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Abstract

We investigate a linear—quadratic stochastic zero-sum game where two players lobby
a political representative to invest in a wind farm. Players are time-inconsistent be-
cause they discount the utility with a non-constant rate. Our objective is to identify
a consistent planning equilibrium in which the players are aware of their inconsis-
tency and cannot commit to a lobbying policy. We analyse equilibrium behaviour
in both single-player and two-player cases and compare the behaviours of the game
under constant and variable discount rates. The equilibrium behaviour is provided in
closed-loop form, either analytically or via numerical approximation. Our numeri-
cal analysis of the equilibrium reveals that strategic behaviour leads to more intense
lobbying without resulting in overshooting.
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1 Introduction

Time inconsistency refers to a phenomenon in which a decision maker’s preferences
for different alternatives change over time, even in the absence of new information.
This can pose a significant challenge in solving dynamic optimal choice problems as
the optimal choice may vary depending on the moment in time from which the deci-
sion is being made. This misalignment can create a gap between the optimal policies
intended at one point in time and the policies that are implemented later. Standard
neoclassical models in macroeconomics and finance assume that decision makers
have time-additive preferences that obey the independence axiom and discount utility
exponentially. In that context, dynamic programming methods can help break down
any dynamic optimisation problem into a sequence of simpler, static problems that
can be solved recursively. However, economists are acutely aware that time incon-
sistency pervades various contexts, rendering the principle of dynamic programming
invalid.

Time inconsistency can manifest itself in common economic interactions even if
the players’ preferences are standard. For instance, in dynamic games, the time in-
consistency problem is a common issue, and the players’ ability to commit can signif-
icantly affect the equilibrium outcome. The game between central banks and the pri-
vate sector in Kydland and Prescott [19] is an example of this problem. Similarly, in
dynamic collective decisions, Jackson and Yariv [17] have shown that time inconsis-
tency is prevalent for almost any collective decision rule, whether it is based on a vote
or a utilitarian aggregation rule. Since it emerges from the interaction between play-
ers, the time inconsistency problem can provide new insights and allow economists to
recommend welfare-improving policies for society (see Kydland and Prescott [19]).
Moreover, Calvo and Obstfeld [7] and Bernheim [2] have also highlighted the prob-
lem of planners’ time inconsistency in intergenerational models. More broadly, time
inconsistency and its policy implications have become central concerns of economists
over time.

Time inconsistency can also emerge when individual decision makers deviate from
the standard assumption of exponential discounting. When a non-exponential dis-
count function is used, the marginal rate of substitution between consumption at two
different future dates varies as time passes, unlike in the case of a constant discount
rate. A prominent psychological theory proposed by Ainslie [1] argues in favour of
varying discount rates. The theory suggests that “hyperbolic discounting”! gener-
ates bias towards the present and can explain the impulsive behaviour explored in
Ainslie [1].

This paper investigates the impact of a non-constant discount rate on continuous-
time linear—quadratic game problems. We assume that the decision maker is aware of
the time inconsistency and approaches the problem with an intrapersonal game view
while lacking any commitment ability. This is the consistent planning solution to the
game envisioned by Strotz [21]. To contrast the behaviour of a decision maker with
a constant discount rate against one with a non-constant discount rate, we consider

1Hyperbolic discounting refers to a phenomenon where people tend to discount the value of future rewards
more heavily when they are further away in time, but less so as the reward becomes more immediate.
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two variations of the same problem. In the first, we examine the behaviour of a single
decision maker. In the second, we analyse a zero-sum game between two players. To
gain insights into the impact of time inconsistency on decision making in these two
situations, we aim to provide closed-form solutions or numerical approximations.
This enables us to offer concrete statements about decision-making behaviour and
contrast it with the behaviour under constant discounting. It is crucial to underline that
our examples and solution methods are exclusively applicable to zero-sum games.

The framework of this paper deliberately maintains simplicity, serving as an en-
try point to relevant literature and offering insights into how changing discount rates
affects decision-making behaviour. Our goal is to present closed-form solutions wher-
ever possible, and when that is impossible, to provide numerical approximation meth-
ods. By prioritising simplicity and accessibility, we aim to engage a wider audience in
this crucial area of research. Notably, Sect. 5 presents new findings on the zero-sum
game with players exhibiting non-constant discount rates which have not yet been
explored, to the best of our knowledge.

The topic of time inconsistency has been extensively studied in the literature, and
it is not feasible to provide a comprehensive summary in this paper. Therefore, we do
not cite every significant paper in this field, and refer the reader to the book by Bjork
et al. [4] and the recent paper by Herndndez and Possamai [14], in which compre-
hensive overviews of the literature on time inconsistency in mathematical finance are
offered. The seminal paper [21] by Strotz was the first to formalise non-exponential
discounting within a dynamic utility maximisation framework. In a simple determin-
istic “cake eating” problem in continuous time, Strotz formulated the solution of the
problem under commitment, representing the optimal choice based on preferences at
the beginning of time. He then went on to solve the consistent planning problem that
he defined as follows:

“Since precommitment is not always a feasible solution to the problem of intertem-
poral conflict, the man with insight into his future unreliability may adopt a different
strategy and reject any plan which he will not follow through. His problem is then to
find the best plan among those that he will actually follow.”

The consistent planning solution, also known as the sophisticated solution, pro-
vides a useful framework for solving consumption and saving decisions over time
when discount rates are non-constant. In a finite-horizon setting with discrete time,
the consistent planning solution can be identified by using backward induction. Start-
ing from the last period, the decision maker maximises their utility by selecting a sus-
tainable consumption plan that future selves would also choose. This is done at each
step, working backwards to the present time. In each step of the consistent planning
solution, lifetime utility is maximised under a consumption sustainability constraint
in addition to the standard budget constraint, making the problem non-standard. The
sustainability constraints ensure that the needs of future selves are taken into ac-
count. Although this method may generate multiple solutions due to the potential
non-concavity of intermediate values, the existence of a solution is typically guaran-
teed.

When the time horizon is infinite, there is no terminal time to start the backward
induction and the consistent planning solution can present some mathematical diffi-
culties in discrete time. Nonetheless, researchers have made significant progress in
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addressing these difficulties, as seen in Krusell and Smith [18], among others. In
the original continuous framework proposed by Strotz, the mathematical formula-
tion of consistent planning was initially established in the context of a determinis-
tic consumption—saving problem by Ekeland and Lazrak [10] (see also Ekeland and
Lazrak [11]). The approach involves assuming that the decision maker has control
over the consumption of their immediate successors at any given point in time, which
enables the formation of a small coalition that isolates the current decision maker
from the more distant ones. For a closed-loop consumption strategy that depends on
the current value of capital stock to qualify as an equilibrium strategy, it must be the
optimal policy for the current planner when the coalition is infinitesimally small. Fur-
thermore, the same strategy must be expected to be employed by the distant planners.

This way of defining the equilibrium is commonly referred to as the “spike varia-
tion method”. Interestingly, this method is more general than its original framework
proposed by Ekeland and Lazrak [10]. The equilibrium is well posed even when
a Brownian noise is introduced in different applications. Early research on this topic
includes Ekeland and Pirvu [12], Bjork and Murgoci [5], Yong [24, 25], Hu et al. [16]
and Bjork et al. [3].

This paper presents an application of the spike variation method to a two-player,
zero-sum linear—quadratic stochastic differential game. Our approach represents a
step forward in the understanding of strategic interactions between players when
each player has a preference-based time inconsistency. It is worth noting that recent
progress has been made in principal-agent models concerning the resolution of prob-
lems involving non-constant discounting, as demonstrated in Cetemen et al. [8] and
Hernandez and Possamai [15]. Additionally, in the context of optimal control prob-
lems with multidimensional states where the control variable appears in the diffusion,
Lei and Pun [20] have established the existence of a solution to the equilibrium HJB
equation for a small time horizon when dealing with a time-inconsistent single-player
situation. Given the focus of our study, we concentrate on specific examples to illus-
trate the impact of time inconsistency in zero-sum differential games. This approach
allows us to define an equilibrium that is global in the time dimension, enabling us to
derive valuable economic insights from our findings.

2 The model

Let (2, F7,P) be a complete probability space on which a one-dimensional stan-
dard Brownian motion W is defined, whose natural filtration, augmented by all the
P-nullsets, is denoted by F = (F;);>0. Let T > 0 be a fixed time horizon and for any
0<a <b<T,define the set

Ala,b):={(t,s) €la,b]*:a<t<s<b)}.
2.1 Objectives and policies

We consider a dynamic game where the state is controlled by two players. The state
is described by a one-dimensional controlled linear stochastic differential equation
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given by
dX(s)=(u1(s) +uz(s))ds +oX()dW(s), selt,T], X@)=§ (2.1
where X is the state process and u; is the control taken by player i, i =1, 2. We let
D:={(t.£):1€[0.T).§ € L% ().
with
L%_-I(Q) ={£:Q2 — R: £ is F;-measurable, E[|é|2] < 00}

Any (¢, &) € D is called an initial pair. The coefficient o is a deterministic scalar. For
i=1,2andt € [0, T), the set of admissible (open-loop) controls of playeri on [¢t, T]
is defined by

L%(l, T):= {(p 1[t, T] x Q — R : ¢ is F-progressively measurable

T
and E[[ |g0(s)|2ds] < oo}
t

To measure the utility for player 1, we introduce the functional

T
Nt & uru) =, [a(T — )X(T)? +/ als =D (—ui(s)* + Ruz(s)z)ds},
t

2.2)
where 0 < R <1 is a deterministic scalar and « is the discount function. Similarly,
the utility for player 2 is given by

T
Dot & uy, 1) = E,[— a(T =X (T)? +/ a(s — 1) (ur(s)* = Ruz(s)z)ds]-
t

2.3)
As we explain below, the condition 0 < R < 1 means that #; costs no less than u»
in the cost functionals. When R > 1, the existence of an equilibrium is not guaran-
teed, and since our objective is to maintain tractability, the assumption 0 < R <1 is
maintained from now on.
Starting from the state &, player i for i = 1,2 selects her control u; from the set
L]%‘(t, T) to maximise the utility J; (¢, &; u1, uz). Since

Jit, & ur,up) + (6 ur, up) =0, 24

our game is called a two-player zero-sum stochastic linear—quadratic game. The zero-
sum feature captures the conflict of interest of the two players due to the presence of
externalities. To discuss the implication of the model, it is useful to keep in mind a
specific application. Suppose that the quantity X (T') represents the output of a wind
farm. The experienced utility of the two players is quadratic in the output. The first
player represents a part of the population who value the environmental externality due
to green production of electricity and experience a positive utility that is quadratic in
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the output. The second player represents a part of the population who experience a
disutility that is also quadratic in the output. The aversion to wind turbines of the
second player captures opposition to wind turbines due to noise inconvenience for
citizens who live near the wind farms. We assume that the level of production of the
wind farm is a collective decision that is taken through a political process which is
mediated by political representatives. Each player can spend some effort lobbying the
politicians in order to have some influence on the output decision of the wind farm.
The lobbying can take the form of campaign donations or can be more direct by send-
ing letters to political representatives or engaging in protest campaigns. The lobbying
effort is captured by the control. The state equation (2.1) shows that a positive control
u; increases the output and a negative control decreases the level of output. Player 1
(resp. 2) values (dislikes) the output and would apply | = 400 (resp. u» = —o0) in
the absence of constraints. However, lobbying generates a disutility that is quadratic
for both players. The utility criterion (2.2) shows that player 1 suffers from a disu-
tility from the lobbying effort captured by the term —u(s). The utility (2.3) shows
that player 2 suffers from a disutility from the lobbying effort captured by the term
—Rug(s)2 with 0 < R < 1. Therefore, for the same level of lobbying, the disutility
is weakly larger for player 1 who supports wind farms. This asymmetry captures the
idea that opposing an environmental reform requires less lobbying effort because the
wind farms represent new technologies that require more subsidy relative to the status
quo technology for producing electricity. Finally, in addition to the opposite percep-
tion that the players have on wind farms, there is an externality in effort as well. The
term Rus(s)? in the functional (2.2) shows that more lobbying efforts from player 2
impact positively the utility of player 1. Similarly, the term u1(s)? in the utility (2.2)
shows that the utility of player 2 is impacted positively when player 1 exerts more
lobbying efforts. This externality in lobbying efforts is tantamount to an assumption
of limited supply of political capital. When player 2 increases the lobbying efforts
against wind farms, she may exhaust her political capital and player 1 benefits from
the resulting depletion. This may reduce player 2’s willingness to lobby against other
unmodelled political issues, potentially leading to improved outcomes for player 1
on those matters.

2.2 Open-loop versus closed-loop saddle point controls

Due to (2.4), the utilities J; and J> are not independent. If we set

J(@t, & ur,up) =Ji1(t, & ur, uz),

then player 1 wants to maximise J(t,&; uy,uz) by selecting u; € L%(t, T), and
player 2 wants to minimise it by selecting u; € LIZF(I, T). Thus we obtain a two-player
zero-sum differential game described by the state equation (2.1) and the functional
J = Jp given by (2.2). For convenience, let us name it problem (G). Consequently, in
problem (G), player 1 is the maximiser and player 2 the minimiser. We now introduce
the following definition of the open-loop saddle point.
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Definition 2.1 The control pair (u}, u3) € L%(z, T) x L]2F(t, T) is called an open-loop
saddle point of problem (G) at the initial pair (¢, £) if we have

J(t, & ur,u3) < J (& uf, ul) < J(t, & uf,un),  Vur,uz e Li@t, T).

An open-loop saddle point, if it exists, is an optimal choice for both players be-
cause if player i chooses a control different from u, her utility index becomes no bet-
ter or worse. Sun and Yong [23, Theorem 2.2.1] showed that (u’f, uﬁ) is an open-loop
saddle point of problem (G) on [t, T'] with X* being the corresponding state process
if and only if together with another pair (Y*, Z*) of adapted process, the so-called
optimality system is satisfied (with a stationarity condition). This system is a system
of forward-backward stochastic differential equations (FBSDEs, for short), which is
actually a two-point boundary value problem of SDEs. Thus the whole information
generated by (X*(s), uj(s),u5(s)), s € [t, T], is needed to determine (Y'*, Z*). Note
that the open-loop saddle point (u7, u3) can be written in terms of (Y™, Z*) via the
stationarity condition. Hence in seeking open-loop saddle points, the information of
the state as well as the opponent’s control over the whole time interval [¢, T] have
to be used (including the initial state £). In a game situation, the future information
of the state and both controls are not available at the present time to players. There-
fore, an open-loop saddle point only has a functional analysis meaning and is not
practically feasible. In this paper, we are primarily interested in so-called closed-loop
saddle strategies which take the form of linear functions of the state and are non-
anticipating, meaning that future information of the state and the two controls is not
needed.

We now begin with the definition of closed-loop strategies at a given time . Let
L (¢, T) be the set of all bounded deterministic functions. A closed-loop strategy
for both players consists of two functions (01, ®;) € L*°(¢, T) x L*°(¢, T). Under
such a closed-loop strategy, the state equation reads

dX(s) = (01(s) + O2()) X (s)ds + o X (5)dW(s),  selt,T],
X (1) =¢. 2.5)

We call (2.5) the closed-loop system under (®;, ®2) and the corresponding utility
functional reads

J(@,E,01X + v, 02X +v7)
T
—F, |:a(T —)X(T)? +/ als — z)(— (©1(5)X () + R(@z(s)X(s))z)ds]
t

To emphasise that the solution X to (2.5) depends on (01, ®;) as well as on the initial
pair (¢, &), we frequently write

X(s)=X(s:1,§,01,0)), selt, T]
The control pair (11, us) defined by

U =01X, ur =0, X (2.6)
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is called the outcome of the closed-loop strategy (©1, ©»).
With the above, we are now ready to define the closed-loop saddle strategies of
problem (G).

Definition 2.2 For any initial time ¢t € [0, T), a closed-loop saddle strategy for
problem (G) consists of a pair (©7, ®3) € L>(¢, T) x L*(t, T) such that for any
£e L%__, (2), we have

J(t, & u,®3X) < J(t,& 07X, O3X") < J(t,&; 01X, uz),
Vu; € L1, T),i=1,2. 2.7

One should note that on the most left-hand side of (2.7), we look at the process
X =X(;t,&uy, @3‘), whereas on the most right-hand side of (2.7), we look at
X =X(-;t,&, 07, uz), and in the middle of (2.7), we have X* = X (-;1,&, ©F, ©}).
Thus the processes X in the most left-hand and the most right-hand side in (2.7) are
different in general.

From the above, we see that a closed-loop saddle strategy is determined prior to
the state process. In other words, the state process is determined by the state equa-
tion under the outcome (2.6) of the closed-loop saddle strategy. Thus the closed-loop
saddle strategy works for an arbitrary initial state £. It follows from (2.6) that the out-
come, as the input of the state equation, is non-anticipating—no future information is
used. Hence it is practically feasible. More precisely, one could calculate ©; off-line
first and then apply it via the outcome (2.6) (the current state feedback) in the state
equation. It is crucial to underscore that this approach stands in stark contrast to the
open-loop saddle points (see Sun and Yong [22]).

In this paper, we concentrate on closed-loop saddle strategies and their outcomes
for both the single-player problem and the game problem.

2.3 Discounting

In this paper, we consider first the standard exponential discount function « (1) = e~*?,
where p > 0 is the constant discount rate defined by p := —a/(¢) /a(2).

To capture the present bias, we consider a mixture of exponential discount func-
tions of the form

at)=re P+ (1 —N)e V! for some y > p >0and A € (0, 1). (2.8)
The implied discount rate is given by

o (1-2)
at) P et 11—

(y —0),

which is monotonically declining from the short term discount rate

o' (0)
~ «(0)

=p+{1 =) —p)
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to the long term discount rate — O;l(gs) = p. Thus the discount function (2.8) embodies

the present bias highlighted in Ainslie [1]. The particular form (2.8) of the discount
function appears naturally for social planners in overlapping generations models (see
e.g. Blanchard [6] and Calvo and Obstfeld [7]). The discount function (2.8) was also
used as a deterministic benchmark in Harris and Laibson [13].2

3 Single-player games

In this section, we consider the game problem with a single player. In the first part,
we provide the optimal control solution when the player has a constant discount rate.
In the second part, we provide the consistent planning solution when the player has
a non-constant discount rate. We focus on the behaviour of player 2 because we
can identify the closed-loop consistent planning strategies for that players both with
constant and non-constant discount rates. By contrast, it can be shown that player
1’s optimal strategy may blow up, and hence there is no natural benchmark to study
player 1’s behaviour in a game setting.

3.1 Single-player games with constant discounting

We consider the state equation (2.1) and the objective given in (2.3) with #; =0 and
a(t) = e~ for some p > 0. In other words, player 2 maximises the functional

T
Dt €0, u7) = Et[ — e PT=Dx(T)? — / e—%’“—f)Ruz(s)?ds] (3.1
t

by choosing u; € L%(l, T) subject to
dX(s)=ux(s)ds +oX(s)dW(s), selt, T], X()=E&. 3.2)

This is a standard stochastic linear—quadratic optimal control problem which can be
solved by the results presented in Yong and Zhou [27, Theorem 6.6.1]. The follow-
ing proposition describes the single-player optimal control when the discount rate is
constant.

Proposition 3.1 The unique optimal closed-loop optimal strategy of player 2 with
state equation (3.2) and objective (3.1) is given by

(p—aD)ele="»

02 = = T R(p = 02))elr—oT — glo—

) se€[0,T]. (3.3)

2In [13, Sect. IL.B], utilities at all future periods are discounted exponentially with a discount factor
0 < p < 1. However, distant future periods are additionally discounted with uniform weight 0 <1 < 1.
As a result, the immediate future receives full weight e ~#?, while more distant future periods are given the
lower weight Ae ", The immediate future lasts during a length of time that is stochastic and exponen-
tially distributed with an intensity y — p. Under these assumptions, the expected discount function matches
exactly the discount function (2.8).
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In other words, for any given initial time t € [0, T') and initial state & € Lz}-t (2; R),
the unique optimal control is given by

i2(s) = Oa(s) X (s)

(p—o2)er=o"
T (1+ R(p — 02))el0—oDT — gp=0)s

X(s), sel0,T], (3.4)

with X being the unique solution of the closed-loop system
dX(s) = Oa(s)X(s)ds + o X ()dW(s), selt,T], X)) =¢. (3.5)

The closed-loop optimal strategy (3.4) as a function of s € [0, T'] for various levels
of the model parameters (7, o, p, R) is illustrated in Fig. 1. The figure indicates that
the optimal feedback is negative for all parameter values, implying that lobbying
against wind turbines is optimal. Figure 1 also implies that the effort against turbines
increases with larger output since |i;| increases with X. The figure also shows that
the lobbying effort against turbines increases when the cost of effort R diminishes,
the discount rate decreases, and the horizon 7 decreases. When the discount rate
decreases, the decision maker becomes more patient and is willing to exert more
effort today to reduce the output in the future. With a shorter horizon, the duration
over which the decision maker can lobby is shorter, and as a result, efforts intensify.
Moreover, Fig. 1 demonstrates that the lobbying effort intensifies when o increases.
With more risk, it becomes more important to control the state.

-0.5
~ ~

@ @ 1

o =049

15 o =0.25

o =0.05
-2

15 0 2 4 6 8 10
S

p =0.25
15 p =0.15
— p=0.01

Fig. 1T The panels display the optimal closed-loop strategies (:)2 (s) for 0 <s < T based on (3.3). The
baseline parameter values used are 7 = 10, 0 = 0.25, p =0.15 and R = 0.5
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3.2 Single-player games with non-constant discounting
In this subsection, we consider the state equation (2.1) and the objective (2.3) with

11 = 0 and the discount function «(t) = Ae ?" + (1 — A)e 7! for some y > p > 0
and A € (0, 1). More precisely, player 2 hopes to maximise the functional

T
L (t, €0, ur) =, [ —a(T —$)X(T)* — [ als — t)Rug(s)zds] (3.6)
t

by choosing u; € L%(r, T) subject to
dX(s)=ux(s)ds +oX($)dW(s), sel[t,T], X()=E&. 3.7

Since « is a non-exponential function, the above problem is time-inconsistent. We de-
fine the consistent planning strategies that we call equilibrium closed-loop strategies
as follows.

Definition 3.2 We call a closed-loop strategy @, € L°°(0, T) with corresponding
state process X an equilibrium strategy if

. L(t, X(1); 0, ©5X) — L (t, X (1); 0, 92 X)
lim sup <

e—>0+ €

0 (3.8)

forany r € [0, T) and u, € L%(t, T), where

e ey O2(s) X (s), selt+e T,
O5(s)X®(s) := o, celttte) (3.9)

with X¢ being the corresponding state process.

The term “equilibrium strategy” refers to the consistent planning approaches en-
visioned by Strotz [21]. According to the definition in conditions (3.8) and (3.9), an
equilibrium strategy exists when no player who can control the system during the
time interval [z, ¢ 4 €] has an incentive to deviate from the closed-loop policy O,
provided that all players apply the same strategy ©, during the remaining period
[t + €, T]. This condition needs to be satisfied when ¢ is arbitrarily small. In other
words, an equilibrium strategy is a closed-loop control that allows all players to max-
imise their respective objectives without any player having an incentive to deviate
from it. The construction (3.8) and (3.9) is sometimes called the spike variation ap-
proach, introduced in a deterministic setting by Ekeland and Lazrak [10]. Using the
multi-person differential game method given by Yong [26], we get the corresponding
equilibrium closed-loop strategy.

Proposition 3.3 An equilibrium strategy associated with the state equation (3.6) and
the functional (3.7) is given by

P(s,s)

Oa(s) =——

, se[0,T],
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where for any 0 <t <s < T, the function P is the unique solution of the Riccati
equation
P, s)P(s,s
0= Py(t.s)+ P(t.5)02 — 2%
P(s, s)2
R

P(t,T) =1 PT7D 4+ (1= n)e7TD, (3.10)

+ (ke—P(S—l) +(1— A)e—V(S—l))

Remark 3.4 The results in Proposition 3.3 can be obtained by simply applying Yong
[26, Theorem 6.5] to a special case. Theorem 5.2 presented later in this paper also es-
tablishes the solvability of (3.10), but with a method different from that of Yong [26].

Note that (3.10) is a non-local ordinary differential equation (ODE, for short)
which does not admit an explicit solution. The non-local feature stems from the fact
that (3.10) involves the evaluation of the solution at two different points 7 and s in
time, that is, outside the diagonal of A[O, T'].

We now describe an algorithm that provides an explicit approximate sequence for
the solution of (3.10). Let IT be a uniform partition of the time interval [0, T'] with
ti = % fori =0,1,..., N. Then ||IT|| = max|<j<n(ti —ti—1) = % The algorithm
begins by constructing an approximation on the final subinterval A[fy_1, fx] and
then proceeds to build the remainder of the approximation through backward recur-
sion.

Step 1: Approximation on A[ty—1,ty]. Fors € [ty—1, T], let

1

P(ty-1;5) = . +fT 1 - (3.11)
P T=9q(T—ty_1) 75 o> —a(r—ty_)R
Denote
P (t,s)=P(ty_155),  (t.5) € Alty—1. T,
o 1
O, () =—————=P(n-1;9), s €tn_1,ty]

a(s —tnv-1)R

Remaining steps: Approximation on A[#,ty] with k=0,1,...,N —2. As-
suming that P has been determined on the set Altk+1, T and that @g has been
determined on the interval [#;41, T], let

T
P(ti: 5) = a(T — t)el GOT@+ondr

T
e 2
+/ eli 20 (M)+o o (r — ) RO (r)2dr, s € [terts iy,
N

1

P(ty;s) = s € [tk, te+1]. (3.12)

- r f’k+1 S S
6"2(tk+175')P(Ik§tk+l) S et ar—n)R

@ Springer
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Since k =0, 1,..., N — 1 is an arbitrarily given index, the above approximation on
Altx, ty] extends to the interval [0, T']. Then for any N > 0, P and ®2H can be
explicitly obtained on [0, 7] by induction.

We now state a convergence result in Theorem 3.5. The result is due to Yong [26],
but for completeness, we give a shorter and self-contained proof in the Appendix.

Theorem 3.5 The unique solution P of (3.10) can be obtained as the limit

P(z,s>=HrlliHrnOP“<r,s>, (t,5) € A[0, T],

where the function P is produced by the algorithm (3.11), (3.12). Thus the equilib-
rium strategy @, can also be obtained as the limit

. o . P(s,s)
@2(S)=”1_l[1”m0@ (s)= lim ———2, se€l[0,T]. (3.13)

ITT||—0 R

Figure 2 illustrates the equilibrium strategy @, obtained through the use of algo-
rithm (3.11) and (3.12), where the step size of the partition IT approaches zero. The
results show that the optimal strategy’s properties in Fig. 1 hold for the equilibrium
strategy ©, as well. Additionally, the absence of “overshooting” is demonstrated in
Fig. 3, where the lobbying equilibrium with non-constant discounting is bounded by
the optimal lobbying strategy, both when the short-term self is in control and when
the long-term self is in control.

0 0
& & -1 o =049
- o =0.25
o =0.05
-2 -2
0 15 0 2 4 6 8 10
S S
0 0
-1
& - p=0.25 &
—p=0.15 2
p =0.01
2 3
0 2 4 6 8 10 0 2 4 6 8 10
S S
0 — 0
‘\,‘ ) 1‘<,
@ A =0.9 D v =04
— A =0.5 — 7 =03
— A =0.01 — v =0.16
2 4 10 2 4 10

Fig.2 The panels display the equilibrium closed-loop strategies @, (s) for 0 < s < T associated with the
single-player game with non-constant discounting, and are based on the approximation given in (3.13).
The baseline parameter values used are 7 = 10, 0 =0.25, p =0.15, R=0.5,2=0.3 and y =0.3
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(:)2(1011g term discount rate p)

-0.45 - O(p,7)

O, (short term discount rate p+ (1 — A)(y — p))

05 1 1 1 1 1 I I 1
0 1 2 3 4 5 6 7 8

S

Fig.3 The figure shows for 0 < s < T the equilibrium closed-loop strategy (:)2 (s) in green, and the optimal
closed-loop strategy (:)2(3) when the discount rate is p (in pink) or p + (1 —X)(y — p) (inred). The strategy
©,(s) is obtained using the approximation (3.13). The baseline parameter values are T = 10, o = 0.25,
p=0.15R=05,A=05andy =0.3

4 Two-player zero-sum games with constant discounting

In this section, we consider the game problem described by (2.1)—(2.3) with the dis-
count function «(r) = e~ *' for some p > 0. Recall that we denoted the game prob-
lem by problem (G). We first define a more general auxiliary game that will be used
for solving our game both with constant and non-constant discounting. Second, we
provide the closed-form closed-loop saddle strategy for problem (G) with constant
discounting.

4.1 An auxiliary game

We introduce the more general game problem with the state equation (2.1) and the
objective

J(t, & ur,u2) = E, [e—p(T—”me2

T
+/ e—p(j‘—t)(Rl(s)u](s)z+R2(s)u2(s)2)ds} (41)
t

for some scalar G and deterministic functions R; and R,. Note that the above reduces
to problem (G) with constant discounting when G = 1, Ry = —1 and R, = R. By Sun
and Yong [22, Theorem 5.5], we have the following characterisation of the closed-
loop saddle strategy of the above game.
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Present-biased lobbyists in LQ stochastic differential games 961

Lemma 4.1 Suppose that G > 0, Ry < 0 and Ry > 0. The game problem with the
state equation (2.1) and the objective (4.1) admits a closed-loop saddle strategy
(®7, ©) if and only if the Riccati equation

Ri(s) + Ra(s)
R1(s)Ra(s)
P(T)=G 4.2)

0= P(s) +02P(s) — pP(s) — P(s)?,

admits a solution P. If (4.2) admits a unique solution P, then the unique closed-loop
saddle strategy (©7F, ©3) admits the representation

P(s)
Ri(s)’

P(s)

F(S), NS [O, T] (43)

) =— O%(s) = —

4.2 Closed-loop saddle strategies

We now turn to problem (G) with constant discounting. By Lemma 4.1, we get the
following result.

Proposition 4.2 Problem (G) with a(t) = e~ "' admits a unique closed-loop saddle
strategy (7, ©3), given for s € [0, T] by

0
-0.5
5 S
o =0.49
15 o =0.25
o =0.05
-2
15 0 2 4 6 8 10
S S
0 0
05 -0.5
-1
-15
p=0.25 R=06
A5 p =015 2l|[——R=05
—— p=0.01 — — R=04
2 25
0 2 4 6 8 10 0 2 4 6 8 10
S )

Fig. 4 The figure panels display the closed-loop saddle strategies ©3(s) for problem (G) with constant
discounting, plotted for 0 < s < T using the closed-form expression given by (4.4). We use the baseline
parameter values 7 = 10, 0 =0.25, p =0.15, R=0.5
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R(p — %)=

O (s) = ’
e (1= R+ R(p —02))e?=oT — (1 — R)elr—oDs
() =——F—- “4)

In particular, if R = 1 so that the game is symmetric, the unique closed-loop saddle
strategy (©7, ©3) admits the representation

O1(s) = (p — 0D~ @5(s) = —O%(s),  s€[0,T].

To visualise the impact of strategic interaction between the two players, Fig. 4
plots player 2’s closed-loop saddle strategies for problem (G) and the optimal strategy
for the same players. The strategies are displayed as functions of time, at various
parameter levels for player 2. The figure shows that the comparative statics intuitions
from the single-player game hold true in the two-player game.

5 Two-player zero-sum games with non-constant discounting

In this section, we explore problem (G) in the case where the discount rate is not a
constant, and the discount function is defined by (2.8). First, we define the equilib-
rium. Second, we introduce a modified version of problem (G) in which we divide the
time interval [0, 7'] into subintervals and assume that players can make commitments
during each subinterval. This discretisation enables us to identify a differential equa-
tion that has the potential to characterise an equilibrium. Third, we demonstrate that
the problem is well posed and that an equilibrium can indeed be characterised by the
identified equation. Finally, we present an algorithm that can be used to approximate
an equilibrium.

5.1 Equilibrium definition

The introduction of non-constant discounting in problem (G) adds a strategic dimen-
sion for each player in two ways. Firstly, each player is strategic in their interaction
with the other player. Secondly, each player is strategic in their interaction with their
future selves. Consequently, problem (G) effectively becomes a problem with an infi-
nite number of players: the continuum of incarnations of player 1 and the continuum
of incarnations of player 2. To account for the time inconsistency generated by non-
constant discounting, we define equilibrium closed-loop saddle strategies as follows.

Definition 5.1 We say a closed-loop strategy (O1, @) € L®[0, T] x L*®[0, T] with
corresponding state process X satisfies a local saddle property if

J(t, X(1); ©5XE, ©2X°) — J (1, X(1); ©1X, ©:X) <0
p =

lim su )
e—0+ €
J(t, X(1); ©1 X8, O5X8) — J (1, X(1); ©1X, O, X
liminf (, X(1); © 5X%) (t, X(1); © 2 )20 5.1)
e—>0+ &
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foranyr €[0,T) and u; € L]zF(t, T), where

e nve, v |Oi®OXE(s),  selt+eT],
®i(S)X (S) = ui(s)7 Se[t’t—’_g)’ (52)

with X¢ being the corresponding state process. We call a closed-loop strategy satis-
fying the local saddle property (5.1) an equilibrium closed-loop saddle strategy.

The first inequality in (5.1) implies that if player 1 deviates from their strategy
during a commitment period of negligible length, their objective function will not
improve compared to following the no-deviation strategy. This constraint shares sim-
ilarities with the definition of a consistent planning strategy for a single player as in
Definition 3.2. However, the key difference is that in the game-theoretic setting, each
player turns to deviate while keeping unchanged the behaviour of both their future
selves during the period [r + ¢, T'] and the other player’s strategy. Strategies that meet
the criteria of the local saddle property (5.2) are denominated as equilibrium closed-
loop saddle strategies. Here, “equilibrium” pertains to the game involving multiple
selves, while “saddle” refers to the game between player 1 and player 2.

5.2 Time partitions with precommitment in each subinterval

We first let IT be a partition of the time interval [0, T'],
O=tfy<ti<bh<---<ty_1<tyn=T,
with mesh size

ITT]| = max (t — t;_1).
1<i<N

We assume that within each subinterval [#, fx4+1], the players are allowed to make
commitments and adjust their strategies accordingly, before moving on to the next
subinterval. As a result, during the time interval [#, tx11], self # of each player will
play a two-person zero-sum game against self #; of the other player, with self #
dictating the strategy choice. To fully specify the problem, we need to define the
objective for each player in each subinterval and establish the connection between
the game in a given subinterval and the game in the next subintervals. To establish
this connection, we assume consistent planning: when solving the game during a
given interval [#x_1, #], the decision makers internalise how the game will be solved
in the subsequent interval [#, T']. We do this in several steps.

Step 1: The precommitment game on [#y_1, #5]. The precommitment game that
we envision is driven by the state equation

dXN(s) = (u) (s) +ud ())ds + o XN (5)dW(s), s e€ltn_1,T],
XNn-1) =&, (5.3)
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and the functionals

Iy, & ul  ud)y =K, | [a(T —tn-1)X(T)?

T
+ f als —ty—1)(— ul (s)> + RuQ’(S)Z)dS],
t
I vy Eul udy = I (ever, £ ul  ud). (5.4)

Notice that with precommitment, every player within the interval [fy_1, f5] applies
the same discount function that is applied by self #y_1. As a result, the initial time
ty—1 is fixed in (5.4). With the fixed 7y _1, the problem in (5.3) and (5.4) is a standard
linear—quadratic stochastic differential game with zero discounting. As such, it can
be solved by Lemma 4.1 with p =0, G = (T —ty—1), R1(s) = —a(s —ty—1) and
Ry(s) =a(s —ty—1)R.

The unique closed-loop saddle strategy (C:)gv , (:)év ) is given by

Pn-158) =N, . Pln-159)

. OV =M €lin-1.TI,
als —tn-1) 2 (5) Ra(s —ty—1) s €lvr. 1]

CNOE

with P(ty—1;5), s € [ty—1, T], being the unique solution of the Riccati equation

1-R

0= P;(ty_1; P(tn_1:8)0> — ———— P(ty_1:5)°
s(IN—1;8) + P(tn_1; )0 «G —InDR (tn-1;5)

fors ety_1,T],
Pin-1:T)=a(T —tN-1). (5.5)

Note that in (5.5), ty—1 is fixed and only works as a parameter. Denote

OT=6Y  onlty_1, Tlfori=1,2.

Steps 2: The precommitment game on [ty_2, ty—1]. With the strategy ©!1 de-
termined on [fy_1, T'], the players on [ty_2, T] can only control the system on the
interval [txy_2, txy—1]. Consider the state equation

dxV ) = (17N ®) + 1y T 9))ds +o XN 5)dWs)
fors € [tn—2, tn—-1],

dX¥H ) = (O )XY () + 01 )XV (9))ds + o XV ($)d W (s)
fors e [tn—1,T1,

XV ln-2) =§
and the functionals JN ' (ty_o, &5 uY 7w 1), i = 1,2, with
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N-1 ... N—-1 N—1
Jl (IN729$au1 7“2 )
N-1 ., N-1 N-—1
:_JQ (”V*Z?éa ul ,Mz )

N-1 ., N—-1 N-1
=] (tN—2"S;:7ul 7”2 )

=E,_, [a(T — tn_) XN (T
T
+/ als — tN_Q)( — (O )XV () + R((:)ln(s)XNl(s))z)ds:|
IN-1

IN—
+Ey_, [/ Cas — tn—2)(—uY "' (s)? + Ruy ! (S)z)dS}
t

N-2
=: () + D).
Let P(ty—2;5), s € [tny—1, T], be the unique solution of the Lyapunov equation
0= Py(tn—2; ) +2P(ty—2; ) (O () + O3 (5)) + P (tn—2; $)”
+als —tn2)(— O () + ROY(5)?),  seltn-1,Tl,
Pn-—2;T)=a(T —tny—2). (5.6)
Then by applying It6’s formula to s — P (ty—_2; s)XN-1 (s)2 on [ty—_1, T], we have
M = Plin—2; tn-)X "~ v-1)%.
It follows that

N-1 N-1  N-1
JU T =2, 5wy T uy )

= ]E[P(IN—z; tn-D) XV ay_1)?

N
+/N 1oz(s—tjv_z)(—u{v_l(s)z+Ruév_l(s)2)a?s].
13

N-=-2
Moreover, from the fact that

(L= R)P(tn-159)> _

—0T(5)2 + ROT(s)? — 0,
1(5) + 2(5) Ra(s—tN_1)2 =

we have
P(ty—2;ty—1)=0.

Thus the problem can be solved by Lemma 4.1 again with p =0, G = P(ty—2; tn—1),
Ri(s) = —a(s —ty—2) and Ry(s) =a(s —ty—2)R._
The unique closed-loop saddle strategy (@i\’ -1 @év s given by

P(ty—2;5) P(ty_2;s)

“N—1, SN—1 0\
©i (S)_a(s—tzvfz)’ 9 )= Ra(s —ty_2)’

s €ty tn-1],
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with P(ty—2;5), s € [ty—2, tnN—1], being the unique solution of the Riccati equation

1-R

— P(ty_2; 2
2G —in R (tnN—2;5)

0= Py(ty_2;5) + P(ty_2:5)0% —

fors € [ty_2,ty—1],

P(tny—2;tN—1) = P(n-2;tN-1). (5.7

Note that in the above, P (ty_2; ty—1) has been determined by (5.6). We now extend
O from [ty_1, T]1t0 [ty—2, T]1by

HM(s) (E)IN(S), selty-1,T],
i eN ), selty_2,tN—1)

for i =1, 2. With this, we can write (5.6) and (5.7) together as

0= Py(ty-2) +2P(tn-2: $)(O] (5) + O3 (5)) + P(tn—2; $)o”
+a(s —tn_o)(— O () + ROV ()?),  selty-a T,
Piny-—2;T)=a(T —tn-2).
Subsequent Steps: The precommitment game on [tx_1, %] fork=1,2,..., N.
Suppose @P, i = 1,2, has been constructed on [#, T'] forsome k=1,2,...,N — 1.

We apply the above procedure to obtain an extension (:)IH =1, T]— R of (:)l.n(s),
s € [tx, T], by setting, fori =1, 2,

~ (:)H ’ 9 T ’
ON(s) = o (s) set,T] (5.8)
O, (s), s € [tg—1, 1),
where
- P(tp—1; ) ~ 1 P(t—1; )
)= —"2 0 @)= —— Tk—1, Ikl
1(8) 2 — 1) 2(8) RaGs — 1iep) $ € [tk—1, 1]

with P(tx—1;s), s € [tx—1, T], being the unique solution of the Riccati equation

0= Py(te—158) + 2P (te—1; ) (O () + OF (5)) + P(t—1; $)0
+a(s — 1) (= O ()2 + ROI(5)?)
fors € [t, T],

1—

— P(tk—1; 2
oG — IR (tk—155)

0= Py(tx—1; ) + P(tx_1; 8)o> —

fors € [tx—1, t],

P(t—1;T)=a(T — t;_1),
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which is equivalent to
0= Ps(tr—1;8) + 2P (115 9)(O] (5) + O3 (5)) + P (k1 5)0”
+a@ —u-D(— 60>+ ROT(5)?) =0,  seln-1.T],
P(ti—1;T)=a(T — t;—1).

This completes the induction.

The novelty of the construction of a sequence of precommitment zero-sum games
is that we can show that under the assumption 0 < R < 1, the zero-sum stochastic
linear—quadratic game on every subinterval can be solved. The key step is then to
check whether we can connect the Riccati equations associated with each subinter-
val’s two-person zero-sum game with constant discount, and then glue them together.
This is what we did in the above steps.

We now describe the global policy constructed from the above steps. Denote the
discount function of the precommitment model by

as —ty-1), teltn_1,tyl,selt, T],

an(t,s)z
(s —tr—1), telte_1,ty),selt, Tl,k=1,...,N — 1.

The above discount function formalises the assumption that self #;_1 applies her dis-
count function to all selves in the interval [#;_1, fx]. We denote by P the function
obtained by gluing together the functions P (z; s), (¢, s) € A[0, T], on each subinter-
val, i.e.,

P, 5)=P(tr_1;5),  telt1,t),s€lt, Tl,k=1,...,N.

Then the closed-loop strategy (O, (:)?) associated with the partition IT can be
given by

Of'(s) = % O (s) = —;;(—(SS”) sel0.T], (59
with
0= P (t,5) +2P"(t,5) (O (s) + O () + PT(z,5)0?
+al(t,5)(— O]'(5)> + RO (5)?),  (t,5) € A[0, T,
Ple, Ty=a" (T —1), 1€[0,T]. (5.10)

The purpose of our precommitment strategy based on subintervals constructed
in the above steps is to find an equilibrium characterisation in the continuous-time
model. To accomplish this, we pretend that P! converges uniformly to some P.
Then formally, P should satisfy the equation

0= Py(t,5) +2P(t,5)(O1(s) + Ox(s)) + P(t, s)0>

+at,)(—O1(5)> + RO2s)?),  (t,5) € A[0, T],
Pt.T)=a(T —1), tel0,T], (5.11)
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where

P(s,s)
R 9

O1(s)=P(s,s), O(s)=— se[0,T]. (5.12)

We call (5.11) an equilibrium Riccati equation (ERE, for short).
5.3 Well-posedness and verification theorem
We now show that the solution to the ERE (5.11) exists and is unique.

Theorem 5.2 The ERE (5.11) admits a unique solution P. Moreover, P(t,s) > 0 for
(t,s) € A0, T). In particular, if R = 1, that is, if the game is symmetric, then the
unique solution of ERE (5.11) can be explicitly given by

P(t,s)=e " Do(T — 1), (t,s) € Alt, T]. (5.13)

Next we show that the closed-loop strategy (:),-, i = 1,2, obtained by (5.11) and
(5.12) satisfies the local saddle property and is therefore an equilibrium closed-loop
saddle strategy.

Theorem 5.3 Let ©;, i = 1,2, be the closed-loop strategy obtained by (5.11) and
(5.12). Then @i, i = 1,2, satisfies the local saddle property (5.1). Thus (:),-, i=1,2,
is an equilibrium closed-loop saddle strategy for problem (G) with non-constant dis-
counting.

5.4 Convergence and approximation algorithm

We now show that when the partition step is small, the precommitment strategy con-
verges to the equilibrium closed-loop saddle strategy. This is an important result be-
cause it builds an equilibrium as a limit of models with precommitment over arbi-
trarily small periods. The result provides thus a discrete-time foundation of the spike
variation method. In a mean—variance model, a similar result was obtained by Czi-
chowsky [9].

Theorem 5.4 As ||T1|| — 0, the sequences (PYg and ((:),H)n defined by (5.9) and

(5.10) converge uniformly to P and ©, respectively, where P and © are defined by
(5.11) and (5.12).

It should be noted that an explicit solution to the non-local ODE (5.11) cannot be
obtained in general. However, for a given partition IT, we can obtain an explicit solu-
tion for P'1. By applying Theorem 5.4, we can use P! to approximate the solution
of (5.11). This will be our approach going forward.

To start, let IT be an equidistant partition of the time interval [0, T'] with #; = %
fori =0,1,..., N. Then ||IT|| = maxj<;j<y(# — ti—1) = % We now describe the
algorithm.
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Fig.5 The figure panels display the equilibrium closed-loop saddle strategies ® (s) for problem (G) with
non-constant discounting, plotted for 0 < s < T using the approximation given by (5.14). We use the
baseline parameter values 7 = 10, 0 =0.25, p =0.15, R=0.5,A=0.5and y =0.3

Step 1: Approximation on Afty_1,zy]. Let
1

P(ty_1;8) = 1 - — . se [tn—1, T].
X T=)g(T—ty_1) Js 2= (r—ty_1)R "
Denote
P, 5) = P(ty_1;5),  (t,5) € Alty—1,T),
P(ty_1;s P(ty_1;s
ON(s) = LUN-L8)  gnigy o _PON-LS)
als —1n-1) Ra(s —tn-1)

Step 2: Approximation of general term on A[t,ty] with k=0,...,N —2.
Suppose P™ has been determined on Altg+1,T] and O on the interval [tks1, T
Let

T
P(ty:s) = a(T — tk)efs @eoell(m)+20(r)+o?)dt

T
+/ oJ QO (D) 200 (1) +02)dr
N

x a(r — 1) (— O + RON))dr, s eltisr, v,

1
P(ty; s) =

, s € [tg, tky1]-
1-R dr

-t f’k“ — "
e"z(’k+1*”P(tk;tk+1) s eﬁz(rfs)“(r_’k)R
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Fig. 6 The figure panels display for 0 <s < T the equilibrium closed-loop saddle strategies ©(s) for
problem (G) with non-constant discounting, as well as the equilibrium closed-loop strategies ®(s) for
the single player with non-constant discounting. The figures are based on the approximations given by
(5.14) and (3.13). We use the baseline parameter values 7 = 10, 0 =0.25, p =0.15, R =0.5, A = 0.5 and
y =0.3

Denote
PN, )= P(t;s),  (t,9) € Alt, T1\ Altgs1, T,
ul I P(t; ) ul _ P (1 )
O (s) = 2G 1)’ 0, (s) = Rats —10)’ s € [tr, tks1]-

For any N > 0, P T and ®M can be explicitly obtained on [0, 7] by induction.
Then the unique solution P of (3.10) can be obtained by

P(t,s):Hl_lliHmOPn(t,s), (t,s) € A0, T,

and the equilibrium strategy ©; can be obtained by

O1(s) = lim O!'(s)= lim P"(s,s), se[0,T],
(ITT]|—0 ITT||—0
Pl(s, )

Oy(s) = lim OT)=— lim —2"2, sel0,T]. 5.14
2(5) s 2 (8) I — [0,T] (5.14)

Figure 5 displays the approximate strategies (@g) obtained by using the above
algorithm to visualise the equilibrium closed-loop saddle strategy ®,. By comparing
Figs. 5 and 2, we see that the qualitative characteristics of the lobbying strategies are

@ Springer



Present-biased lobbyists in LQ stochastic differential games 971
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O(p,7)
—— ©j(short term discount rate p+ (1 — A)(y — p))
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S

Fig. 7 The figure panels display for 0 <s < T the equilibrium saddle strategies (:)2 (s) for problem (G)
with non-constant discounting, and the closed-loop saddle strategies @’2‘ (s) for problem (G) with constant

discounting. The strategies ©(s) are approximated using the expression (5.14), and the strategies G);(s)
are given in the closed-form expression (4.4). We use the baseline parameter values 7 = 10, o = 0.25,
p=0.15, R=0.5, A =0.5 and y = 0.3. To visualise the wedge between curves, we truncated the time
axis at s = 8.5. We have verified numerically that there is no overshooting in the interval s € [8.5, 10]

broadly consistent with those of a single-player game with non-constant discounting.
We compare the equilibrium closed-loop saddle lobbying strategy ©» to the equi-
librium lobbying strategy ©, for a single player with non-constant discounting by
plotting them together in Fig. 6. The figure clearly demonstrates that lobbying in-
tensifies in a two-player game setting relative to a single-player setting, indicating
that strategic interaction between the two players increases lobbying efforts, even
when the discount rate is non-constant. This general observation holds true across
all panels in Fig. 6, producing results similar to those obtained when the discount
rate is constant and summarised in Fig. 4. Figure 7 further confirms that the equilib-
rium behaviour effectively prevents the phenomenon of “overshooting”. Specifically,
the closed-loop saddle lobbying strategy with non-constant discount rates is bounded
from above (resp. from below) by the closed-loop saddle lobbying strategies obtained
when the players apply the constant short term (resp. long term) discount rate.

5.5 Conclusions
We investigate a zero-sum linear—quadratic stochastic differential game in which two
players lobby a political representative to invest in a wind farm. As the players have

time-inconsistent preferences, they discount short-term utility with a large discount
rate and long-term utility with a low discount rate. Our aim is to determine the equi-
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librium lobbying behaviour of the players in both single-player and two-player frame-
works.

We find that an equilibrium in the class of linear closed-loop controls exists and
identify it in closed form or in a form that can be approximated. Our analysis reveals
that non-constant discounting does not significantly alter the comparative statics with
respect to most model parameters.

Our study has revealed that despite the aforementioned findings, strategic be-
haviour consistently leads to an increased lobbying intensity in all situations. Ad-
ditionally, we have shown that there is no overshooting phenomenon. Specifically,
we have found that the equilibrium behaviour under non-constant discounting is con-
strained from below by the lobbying behaviour when players prioritise long-term util-
ity at a high discount rate, and from above by the lobbying behaviour when players
prioritise short-term utility at a low discount rate. These results suggest that strategic
behaviour consistently leads to a heightened lobbying intensity, while the degree of
discounting impacts the upper and lower bounds of the lobbying behaviour.

We conducted an initial study on the interplay between strategic behaviour of two
players and Stackelberg behaviour of multiple selves induced by non-constant dis-
counting in a zero-sum game. To facilitate a broader understanding of the important
topic of dynamic games and time inconsistency, we intentionally simplified the model
and focused on specific cases for our analysis. Additionally, we discussed the ques-
tions in the context of lobbying and employed a basic reduced form political economy
model to maintain tractability and the possibility of closed-form solutions. However,
there are numerous opportunities for expansion, including more extensive modelling
of political economy elements. To the best of our knowledge, this paper is the first to
apply dynamic stochastic differential game methods in political analysis, and future
extensions could provide further insights into the dynamics of lobbying and other key
interest concepts that shape the landscape of political economy.

It is worth noting that our framework’s zero-sum property reduces the equilib-
rium description to one Riccati equation. However, in the interesting case where the
players have heterogeneous discount functions, the zero-sum assumption falls apart.
Similarly, from the vantage point of the lobbying model, this assumption also curtails
the full spectrum of externalities one lobbyist might exert on another. Thus future
studies can explore ways to overcome this limitation and expand the applicability of
our approach to a broader range of nonzero-sum differential games. If possible, such
a result would be a significant advance because it would allow to analyse strategic
interactions between players with various degrees of behavioural biases.

Appendix

A.1 Proof of Proposition 3.1

By Yong and Zhou [27, Theorem 6.6.1], the Riccati equation associated with the
problem of maximising the objective (3.1) under the state equation (3.2) reads

P(s)?
R

P(s)+02P(s) — pP(s) — =0, P(T)=1. (A1)
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Solving (A.1) gives

R(p — O—Z)e(p—az)s
(14 R(p — 02))elp=0DT _ glp=0?)s’

P(s)= se[0,T].

By [27, Theorem 6.6.1] again, the unique optimal closed-loop strategy is given by

A P _ 52)e(p—0)s
Or(s) =— (s)=— (p=oTe > —, sel0,T].
R (14 R(p —02))ele=09T _ glp—0%)s
The above expression of O, aligns with (3.3) and implies (3.4) and (3.5). O
A.2 Proof of Theorem 3.5
Denote the discount function of the precommitment model by
n als —Iin-1), teltno1,tyl,selt, T,
o (t,s)=
a(s —tg—1), teltr_1,ty),selt, Tl,k=1,...,N — 1.

Note that the function P defined by (3.12) satisfies the equation

0= Pt 5) + 2P (1, )0 (s) + PT(t, 5)02 4+ a"(1, 5) RON (5)?
for (t,s) € A[O, T],
P, 7)=a(T — 1), te[0,T]. (A2)

From the fact that a(s — 1) <a(s —t') for0<r <t <T and s € [t/, T], we get
P, s) < PM(s,s), 0<t<s<T. (A3)
Let E be the unique solution to the Lyapunov equation
E(s) + E(s)o? =0, E(T)=1.
From (3.11), it is easily checked that
Pt s)=Pay i) <B()=e" T, iy <r<s<T.
Then by (A.3), we have
P, 5) < E(s), 0<r<T,tVviy_;<s<T.
In particular,
Pt in-)) <EGv-1),  O0<t<iyi.
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From (3.12), we have
PU(t,5) = Plty—2i5) <™ =179 Pty _a;1y_1)

< NIIE(y ) =E(s),  tna<t<ty_i,t<s<ty_I.
It then follows from (A.3) that

P, 5) < E(s), 0<t<ty_1,tViN_2<s<IN_].
Thus by induction, we have

Pz, 5) < E(s), 0<t<T,tViyr<s<T.
Continuing the above yields
P, 5) < B(s), (t,s) € A[O, T].

Thus, noting that P >0, we have that PT is uniformly bounded. Then from (3.10)
and (A.2), we have for (¢, s) € A[0, T'] that

|P(t,s) — PM(t. )| < K[|
T
+/ (1P, r) = P, )|+ PG r) — P (r, )] )dr,
s
which implies that
|P(t,s)—PH(t,s)|§K||H||, (t,s) € A[O, T]. O
A.3 Proof of Proposition 4.2
Using the fact that G = 1, Ry = —1, and Ry = R, we can rewrite (4.2) as
. ) 1-R )
0=P(s)+o P(s)—pP(s)—TP(s) , P(T)=1. (A4

Note that =8 > 0. Then by Yong and Zhou [27, Theorem 6.7.2], the ODE (A.4)
admits a unique solution P. Indeed, the solution is explicitly given by

R(p — o2)eP=o7s
(1= R+ R(p — 02))e0=o)T — (1 — R)elp=07s"

P(s)= s e[0,T].

Substituting the above into (4.3), we get the desired results immediately. g
A.4 Proof of Theorem 5.2

By the variation of constants formula, we can see that the ERE (5.11) is essentially
a Volterra integral equation. Notice that when the existence of a solution to the ERE
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(5.11) holds, the map ¢t — P(¢, s) is differentiable. To prove Theorem 5.2, we intro-
duce the Volterra integro-differential equation (VIDE, for short)

0=0()+T()o* - %F(r)z

1-R

T etk 2
—/ eli @F2TFOTMry o (s — 1) = D(s)ds
t
_ effw%z%)r(r)drata(]w —0).
r(T)=1. (A.5)
If (A.5) has a solution, it is easily checked that
1-R 2 ! [ @242 8T (rydr 1-R 2
TF(I) + et R ora(s —t) R I'(s)“ds
t

+ el CHIFIIOUr g 0 (7 — 1) > 0,
Thus by the comparison theorem of ODEs, we have the a priori estimate
['(s) < B(s), s€[0,T], (A.6)

where = is the unique solution to the Lyapunov equation

E(s) + E(s)c72 =0, E(T)=1. (A7)
Next, we give an a priori lower bound estimate for I'. First, (A.5) can be rewrit-
ten as
. , 1—-R 1-R_
0=T®)+|o"—2——T@) |)JT(t) + —T(1)
R R
T ~ _
— / o)t (OZ_ZITRF(V))drE)ta(s —1) 1R F(S)zds
¢ R
_ ej,T(az—z%r(r))drata(T — 0.
(T =1.
Denote
~ T s 5 i-R 1—-R
L) = / eli @ 2Ty (g ) T'(s)%ds
t
+ el @2FE Oy (T e 0, T,
Clearly,

T(@) >0, telo,T].
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Note that
P 5 1—R ~ 1—-R 2
0=T@®)+ (o —2TF(t) F(l)—i—TF(t)

! * (0221281 (r))d 2
_/ eli (0" 2% T(r "ora(s — 1) [(s)°ds
t

el @Ry o (7 ),
() =1.
Then by the uniqueness of the solution to the above linear equation for T, we have
ro=Tr@, rel0,Tl
It follows that
') >0, tel0,T].
Combining this with (A.6), we get the a priori estimate
0<T(s) < E(s), s €[0,T]. (A.8)

With the above, we can prove the well-posedness of (A.5).

Lemma A.1 The VIDE (A.5) admits a unique solution T". Moreover, I'(t) > 0 for
tel0,T].

Proof The uniqueness of solutions to (A.5) can be obtained by a standard method,
and we only prove the existence of a solution. Let M := sup, (o 71 |E(#)|. Let py be
a smooth truncation function with

X, x| <M+1,

pM(x):{o, x| > M +2.

Let '™ be the unique solution to the VIDE

0=1Y®) +T"(1)o? - 1_TRpM(F”’m)2

T )
_/ @2 o Y Ndr g () pur (TM (5)) ds
t

_ @RI o T Ndr g o (T _ g,
r™(r)=1.
Define
T=max{t €[0,T]:|ITM@®)| > M + 1},

andt =0if{r [0, T]:|TM(s)| > M + 1} = (. Note that
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T (T)|=1< sup |E()| <M+ 1.
t€[0,T]

Thus 7 < T. If T =0, we have py(T'™M) = I'M which implies that '™ is a solution
to (A.5). If T > 0, then [T™(¢)| = M + 1 and '™ is a solution to (A.5) on [z, T].
However, by the a priori estimate (A.8), we have |I'™(¢)| < M, t € [t, T], which
contradicts the fact that '™ ()] = M + 1. Thus 7 = 0 and the proof is complete. [

To complete the proof of Theorem 5.2, we now prove the existence of a solution
to the ERE (5.11). Denote

T _ _
P(t,s) :/ IS @ 2FET N gy = I'(t)%dt
N
T, 2 ~51-R
tels @2 TOMrgr . 0<t<s<T. (A.9)
Then
P(t,t) =T@), te[0,T], (A.10)
and
, 1-R 1-R_
0= Py(t,s)+ P(t,s)[ 0" — 2TF(S) +a(s—1) F: I'(s)
for (¢, s) € A[O, T,
P, T)=a(T —1), tel[0,T]. (A.11)

Combining (A.10) and (A.11), we can see that the function P defined by (A.9) is a
solution to (5.11). If R =1, then (5.11) reads

0= P,(t,s)+ P(t,5)02, (t,5) € A0, T],
P(t,T)=a(T —1), tel0,T].

Taking t as a parameter, we get (5.13) immediately by the variation of constants
formula. This completes the proof. O

A.5 Proof of Theorem 5.3

We consider a closed-loop strategy ©;, i = 1, 2 satisfying (5.11) and (5.12). We only
prove the first inequality in (5.1) since the second can be obtained similarly. We
fix t € [0, T), a constant ¢ > 0 and controls © and u from L]zF(t, T). We consider
the controls ®X® and ®5X®, where ®fX5 is defined by (5.2) for i = 1,2. The
corresponding state equation (2.1) becomes

dXt(s) = (ul(s) + ug(s))ds +oX8(s)dW(s), se[t,t+¢),
dX®(s) = (0©1()X°(s) + O2()X*(s))ds + o X  (s)dW (s), selt+e T,
XE(1) =X (1), (A.12)
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and the corresponding utility functional
J(t, X (1); ©X°, ©5X°) := Jy (t, X (1); O X°, ©5X°),
with J; defined by (2.2), is given by
J(t, X(1); ©5X°, ©5X?)

t+e¢
=E,; |:/ a(s — t)( —up (s)2 + Ruz(s)z)ds]
t

+E, [a(T — ) X5(T)?
T
+ Lga(s - t)( — (B1()X° () + R(@z(s)XS(s))Q)ds]. (A.13)
Applying the Ito formula to the mapping s — P(t, s)X®(s)? over [t + ¢, T] gives
P(t, T)X5(T)?
=P, t+&)X°(t+¢)?

T
+/ (Ps(t,r)Xg(r)2+2P(t,r)X8(r)(C:)1(r)X8(r)+@2(V)Xs(r))
t+e

+ P(t, r)(UXS(r))z)dr

T
+ / 2P(t, )X (r o Xé(r)dW (r)
t+e¢

= P(t, 1 +&)XE(t +6)?

T
+/ (Ps(t, P+ 2P, ) (01() + G201 + P(:,r)oz)xf(r)zdr
t+¢

T
—i—/ 2P(t, r)X5(r o Xe(r)dW(r).
t+e

Since the function P satisfies (5.11), the above can be rewritten as

P(t,T)X (T)? = P(t,t +&)X°(t +¢)*

T
—/ at,r)(—O1(r)? + RO (r)?) X* (r)dr
t+¢

T
+ / 2P(t,r)X5(roXe(r)dW(r),
t+e

which yields
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T
EII:P(t, T)X (T)? +/ at,r)(— 61+ R(:)z(r)z)Xg(r)zdr:|
t+e

=E,([P(t, 1+ &)X (t +¢)2).
Substituting the above into (A.13), we get
J(t, X(1); ©5X°, ©5X°)
t+e¢
= E,U al(s — 1) —u1(s)* + Rua(s)?)ds + P(t, 1 + &)X (t + 8)2:|
t

= J(t, X(0); u1, u2)| (A.14)

[t,t+€]"

Thus for fixed ¢, the game with state equation (A.12) and utility functional (A.13)
over the time interval [#, 7] can be thought of as a game problem over [¢, ¢ + ¢]. In
that game, the state is given by the first line in (A.12), the utility functional is given
by the representation J (¢, X(@®);u, u2)|[s,1+¢) in (A.14) and the control u; is taken
from L%(r, t + ¢). Now we introduce over [t,t + €] C [¢, t + ¢] the dynamic game
problem with the state

dXé(s) = (ul(s) + uz(s))ds + o X(s)dW(s), se€t,t+¢),
X(r) =&, (A.15)

and utility functional
J(T, & ut, u2)lir 1+e)

t+e
=IET|:/ a(s—z)(—ul(s)2+Ru2(s)2)ds+P(r,z+e)X8(z+s)2}, (A.16)

where (7,&) € [t,t +¢] X L%_-T (€2) is the initial pair. We remark that in (A.16), the
time ¢ has been fixed and only plays the role of a parameter. Thus by Lemma 4.1 with
T=t+e, p=0,G=P(,t+¢), Ri(s) =a(s —t) and Ry(s) = a(s — 1)R, the
unique closed-loop saddle strategy associated with (A.15) and (A.16) can be found.
Note that if we take the initial pair (z, &) = (r, X (1)), (A.15) and (A.16) exactly coin-
cide with the first line in (A.12) and the functional J (r, X (1); u;, u2) (1,146 In (A.14),
respectively. Thus the unique closed-loop saddle strategy associated with (A.12) and
(A.14) can be found, and it is given by

Pl‘
O () = Ps), O3 ()= selniel
R
where P! is the unique solution to the Riccati equation
1 t 2 1-R ten2
0=P(s)+ P (s) o — ———=P'(s)" =0, s e[t t+¢],
a(s —1)R
P'(t+&)=P(t, t +e). (A.17)
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In other words, for any (u1, u3) € L%F(t, t+e¢e)x L%(t, t + &), we have

I(e R0 07X, 03 X)Ly 2 I (0 K01, 05X

T(t, X(0); ©7° X5, 07 X )|, g ST X0 07X un) |, (A18)
where

dX*™*(s) = (P' ()X () = R™'P'(9)X™(5))ds + 0 X" (5)d W (s),
X580 = X (@),

dX"*(s) = (u1(s9) = R P' ()X ())ds + o X (s)d W (s),
xhew) =X,

dX*%(s) = (P'()X>*(5) + u*(5))ds + o X3 ()dW (),
X>E(t) = X(1). (A.19)

By applying the It6 formula to the mapping s P! (s)X**(s)? over [t, ¢ + €] and to
the mapping s — P (z, s)X(s)2 over [t, T], we have

J(t, X(1); ©7 X", ®§’8X*'8)}[m+8] =P ()X (1)? (A.20)
and

J(t, X(1); ©1X,0,X) = P(t, 1)) X (1)*. (A21)

Since P!(t + &) = P(t,t + &) and the mappings s — P!(s) and (¢, s) — P(t, s) are
differentiable with uniformly bounded derivatives, we have

|P'(s) = P(t,5)| < |P'(s) = P(t,t +&)| +|P(t,1 +&) — P(1,5)| < K,
|P'(s) = P(s,$)| < [P'(s) = P(t,5)| + | P(t,5) — P(s, )| < Ke. (A.22)
Now recall that P! and P satisfy (A.17) and (5.11), respectively. Noting that we have

P'(t +¢&) = P(t,t + &), we get by applying the stability estimate of ODEs to (A.17)
and (5.11) over [¢, t + ¢] that

t+e
|P'(6) = P(t.0)] < K/ (IP'(5) = Pt. )] +|P'(s) = P(s.5)[)ds < K&?.
t
Thus, comparing (A.20) and (A.21), we have
(1, X(0); ©7° X7, 07°X*9)| L =T (1, X(0); ©1X, 0:X)| < Ke*X ().
It follows from (A.18) that

T, X051, 03°X9) ] < T(6X@); 01X, 0:2X) + Ke?X(1)2. (A23)
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Thus to prove that the first inequality in (5.1) holds, it suffices to prove that

(6 X1, 037X 1), = I (6 X0 97X, 62X°)

1

_ I+e 2
< K&’E, |:X(t)2 + f |u1(s)|2ds:| (A.24)
t

for some K > 0. Note that

It X3 ur, 03 X))

:]E,|:P(t,t+8)X1’5(t+8)2
t+e
+/ oz(s—t)(—ul(s)2+R_1P’(s)2Xl’8(s)2)dsi|, (A.25)
t

where X ¢ is the unique solution to (A.19), and
J(t. X (1); ©5X°, ©,X°)

=Et|:P(t, )Xt +¢)?

t+e
+/ als —)(—ui(s)* + R Ps, s)2X€(s)2)ds], (A.26)
t

where X¢ is uniquely determined by

dXt(s) = (ul(s) —R7'Ps, s)Xs(s))ds + o X8(s)dW(s), selt,t+¢],
X(1) =X (). (A.27)
Recall that X and X¢ are the unique solutions of (A.19) and (A.27), respectively.
By applying the stability estimates for SDEs to (A.19) and (A.27), we have

t+e 2
]E,[ sup  |X*(s) —X"€<s>|2] < KE[/ |P'(s) — P(s,s>||X8<s>|ds} .
t

se(t,t+e¢]

Substituting (A.22) into the above, we get

t+e
E| sup X = X" 6)P] = KeE, / |xe<s>|ds]
t

selt,t+e¢] L

2

<KeE[ sup 1X°(5)]
-selt,t+e¢]

r t+e
< K&'E, X(z)2+/ |u1(s)|2dsi|, (A.28)
t
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where the last inequality is due to a standard estimate of SDEs for X°. Using (A.28),
we obtain

E| swp (X562 — XM

se(t,t+e¢]

L L
<E[ swp X0+ X" @R B sup X7 - x|’

se(t,t+e] set,t+e]

% B t+e %
§K52]E,[ sup |X8(s)+Xl’£(s)|2] ]E,[X(t)2+/ |u1(s)|2ds]
t

selt,t+e]

<KeE | swp [X@P+ swp X" )P]

s€lt,t+e] se(t,t+¢]
) t+e 3
x E, [X(:)%[ Iul(s)|2ds:|
t
_ 1+e
< K&2E, [X(t)2 + / |u1(s)|2dsi|, (A.29)
t

where the last inequality is obtained by standard estimates of SDEs for X and X !¢
Comparing (A.25) and (A.26), by the estimates (A.22) and (A.29), we get (A.24).
Combining this with (A.23), we have

J(t, X (1); O5X%, 0,X°) < J(t, X(1); ©1X, 9:X)
_ t+e
+ K&K, [X(t)2 +/ Iul(s)|2d5i|.
t
This implies the first inequality in (5.1), as desired. g

A.6 Proof of Theorem 5.4

This proof is very similar to that of Theorem 3.5. Note that « (s—1) < (s — t') for any
0<tr<t <Tands e[t,T]. Together with the fact that —@1(s)> + RO;(s)> > 0,
we get from (5.10) that

P, s) < Pl(s,s), 0<r<s<T. (A.30)
Recall (5.5). By the comparison theorem of ODEs, we have
PU(1,5) = P(in-1;8) SE(s),  ty-1<1<s<T,
where E is the unique solution to (A.7). Then by (A.30), we have
P, s) < 2(), 0<t<T,tviy_1<s<T. (A31)
In particular,

Pt tn_1) <E(v-1), O0<t<tyn_1.
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Recall (5.7). By the comparison theorem again, we have
P, s)=P(n-2:8) SE(s),  Ina<t<iy1,1<s<Iy 1.
By (A.30), we have
P, s) < E(s), 0<t<iN_1,tViN_g<s<IN_]. (A.32)
Combining (A.31) and (A.32), we get
P, 5) < E(s), 0<r<T,tViNyo<s<T.
By continuing the above, we obtain
P, 5) <E(s),  (t,5) € A[O, T].

Thus, noting that Pn(t, s) > 0, we see that P s uniformly bounded. Then from
(5.10) and (5.11), we have for all (¢, s) € A[O, T'] that

T
|P(1,5) — PT(z,5)| < K|TI| +/ (IP(t,r)— Pt, )| +|P(r,r) — P (r,r)|)dr,

which implies that
|P(t.s)— P9 <Kl (1,5) € A0, T].
The desired results can now be directly obtained. g
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