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ABSTRACT: Using a combination of experiment and simulation,
we study how two-dimensional (2D) crystals of colloidal nano-
particles grow on cylindrical substrates. The cylindrical geometry
allows us to examine growth in the absence of Gaussian curvature
but in the presence of a closure constraintthe requirement that a
crystal loops back onto itself. In some cases, this constraint results in
structures that have been observed previously in theory and
nonequilibrium packing experiments: chiral crystals and crystals
with linear defects known as “line slips”. More generally, though, the
structures we see differ from those that have been observed: the line
slips are kinked and contain partial vacancies. We show that these
structures arise because the cylinder changes how the crystal grows.
After a crystal wraps around the cylinder and touches itself, it must
grow preferentially along the cylinder axis. As a result, crystals with a chiral line slip tend to trap partial vacancies. Indeed, we find
that line slips that are less aligned with the cylinder axis incorporate more partial vacancies on average than the ones that are more
aligned. These results show that crystal growth on a cylinder is frustrated by the closure requirement, a finding that may shed some
light on the assembly of biological nanosystems such as tobacco mosaic virus and might inform ways to fabricate chiral optical
nanomaterials.
KEYWORDS: colloidal crystallization, defects, frustration, crystal growth, self-assembly

1. INTRODUCTION
The morphology of a crystal depends on how it nucleates and
grows. Consequently, the structure of a real crystal often differs
from an idealized equilibrium structure or ground state.1 The
connection between morphology and growth was first made by
Steno2 in the 17th century, long before the atomic theory. In the
1950s, Frank and co-workers3 elucidated the relationships
between crystal growth rates, thermal fluctuations, and atomic-
scale structural features, including steps and defects. More
recently, experiments on colloidal nanoparticles, which permit
both structural details and growth4−8 to be directly visualized,
have led to a new understanding of crystal growth.
In particular, colloidal systems have revealed that curved

substrates can fundamentally alter crystal growth. Most studies
have focused on the role of the substrate’s Gaussian curvature,
the product of its two principal curvatures. Owing to Gaussian
curvature, large two-dimensional (2D) crystals of colloidal
spheres on a spherical substrate must incorporate topological
defects.9−15 When these defects are energetically costly, the
crystal alters its growth to avoid them. For example, 2D crystals
composed of particles with short-ranged attractions grow
isotropically on a flat surface but anisotropically on a
sphere.16−19

Here, we explore how a cylindrical substrate affects the growth
of 2D crystals of colloidal nanoparticles. At first glance, one
would not expect a cylindrical substrate to modify how such a
crystal grows in the same way that a spherical substrate does: a
cylinder has zero Gaussian curvature (because the curvature is
zero along one direction); and hence, a crystal on a cylinder need
not incorporate topological defects. Furthermore, a colloidal
crystal on a cylinderas opposed to one on a spheredoes not
accrue stress as it grows. In other words, it would seem to have
no way to “know” that it is on a curved surface.
However, this argument neglects one important feature of a

cylindrical crystal: when it grows sufficiently large, it must meet
itself, forming a closed loop. We show how this “closure
constraint” affects how the crystal grows. On a plane, crystals do
not have to contend with a closure constraint, and therefore, we
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observe different patterns of growth and structure than are seen
in planar crystals. On a sphere, crystals do contend with a closure
constraint, and the effects of this closure constraint on spherical
crystals have been studied in simulation.20,21 But for a sphere, it
is difficult to separate the effects of the global closure constraint
from the local effects of Gaussian curvature, which leads to stress
in a growing crystal. By examining a system with zero Gaussian
curvature, we explore how closure alone might affect growth.
To this end, we first study the crystal morphologies and

defects and then show what they reveal about growth. Most
previous work on the morphologies of cylindrical crystals
focuses only on idealized structures: densest packings and
ground states. This problem dates back to (at the latest) the
1830s, with Louis and Auguste Bravais’ mathematical analysis22

of phyllotaxis, the arrangement of leaves around a plant stem.
More recently, Pickett and co-workers23 showed that for certain
values of the size ratio rthe ratio of the cylinder diameter to
sphere diameterthe densest packings of hard spheres inside a
cylinder are chiral crystals. They also found that between size
ratios corresponding to these commensurate crystals, the
densest packings incorporate linear defects now known as
“line slips”, which consist of two parallel lines of spheres in which
each sphere touches only five others. These defects have zero net
Burgers vector.24 Mughal and co-workers related these results to
packings on the surface of a cylinder25 (the phyllotactic
problem) and showed that as the size ratio increases, the
densest packings vary between achiral hexagonal packings, chiral
hexagonal packings, and chiral hexagonal packings with line
slips.26 Later simulations by Wood and co-workers24 showed
that line slips can also occur in the ground states of particles with
attractions.
Our study differs in two ways from these theoretical studies

and from the few experimental studies of sphere packings inside
cylinders.27−30 First, we focus on how cylindrical crystals grow
and not just on their structures. Second, the interactions
between our nanoparticles are comparable to the thermal energy
kBT, so that nanoparticles in a growing crystal can rearrange. In
these two respects, the crystallization process we study is much
more similar to the self-assembly of a biological nanosystem than
it is to phyllotactic growth. Thus, at the end of the paper, we
compare our system to the tobacco mosaic virus (TMV), which
also self-assembles at finite temperature and forms a cylindrical
structure.
As we shall show, the closure constraint fundamentally alters

the way the crystal grows, as evidenced by the random
incorporation of a new type of defect (the partial vacancy)
into the line slips. We find that crystals with highly helical line
slips are more frustrated than crystals with less helical line slips.
This result raises the question of how nanomaterials can be
designed that avoid this frustration. The comparison with TMV
suggests a potential approach to make chiral nanomaterials.

2. RESULTS AND DISCUSSION
2.1. Single Crystals Form on and Wrap around a

Cylindrical Fiber. In our experimental system, 2D colloidal
crystals self-assemble on the surface of a hard cylinder, driven by
a short-ranged depletion interaction33−35 between the particles
and between the nanoparticles and the cylinder. We fabricate
cylinders by simultaneously heating and pulling a silica optical
fiber.36−38 This method results in a tapered cylinder with a
diameter d of a few micrometers and with a smooth surface for
crystal growth (Figure 1a).

Figure 1. Formation of colloidal crystals on a cylinder. (a) Scanning
electron micrograph of an optical fiber tapered from an original
diameter of 125 μm to about 200 nm at its thinnest part. Both thick and
thin segments in the image belong to the same fiber. We examine
crystals that form where the fiber diameter is between 1.5 and 5.5 μm.
(b) Polystyrene colloidal nanoparticles with an average diameter of 710
nm are attracted to the fiber through a depletion interaction mediated
by SDS micelles with an effective diameter of 30 nm.31,32 This effective
diameter is larger than the physical diameter of 4 nm because it
accounts for electrostatic interactions. The blue shaded regions denote
the volume excluded to the micelles. We adjust the concentration of
colloidal nanoparticles (0.25% w/v) and SDS (33.6−34 mM) in
solution to prevent the formation of multiple crystal layers, large
clusters of particles, or kinetic instabilities. (c) Projection of a stack of
confocal microscope images of a colloidal crystal formed on the surface
of a cylinder. (d) Confocal microscope images of crystals assembled on
two cylinders with different size ratios r. Because the objective is below
the cylinder, images of the top and sides of the cylinder are distorted by
lensing through the glass fiber (see Figure S2 for details of experimental
setup). The blue lines denote the approximate boundaries of different
crystal grains that wrap around the cylinder. These grains are identified
by the consistent chiral angle found on both sides of the cylinder.
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We introduce a depletion interaction between the polystyrene
nanoparticles (diameter D = 710 nm) and between the
nanoparticles and the cylinder using sodium dodecyl sulfate
(SDS) micelles (Figure 1b). Because the interaction between
nanoparticles is isotropic, a 2D crystal of such particles can bend
freely and conform to the cylinder surface, which has no
Gaussian curvature but does have nonzero mean curvature. The
potential-well depth is a few kBT (see Supporting Information),
and the interaction range is approximately the effective diameter
of the depletant micelles or about 4% of the polystyrene

nanoparticle size at the SDS concentration we use (Figure
1b).31,32 With such a weak and short-ranged attraction, isolated
dislocations or disclinations do not occur.17 Because only
nanoparticles very close to one another interact, we refer to the
attraction between two neighboring nanoparticles as a “bond.”
Furthermore, we choose the SDS concentration so that the
crystals grow slowly and kinetic instabilities are avoided
(Supporting Information).
Immediately after preparing the sample, we see multiple

crystallites growing on the cylinder. In 3−5 h, the cylinder is

Figure 2. Some, but not all of the observed crystals, have structures corresponding to densest packings on a cylinder. (a) Diagrams showing the
construction of commensurate cylindrical crystals. When the side length of the dark rectangle is commensurate with an integer linear combination
(m,n) of the lattice vectors v1 and v2 (dark arrows show the vectors mv1 and nv2), the resulting segment of the lattice (middle column) can wrap
perfectly around a cylinder with circumference ∥mv1 + nv2∥. As shown in the middle and right columns, the integersm and n determine the chiral angle
ϕ. An achiral crystal results from (m,n) = (10,0), whereas chiral crystals result from (11,4) and (8,7). (b) Confocal microscope images of three crystals
grown on the same tapered fiber. The chiral angles are ϕ = 0° (top), 16.3° (middle), and 27.6° (bottom). The resulting configurations are close to the
corresponding diagrams in (a). (c) Confocal images and bond (interaction) networks of two line-slip defects (blue boxes) with different helicity. The
helicity of a line slip is determined by the angle θ between the line slip and the azimuthal direction on the cylinder. Blue circles show the particles that
form the line slip. Images of both sides of the cylinders shown in panels (b, c) are shown in Figure S7.
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almost entirely covered with crystallites (Figure 1c; for
comparison, Figure S5 shows crystallization on a flat surface).
To study the closure of individual crystallites, we limit our
observations to size ratios r = d/D between 2 and 6, in which
case, multiple grains form along the length of the cylinder, each
of which wraps completely around the cylinder (Figures 1d and
S6). The cylinder is slightly tapered, allowing us to investigate

the growth at different size ratios. But because the diameter of
the fiber changes negligibly along a single grain, we can consider
the substrate to be cylindrical rather than conical on the scale of
the grain (Supporting Information).

2.2. At Long Times, Some Crystals Form Dense
Packings but Most Contain Kinks. We first describe the
structures of the cylindrical crystals that we observe at long times

Figure 3.Most crystals with line-slip defects have kinks and are not ground-state structures. (a) Confocal images and bond networks of three kinked
line-slip defects, with the kinks circled in blue. We characterize each defect by counting the number of steps (particle center-to-center distances) from
its starting to ending point. n1 is the number of steps taken along v1, the lattice direction aligned with the line slip, and n2 along v2. Two parameters
characterize the geometry: the line-slip length l = n1, which is the number of particles in the line slip that have five neighbors, and the ground-state
length L = n1 + n2, which is the length if all of the partial vacancies were to exit the line slip. Images of both sides of the cylinders are shown in Fig. S7. (b)
Diagram of a line-slip defect in its ground state. L = l because there are no kinks. (c) Diagram of a line-slip defect with kinks. Because of the kinks, l < L.
(d) Plot of l as a function of L for ground states (black line) and experiment (blue dots). To find l from the experiment, we measure n1 and n2 from
images of 116 crystals. The experimental data is shown as a box-and-whisker plot with data points in blue. The box extends from the lower to upper
quartile, and the whiskers show the range of the data at each L.
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(several hours). We find that some, but not all, have structures
corresponding to the densest packings predicted in previous
theoretical studies: commensurate crystals and crystals with line
slips. We discuss the geometry of these structures because it is
essential for understanding the growth process and how it can
lead to non-ground-state structures.
Some of the crystals we observe in our experiment are

commensuratethe only defects being vacanciesand some of
these are chiral. Mathematical models of phyllotaxis25,39,40 show
that commensurate crystals can appear for integer values of the
chiral indices m and n (Figure 2a). These indices determine the
size ratio and chiral angle of the crystal. We characterize the
chiral angle of the observed crystals, which is easier to measure
than m and n (Figure 2b). We find that crystals with different
helicity can spontaneously assemble on different parts of the
cylinder.
We also observe straight line-slip defects in some of the

crystals (Figure 2c). Such defects have been observed previously
in macroscopic systems26,29 but not, to our knowledge, in a self-
assembled system. They follow a helical path around the
cylinder that is also parallel to one of the lattice vectors of the
crystal.
The line-slip defects that we observe are stable for the

duration of our experiments (up to 18 h), though vacancies do
appear and disappear during that time. The stability is expected

because line slips cannot disappear unless the crystal unwraps
and rewraps, as shown in previous simulations and theoretical
studies.24,25 On a flat surface, defects similar to line slips can
occur between two grains with similar orientations (Figure S8),
but these defects disappear when the grains translate. On a
cylinder, the line-slip defect occurs within the same grain, and
thus translation along the line slip corresponds to a rotation of
the crystal. However, rotating the crystal would change its
circumference, which would require it to either penetrate the
cylinder or detach from it, both of which are energetically
prohibitive.
We find, however, that most crystals do not adopt ground-

state structures, even at long times. Instead, they contain a new
type of defect not previously seen in simulation or experiment:
kinked line slips (Figure 3a). The kinks contain gaps that we call
“partial vacancies” because they are smaller than a nanoparticle.
We find that kinked line slips emerge in crystals with different
chiral angles and with a variety of numbers of partial vacancies, as
shown in Figure 3a. We characterize the different kinked
structures using two length scales, as shown in Figure 3b,c.
Quantification of these length scales for the observed structures
(Figure 3d) illustrates two points. First, most of the line slips are
kinked, and the proportion of line slips that are in the ground
state decreases with increasing line-slip length. Second, for a
given line-slip length, the number of partial vacancies can vary.

Figure 4. Kinked line slips form during the growth of the crystal. (a) Confocal images and bond networks showing the formation of a kinked line-slip
defect. At 0 min, a line-slip defect begins to form when the crystal wraps around the cylinder. At 1.76 min, another line slip starts to form in parallel,
leaving partial vacancies between the two. The line slips continue to grow until 10 min, after which we observe fluctuations in the kinked shape but not
in the number of partial vacancies. Not all particles are shown in the bond network diagrams. (b) Diagrams illustrating amechanism for kink formation.
The growing line slip is shown by the dark red particles. In the second diagram, a particle that attaches to the crystal prevents the line slip from growing.
In the third diagram, another particle attaches and traps a partial vacancy. In the fourth diagram, additional particles attach and continue the line slip,
which is now kinked.
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This variation shows that the partial vacancies do not affect
the commensurability of the crystal with the cylindrical
constraint. In fact, kinked line slips can, in principle, convert
to straight line slips when partial vacancies move into the grain
boundariesor, equivalently, when multiple nanoparticles
move in a direction parallel to the line slip. Such a relaxation
does not require a change in cylinder circumference; instead, the
excess void space can be absorbed by the grain boundaries. Thus,
a kink can be viewed as an excitation of a straight line slip.
Kinked line slips would therefore not have been observed in
previous simulations on cylindrical crystals24 that examined only
the ground states.
2.3. Kinked Line Slips Form during Growth. Having

shown that defects arise that do not change the commensur-
ability constraint, we now turn to what these defects reveal about
the growth process. To understand why the kinked line slips
occur so frequently in our experiments, we watch line slips form
in the experiment (Figure 4a andMovie S1).We find that kinked
line slips tend to form when two parallel line slips grow, trapping
partial vacancies in between. These observations suggest a
mechanism for the formation of partial vacancies (Figure 4b).

We also find that once formed, most kinked defects do not
relax into straight line slips on the timescale of the experiment
(Figure S9), although the kinks and grain boundaries do
fluctuate (Figure S10). Hence, in contrast to crystals that close
without a line slip (Figure S11 and Movie S2), crystals with
kinked line slips appear to result when partial vacancies are
kinetically trapped during crystal growth. Brownian-dynamics
simulations of particles interacting on a cylinder through a short-
range potential that approximates the experimental depletion
attraction (Supporting Information and Movie S3) show that
kinks arise during growth and not afterward (Figure 5a−d and
Movie S4).
The observation that these new defects arise during growth is

the first clue that the cylindrical geometry affects the growth
process itself. The second clue is that the parameter δ = (L − l)
/L, the number of partial vacancies per unit length of the total
defect, is inversely correlated with the line-slip angle θ in both
simulation (Figure 5e) and experiment (Figure 5f). Thus, line
slips that are less aligned with the cylinder axis have more partial
vacancies on average. This result was unexpected to us because
the partial vacancies neither reduce the energy of the crystal nor

Figure 5. Line slips that aremore aligned with the cylinder axis are less kinked. (a−d) Renderings of the simulated growth of four crystals with line slips.
In each image, the crystal is shown cut and unwrapped, such that the entire circumference of the cylinder (same for all four crystals) is visible. The line-
slip angle θ and parameter δ = (L − l) /L are shown at right for each crystal, and particles in the line slip and grain boundaries are shown in yellow. In
(a), the line slip is nearly aligned with the cylinder axis. It forms kinks but eventually rearranges into a straight line slip. In (b), the line slip makes a larger
angle with the axis. The crystal, however, grows preferentially in the axial direction and consequently traps partial vacancies, resulting in a larger value of
δ. In (c) and (d), the line slips have angles between those of (a) and (b), and their values of δ also lie between those of (a) and (b). (e) Contour plot
showing probability distribution (kernel density estimate) of kinked line-slip defects as a function of δ and θ for 79 simulated crystals with fixed r. (f)
Same type of plot as (e) but showing data from 116 crystals found in the experiment with varying r. The correlation coefficient in the experiment
(−0.49) is smaller than that of simulation (−0.77), likely because the experimental data are not taken at a single size ratio. The data points used to
create the kernel density estimates in panels (e, f) are shown in Figure S12.
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do they change the commensurability of the crystal with its
substrate.
2.4. Cylindrical Geometry Affects the Growth Process.

We make sense of the negative correlation between the line-slip
angle and the density of partial vacancies as follows. On a flat

plane, near equilibrium, a crystalline grain grows isotropically.
The same should be true of a crystal on a cylinder until the grain
wraps around the cylinder and the crystal touches itself. At this
point, growth along the azimuthal direction of the cylinder is
hindered, and the flux of particles arriving at the crystal is no

Figure 6. Kinks result from anisotropic growth after a crystal meets itself. (a) Illustrations of a crystal growing on a cylinder. Darker colors correspond
to the later stages of growth. The crystal grows isotropically until it wraps and meets itself, forming a line slip. (b) The crystal must then grow along the
cylinder axis. Gray circles indicate particles that attach to the two exposed faces of the crystal to continue the line slip. (c, d), Same as (a) and (b), but for
a line slip that is less vertical. For the line slip to remain straight, the growth on the light and dark gray faces must be the same. But because these two
faces make different angles with the average growth direction (along the axis), partial vacancies can become trapped by themechanism of Figure 4b. (e)
Rendering of a nearly vertical line slip (θ≈ 80°) found in simulation. Diagram at the right shows the area of the crystal (shaded region) and three faces.
(f) Lengths of the three faces as a function of time. The lengths are comparable until 2 × 105 τsim (where τsim = 180 ms), at which point face 1 (aligned
with the line slip and closely aligned with the crystal axis) starts to dominate. (g, h), Same as (e) and (f), but for a less vertical line slip (θ ≈ 45°).
Because face 2 is nearly aligned with the cylinder axis, it competes with face 1, and the line slip becomes kinked.
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longer isotropic. A line slip that is aligned with the cylinder axis
can continue to grow without kinks after it meets itself (Figure
6a) because of symmetry: the two other faces of the crystal make
the same angle with the cylinder axis, and therefore particles can
attach to them at the same rates (Figure 6b). By contrast, a line
slip that is less aligned with the cylinder axis faces a challenge
when it meets itself (Figure 6c) because the other two faces
make different angles with the line slip. Continuing the line slip
without defects requires particles to attach to both faces at the
same rates (Figure 6d), but the broken symmetry makes this
scenario unlikely: the larger the angle between the cylinder axis
and the face corresponding to the line slip, the higher the
probability that particles land on this face and trap partial
vacancies by the mechanism of Figure 4b.
Although this simple picture of the growth dynamics ignores

effects such as diffusion of partial vacancies, it does describe the
dynamics seen in simulations. To quantify these dynamics, we
measure the lengths of all three faces of the crystal as a function
of time. These lengths are related to the rates at which particles
attach to facesfor example, the length of face 1 increases when
particles attach to faces 2 and 3but are easier to measure. We
find that for a crystal with a line slip that is nearly aligned with the
cylinder axis (Figure 6e and Movie S5), the lengths of the faces
are approximately the same at short times, indicating isotropic
growth (Figure 6f). At longer times, the growth becomes
anisotropic, with the face aligned with the line slip (face 1),
growing much longer than the other two (faces 2 and 3). The
disparity between the length of face 1 and the lengths of faces 2
and 3 indicates that relatively few particles attach to face 1. As a
result, the crystal incorporates few partial vacancies. A crystal
with a line slip that is misaligned with the cylinder axis (Figure 6g
and Movie S6) also shows approximately isotropic growth at
short times (Figure 6h), but at longer times, the face aligned with
the line slip (face 1) competes with face 2, which is more closely
aligned with the cylinder axis. As a result, the crystal traps several
partial vacancies.
2.5. Conclusions. We have shown how the closure

constraint changes the growth of a crystal composed of
nanoparticles on a cylindrical substrate. The crystal grows
approximately isotropically (as shown by our simulations) until
it meets itself, at which point it must grow preferentially along
the cylinder axis. As a result, the larger the angle between the line
slip and the cylinder axis, the more partial vacancies the crystal
incorporates.
These results have both fundamental and practical implica-

tions for nanomaterials. From the fundamental perspective, they
show that a closure constraint alone can frustrate crystal growth.
This is a different type of geometrical frustration15,41 from the
more well-studied form arising from Gaussian curvature.41,42 It
does not occur in planar 2D crystals, where there is no closure
constraint. It manifests only when the crystal size becomes
comparable to the circumference, which is why the defects,
partial vacancies, occur only where the crystal meets itself.
From a practical perspective, our results show that some

ground-state cylindrical crystals are harder to make than others.
In particular, it is difficult to grow a dense crystal having a line
slip that is tightly wound about the axis, owing to the mismatch
between the line slip and the growth direction. Thus, self-
assembly may be an inefficient way to make certain chiral
nanomaterials, which have applications in sensors43 and optical
metamaterials.44 Indeed, existing self-assembly routes to such
nanostructures rely on templates such as TMV capsids44,45 and
DNA origami rods46 that guide nanoparticles into a prescribed

helicity. An interesting question is whether there are conditions
under which nonspecific substrates, like the fibers we use, can
template the formation of large, single crystals with prescribed
helicity and line-slip structure.
To address this question, it is useful to examine self-assembled

cylindrical nanosystems that are not frustrated. Single-wall
carbon nanotubes,47,48 for example, can adopt diameters
corresponding to commensurate crystals, and microtubules
can adopt straight line slips (called “seams”49) because these
structures do not form around a cylindrical template. However,
in systems like ours, the nanoparticles must satisfy the closure
constraint while simultaneously adhering to a template. There
are several systems in biology that face a similar set of competing
constraints.40

Of these, the tobacco mosaic virus (TMV) has a particularly
interesting way to satisfy both the closure and adhesion
constraints. The coat proteins of TMV self-assemble into a
cylindrical capsid around the viral RNA, even in vitro50indeed,
the TMV capsid is the structure that first inspired the term “self-
assembly”.51 However, the assembly pathway differs from that in
our system. The coat proteins first assemble into disks,52 and a
single site on the RNA nucleates the formation of the cylindrical
capsid from these disks.53 During nucleation and assembly, the
disks “dislocate”,52,54 or shear, to form helical structures, thereby
reducing their diameter and adhering to the RNA.
Thus, in TMV, the proteins first satisfy the closure constraint

by forming disks and afterward adhere to the RNA template.
They maintain the closure constraint during the dislocating
process. By contrast, the nanoparticles in our system first adhere
to the template, then form crystals that must close. Our results
show that even a single crystal can be frustrated by the closure
constraint; therefore, the control over nucleation that the RNA
provides may not be as important to eliminating frustration in
TMV as the sequential nature of the assembly. This assembly
pathway might have evolved in part to prevent the formation of
line slips or partial vacancies that would expose the RNA to
degradation by nucleases. There are, of course, other differences
between our system and TMV. For example, the interactions
between coat proteins are longer-ranged in TMV, which might
help vacancies exit by allowing dislocations to form and glide
helically to relax stresses.55,56 But the most striking difference is
that the assembly is staged in a way that allows for both closure
and adhesion. Engineering a similarly staged process may permit
the directed self-assembly of nanoparticles into prescribed chiral
crystals with high yield.
Another question for future work is why the kinked line slips

take so long to relax. Understanding their relaxation dynamics
and how those dynamics slow with increasing interaction
strength and line-slip sizemight reveal more about the
relatively simple but unexplored form of geometrical frustration
imposed by a cylindrical surface.

3. METHODS
See Supporting Information for all details of the experimental and
computational methods.
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Supporting information document: includes detailed
Materials and Methods, Figures S1 to S12, and Table
S1 (PDF)
Confocal images showing a crystal on a cylinder forming a
kinked line-slip defect. Snapshots of this movie are shown
in Figure 4 of the manuscript (Movie S1) (MOV)
Confocal images showing a crystal on a cylinder without
any defects. Snapshots of this movie are presented in
Figure S11 (Movie S2) (MOV)
Rendering of crystal growth on a cylinder from a
Brownian-dynamics simulation. The four images are of
the same cylinder taken from four azimuthal angles at 90°
intervals (Movie S3) (MOV)
Rendering of crystal growth on a cylinder from a
Brownian-dynamics simulation, showing the cylinder
cut and unwrapped. Snapshots of this movie are presented
in Figure 5 of the manuscript (Movie S4) (MOV)
Rendering of Brownian-dynamics simulation showing the
growth of a crystal with a line slip that is nearly aligned
with the cylinder axis (Movie S5) (MOV)
Rendering of Brownian-dynamics simulation showing the
growth of a crystal with a line slip that is misaligned with
the cylinder axis (Movie S6) (MOV)
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