (log(l + AKSYET) — AKAYET)
O<s<T

converges P-a.s. uniformly in (Ax, e) € B;s(0,0), where additionally the term-by-
term partial derivatives of (log(1 + AK Y 57) — AKS47) are P-a.s. continuous in
(Ax, €) € Bs(0, 0). We deduce that

d
dAx Z (log(l + AKSAX’S'”) _ AKSAx,s,n)
O0<s<T
A
== 2 AR oARET
T A plAxen s s
O0<s<T 1 + AI{
d
23 (log(1 4+ AKUET) — AREVET)
O<s<T
Axsn i ) ~
1+AKA“"” sT : AR AR

O0<s<T

Fix Ax and ¢ and set [ := K257 _ Since direct computations give

VarBxoe) (1ol [no 0]~ GakAk
Y (Ax, €) x4+ Ax  dAx T OAx o 1+ AL
as well as

oo (0 [ 0] 5 Btaly
Vv (Ax, €) de " de 1+ AL )7

O<s<-

we deduce that

1
Var(Ax, O)lare=00 =~ + 7% R%,
Ve(Ax, &)l (ax,0)=0,0) = 7'+ R} + 7 - RY.

Likewise, one can show that the series of term-by-term second-order partial
derivatives of

> (log(l+ AKAYET) — AKAET)
O0<s<T
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converges uniformly in (Ax, &) € B;(0,0), where additionally the term-by-term

second-order partial derivatives of (log(1 + AK ™ 5™) — AK2%#7) are continuous

in (Ax, &) € Bs(0, 0). Therefore, with I = KAVeT we get

Yaxax(Ax, €) _ ( 1 i ol _I:I—C 3ic]_ Z %AR) 2
Y (Ax, €) x4+ Ax  dAx T 0AX o 1+ AL/T

1 31 . 9%IC e
_ + —|re, I
(x + Ax)2  dAx2 dAx2 dAX

AL A T AL \2 AL

9 Ax2 AIS"HBAx) IAx 2

3 S Y
14+ AL . Al

O<s<-

and thus

1 2
Vaxaxl(ax,e=0,0) = (; + . R?) -5 - (- R™1 — Z (O ART)?

Similarly, we obtain
- - 8 7; -
Yaxe =< 1 i al _ |:I—C al¢ :| _ %A{s)
W x+Ax  9Ax T 9Ax 0oL 1+ AL 7

= = AL A T = e
X y _ I_C, a_[c _ Z de A{‘S + ale _ I_C, 8216
de de 1+ AL ) 0Axde 0Axde |7

O<s<
TC 17 32Ais T 3Aix aAis aAis 3Aix 7
_ |:816 91° i| _ § : BAstAIS dAx dAx + § : dAx e Als
b = = 2 9
de  0Ax |r 0ss=T 14+ Al ts 1+ AlL)

and thus

1 o . )
Vaxel (Ax,£)=(0,0) =<; + 79 RT’”)(n’ -R;™ + 7 - RY)

~ 1 -
+n0~R7TT—|:—~|—JTO-RO’”,71’~R0’”+JT~R”:| .
X T
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Continuing in this manner, we get

Vee(Ax,e) _ (8_f_[,—c 8_1'6}_ 5 %A{l)z
Y (Ax, ) de de v 14+ AL /7

821y . 9I° aIc
o2 a2l T e
de e |7 de |7

32AI_S T BAI_S 2 AA L
y e MGy i Vs
— = + — | Al
0<s<T 1+ Al 0<s<T 1+ Al

and consequently
Vee (AX, &)l (Ax,0)=0,0) =(T' - R} + 70 - RE)? +21' - Rf — [7' - R + 7 - R™1r.
Now fix (Ax, ¢) € Bs(0, 0) and define
¥ (2) := ¥ (zAx, ze), ze(—1,1).
We observe that
V'(2) = Yar(Ax, ) Ax + Yo (Ax, e)e,
U"(2) = Yarar(ZAX, 28)Ax® + 2rare (ZAX, 28) Axe + Pee (2 Ax, 78)62.
Let us set
W@ :=U(Xr¥()., ze(=1L1D.
By direct computations, we get
W' (@) =U'(Xr¥ () Xr¥' (),
W'(@) = U"(Xr¥@) (X179 @) + U (X19@) X7 (2).
Let us define
Ji=1+|7-RE|+[n-R"Ir.
Now one can deduce the existence of a constant b; > 0 such that
V' ()| < biJexp(b18]).  ¥(x)™? + 1 < byexp(b18J), ze (=1L D).
Using Lemma 5.11, we get from the computations above that

sup (W@l < sup UXDXr(¥@™2+ )Y (@)
ze(—=1,1) ze(=1,1)

< U'(X7)X1b1J exp(2b18J). (5.40)
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Likewise, from Assumption 2.1 and using Lemma 5.11, we obtain the existence of a
constant b, > 0 such that

sup |W'(2)| < byU'(X7)X7J? exp(b28J). (5.41)
ze(—1,1)

From (5.40) and (5.41), we get

sup  [W'(@)|+ sup [W'(2)
ze(—1,1) ze(—L1)

< U'(X7)X7b?J exp(2b18J) + boU' (X7)X1J? exp(b8J).

Asl<J</J 2, we deduce the existence of a constant b > 0 such that for all z; and
z2in (—1, 1), we get

W(z1) — W(z2)
21— 22

<U'(X7)X7rbJ?exp (b8J). (5.42)

n 'W/(Zl) - W' (z2)
71— 22

By passing to a smaller § if needed, we deduce via Holder’s inequality that the
right-hand side in (5.42) is integrable. Further, as the bound in (5.42) is uniform in
(Ax, €) € Bs(0, 0), we deduce the assertion of Lemma 5.16 from the dominated con-
vergence theorem and the representation formulas from Lemmas 5.12 and 5.15. O

The following result gives an asymptotic second-order (in Ax and ¢) lower bound
for the primal value function.

Lemma5.17 Fixx > 0 and set y = u,(x,0). Under the conditions of Theorem 4.15,
we have

u(x + Ax,e) > u(x, 0)+Axy + exyEg[m - ﬁ’;]

+ %(Ax £)H, (x,0) (A;) 1 o(Ax? + &%),

Proof Using Assumption 4.2, we can approximate the optimisers to (4.4) and (4.7)
by elements of M*°. By Mostovyi [36, Lemma 4.1], these elements of M can be
represented as stochastic integrals with respect to R™. In turn, by stopping, we can
assume that the corresponding integrands satisfy the assumptions of Lemma 5.10.
The result now follows from Lemma 5.16 via an approximation of elements of AM?
by those in M as in the Appendix. |

5.4 Constructing a second-order bound for the dual problem
The following construction of an asymptotic second-order (in Ay and ¢) upper bound
for the dual value function has a similar structure, yet with some differences, to the

one for the primal value function in Sects. 5.2 and 5.3. For every ¢ € (—¢, €), where
€ > 0is given in Lemma 5.2, we recall that A®* and G¢ are given by the solutions
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to (5.5), where Assumption 4.1 allows explicit representations of A* and G*. For
bounded and predictable 8° and ', we set

JA = =0 =20 M — ((G)TB) - M+ (Ayp° +¢p)) - (—=G* - M + M)

+(+Ayd)-L+AyL, (s, Ay) € (=,%) x R, (5.43)
where L and L are in leoc (P) and orthogonal to every component of both M and M+
and to each other and are such that L and L are bounded, and 5 is predictable and
such that fOT $Szd(Z)s < 00 P-a.s. One can show that for bounded and predictable
processes 80 and g/, under the Assumptions of Theorem 4.11, the stochastic integrals
in (5.43) are well defined.

The following result as well as its proof is similar to Lemma 5.10. Therefore we
skip the proof for brevity of exposition.

Lemma5.18 Fixx > 0and set y = u,(x, 0). Assume the conditions of Theorem 4.11
and let B° and B’ be bounded predictable processes such that the following processes
are bounded:

1) ,30 . MJ_,H and 'Bl . MJ_,H;

) (B°- M- and [ - MY,

HTEY - M, ) M, (T (M — [dM)m)" and [ B'Tvd(M)n;

YY) - MM and [T ) - MH1, [(BOTd(M)B°, [ B'Td(M)B;

S)lg- M, v MH]and [g- M*, T B) - MH];

6) [g- MM, B°- M- and g - M", B - M1,
Then there exists a constant § > 0 such that for every (Ay, ¢) € Bs(0, 0), we have

gﬁ(JA”’H) e V1, e).

The following result provides a representation needed in the proof of Lemma 5.20.

Lemma5.19 Fixx > 0and sety = ux(x, 0). Assume the conditions of Theorem 4.11,

let B’ satisfy the assumptions of Lemma 5.18, and suppose Le ’leoc (P) is orthog-

onal to every component of both M and M L and such that L is bounded. With
N:=pg M- 4 LH e have

N e O O KCELN)]

T
= Er[Nr (7 - RF)] — ER[NT/O nld (M)sgsi|. (5.44)

Proof Because B’ satisfies the assumption of Lemma 5.18 and because the process
(GO By (M — fd(M)n)H is an R-martingale, we get

ER[((GO)/Tﬂ/) : (M — fd (M) n)j:| =0.

@ Springer



590 0. Mostovyi, M. Sirbu

Therefore we obtain
H
ER[((GO)/T,B/) . Mﬁ] - ERI:((GO)’Tﬁ/) . (M — /d (M)n) :|

T
+ER[f BT (GO d (M ]

— Eg /0 BT (GYd (M )wn}

T
= Eg /0 nsTd(M)s(Gg)/Tﬁs/}

T
—Eg /0 njvsdw)xﬂ;],

where the last equality can be established along the lines of the proof of Lemma 5.2.
Further, using Assumption 4.5, we get

T
ER[((G°>’T/3’)~MH]=ER[/ 7l vd (M), ﬂ]
0

T
:ER[/ njd(Mﬂsﬂ;] (5.45)
0

By Lemma 5.6, 7 - I?JT’ admits the representation (5.12), where both random variables
7 - (¢p- R+ M+ — [d(M+)B)%| and | fOT nJd (M), gs| have exponential moments
under R, i.e., satisfy (5.13).

Next, with N as above, using that 7 - (¢ - R + M+ — fd(MJ-)ﬁ)” and N are in
H?(R) by Lemma 5.6 and the assumption of Lemma 5.19, and 77 - M+ and g’- M+ are
in Hloc (P), one can show similarly to Lemma 5.13 that the last expression in (5.45)
can be represented as

Egr [/OTnjd(ML)sﬁ;} =Egr |:<71 : (qb "R+ M+ — /d(Mﬂﬂ);) NT:| .

Combining this with (5.45), we conclude that (5.44) holds. O
The following result provides a representation needed in the proof of Lemma 5.22.

Lemma5.20 Fixx > Oandsety = uy(x, 0). Assume the conditions of Theorem 4.11,
let B’ satisfy the assumptions of Lemma 5.18, and suppose L € 'leoc (P) is orthogonal
to every component of both M and M+ and such that L™ is bounded. Then with
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N:=p  -M-H" 4+ LH we have
Er[(B(Yr) — 1)(—g - M{' + Nr)°
+ (Y +G' TB+2GY T ME - M7 + NI
= Eg[B(Yr)(—g - Mfl + N7)* +2Nr (7 - R + T, (5.46)
where T is defined in (4.11).

Proof Using Lemmas 5.5 and 5.19, we have

Er[((1%)"+ (G TB+2G"Tp) - M]
T
:—2ER [/ 7T_§T¢_xd<M>sgé:|
0

+ 2ER[Nr (- RE)] — 2Eg [NT /OT nld (M), gS:|.
This allows to rewrite the left-hand side in (5.46) as
Er[(B(Yr) — 1)(—g - M{' + Nr)*
(A0 + (G TB+2G% TR ME 4 [—g - MT + NIf]
= ER[B(YT)(—g - M{' + Nr)* + 2Nr (7 - RY)
— (=g~ M7 + Np)* +[—g- MY + N1z

T T
_2/0 n;d)sd(M)sgs_ZNT'/(; N:d(M)sgsi|

= ER[B(YT)(—g . M]I:I + NT)2 + 2N7(m - ﬁ?)

T 2 T
+ (/ mld (M), gs) —2</ md <M)sgs)(g-Mﬁ — Nr)
0 0

T T
- Zf 7TST¢sd <M)s 8s — 2NT/ ﬂ;rd (M>s gs]
0 0

= ER[B(YT)(—g M + Np)? +2Nr(m - R})

T 2 T
+(/ njd<M>sgs) —2</ nfd<M>sgs)<g-M£’>
0 0
T
—zf n;r¢sd(M)Sg5:|
0

= Er[B(Y7)(—g - M + N1)? + 2N7 (- RP)] + To. 0
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The following result provides an integrability condition needed in the proof of
Lemma 5.22.

Lemma5.21 Fixx > 0and set y = u,(x,0). Under the conditions of Theorem 4.11,
set

he =2 =20+ (G5B, ee(=ED),

where € is as in Lemma 5.2. Then there exist ¢’ > 0 and & > 0 such that for every
e € (—¢,¢),we have

Eglexp(c”|h® - ME| + " [he - M7 171)] < 0. (5.47)

Proof For a sufficiently small positive ¢, set M = cg - (M — fdiM)Sns)H. Then
Lemma 5.1, applied under the measure R, implies that Eg[exp(c|M7|)] < oc. Fur-
ther, from boundedness of v and ¢, we observe that there exists a constant ¢’ > 0 that
does not depend on ¢ € (—¢, &) such that

T T
‘/ (hé)Td (M), 55’/ g d (M), P-as.,
0 0

which in view of Lemma 5.6 (see (5.13)) implies that there exists ¢’ > 0 such that

T e
Eg[e¢! o BT <00, g e (—,8). (5.48)
Similarly, from the assumptions of Lemma 5.21, we have

[h* - M7 =[h* - MY+ Y (EaM)? <élg- MY Pas. (5.49)

O<s<-

for some ¢ > 0 and every ¢ € (—¢, ¢). Therefore, from (5.49) and Assumption 4.9,
we deduce that there exists ¢ > 0 such that

Erlef" M) < 00, &€ (=5, 5). (5.50)

Next, from (5.50), using Lemma 5.1 with M = ht - M — fd(M)yr)H under R, we
conclude from (5.50) that there exists ¢ > 0 such that

Eg[e® M1} = B[ - M=SdMsmT ] < oo, ¢ € (=5, 7). (5.51)

Now from (5.48) and (5.51), using Holder’s inequality gives the existence of ¢’ > 0
such that

Eg[ed " M) < 0o, &€ (=&, &).
This inequality and (5.50) imply (5.47). ]

The following result gives a second-order expansion (in both Ay and ¢) associated
with a family of dual elements parametrised by Ay and ¢ as in Lemma 5.18.
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Lemma5.22 Fixx > 0and set y = uy(x, 0). Assume the conditions of Theorem 4.11
and let B° and B’ be as in Lemma 5.18. Then consider

T(Ax.e) = (1 4 %)suwﬂ)r, (Av, £) € By(0,0),

where § > 0 is chosen sufficiently close to 0 so that for every (Ay, ¢) € Bs(0, 0), the
jumps of J2Y-H in (5.43) take values in [—%, %], and define

W(Ax, &) :=E[V (Yr¥(Ay,e)],  (Ax,e) € B5(0,0).

Then w admits at (0, 0) the expansion

F(Ax, £) = (0, 0) + (A = 1 _ <Ay) 2 2
,E) = , y &Vw(,0) + Z(Ay &) Hy +o(Ay” +¢€7),

€
where
Way(0,0) = vy(y,0),
@e(0,0) = xyEglg - M7'],
He = <w~Ay'Ay(O, 0) aiAye(O, 0)> ’
Waye(0,0)  wee (0, 0),
and

~ X -
Wayay(0,0) = ;ER[BWT)U + N4,
~ X — — ~ -y
Waye(0,0) = ;ER[BWT)U + NJ)(N§ — yg - MF) + ym - RE(1 + N,
~ X - _ ~
Wee (0, 0) = ;ER[B(YH(N; —yg - ME)? 4 2N5 (v - R+ y°Ts, (5.52)

where
NY =y M-+ L") and  NT =y M-T LM,

and L and L are in ’leoc (P), orthogonal to every component of both M and M+ and
such that NY and N¢ are bounded. (The Appendix contains more explanations behind

this construction.)

Proof The proof parallels that of Lemma 5.16. In the context of the dual problem,
there are some computational differences, and we have to establish the appropriate
admissibility, some representations and (exponential) integrability. The admissibility
of the approximating dual elements is established in Lemma 5.18; the integrability
is provided by Lemma 5.21. Following the expansion, which is similar to that in
Lemma 5.16, to represent w,. (0, 0) as in (5.52), one has to use Lemma 5.20. For the
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representation of w Aye(0, 0) in (5.52), similarly to the proof of Lemma 5.20, one can
show that

B[ — (1+ N})(—yg - Mf! + N§) +y*((G°) T p°) - Mf!
+[1+ N, —yg-M" + N¥\7]
= Egrlyn - RE(1 + N))).

With these comments, the details are omitted for brevity as they are similar to the
proof of Lemma 5.16. ]

The following result gives an upper bound for the asymptotic behaviour of the
dual value function.

Lemma5.23 Fix x > 0 and set y = u,(x, 0). Under the conditions of Theorem 4.11,
we have

v(y + Ay, &) < v(y,0) — Ayx + exyEg[g - M¥]
1 A
+ E(Ay e)Hy(y,0) ( 8y> + o(Ay? 4 €2),

where Vv(y, 0) = (y ve(y, o, Ve (v, 0) is given by Theorem 4.11 and

_ X (b(y,y) b(y.e)
Hy(y,0) = y (b(y,s) b(e, 8))’

where b(y, y), b(y, €), b(e, €) are given by (4.9), (4.13) and (4.12), respectively.

The proof of Lemma 5.23 is skipped as it follows the structure of the proof of
Lemma 5.17 with the corresponding modifications based on Lemmas 5.21 and 5.18.

5.5 Closing the duality gap up to the second order

Lemma5.24 Fix x > 0 and set y = u,(x, 0). Under the conditions of Theorem 4.11,
T1 and T, defined in (4.6) and (4.11), respectively, satisfy

1 ~
E]RI:E(TI + 1)+ (g M) (- R?)] = 0.

Proof With ¢ := fOT n)d (M), g5, direct computations give

N

1 ~
ER[E(TI + 1)+ (g- ME)(r - R?)}

:ER[—%ctc(n-(¢-R+Mi—/d<M)Lﬁ)Z>

1 T 5
+ Ecz—c(g~Mﬁ) —/(; 7TST¢sd(M>sgs +(8‘Mﬁ)(”'R? i|
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Cancelling the %cz terms and collecting the terms —c(g - M }{ )and (g- M. fl ) (T - I?’;),
we can rewrite the latter expectation as

P T
ER[—c(n : (¢.R+ML—/d(M>Lﬁ) )-/ nlpsd (M), g5
T 0
+ (g-Mﬁ)<n - <¢-R+ML —/d(M)HB)j)}. (5.53)

Next, after adding the terms (g - MH)(w - (¢ - R + M+ — [d(M)* B)T) and
—c(m - (¢ R+ ML+ — [d(M)* B)T), we can further rewrite (5.53) as

ER[(g-(M—/d(M)n)j)(n-(¢-R+ML—/d(M)lﬂ);)
- / Tn? bsd (M), gs} =0,
0

where the proof of the latter equality is entirely similar to the one of Lemma 5.13. It
is therefore skipped for brevity. Here we remark that both (g - (M — f d (M) n)? )
and (77 - (¢ - R+ M+ — [d (M)* p)T) are in #?*(R) by Lemma 5.6, and 77 - M and
g+ M are in H? (P), which follows from the assumptions of Lemma 5.24. O

loc

We can now state the proof of Theorem 4.14.

Proof of Theorem 4.14 Using standard techniques of the calculus of variations, we get

A(X7)(Mé 4 x7 - RE) —xg - ME = ¢ + Nr,

B(Y7)(N& —yg - ME) + yn - R} =d + My (5.54)

for some constants ¢ and d and some M € M? and N € N2. To compute ¢ and d,
we multiply the equations in (5.54) by M3 + 1 and N% + 1, respectively, and take
expectations under R to deduce that

c =Er[AXT)(M7 + x7T - ﬁ?)(M% +1)—(xg- M}’)(M;ﬁ + 1]
=a(x,e),

d =Eg[B(Y7)(N§ — yg - M{)(NJ + 1) + (yr - ﬁ?)W; + 1]
=b(y, ¢). (5.55)

From the second equation in (5.54), we deduce that

NS —yg - Mf = A(X7)(—ym - RE +d + Mr)
=dAX7)(1 + M}) + A(X7)(Mr —dM3F — ym - RE).  (5.56)
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Let us recall that

AX7)(MF + 1) = alx,x)(Ny + 1),
B(Yr)(Ny + 1) = b(y, y) (M} + 1), (5.57)
as proved in Kramkov and Sirbu [30, Lemma 1]. This and (5.56) allow obtaining
A(X7)(dM§ — My + ym - RF) — yg - Mf!
= da(x,x) +da(x,x)Ny — N§. (5.58)

Comparing to (5.54) and since the only element in M? that satisfies (5.54) is M¢, we
deduce from (5.58) that

M: = f(de — Mp), c= dfa(x,x), Nr = dia(x, x)N% — EN?
y y y y
Comparing with (5.55), we get
ax, ) = alx, Y)b(y, ). (5.59)
y

Since a(x, x)b(y, y) = 1 by [30, Lemma 1], we deduce (4.14). Next, from (5.58),
plugging the expressions for ¢ and N7 back into (5.54), we get

AXT)(M§ + x7 - RF) = xg - M +a(x, &) +a(x,e)Nj — gN?’
X
= a(x. &)1+ NJ) — SV s M.

Combining this with (5.57), we get (4.16), which also implies (4.17) in view of (4.14).
Let us now prove (4.15). In order to do this, let us denote

T . 7Y . Ay
M7 = M* +1, Ny =Ny +1,
M;::M?—l—xn-ﬁ’f, N& = N& — yg - ME.

This and (4.16) allow writing
Y a(e, ) = ER[Xa(x, e N2 NS — NETE. + 2MEN: +xyT1i|,
X X
gb(e, £) = ER[gb(y, £) M3 NS — MENS + 2N5 M5 +xyT2i|.
Let us denote
A X NeR VL f 1X ATE
Ji . =ERr xa(x, )N Mp + yb(y, &Mz N7 |,
Jy 1 = BR[—NEME + 2M5 N5 + xyTy — M5NS + 2N5 M + xyTa).
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Then we have

Yate, ) + Zb(e, e) = Jy + Ja. (5.60)
x y

One can rewrite J| as

_. b(y,e) -, -
Ji =alx, e)Eg XN;M§+f & )MiNi}
X

ya(x,e)
=a(x,e)Er %A‘@M; +b<y,y>M§N§]

= a(x, &)Eg —51\7;1\'4; + B(YT)N;N;],
where the second equality uses (5.59) and a(x, x)b(y,y) = 1, and the third uses
(5.57). As b(y, &) = Er[2 Ny M5 + B(Y7)N7.NE], we now can rewrite J as
Ji =a(x,e)b(y, e). (5.61)
Let us consider J>. Using Lemma 5.24, we get
Jo = Ep[—N&Mé + 2M5 NG — M5 NS + 2N5Ms — 2xy(g - ME) (7 - RT))
= 2ER[— NTMT + MTNT + NTMT —xy(g- MT )T - RT ]
= 2ER[— NT(xrr R”) —xy(g - MT )t - R )+ NTMT]
= 2Bg[—(x7 - RP)(N§ + g - M{') + N§.M§]
= 2ER[—(x7 - R~ )NT +NTMT]
= 2Eg[(M% — x7 - RF)NS]
= 2Er[M}N7]1 = 0.
As J» =0, we get (4.15) from (5.60) and (5.61). O

The following result establishes a relationship between H, and H, (in (5.63)) that
is needed to close the duality gap up to the second order in Ax and ¢.

Lemma5.25 Fixx > Oandsety = ux(x, 0). Assume the conditions of Theorem 4.15.
Then for

b(y, 8)8
b(y,y)

Ay = —2a(x, x)Ax — (5.62)
X

we have

T T
2AxAy + (Ay> H, (Agy) _ <A5x> H, (A:). (5.63)
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Proof First we recall that from Theorem 4.14, we have

2 2
beey = 2 (Y e e), b= LY (56
x2 a(x, x) a(x,x) x
Therefore, we get
x (b(y, £)*
— | b(e,e) — —————
y b(y,y)
_x (¥ <(a(x, £))? (b(y, 8))*
-\= 7—61(8,8))—7
y \x“\ alx, x) b(y,y)
DR I 6 ey CIC 0 S L),
x y \x2 a(x,x) b(y,y)
_ x (V) ¥y (ax,e)?
=—=a(e &)+ - T N T 2T aha
x y \x2 a(x,x) x* (a(x, x))7b(y, y)
= Yage, o), (5.65)
X
where the last equality uses a(x, x)b(y, y) = 1.
Now consider the left-hand side in (5.63) and rewrite it as
T
2AxAy + <Ay> H, <Ay>
& &
X ) X X 2
= —b(y, Y)Ay“ +2-b(y,e)Aye + —b(e, e)e” + 2Ax Ay
y y y
X X X 2
=Ay | =b(y,y)Ay +2—-b(y,e)e +2Ax | + —b(¢, e)e”. (5.66)
y y y
Using (5.62), we can rewrite the last line in (5.66) as
by y b(y,¢) X
Ay | —b(y, y)( — —a(x,x)Ax — 8) +2-b(y,e)e +2Ax
y x b(y,y) y
+ Lbe, o)e. (5.67)
y

Asa(x,x)b(y,y) = 1, we can simplify (5.67) to

Ay <—Ax — b0, ) + 2500y, ) + 2Ax> + Lb(e, )¢
y y y

__ 7 <a(x, X)Ax 4 220 g> <Ax + b0y, e)a) +Xbee, 0)e2. (5.68)
x yb(y,y) y y
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Rearranging terms on the right-hand side and using (5.64), we rewrite (5.68) as

2 2
_2 <a(x, )c)A)c2 + 2a(x, x)fb(y, &)Axe + X—ZM82> + ib(s, 8)82
x y y= by, y) y
2 _ G, e)?

(otx. 082 o
= a(x,x)Ax” +2a(x, 8)Axs) + —

+ b(e, 8)) 2.
X y

b(y,y)

Now applying (5.65), we can finally restate the right-hand side above as
— %(a(x, x)sz + 2a(x,e)Axe + a(e, 8)52),
which is precisely the right-hand side of (5.63). ]
We can now prove Theorem 4.15.

Proof of Theorem 4.15 The biconjugacy relations imply that

1

~ Ax T Ax
u(x + Ax,e) —u(x,0)—Axy — exyEr[r7 - R}] — 3 ( . ) H, < . )

<v(y+Ay, &)+ x+ Ax)(y +Ay) —v(y,0) —xy

~ 1 [/ Ax T Ax
J— J— . s —_—
Axy — exyEgr[m - R}] 2( . ) Hu< . )

=v(y+ Ay, e) —v(y,0) + xAy—sxyEg[m - E?]
1/Ax\" Ax
—i—AxAy—E(E) H”(s)' (5.69)
Further, since —vy(y, 0) = x and using Lemma 5.8 gives
xAy—exyER[m - ﬁ?] = —vy(y, 00 Ay—exyERl[g - M;’],
we can rewrite the right-hand side of (5.69) as
v(y + Ay, &) —v(y,0) + xAy — exyER[r - I??]
1/Ax\" Ax
+AxAy—§< : ) Hu< : )
=v(y + Ay, &) — v(y, 0)+Ayx — exyEr[g - M{']
+ AxAy — -

N
1(“) Hu<Ax>. (5.70)
2 £ e

@ Springer



600 0. Mostovyi, M. Sirbu

Now using Lemma 5.25 and picking Ay as in that result, we obtain

v(y + Ay, &) — v(y,0) — (—Ayx + exyEg[g - MH1)
1 [/ Ax T Ax
s () ()
=v(y + Ay, &) — v(y, 0)—(—Ayx + exyEgrlg - MH1])
1 /(Ax T Ax
—5(8) Hv<8>, (5.71)

and thus (5.69)—(5.71) give

~ 1 /Aax\' . (Ax
u(x + Ax, &) —u(x,0)—Axy — exyEr[m - R7] — 3 H,

<v(y+ Ay, &) — v(y,0)—(—Ayx + exyEg[g - MH )

1/Aax\" Ax
() (), -
Lemma 5.23 implies that

0> v(y+ Ay, &) — v(y,0)—(—Ayx + exyEg[g - MF 1)

T

2\ ¢ e
and from Lemma 5.17, we get

0<u(x+Ax,&) —u(x,0)—Axy — sxyEgr[m - ﬁ?]

.
1 (Ax> H, <Ax> +o(Ax? + &2). (5.74)

2\ & e

Finally, (5.72)—(5.74) imply that the inequalities (5.73) and (5.74) are equalities. [
We now can state the proofs of Theorems 4.16 and 4.18.

Proof of Theorem 4.16 This proof parallels that of Mostovyi and Sirbu [37, Theorem
4.8]; see [37, Sect. 4]. We remark that L; in [35, Sect. 4] should be replaced by
E(JAmen Yy where £(J ¢ Y is defined in (5.43). We omit the proof for brevity
of exposition. g

Proof of Theorem 4.18 This proof parallels that in Mostovyi and Sirbu [37, Theorem
3.1] (see also the proof of [36, Theorem 4.2]). It is skipped for brevity of exposition.
O
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6 Characterisation of M€ and N¢ through the Kunita-Watanabe
decomposition

Instead of minimising (4.7) and (4.12), one can characterise M and N¢ through a
Kunita—Watanable decomposition in the case when a risk-tolerance wealth process
exists. We recall that for the base model at a fixed x > 0, a risk-tolerance wealth
process is a wealth process R which is maximal, i.e., its terminal value cannot be
dominated by that of any nonnegative wealth process with the same initial value, and
which is such that

_U'(Xp)
U"(Xr)"

= 6.1)
Again, similarly to the notations of the previous sections, we drop (x, 0) and write
‘R as in (6.1), which represents the more cumbersome but more precise expression

_U'(Xr(x,0)

0) = — .
Rr( 0= =00 % v 0

We refer to Kramkov and Sirbu [31, Theorem 4] for equivalent conditions for the
existence of R. We also point out that even though NFLVR was imposed in [31], the
proof of [31, Theorem 4] goes through also under NUPBR, a no-arbitrage type con-
dition that was proved in Karatzas and Kardaras [26] to be equivalent to our standing
assumption (2.10).

If the risk-tolerance wealth process for the base model exists, one can change
measure and numéraire via

dR _Rr¥r g _ (Ro ReERH — RoE(RY 62)
dP " Roy ' "\RTR TR ’ '

which leads to defining the orthogonal and complementary sets of square-integrable
martingales under the measure R and numéraire SR as

M =MecHZR): M=H-S ¢ for some S™-integrable H), (6.3)
0 g
/\N/JZ is the orthogonal complement of M2 in HZ(NR).
g p 0

Similarly to Mostovyi and Sirbu [37, Lemma 9.1], one can prove the following result.

Lemma6.1 Fix x > 0and set y = u,(x,0). Assume that (2.10) and Assumptions 2.1
and 2.2 hold and that the risk-tolerance wealth process R for the base model at x
exists. Then we have

e

M e M? if and only if Mﬁ M?

and
A=A
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The following result characterises the solutions to (4.7) and (4.12) through a
Kunita—Watanabe decomposition obtained by embedding the random variable

g-My — (- R% )— 6.4)

into a square-integrable martingale under the measure R (and numéraire R). We re-
call that R, defined in (2.5), has three components: the finite-variation part, the lo-
cal martingale part orthogonal to M, and the local martingale part “parallel” to M.
Likewise, g defined in (4.1) includes these three components of the perturbation pro-
cess R. So both terms in (6.4) represent the joint effect of perturbations from the three
parts of R on the perturbed problem (2.8) asymptotically at ¢ = 0. The determination
of the solutions to (4.5) and (4.10) could be reduced to the best approximation of the
“contingent claim” in (6.4) in the sense of the following result.

Proposition 6.2 Fix x > 0 and set y = uy(x,0). Assume the conditions of Theo-
rem 4.11 and that the risk-tolerance wealth process R for the base model at x exists.
Then

~ ~ X
P, = xEF [(g M (. R@R—T) ‘J-',], relo, 71,
T

satisfies P € 7—[2(1’@). Consider the Kunita—Watanabe decomposition of P given by
P = —a(x,e) + M® + N°, where M € M? and N® € N2. (6.5)

Then the solutions to (4.7) and (4.12) can be obtained by reverting to the original
numérarie according to Lemma 6.1 through the identities

R: ~
M Mth Nf=%Nf, t [0, 7). (6.6)

Proof Let us consider d(g, €) given by (4.5). By direct computations, we have
Er[A(XT)(M§ + x7 - RF)* — 2M5x(g - ME)]
= %E@[(PT — M52+ %E@ |:x2g -MH (2(71 R% )—T —g-MP >] . (6.7)
Similarly, we can rewrite l~7(8, £) in (4.10) as

b(e, &) = Er[B(YT)(NS — yg - ME)? 4 2N7y(n - R)]

Ro AR
—ER[(NT - ;”T) ]

Ro 2 ~  XT ~ Xr
+ TE@[y (- R’TT)R—T <2g ME — (n- R;)R—T) } (6.8)
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As A(XT) = ;é—;, taking expectations in (4.16) under R and using Lemma 6.1 gives
Py = —a(x,e). (6.9)

From (6.7)—(6.9), we get (6.5). In turn, (6.6) follows from (6.7), (6.8) and Lemma 6.1.
a

Remark 6.3 If the risk-tolerance wealth process does not exist, one may still at-
tempt to choose a suitable numéraire! (wealth process) R following the interesting
ideas and construction from Kallsen and Muhle-Karbe [25]. A risk-tolerance process
(which is not even necessarily a martingale under the dual measure, i.e., the prob-
ability measure whose density process is given by the normalised dual minimiser,
provided that the latter is a true martingale, let alone a wealth process) can be defined
as

I:i/(ta Xt)

Ry i=——21
' (1, X;)

te[0,T],

where 1 is the indirect utility of the unperturbed problem if one starts with x at time .
Up to a drift term, under the dual measure, R can be decomposed into a stochastic
integral with respect to the price process of the risky asset and an orthogonal part.
The latter can be used to define a positive martingale Z with Zo = 1 and such that
R := RZ is a wealth process and RZ is a martingale (under the dual measure). In
other words, we have a wealth process satisfying

Rr _ U'Xr)

—— = — and RZY,ZY are martingales under P.
Zr U (XT)

One may now specify the probability measure R similarly to (6.2) and use R as
numéraire. While a completion of this program would reduce our quadratic minimi-
sation problem to Kunita—Watanabe decompositions, a rigorous analysis along these
lines in the general case remains a subject for future investigation.

7 Examples
In this section, we study some example models.

7.1 Perturbations of the Black-Scholes model (with a general utility function)

We suppose that the vector-valued discounted return process R for the base model is
given by

R = ut + GTB,

I'We should like to thank a referee for pointing out these ideas.
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for some u € R? and an invertible matrix o. Here, B is a d-dimensional Brownian
motion. With A := (UT)_llL, one can express By in terms of R7 as

Br = (6")"'(Rr —uT) = (") ~'Ry —AT.
Then we can represent the density of the minimal martingale measure as
~ 1~ ~ 1 ~

Zr = exp ( —A'Br — §|x|2T) = exp ( 2T 6D 'Ry + E|/\|2T>.
The latter formula suggests that instead of a d-dimensional state process R, we can
use a one-dimensional mutual fund given by

R:=2"@w")"'R.

Then we can represent R as

Re=2"")y Y wt+o"B)=2TGt+B)=2"B2,  tel0,T]

where BQ is a Brownian motion under the minimal martingale measure Q. In
particular, R is a martingale under this measure. For a utility function satisfying
Assumption 2.1 and with y = u, (x, 0), we aim to replicate

—V'(yZr) = =V'(yexp(—Rr + [X*T/2)).
Let us introduce
g = —V/(yexp(—z + [A°T/2)), 7z €R,

and denote by @ the one-dimensional heat kernel, that is,

2
exp ) zeR,s > 0.

1
P(z,1) =
Vams
With @, denoting the partial derivative of ® with respect to the first argument, the
dynamics of X (x, 0) is given by

dX,(x,0)
_ V2R, V2_ (1Al -
= (/R CDX(W -2z, T — t)mg(ﬁz)dz>d1€,

~ 237" 'R 2_/1x
=7 ([P ) Loy a,

R 2] A7 \V2
In turn, the optimal proportions invested in the risky assets are

N

" Xr(x,0)
V2il (") 'R, V2 _ 13|

</R ' A NN
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Then the associated wealth process is given by
X(x,0) = xE(m - R).
Further, the risk-tolerance wealth process exists. With
h(z) = yexp(—z + A*T/2)V" (yexp(—z + [A*T/2)),  z€R,

the dynamics of the risk-tolerance wealth process can be represented as
2R
AR, = (/ cbx(‘/: LT - )ih(uz)dz>dR,
R |A] Al \V2

~ _ V23T (eT)7'R, V2]
_ 3T T\—1 _ _ _ -
—3T (T (/RQDX(—~ T t) . h<ﬁz>dz>dR,,

2] 2]
and the proportions invested in the risky assets are
_ 'XT (U T ) -1
Py = R,

V23T (6T) IR, V2
X (A(Dx(T —Z,T — )m (EZ)dZ)l[O T)(t)

so that we have
R =RoE(p - R).
For the sensitivity analysis, we consider general perturbations of R of the form
ﬁ:(p-B—I—MJ‘—i—/ésds
for some predictable and sufficiently integrable processes ¢ and &, where & is R?-val-
ued and ¢ is d x d-matrix-valued and for some martingale M L which is orthogonal

to B. To make the dynamlcs of R more consistent with the previous sections, we set
¢ :=@oland ¢ := (0 "o)~'&. Then we rewrite R as

R=¢-(c'B)+ M+ +o'0 / Cyds,
observe that (2.2), (2.10) and Assumptions 2.2, 2.3 and 4.1 are satisfied and suppose

that the remaining assumptions of Theorem 4.11 hold. In Proposition 6.2, the key role
is played by the random variable

Przx(g-Mﬁ—(n-R%R—T),

T

where in the present setting, we have k; = tr(aTa)t, A, = ma o which is

invertible, and thus Assumption 4.1 holds. By direct computations, we get
O =& = o) gu=(0"0)" & - w0 ).
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As ?(y, 0) =yZ, y > 0, we deduce that 8 = 0. Consequently, we have
=) =0~ g, 1€[0,T],
MHE=6"B, —[6"B,~%"Bli=0"Bi+0 (¢ ) 'wr=R, 1€l0,T],
R"=R—[R°, 7w -R°]=R— / $s0 | omds,
and thus we can rewrite Pr as
Pr =x((;, —(©@'o) '¢u)- Ry — (w - R )—)
Similarly to the proof of Mostovyi [36, Lemma 4.1], one can show that the process

Ps ARy
P _
R —[R%p-RI= ) AR — 1+ ps AR,

O<s<-

can be used to represent the elements of /\72, where M2 is defined in (6.3). We note
that in the setting of this example, the evolution of R” reduces to

R’ =R—[R,p-R]
because R is continuous. The decomposition (6.5) can be written as
P=Py+a-R°+N

for some process o and some N € N2 Using (6.6) in Proposition 6.2, we can
represent 77¢ as a solution to

e pr_ 1 ReE(p-R) Ry g
7R = (e R et = 5@ RDE((p — ) - RT)

so that
R
= ;5((/0 —7) - Rn)t (Oft + (- R)(pr — 7Tt)) , t€l[0,T]

In turn, 7* can be represented as

— 1), te[0,T],

Ty =
'RX

and for the nearly optimal processes in the sense of Theorem 4.18, we need to truncate
m* and 7%, thatis, to use 7" 1o ., and 7*1o 5, ] for appropriate localising sequences
of stopping times t,,n € N, and o;,, n € ~

In particular, by assuming particular forms of R, we obtain the corrections to per-
turbations of the finite-variation part (as in Mostovyi and Sirbu [37]) or the martingale
part or the orthogonal martingale part, which does not have to be continuous.
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7.2 Distortions of exponential Lévy models

Closed-form solutions to the optimal investment problem with exponential Lévy
models have been obtained in Kallsen [22]. However, once the dynamics of the un-
derlying stock price processes is perturbed, the closed-form solutions cease to exist in
general. We recall that the dynamics of the returns of d discounted risky assets in [22]
is given by a Lévy process R with the characteristic triplet (b, ¢, F) relative to some
truncation function /: R — R?. Below, we use /i(x) = x1{jy<1}. With U (x) = %,
x > 0, where p € (—00,0) U (0, 1), and assuming the conditions of [22, Theorem
3.2], the optimal 7 is constant-valued and characterised there as a solution to

X
b—(l—p)C?T—i-‘éd (m—h(x)> F(dx)—O,

where we note that additional conditions are needed to ensure finiteness of the value
function and admissibility of & - R (see conditions 1 and 2 in [22, Theorem 3.2]).
Further, the structure of the dual problem is investigated in Jeanblanc et al. [20] and
the proof of [22, Theorem 3.2].

With power utility, the risk-tolerance wealth process exists for every x > 0. Up to
a multiplicative constant, R is equal to X (1, 0), where in turn, X x,0) = xX (1, 0),
x > 0, that is, the optimiser depends on the initial wealth in a thial manner. There-
fore, assuming the conditions of Theorem 4.11, one can see that R = R do not depend
on x > 0. Below, we suppose that x = 1 for simplicity of notation. In this case, we
have

Xr _,
Ry P

We write R as in (2.1) and assume that the perturbation process has the dynamics
I?=¢~M+ML+/d(M)§,

for some predictable bounded matrix-valued process ¢, orthogonal martingale M-
and a bounded process ¢. To obtain the Kunita—Watanabe decomposition as in
Proposition 6.2, under the conditions of that result, we represent Pr as

Pr=g-M# —(n-RE)(1-p), (7.1)

where

s AR

T _ B Ty, . — Ry———
7-R*"=m-R—-[(¢p 7)-(0B), 7 (cB)] Z ”SARHJF;TSARS'

O<s<-

To ensure that the (local) martingale M is locally P-square-integrable, assume that
fRd x ' xF (dx) < oo, which implies that M is P-square-integrable. Further, we have

(M), = <c+/ xxTF(dx))t
R4
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and thus
t
R, = (aB,+x*(uR—vP)t)+<b+fd (x—h(x))F(dx))t = M,+/ d (M) A,
R 0

where vF(dx,dt) = F(dx)dt is the predictable P-compensator of uX, the ran-
dom measure associated with the jumps of R. Therefore, assuming that the matrix
Y i=(c+ fRd xxTF(dx)) is invertible, A can be represented as

A=x"! (b +/ (x— h(x))F(dx)). (7.2)
R4

The form of H comes from Jeanblanc et al. [20, Theorem 2.7], which asserts that
H=B @B+ ¥ —1)xuf -5,

where § € R? and Y : R — R, are solutions to the constrained minimisation
problem from [20, Theorem 2.7]. The quantities 8 and Y are also characterised in the
proof of [22, Theorem 3.2]. Note that we do not suppose that the jumps of M and
M+ are not simultaneous, as was done in some of the early works on orthogonality
of martingales; see e.g. Protter [39, Theorem 5.2]. Next, we have k; = (trX) ¢, and
(M), = %t = A - k; produces A = %; therefore Assumption 4.1 holds. With
M+ allowing bounded (v; Bt)ielo,11, where B is given through Assumption 2.3 and v
through Assumption 4.5, we get for g the representation

g=-S'oSn +o+27'wzp,  tel0,T]

Therefore, using the characterisation of H in the proof of [22, Theorem 3.2], we get

g- M =g-M—[g-(oB),f-(0B)]— Y gAM(1—(1+mAR)'7).

O<s<-

Having bounded ¢, ¢, vB and A, where the latter is given by (7.2), to ensure that
Assumption 4.10 holds, it suffices to suppose that the jumps of both M and M are
bounded, plus that 1 + néR >35> 0.

Let us observe that R = R and Pr is given in (7.1). Assuming sufficient
integrability so that Assumption 4.9 holds, we can reduce the decomposition to

P=Py+a-R"+N

for some process «, and using Proposition 6.2 and Theorem 4.18, we have

o
7'r5=1 , ¥ =0,
—p

where for power utility, the optimal strategy does not depend on the initial wealth
and so 7* = 0, which can also be obtained by solving (4.4) for power utility. To
specify the nearly optimal wealth processes in the sense of Theorem 4.18, we need to
approximate ¢ along the lines of Sect. 4.7.
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We conclude this section by pointing out that a similar analysis can be performed
for models driven by processes with conditionally independent increments, relying
on Kallsen and Muhle-Karbe [24]. Further, as mentioned in the introduction, many
more stock price process models allow solutions that can be characterised explicitly.
Some are developed in Goll and Kallsen [10], Guasoni and Robertson [13], Horst
et al. [17], Hu et al. [18], Kallsen and Muhle-Karbe [24], Kramkov and Sirbu [31],
Liu [33], Robertson [42], Robertson et al. [1], Santacroce and Trivellato [43], Za-
riphopoulou [46], among others, and in some cases with general utility settings. Our
results provide an approach for approximating solutions to these models even when
the perturbations include jumps.

Appendix: The structure of M> and N/

We recall that Mostovyi [36, Lemma 4.1] shows that every element of M can
be represented as a stochastic integral with respect to R™. The following lemma
establishes the opposite direction.

Lemma A.1 Fix x > 0 and set y = ux(x,0). Suppose M € 'leoc(IP’), that (2.2) and
Assumptions 2.1 and 2.2 hold and that R™ is sigma-bounded. Then we have

M ={a - R : «a is predictable, R™ -integrable and such that a - R™ is bounded}.

Remark A.2 The proof goes through without the sigma-boundedness assumption. The
latter is imposed to ensure that M is non-degenerate and that the closure of M in
'H% (R) is equal to M?. Also, the proof goes through with NUPBR or, equivalently,
(2.10), instead of M € HIZOC(IP’) and (2.2), and with the Inada conditions instead
of Assumption 2.1; all we need is that together with Assumption 2.2, the standard
assertions of utility maximisation theory hold.

Proof of Lemma A.1 Let « be predictable and R™-integrable and such that « - R7 is
bounded. Then there exists a constant C > 0 such that C + « - R” is strictly positive.
By Jacod and Shiryaev [19, Theorem I1.8.3], there exists a predictable R” -integrable
process & such that

E((r+a)-R)

C R"=C&E@-R")=C
+a (a ) £ R

3

where the second equality uses (3.2). We deduce that the bounded process « - R™
admits the representation

Cg((n+&)-R)—€(n~R)

.RT =
* E(-R)

which is an element of M by the definition of M. As « was arbitrary, the proof
is complete. U
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Lemma A3 Fix x > 0 and set y = u,(x,0). Impose the assumptions of Lemma A.1
and that both M and H are in 7—[1206 (P). Recall that H is defined in Assumption 2.3
and is such that Y = yE(H). Then we have

N® = (N# : N is bounded, N € H}, (P)

and N is orthogonal to each component of M}.

Proof Take N ¢ H%OC(IP’) such that N¥ is bounded and fix M € M™. By [36,
Lemma 4.1], we have M = « - R™ for some predictable R™ -integrable process «. Let
us approximate o by the M-integrable processes

o' = (—n VoAl nel.

where every component of « is truncated from above by n and below by —n and
where 1, n € N, is a localising sequence for both M and N. Then for a fixedn € N
and every stopping time 7, similarly to Lemma 5.13, we get

Er[(a" - RF)NH] = Er[(«" - M, N)ync] = 0. (A1)

As N is bounded and & - R™, n € N, converges to « - R™ in H2(R), we deduce
from (A.1) that N7 is orthogonal to « - R™. Now from Lemma A.1, we deduce that
N is orthogonal to M. Since additionally, the closure of M in H(Z)(R) is equal
to M?2 by Kramkov and Sirbu [30, Lemma 6], we get

N D (NH :N" isbounded, N € leoc(]}”)

and N is orthogonal to each component of M}.

To show the opposite inclusion, we proceed as follows. We fix K € N and set
N := K +[K,H] = K. Then N is locally square-integrable under PP because
K is bounded and H is locally P-square-integrable. We suppose that £(K) > 0, as
otherwise we may multiply K by a sufficiently small constant ¢ and conduct the proof
for eK.

Fora = —m,as E(a - R™) = 8(7+R > 0, using the sigma-boundedness of R”
and the Ansel-Stricker theorem (see [8, Corollary 7.3.8]), we deduce that £(« - R™)
is a local martingale under R and hence in HIIOC(R). Let 0,, n € N, be a localis-
ing sequence for £(a - R™) such that on [0, 0,,], E(ex - RT) is in H!(R), where by
boundedness of K, we also suppose that £(K) is bounded on [0, ¢,,]. Further, as R”™
is sigma-bounded, we can use [30, Theorem 4] to approximate £(« - R™) on [0, ;]
in #!(R) by some bounded stochastic integrals with respect to R”. These integrals
are in M by Lemma A.1. By convergence in #'(R) and boundedness of £(K) on
[0, 6,], we obtain

ER[g(Ol : Rn)tAang(K)tAcrn |]:s/\cr,l] = 5(05 . R”)s/\crng (K)ann

_ EWN+ H)y,
 EH)sp0, E(T - R)sno,

(A.2)
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and by a change of measure, we have

Er[&(a - Rﬂ)mcrng (K)z/\a,, | Fsno,]

—-F |:8(H)ZA0,15(7T : R)Ma,, £
E(H)spn0,E( - R)spa,

~ E(H)ino, EN + H),n,

B [6(H)m,,6(n~R>mn E(H)ina,

_ 1

— EH)sn0, E(T - R)sna,

R tnoy EINT) i pors

]:s/\a,,:|

]:s/\ani|

E[E (N + H) o, | Fsno, - (A.3)

Comparing (A.2) and (A.3), we deduce that £ (N + H) is a local martingale under
P. As £(N + H) and £ (N + H)_ are both non-vanishing by construction because
E(N + H) = E(K)E(H), the stochastic logarithm of £ (N + H) is well defined by
[19, Theorem I1.8.3] and is equal to N + H by [19, Corollary I1.8.7]. Further, from
[19, Theorem 11.8.3] and Protter [40, Theorem III.29], we conclude that N + H is
a local martingale under PP. Moreover, N is locally P-square-integrable as seen in
the preceding paragraph and H € 7—[1206 () by assumption, and so we conclude that
N e Hi (P).

Second, we show that N is orthogonal to M. For this, take an element of M of
the form « - R™, where by sigma-boundedness, we suppose that each component of «
takes values in (0, 1]. Choose a stopping time o such that E[foa ozSTd (M) 5] < 00
and E[(N),] < co. Then as K = N € N, similarly to the proof of Lemma 5.13,
we have

0 = Er[[e - R", N"],]| = Erl{a - M, N),]. (A.4)

From (A.4), we deduce that (@ - M, N) is an R-martingale on [0, o]. Further, since
(a - M, N) is predictable and of finite variation, we deduce that (@ - M, N) = 0 on
[0, o]. As M and N are locally square-integrable and each component of « in the pre-
vious paragraph was (0, 1]-valued, thus non-vanishing, we can deduce by localisation
that each component of M is orthogonal to N on [0, T']. ]
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