Downloaded 04/09/24 to 5.198.137.25 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

SIAM J. CONTROL OPTIM. © 2023 Society for Industrial and Applied Mathematics
Vol. 61, No. 6, pp. 3608-3634

SPIKE VARIATIONS FOR STOCHASTIC VOLTERRA
INTEGRAL EQUATIONS*

TIANXIAO WANGT AND JIONGMIN YONGH

Abstract. The spike variation technique plays a crucial role in deriving Pontryagin’s type
maximum principle of optimal controls for ordinary differential equations (ODEs), partial differential
equations (PDEs), stochastic differential equations (SDEs), and (deterministic forward) Volterra
integral equations (FVIEs), when the control domains are not assumed to be convex. It is natural to
expect that such a technique could be extended to the case of (forward) stochastic Volterra integral
equations (FSVIEs). However, by mimicking the case of SDEs, one encounters an essential difficulty
of handling an involved quadratic term. To overcome this difficulty, we introduce an auxiliary
process for which one can use It6’s formula, and develop new technologies inspired by stochastic
linear-quadratic optimal control problems. Then the suitable representation of the above-mentioned
quadratic form is obtained, and the second-order adjoint equations are derived. Consequently, the
maximum principle of Pontryagin type is established. Some relevant extensions are investigated as
well.
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1. Introduction. We begin with a main motivation of our study. Let T'>0
and n,m € N be given, let (Q, F,P) be a complete probability space, on which a
one-dimensional standard Brownian process W (+) is defined, with the completed aug-
mented natural filtration denoted by F = {F; }o<i<r. Consider the following controlled
(forward) stochastic Volterra integral equation (FSVIE):

(1.1) X(t):so(tH/o b(t,st(S),U(S))dSJr/O o(t,s, X(s),u(s))dW (s), t €[0,T],

with the cost functional
T
(1.2) J(u(-)) =E |h(X(T)) +/0 9(s, X (s),u(s))ds

Here u(+) is a control process valued in U CR™, X (-) is the corresponding state process
valued in R", ¢ :[0,T] x 2 — R" is called a free term, (b,a):[0,T]?> x @ x R® x R™ —
R™ x R™ is called the generator, and h: Q x R" =R, g:[0,T] x @ x R x R™ — R are
called the terminal cost and running cost rate, respectively. Under certain conditions,
for any u(-) € Z.q (to be defined later), (1.1) admits a unique solution X(-) such that
J(u(+)) is well-defined. The optimal control problem can be stated as follows:
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Problem (C). Find a @(-) € %4 such that
(1.3) J@)= inf J(u(")).

u(-)EUad

Here u(-) is called an open-loop optimal control, the corresponding X(-) and
(X(-),u(-)) are called the (open-loop) optimal state process and an (open-loop) op-
timal pair, respectively.

Pontryagin’s maximum principle for (deterministic) controlled ordinary differ-
ential equations (ODEs) was formulated and proved by Boltyanskii, Gamkrelidze,
andPontryagin in 1956 [6] (see also [25]). Since then, the research in this direction
has attracted many authors. Shortly after, people extended the results to stochastic
differential equations (SDEs). In 1965, Kushner first proved a maximum principle for
SDEs where the diffusion is independent of the state and control [15]. In 1972, Kush-
ner further considered the case that the diffusion of the state equation contains the
state [16], in which the adjoint process was not successfully characterized. In 1973,
Bismut [4] introduced the duality between an initial value problem of linear SDE
(called FSDE) and a terminal value problem of a linear SDE (now called BSDE, a
name coined by Pardoux and Peng in 1990 [23]). With this, he proved the maximum
principle for FSDEs with the diffusion contains state and control, provided the control
domain is convex; the adjoint process was successfully characterized by the adapted
solution (again, named by Pardoux and Peng in 1990) of corresponding linear BSDE.
There were a number of following-up works (e.g., Bensoussan [3]). The maximum
principle for general controlled SDEs is of the following form:

(14 X0 =o+ [ ds Xhuls)ds + [ ol X (s u()dW (). te0.7]

without assuming the convexity of the control domain was proved by Peng in 1990
[24], with the development of spike variation technique for FSDEs. We refer to the
monograph of Yong and Zhou [38] for a self-contained presentation, and Hu [13],
Yong [37] for the extension to the forward-backward case. By the way, spike variation
techniques for partial differential equations (PDEs) and abstract evolution equations
in Hilbert/Banach spaces were also fully developed during the 1970-1990s. See, e.g.,
Li-Yong [18], Casas and Yong [8], and Hu and Yong [12], Fattorini [9] for systematic
presentations.

The integral equation was first introduced by Abel in 1825. The follow-up contrib-
utors include Liouville, Fredholm, Hilbert, Wiener, Bellman, etc. We refer to Bocher
[5] and Yosida [39] for two early monographs in this topic. The (forward) Volterra inte-
gral equation (FVIEs) was introduced by Italian mathematician Volterra. In contrast
with ODEs, FVIEs bring us new theories (e.g., Volterra operator theory in Gohberg
and Krein [11]) and new phenomena (e.g., the hereditary property in Bellman and-
Cooke [2], Volterra [28]). In the real world, there are many models that cannot be
simply described by ODEs but by (deterministic) FVIEs. Therefore, up until now, it
is still an active research topic, see, e.g., the recent monograph of Brunner [7]. For
the optimal control theory of FVIEs, to the best of our knowledge, the earliest work
was due to Friedman [10] in 1964. Later in 1967, Vinokurov [27] investigated the
optimal control for FVIEs with various type constraints and closed control domains
(described by level sets of smooth functions). There are quite a few literature con-
cerning optimal control of FVIEs in the past several decades (e.g., Kamien and Muller
[14], Medhin [21]). Recently, Lin and Yong [20] established a maximum principle for
singular FVIEs by spike variation technique.
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In contrast with the existing literatures for optimal control of (deterministic)
FVIEs, there were much less literature on optimal control of FSVIEs, to the best of
our knowledge. The simple reason is that the theory of adjoint equation for FSVIEs,
i.e., the backward SVIEs (BSVIEs) was not available until the appearance of the work
on Type-I BSVIEs by Lin [19] in 2002. Even then, the result was not connected with
the maximum principle of optimal control for FSVIEs. In 2006, Yong introduced
Type-1I BSVIEs and established maximum principle for FSVIEs the first time [35],
provided the control domain is convex (see also Yong [36]). There are some further
extensions appeared lately. Here are some of those results. Shi, Wang, and Yong
[26] studied the case of forward-backward SVIEs. Agram and Qksendal [1] presented
some investigations by means of Malliavin calculus, when the control domain U is
open. Wang and Zhang [34] considered the case with closed set U where the necessary
conditions were obtained from those directions that approximate convex perturbations
at the optimal control are admissible. Here spike variations are not necessary.

Recently, Wang [31] studied the general case without the convexity of the control
domain and attempted to develop the spike variation techniques for FSVIEs. In doing
so0, the following form of quadratic functional

(L5) () =E| X5 (1) hau X5 (T) + / U XE () Haw (0 X2 (1)t
0

appeared in the variation of the cost functional, where h,, and H,.(-) are S™ (the
set of all real (n x n) symmetric matrices) valued functions only depending on the
optimal pair (X (), (), and X§(-) is the solution of the first-order variational equa-
tion, depending on the spike variation of the control. In the case that the control
domain is convex, convex variation of the control is allowed and by doing that the
above quadratic form does not appear. Thus, it is not necessary for [1, 26, 34, 35, 36]
to introduce techniques of handling the above. On the other hand, recall that sim-
ilar quadratic form as &(e) appears in the FSDE case, which can be handled by a
duality between the second-order adjoint BSDE and the variational SDE satisfied
by X{()X5(-)" (see Peng [24]). It is unlikely that for FSVIEs one can obtain a
good-looking linear FSVIE for X§(-)X§(-)T. Hence, the idea of Peng [24] cannot be
directly borrowed here. In Wang [31], the author introduced two abstract and im-
plicit operator-valued stochastic processes, which are regarded as a replacement of the
second-order adjoint processes, in the statement of the maximum principle. However,
there was no second-order adjoint equation in [31].

In the current paper, we are going to develop a spike variation technique for
FSVIEs. The main ideas can be described as follows. Some recent studies (e.g.,
Li, Sun, and Yong [17], Wang [29]) show that Lyapunov type equations, obtained via
decoupling forward-backward system, play crucial rules in obtaining Riccati equations
in linear-quadratic (LQ) optimal controls. Here we find a slightly different manner to
derive the Lyapunov type equation (with solution P(-)) by applying the Itd’s formula
to X(-)TP(-)X(-) with X(-) satisfying an SDE. It turns out that this idea can be
adopted to our current SVIE’s problem. Together with the introduction of a suitable
auxiliary process, we are able to represent the quadratic form involved X§(-) in a
desired fashion. Consequently, the second-order adjoint equation will be derived which
leads to the maximum principle. Moreover, we will go a little further. Recall that
in 2007, Mou and Yong [22] established a variational formula for an SDE type state
equation and the possibly vector-valued cost/payoff functionals. Those results are
applicable to multiobjective problems and multiperson differential games of SDEs.
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Inspired by this, in the current paper, for FSVIEs, we will do the same thing, so that
it will lead to necessary conditions for the Nash equilibria of multiperson dynamic
games for FSVIEs. By letting the number of players go to infinity, and under some
structure conditions, it is expected to obtain the necessary conditions for the equilibria
of the mean-field games governed by FSVIEs, which includes the standard SDE case.
We hope to report more details in our forthcoming publications.

The rest of this paper is organized as follows. In section 2, we introduce some
preliminary notations and assumptions. In section 3, we present the variations of the
state and the cost functional under the spike variation of the control process. In sec-
tion 4, we give a representation of the involved quadratic functional by introducing a
system of BSVIEs, called the second-order adjoint equations. In section 5, we prove
the well-posedness of the aforementioned adjoint equations. We present the Pontrya-
gin’s type maximum principle and some extensions to multiperson dynamic games for
FSVIEs in section 6. Finally, some concluding remarks are collected in section 7.

2. Preliminaries. Let R” and R"*? be the usual n-dimensional space of real
numbers and the set of all (n x d) real matrices, respectively. Also, let S™ be the set
of all (n x n) real symmetric matrices. Next, for any Euclidean space H which could
be R™*, R"*4_S" ctc., we define

1%, (% H) £ {€:0 5 H | € is Frmeasurable, ], = (EleP)? < o}, pell,o),

In an obvious way, we can define LF (;H). For each p € [1,oq], Lp}-t(Q;H) is a
Banach space under || -||,. When the range space H is clear from the context and is
not necessarily to be emphasized, we will omit H. In particular, L];-T (Q) = L’])_-T (Q; H).
We introduce spaces of stochastic processes. To avoid repetition, all processes
(t,w) — @(t,w) are assumed to be at least H[0,T] ® Fr-measurable without further
mentioning, where %[0, 7] is the Borel o-field of [0,T]. For p,q € [1,00), 7 €[0,T),

q

|<P(t)|th> <00,

T

>

LP(Sy; LY(r, T;H))

@:[T,T]XQ%H’E(/

{<p: [, T xQ—H|E (esssup|g0(t)p> < oo} ,

te[r,T]

1>

LP(Q; L°°(r,T; H))

1>

LP(; C([r, T, H)) {cp: [7,T] x Q= H | t— ¢(t,w) is continuous,

E( sup Iw(f)|p> <oo}7
telr,T]

T a
{(pZ[T,T]XQ—)H‘/ <E|<p(t)|p)pdt<oo},

1
@:[1,T] x @ — H | esssup (E|gp(t)|p) "<ooyp,
te[r,T)

1>

L(r,T; LP(Q; H))

>

Lo°(r, T LP(2; H))
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C([r,T]; LP(Q; H)) = {cp: [r,T] x Q—H ’ t— ¢(t,-) is continuous,

<oo}.

The spaces L (Q; L>°(1,T;H)), L>=°(Q; C([r,T];H)) can be defined obviously. For all
p € [1,00), we denote

D=

sup (Elp(t)]")

t€[0,T)

[P (7, T;H) £ [P (7, T; LP(Q; H)) = LP (; LP (7, T; H)).

All of the F-progressive version of the above spaces can be denoted by putting F as a

subscript; for example, Cr([7, T]; L?(}; H)), and so on. Finally, in the above, when the

range space H is clear from the context, we will omit H; for example, LE(Q; C([7,T7)).
Next, the upper and lower triangle domains are defined by the following:

A*[T,T]é{(ns)e[T,T]Q’T<T<S<T}7 c0.7)
A*[T,T]é{(r,s)E[T,T]Q’T§5<r§T}, 7

We introduce the following spaces:

LE(Q; L2(A*[r, 1)) 2 {g A*T, T x Q= H | ((r,") € L§(Q; L*(r, T3 H)),

T T
a.e.rE[T,T],E/ / |C(7",s)|2dsd7“<oo}7

L2 L3 (AL, T))) 2 {g ALr,T) x Q—H | ((r,) € LE(Q; L*(r,r; H)),

a.e. v €[, T, / /|§rs|dsdr<oo}

LA(Q; L2 (AL, T) x [1,T))) = {{ AT x 1, T x Q—H | (0,1) € Ay

¢(O,r,") € Li(r,T;H), / // 9rs|dsdrd9<oo}

LA(Q L2([r,T) x [r,T])) = {c A*[r, T] x Q—=H| ((r,-) € L3 (7, T; H),

T T
a.e.rE[r,T],E/ / |C(r,s)|2dsdr<oo}.

For simplicity of presentation, let K be a generic constant which could be different
from line to line. For FSVIE (1.1), we introduce the following assumptions.

(H1) Let T >0, @ # U CR™ be measurable. Let b0 : A, [0, T]xR"xU x Q2 —R"
be measurable such that s +— (b(t, s,x,u),o(t, s, x, u)) is F-progressively measurable on
[0,t], x> (b(t,s,z,u),0(t,s,x,u)) is twice continuously differentiable with uniformly
bounded first and second order derivatives, and for constant L > 0,

|b(t,s,0,u)| + |o(t,s,0,u)| <L, (t,s,u) € A0, T] x U.
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Further, for f 2 b,0,by,04, (t,u) — f(t,s,z,u) is continuous uniformly in all the
arguments, and for f = b,o, (z,u) — fzz(t,s,x,u) is continuous uniformly in all
arguments.

Let Zaa 2 {u:]0,T] x @ = U | u(-) is F-progressively measurable} which is
the set of all admissible controls. Under (H1), for ¢(-) € Cr([0,T]; LP(Q2;R™)) with
some p > 1 and any u(-) € %,q, it is standard to see (1.1) admits a unique solution
X()=X(;u(v) € Cp([0,T]; LP(€;R™)). For the functions h and ¢ in (1.2), we make
the following assumption.

(H2) Let h: R" X Q =R, g:[0,7T] x R™ x U x Q — R be measurable such that
x> (h(x),g(t,z,u)) is twice continuously differentiable with

192(,0,u)| L, |haw(2)| + |gza(t, 2, 0)[ <L, (t2,u) €0, T] x R" x U

for some constant L >0 and (¢,x,u) — gz (¢, z,u) being uniformly continuous.

Under (H1)-(H2), problem (C) is well-formulated. Further, if h and ¢ take values
in R¢, then our study covers multiobjective problems as well as multiperson nonzero
sum dynamic games governed by FSVIEs (if £ > 2). Finally, we point out that (H1)—
(H2) can be relaxed somehow, for example, we may allow b,o, and g to have some
growth in u. We prefer not to pursue these generalities.

3. Variations of the state and the cost functional. In this section, we
present the variations of the state process and the cost functional under the spike
variation of the control process.

Let (X(-),u(-)) be any fixed state-control pair, which could be optimal, in par-
ticular. By choosing any v € U, 7 € [0,T), and sufficiently small & > 0 such that
T+e < T, we define u®(+) 2 Uy rye)(-) + () 10,7\ [r,r42) (-). This is called a spike
variation of @(-) in the direction of u on [r,7 4+ ¢]. Let X°(-) be the state process

. . . . A
corresponding to u®(-). We introduce the following abbreviations: for f=b,0,

falt, s, X (s),1(s)),

> > 1
on
3
=~
»
>
©
“ﬁw
&
—_
N
VAN
S

3f(t,s) = f(t,s, X (s),u) — f(t.s, X (s),u(s)),
504 (t,8) 2 au(t,s, X(s),u) — 04(t, s, X (s),a(s)).
With the above notation, we introduce the following variational equations:
t t
Xi(t) :/ by (t,s)X7(s)ds +/ [02(t,8) X5 (5) + 60 (t,8) L7 r1e)(s)]dW (s),
Ot 0
1
XE(t) = / (5ot 5)X5(5) + ghua (b, 5) X5 (5)2 + (1, 9) 17 7421 (5) ) s
0
t
1
+ / (0 (t,)X5(5) + 50wt )X ()
0
30, (8, 8) X5 (5) L 421 (5) ) AW (5), € [0, 7],

(3.1)
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where
X5 (5)TBL, (¢, 5) X5 (s)
bas (t,5) X5 ()2 2 : :
X7 (s) 05, (t,5) X5 (s)

and 0., (t,s)X{(s)? is similar. Under (H1), the above (3.1) has unique strong solutions
X5(-) and X5(-). We also introduce the following first-order adjoint equations:

T
n(t) =hy - / (AW (s),  te[0.T],

Y(t)=gu(t)" +0:(T8) "hy +0u(T02) " C(2)

(3:2) n / ' (bx(s,t)TY(S) + a;(s,th(sat))dS

- /T Z(t,s)dW(s), te€[0,T].

The first equation of the above is the simplest BSDE. The second is a Type-1I BSVIE
which has a unique adapted M-solution [36]. Both (n(-),{(:)) and (Y (:),Z(-,-)) of

(3.2) only depend on (X (-),@(+)). Finally, let us define the following Hamiltonian:

H(s,,u,0(s),C(), Y (), Z () = (0(s), b(T, 5,,u) ) +(((5), 0(T, 5,,u))

(3.3) T
+ g(s,7,u) —HES/ ((Y(t),b(t,s,x,u))+<Z(t,s),a(t,s,x,u)>)dt.

N . o . .
Hereafter, E; = E[- |F] is the conditional expectation operator. Then the main result
of this section can be stated as follows.

THEOREM 3.1. Let (H1)-(H2) hold. Then for any k > 1,

sup E[X%(s) — X (s)|F = O(c?),
s€[0,T
sup E[X5(s)|F =O(e?),
s€[0,T]
(3.4) sup E|X*(s) — X(s) - X (s)]* = O(e"),
s€[0,T]
sup E[X5(s)[F = O(e"),
s€[0,T)
sup E|X°(s) — X(s) — X{(s) — X5(s)> = o(?).
s€[0,T
Moreover,
T+e 1
(3.5) Jw()) = J(u(-))=E AH(s)ds+ 55(5) + o(e),
where
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E(e) 2 E| X5 (T) haw (X(T)) X5 (T)

T
(3.6) +/O XT(S)THm(S,X(S)vﬂ(S)ﬂ?(S)vC(S),Y('),Z('78))Xf(5)d51

=R Xf(T)TthIS(T)+/OTXf(s)THm(s)Xf(s)ds :

The above is essentially shown in [31] with the main idea of [24] (see also [38]).
A detailed proof can be found in [33]. We point out that in the last estimate of (3.4),
2 cannot be replaced by “any k> 1".

4. Representation of the quadratic form. Recalling (3.1) (suppressing ¢ in
X5(+)), we have X;(t)=0, t € [0, 7], and

X1(t) :/ by (t,s)X1(s)ds —|—/ [o2(t,8)X1(s) + 00°(t,s)|dW (s), te[r,T],
where doc(t, s) 2 5o

(t,
operator ®. Let X; (7))
notation,

8)11r 744 (8). Thus Xy (t) = ®[0o°(-,-)|(t), t € [1,T], for some
=®[do° (-, )|(T) =P[do°(-,-)]. Consequently, by misusing the

(4.1) &(e) = ( (P hye® + ®* H, ®)60°,60° ) .

Here the dependence of &(g) on 6o (-, -) is indirect since the operator ® is complicated.
The purpose of this section is to obtain a more direct form, whose procedure leads
to the second-order adjoint equation. To express the main idea, we look at a simple
problem on SDEs.

Consider the following linear SDE:

{dX(s) = [A(s)X (s) + b(s)]ds + [C(s) X (s) + o (s)]|dW (s), selt,T],
X(t) ==z,

with suitable processes A(+),C(+), b(),o(-). Also, we consider the following quadratic
functional:

J=E X(T)TGX(T)Jr/ (X(S)TQ(S)X(S)+2q(S)TX(s))ds

t

b

with suitable G, Q(+), ¢(+). In the LQ problem, A, C, @ could rely on feedback strategy
(e.g., [17, 29]). Let (P(-),A(:)) be the adapted solution to the following BSDE:

(4.2) {dp(t) =-T(t)dt + A@)dW (t),  te[0,T],

P(T)=aG,
with T'(-) undetermined. Then by It6’s formula (suppressing s), we have
d(XTPX)= [XT ( —T+PA+ATP+CTPC+AC+ cTA)XT
+XT(Pb+CT Po+ Ao) + (bTP +oTPC+ DTA)X
+0TPO'} ds+{---}dW (s).
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Consequently, the term X (7)"GX(T) in J has been absorbed since

J:E/T [X()T(~T+PA+ATP+CTPC+AC+CTA+Q)X(s)
t +2(pr +o PC+o A+ qT)X + aTPa] ds+a" P(t)z.
To further eliminate the term X (s)T(---)X(s) under the integral, we may choose
(4.3) I'=PA+ATP+CTPC+AC+CTA+Q,

so that a new representation of J can be given. The ideas of obtaining I" and J will
play crucial roles below. We point out that (4.2) (with I in (4.3)) corresponds to
the Lyapunov type equation in Markovian stochastic LQ problems (e.g., [17, 29]) and
second-order adjoint equations in maximum principles (e.g., [24]).

Note that the above could not be applied directly to & () as ¢t +— X;(t) does not
satisfy an SDE, and therefore, the It6’s formula does not work. To overcome this
difficulty, we introduce an auxiliary process Xi(-,-) as follows:

(s

(4.4) Xy (t,r)= /T by (t,s)X1(s)ds —|—/ [04(t,8)X1(s) +60°(t, )| dW (s),

with 7 < r <t < T. A similar form also appeared in [30]. Note that r — X;(t,7)
satisfies an SDE on [7,t], and thus the 1t6’s formula can be used. Moreover, for any
t € [r,T], by the second condition in (3.4),

(4.5) sup E l sup |X1(t,7)P| =O0(e?).

te[r,T] re(r,t]

Further, it is clear that Ay (r,r) = X1(r) with r € [, T]. Thus,

(4.6) E(E)=E | X\(T,T) hee X1 (T, T) +/0T X1 (5,8) " Hyp(s)X1(5,8)ds

We now treat the terms in &'(¢). To this end, we first carry out a general calculation
which will be used several times below.

Let O : A1, T] x 2 — R™™ be a process such that for each ¢t € [1,T], ©(¢,-) €
La(r,t; R™™™). For each (t,s) € A.[r,T], applying the martingale representation
theorem to the random variable ©(¢,s), one can find a unique A(¢,s,-) such that

(@7) H(t,s,r)EET[G(t,s)]:@(ts)—/SA(t,s,H)dW(Q), r<r<s<t<T.

Then, applying the Ito’s formula to the map 7+ & (t,7) "'TI(¢,s,7) X1 (s,7) yields
d[Xy(t,r) TII(t, s,7) Xy (s,7)]
_ [Xl(r)T(b (t,r) T TI(t, 5,7) + 0 (t,7) TA(L, 5,7 ) 2
+x ()T (H(t $,7)ba(5,7) + A(t, 5,7)00(s,7) ) X1
+X1(r) Top(t,r) "TI(t, 5,7)0,(s,7) X1 (1) + 00° (t,r)TH(t 5,7)00°(s,7)
+80° ()T (At ,7) X (5,7) + (L 5,7)0(5,7) X (1))
(A0 8) TA5,7)+ X1 (1) T (1,7) Tt 5,7) )80 (5,7) | dr+ T (8, 5,7) AW (1),
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where
T(t,s,r) 2 (Xl(T‘)TO'x(t,’I")T + 508(15,7")T)H(t, s, 1) X1 (s,7)
+&(t,r) " [A(t7 s,m)X1(s,7) + I1(¢, s,7) (az(s,r)Xl (r)+ (50’6(8,7“))} .

By the integrability of X7, A7, and (I, A) in the later specific cases, as well as (H1),

s / [00°(1.0)T (A(1.5.0)%,(5.0) + 11(1,5,0)7,(5.0) X, (0)
n (Xl(a, $)TA(t,5,0) + X1(0) o, (t,0) TTI(t, s, 9)) 50° (s, 9)} df = o(e).
Thus, (noting 7 <r < s <t < T, Xy(t,r), and X;(s,r) being F,-measurable)

E[X(t,r) ' O(t,s)X1(s,7)] =E[Xy (t,r) "TI(t, 5,7) X1 (s,7)]

—o(e) +E / ' [Xl(e)T (bw(t, 0)TO(t,s) + 0u(t,0) TA(t, 5, 9))2«1(8, 0)
(4.9) r
LX) (@(t, $)by(5,0) + A(t, s,0)04(s, 0))X1(9)

X1 (0) 0 (t,0)TO(t, 8)0.(5,0) X1 (0) + d0°(£,0)TO(t, s)d0° (s, 9)} do.

In the above, to get rid of the Itd’s integral of T'(¢,s,-) under the expectation, some
standard localization arguments via stopping times have been used. We point out
that the arguments of 1td’s formula on X also appeared in [30]. Now, we look at the
term of & () (see (3.6)).

Step 1. Treatment of the first term in &(g).
Take t =s =T, O(T,T) = hy, in (4.7). We denote by (II(T,T,r),A(T,T,r)) =
(Py(r),Q1(r)) with 7 € [, T]. Then (4.7) reads

(4.10) Pl(r):hm—/ Q1(0)dW (6),  relrT).

By the uniqueness, P;(-) and Q1 (-) take values in S™. Making use of (3.4) and (H1),
one has

E/TTJrs|X1(5)HP1(3)"60(T,s)|ds
< {E /T o |x1(s)}4ds]i []E / T+E‘60(T,s)|4dsr [E / T+€|P1(s)|2dsr:o(e),
E/:Jre|X1(T,s)||Q1(s)||5o(T,s)|ds

< {E/:ﬁ |20 (T, s)y‘*ds]i [E[ﬁ ]50(T,s)‘4ds]i [E[H \Ql(s)fdsr =o(e).

Therefore, the corresponding (4.8) follows. On the other hand, in the current case,
we have

D(T,T,r) = X, (T, 1) Q1 (1) Xy (T, ) + Xy (T, )T Py(r) (% (T,7)X1(r) + 60°(T, r))
+(X() o) T + 605 (1,) T ) P (T, 1),
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Again, by a localization argument, we can get rid of the It6’s integral of T'(T,T,")
under expectation to obtain the following, which is a particular case of (4.9),

E[X1(T) " heo X1 (T)] =E[X0(T,T) " PL(T)X1(T, T)]

(4.11) =E /T [Xl(r)TF1 (r) X (T, ) + X0 (T,r) T Fy(r) T X1 (r)
+ X, ()T G1(r) X1 (r) + 665 (T,7) " Py (r)d0° (T, r)} dr + o(e).

Here, both Fi(r) and Gy(r), defined below, are F,-measurable and independent of
UE(')’
A
Fi(r) = b (T,r) " Pi(r) 4+ 0.(T,7) T Q1 (r),
(4.12)
A
G1(r) = 0.(T,7) " Py(r)o,(T,r).

Consequently, at the end of this step, one has

T
E©)=o@)+E [ [Xa() TR + (L) F0) X
(4.13) .

+ X1() T (Haar) + G1 (1) ) X (r) + 60°(T,7) T Py (r)30" (T, 1) dr.
With the above procedures, the term E[Xl (T)Thee Xy (T)] is absorbed. However, the

new terms of the form X (r)" Fy(r)X;(T,r) and its transpose appear under integral.
This will be handled by the next step.

Step 2. Treatment of the term X1 (r) T Fy(r)X1(T,r) and its transpose.
Take t = T in (4.7) and let ©(T,s) = ©5(T,r) be undetermined (which is F-
measurable). By the martingale representation theorem one has

(4.14) 62(T7s):]ET[@2(T,5)]+/ Ao (T, s,0)dW (6), T<r<s<T.

In this case, (4.9) reads

E [Xl (T? T)TG)Q (Tv T)Xl (7“)]
@is) =E [ [XOTRG0K0.0+ 40 60T X0)

+ X0 (0)T G, 0) X1 (60) + 605 (T, 0)T O (T, )50 (r, )]0 + oe),

2
where
Fo(r,0) 2 b,(T,0)TOu(T, 1) + 0, (T,0) T As(T, 7, 0),
(4.16) Fo(r,0) 2 b,(r,0) TOS(T, 1) T + 00 (r,0) T Ao (T, 7,0) 7,

Go(r,0) 2 UI(T,H)TG)Q(T,T)OI(T, 0) + o, (r, G)T@g(T, T)Tam(T,H).
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Thus,

E / ' (X1 (T,7) T ©2(T,7) X1 (r) + X1 (r) T ©2(T,7) " X1 (T, 7)]dr

:E/T /T [X0() T Fo(0,0)(60,7) + 220, 1) Fo(6,) T X1 (1)
L RmATRO.NTXE) + X0 F6,0% (T,
+ X1 (r) " Go(0,7) X1 (r) 4 00° (T, ) " Oo(T,0)55° (0, 7)
+30°(0,7) T Ou(T,0) T 0% (T, r)} dfdr + o).

Consequently, (4.13) becomes

T T
{Xl(r)T(Fl(r) 0T, )T + / ﬁg(e,r)dG)Xl(T, r)
+20(T,r) " (Fl(r)T —Oy(T,r) + / ! Fy(0, r)Tdo) X1(r)

T

£() = o(e) + E /
T
+/T [(X1(r) T F2(0,r)X1(0,7) + X1(0,7) T Fa(0,r) T X1 (r)]dO
+X1(1)T (Haw(1)+G1 (1) + / : Ga(0,)d0) X (1) +80° (T,7)T Py(1)d0° (T 7)
+ / ' [60°(T, )" ©2(T,0)60°(0,7) + 60°(0,r) " ©2(T,0) " 60°(T, r)]d@} dr.
Thus, to eliminate the term of the form X (r) " (---)&1(7T,7) and its transpose, we let

T ~
62(T7r):F1(r)T+IEr/ Fy(0,7)7d6.

By denoting Ps(r) 2 Ox(T,r) T, Q2(0,7) 2 Ao(T,0,r)T, with 7 <r <60 < T, we have
Py(r) = bo(T,r) " Pr(r) + 00 (T,7) T Qu(r)

+/TT (bm(a,r)TPQ(G)+JI(07T)TQ2(0,T))d9/TTQQ(T,Q)dW(G)

for some @2(7‘, 0) defined for 7 < r < 6 < T, with a suitable measurability and
integrability. At the same time, (4.14) reads

Pa(s) = E, [Pa(s)] + / Qu(s.0)dW(6), r<r<s<T,
with Q2(s,0) defined on A,[t,T]. We now extend Q(s,0) to [7,T)? by Qa(s,0) =

Q2(s,0) with 7 < s <0 < T. Then (Pa(:),Q2(,)) is the unique adapted M-solution
to Type-1I BSVIE:

T
Py(r) = by (T,r) " Py (1) 4+ 0,(T,r) " Q1 (r) + / (bx(G,T)TPQ(G)

(4.17) ’
—l—aw(H,r)TQg(O,r))dH—/ Qo(r,0)dW (), re[r,T],
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which is independent of the spike variation u®(-) of @(-). Having the above, we obtain

(4.18)

g(e):o(e)—kE/

T

T

T
X (r)" (Hm(r) +Gi(r) + / GQ(@J’)d@) X (r)

T
+/ (Xl(r)TFg(H,r)Xl 0,7) +X1(0,7) Fa(0,7) " X3 (r))d@] dr

T
+E [

T
+ / (&;f(T, )T Py(8)T 505 (0,7) +505(0,r)TPg(H)(SoE(T,T))dH] dr.

60c(T,r) " Py(r)do® (T, r)

At this moment, we can express Fy, Fy, G in (4.16) by (P»,Q2) accordingly. In
&(e) (see (4.18)), the terms of the forms Xi(r) " (---)Xy(r) and Xy (r)"(---)X1(0,7),
together with its transpose, need to be handled. Next, we want to get rid of those
terms simultaneously.

Step 3. Treatment of the terms X1(r)T(---)X1(r), X1(0,7)T(---)X1(r), and its
transpose.

To treat X1 (r)" (---)X1(r), let t = s in (4.7) with O(s,s) = O3(s) valued in S,
undetermined. Again, we have A(s,s,:) = As(s,s,). Since O3(s) is symmetric, so is
As(s,s,r). Now, (4.9) becomes

E[Xl(r)—;@g(r)Xl(r)]

_E / [X0(0)T Fy(r,0),(1,0) + 2, (,0) T Fa(r,0)T X (0)

+X1(0)" G3(r,0) X1 (0) + 60°(r,0) T O3(r)d0°(r, 9)] df + ole),

where

(4.19) A

{ F5(r,0) 2 by (7, 9)T®3 (r) + oz (r, 9)TA3(7‘, r,0),
Gs(r,0) = o, (r, H)T@g,(r)aw(r, 0).

Then, by integrating it over [7,T], one has

T
E/ [Xl (r) T O3(r) X, (r)] dr

T

(4.20) :E/T /T [Xl(T)TF3(677’)X1(9,T) +X1(0,7) T F5(0,7) " X1 (r)
+X1(r) " G3(0,7)X1(r) + 60°(0,7) " ©3(0)30° (0, 7) |dfdr + o(e).

Next, for the term Xy (0,7)7 (---)X1(r), we let O(t,s) = O4(t,s), A(t,s, ) = Ay(t,s,")
be undetermined. Then, (4.9) reads

E[X1(0,7)T©4(0,7) X1 (r)]
:E/T (X1(0) T Fa(0,7,0) X (r,0') + X1(6,8) T Fa(6,7,6) T X1 (6')

+%X1(9/)TG4(9,T, 0)X1(0") +60°(0,0') T O©4(0,7)60° (, 9')] do’ + o(e),
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where (note that 7 <6’ <r<6<7)

Fy(0,7,0') 2 0,(0,0)T04(0,7) + 04(0,0) T Au(0,7,0"),
(4.21) E(0,r,0) 2 b, (r,0) T 04(0,7) T +0u(r,0) T AL(0,r,0)7,
Ga(0,r 9)—07«(9 0 04(0,7)0,(r,0') + 0u(r,0') T O4(0,7) T 5,(6,0).

Therefore, we have
T T
E / / X1(0,7) " 04(0,7) X, (r)dodr
’ Tr T 0 _
:IE/ / / [Xl(r)TF4(9,9’77")X1(9’,r)+X1(9,T)TF4(979'7T)TX1(7‘)

1
+5X1(1)TGa(0,0/,7) X (1) + 60%(0,7) T©4(0,0/)00° (¢, 1) | drd6dt) +of)

_E[rT/TG'/,T [Xl(T)TEl(&9/7’”))(1(9/7’”)+X1(9,7‘)Tf’4(0,9’,r)TX1(r)

+%X1(r)TG4(9, 0',r)X1(r) +80°(0,7) T ©4(0,6)50° (0, r)} dfdrdd' + o(e)

—IE/TT l/T/Txl(r)TF4(9/,e,r)xl(o,r)do’do

/ / X1(0,7) T Fu (0,0, 7)" X1 (r)d6' do
/ / S ACRACHRSE A

605 (0, 1) TO4(8',0)60° (6, r)) d0'd0 | dr + o(e).

Hence, combining (4.18) and (4.20) with the above, we have

&(e)
:E/T {Xl(T‘)T me(r)-f—Gl('f')-‘r/T <G2(0’T)+G3(0’T)+/TG4(9/’0,7“)d0/>d0
T r 9
T T
—O3(r) X1(r)+/ X, (r7T (Fz(e,r)_t,_Fg)(Q’?«)_@4(97T)T+/0 FA(0',0,r)d0"

0
+/ F4(9,9/,r)d9’>)(1(9,r)+X1(9,r)T Fy(0,7) 4+ F3(0,r) — 04(0,7) 7

T [
+ / Fu(6,0,7)d0" + / F4(9,9’,r)d6’> X1 (r)|dO + 60 (T,r) " Pi(r)dc (T, )
7 r

T
o

T
—|—505(0,T)T@3(9)505(0,7’)+/0 (505(9/,T)T@4(9/,9)506(9,T)

80 (T,r) " Py(0) " 60°(6,r) + 60°(8,r) " Py(0)60° (T, )

+50°(0,1)TO4(0,0) T 5058, r))da’] dG}dr +o(e).
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Consequently, in order to eliminate the term X (r)T(---)X(r), we should let
T T
Ou(r) = Horlr) +G1(1) + [ (sz,r) +Gal0.)+ [ Ga. 9,r>d0’> o
i (4

T
- / Gs(r,0)dW (0), € [r,T]

for some Qs(r, #) uniquely defined for almost 7 < r < 6 < T. Similarly, to eliminate
X1(r)T(---)X1(0,r) and its transpose, we should let

T 6
@4(9,T)T:FQ(H,T)+F3(9,T)+/ F4(9’,9,r)d9’+/ Fy(0,0',r)do’
0 T
T
_/ Q4(977Ha el)dW(el)a (9,7") € A*[Tv T}

for some @4(0,r, 0") defined for 7<r <60’ ' <T and 7 <r<O<T. Let

A A A3(9791T)7 T<T<9<T,
P3<9) = 83(9)7 Q3(97T) = ~
Qs(0,7), T<OL<r<T,
Aqy(0,r,0 7L< <r<0<T,
P4(050/)é@4(970/)—r7 Q4(0 T, 0) 4( )
Q4(0,T,9) , T<r<0 <T.

Then recall the expressions of G;, F}, i =1,2,3,4, j =2,3,4, we obtain the following
system for (Pl, PQ, Pg, P4)Z

(4.22)
T
Pl(t):hm—/ Qi(s)dW(s), T<t<T,

PZ(t) = bz(Ta t)Tpl(t) + Ux(Ta t)TQl(t) + lT (bx(s’t)TPQ(s)

T

+am(s,t)TQ2(s t))ds — / Qa(t, s)dW (s), T<t<T,
Ps(t) = Hayw(t) + 02 (T, 1) " Pr(t)0 (T 1)
/ [crx (5)Tou(5,8) + 00 (5,8) T Pa(s)0s (T, 1)

/ (01 (0,t) T Py(0,5) "0, (s,1) —|—Ug;(s,t)TP4(9,s)aﬁ@,t))d@} ds

+/ 0 (5,1) T Py(5)a (s, tds—/ Qs(t, )W (s), 7<t<T,
Py(r,t) =bo(T,t) " Po(r) " 4 05 (T,t) " Qa(r,t) " + ba(r,t) " Ps(r)

a(r )T Qa(r ) + /TT (52(5.0)T P 1) 4 00(5.0) T Qu(s, 1) T ) s
—i—/: (bw(s,t)TR;(r,s) + Uw(s,t)TQél(r,s,t))dS

T
—/ Q4(r,t,8)dW (s), T<t<r<T.
t
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By saying (P;,Q;) to be the adapted M-solutions of the corresponding BSVIEs, the
following constraints must hold:

Py(t) = Eg[Po(t /tade() F<O<t<T,
(4.23) Py(t) = Eq[Ps(1 /Qgtde() r<O<t<T,
Py(r,t) =Eg[Py(r,t)] /Q4Tts)dW() T<OL<t<r<T.

The above is called the second-order adjoint equation. With the above system, we
eventually end up with the following representation theorem.

THEOREM 4.1. Let (H1)—(H2) hold, and let (X(-),u(-)) be a given state-control
pair. Let (4.22) admit an adapted M-solution (P;,Q;) (1<i<4) on [r,T] such that

(P1,Q1) € L3 C([r, T);S™)) x L3(r,T;S™),

(Py,Q2) € L3 (7, T;R™™) x L3(; L*([r, T x [1, T); R™™),

(P5,Q3) € LE(7, T;8") x Lg(; L*([r, T] x [, T];8™*™)),

(Py,Q4) € LA(Q; L2(AL[r, T); R™ ™)) x LE(Q; L2 (AL [7, T x [7, T]; R™*™)).

Then &(g) admits the following representation:

T T
E(e)= ]E/ {5UE(T,T)TP1(T)5UE(T, r)+ / léJE(T, )T Py(0) T 60°(0,7)
+60°(0,7) " Py(0)60° (T, 7) + 60°(0,7) " P3(0)50° (6, r)

+ /9 (60°(0',r) T Pa(0',0) 0% (0,7)
+00°(0,7) T Py(6',0)60° (¢, r)) dﬂ’] do}dr +ole).

This conclusion naturally leads to the maximum principle in section 6.

5. Well-posedness of the second order adjoint equations. In this section,
we establish the well-posedness of system (4.22). To begin with, let us make some
observations. The existence and uniqueness of (P;,Q1) is easy to see, while the case
of (Ps,Q2) follows from the BSVIEs theory in [36]. For the equation of (Ps,Q3), it
is a classical linear BSVIE with given (Py, P2, P;). However, as to that of (Py,Q4),
its well-posedness cannot be given by the current theories. Therefore, we need to
carefully treat it.

Note that by applying conditional expectation operator E; on both sides of the
fourth equation in (4.22), we end up with the following form system (noting the third
equality in (4.23)):

P(r,t)=F(r,t) + /T [bz(s,t)TEtP(s,r)T +0.(s,t) T Q(s,r, t)T]ds
(5.1) —i—/T [bw(s,t)TEtP(r, )+ 0.(s,1) " Q(r, s,t)]ds, r>t,

¢
EgP(r,t)=P(r,t) — / Q(r,t,s)dW(s), T<O<t<r<T,
0
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with P(r,t) = Py(r,t), Q(r,t,8) = Qa(r,t,s), and

(5.2)
F(rt)2E, [bz(T,t)TPg(r)T 4 oo (T, )T Qo(r, )T + by ()T Py(r) + 0 (1, t)TQg(r,t)] .

The following gives the wellposedness for (5.1).

LEMMA 5.1. Let by(-,-),0.(-,-) be bounded, and let F(-,-) € LA(%; L*(AL[r,T))).
Then (5.1) admits a unique solution P(-,-) € L2(Q; L3(AL[r,T))). In addition, for
any p € [1,T], the following estimate holds:

T T T T
(5.3) E/ / \P(r,t)\2dtdr<K]E/ / |F(r,t)|?dtdr,
p Jp p Jp

where K only depends on ||bz]lco; ||0z]lco, and T, but not on p.

Proof. Let p € [1,T] be fixed. For any p(-,-) € L2(Q; L*(Ax[p,T))), we look at

T
P(r,t) = F(r,t) + / [ba(s,t) "Eup(s,7)T + 0 (s, ) Ta(s,m,8) T ds

(5.4) —l—/ [bw(s,t)TEtp(r, )+ o.(s,t) q(r, s,t)}ds, r>t,

t

t
Egp(r,t) =p(r,t) —/ q(r,t,s)dW(s), p<O<t<r<T.
0

By the first equality in (5.4), we have (for any 8> 0)

(5.5)
T T T r

E / / P P(r t)|2dtdr < KE / / P F(r,t)| 2 dtdr
P P P P

+KHbI(.7.)‘}1E/T/preﬁ(r+t) (/tr|p(r7s)‘ds>2+(/TT|p(s7r)’ds>2 dtdr
+K|ou ()% // Br+1) ( |qrst|ds> +</TT|q(s,r,t)|ds>2 dtdr.

For the second term on the right-hand side of (5.5), by Fubini’s theorem, we have

T prr r 2 T 2
IE/ / Br+t) (/ ‘p(r,s)’ds) + (/ ‘p(s,r)|ds> dtdr
p Jp t r
Lo (T T s s 2
< EE (6 —e )|p(r, s)|*dtdsdr

/ / Bltts) _ B("JFSJFFT)) |p(s,7)|?dtdsdr

T T
— / / P9 |p(r, s)|?dsdr.
ﬁ p o
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For the third term on the right-hand side of (5.5), similarly, by Fubini’s theorem,

]E/ / B(r+t) (/ ‘q r,8,t) ]ds) + </TT’q(s,r,t)}ds>2 dtdr
o[ [[oo{ ([ ) ([ aenta)
+ (/TT 6_65d8> <1T6ﬂ5|q(s7r,t)’2ds> }dtdr

/ ePlr+s) lq(r,s,t) ’2dtdsdr
P
P p(r, s)|?dsdr.

To sum up the above arguments, we have P(-,-) € L2(Q; L?(A.[p,T])), and one can
define a map = from L2(2; L%(AL[p,TY])) to itself as Z(p) = P.
Suppose p, p are two elements in L2(£2; L(A.[p, T1])), and (g, q) is defined similarly
as in the second equality in (5.4). By the previous arguments, we have P = Z(p),
Z(p), and define @, Q accordingly. Also let

2 2 2

AN ~ PWAN ~ -~ ~ ~
p=p—-p, q=q—q, P=P-P, Q=Q-Q.

Then we have

(5.6) (b (8, 8) "Eyp(r, 8) + 0u(s,t) ' G(r,5,8)|ds, r>t,

T
P(r,t) = / [ba(s,8) TEef(s,7) T + 0ul(s, ) Tq(s,7, 1) T] ds
+
t t
]Egﬁ(r,t):ﬁ(r,t)—/ q(r,t,s)dW(s), p<O<t<r<T.
0

By the first equality in (5.6), for any p € [7,T],
(5.7)

T T
E / / P P(rt)|2dtdr
p vp
T rr r 2 T 2
<KE/ /emm) (/ ’ﬁ(r,s)|ds> +</ |;5(s,r)|ds> dtdr
p Jp t T

+K]E/p / Br+) (/ |qr5t|ds> +</TT|§(s,r,t)fds>2 dtdr.

Similar as the estimation of (5.5), we have for any p € [7,T],

T pr
IE/ / P P(r t)|2dtdr < E/ / P |p(r, t) |2 dtdr.
p Jp

Therefore, by choosing 5 > 0 large enough, we obtain the existence and uniqueness of
P on [p,T], as well as the above conclusion (5.3). O

Now we return to system (4.22), the second-order adjoint system in our scenario.
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THEOREM 5.2. Suppose (H1)—(H2) hold. Then (4.22) admits a unique adapted
M-solution (P;,Q;), 1 <i<4, such that

(P3,Py) € L3 (7, T;R™™) x LE(Q L* (A [, TJ; R™™)).
Proof. By standard BSVIEs theory [36], one has the following:
(P1, Q1) € L§(; O([r, T];S™)) x Lg(r, T;S"),
(P2,Q2) € LE(7, T;R™™) x L*(7,T; L3 (7, T; R™*™)).
We now prove the remaining well-posedness of (Ps, Py). Recall (4.6), we see that

H..(-) € LZ(r,T;R™ ™). By applying conditional expectation operator E; on both
sides of the equations of (P3, P;) in (4.22), we have

Py(t)=Fs(t)+E, /T /T (000,007 Pu(0.) T, (5. 0) 00 (5.1) T Pa(6.)0,(6.1) ) dods

T
JrIEt/ oo(s,t) " P3(s)ou(s,t)ds, T<t<T,
¢

Py(r,t) =Fy(r,t) + bgg(r,t)TIEtP;;(r) + JI(T,t)TQg (r,t)

T
—HEt/ (bz(s7t)TP4(s,r)T+Jz(s,t)TQ4(s7r,t)T>ds

48 [ (o) o) £, (5) Qs ) ds, T e r<T,
where F3(-), F4(-,-) are given by the following, depending on (P;,Q1), (P2, Q2),
Fs(t) 2 Hoot) + 00(T, 1) Pi(t)0u (T, 1)
+E; /T [02(5,8) T Pa(8)0s(T,t) + 0u(T,t) " Pa(s) " 0a(s,t)]ds,
t

2

Fy(r,t) = b, (T, t)T]EtPg(r)T + 0. (T, t)TQQ(T,t)T.

Thus,

E (/TTF3(t)|2dt+/TT/:|F4(r,t)|2dtdr> < o0.

For a given p3(+) € L2(7,T) = L2(r, T;R™*™), let the associated g3(-,-) be determined
by martingale representation theorem:

¢
pg(t):IErpg(t)—i—/ qs(t, 8)dW (s), T<r<t<T.
T
Then

t t
68 EmOF=EEmOFE [ st s >E [ oo
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Now, let us consider

(5.9)
Py(t)=F5(t) + E, / / (ox(67t)TP4(9,s)TJz(s,t)+Jw(s,t)TP4(9,s)oz(G,t))des

T
—I—JEt/ o (s, t)Tpg(s)ow(s,t)ds, T<t< T,

P4(7’7t) ( ) Etp?)( )+Jz(r7t)—rq3(r7t)
/ ACKN +UI(S7t)TQ4(S,T‘,t)T)dS
/ P4rs)—|—a$(s t) Q4(r,s,t))ds, T<t<r<T.

By Lemma 5.1, the second equation in (5.9) is solvable and (noting (5.8))

T T
/ | Py(r,t)|2dtdr
: T T T T T
(5.10) <KE / / |F4(r7t)\2dtdr+/ |p3(r)|2dr+/ / |q3(r,t)|2dtdr>
p Jp Iz p Jp
T r T
< KE / / |F4(r,t)\2dtdr+/ |p3(7‘)|2dr><oo Vo e [r,T].
p Jp 2
Therefore, for any given 8 > 0,
T T T 2
E/ eﬁt/ / o.(s,t) " Py(6,5)0,(0,t)d0ds
T t s
T T r T
<KE/ Pt </ / |F4(r,t)|2dtdr+/ p3(r)|2dr> dt
T t t t

KePT

T T K T
<=3 E/ / \F4(r,t)|2dtdr+EE/ " py(r) 2dtdr < oo,

T
E/ et
KePT

T T K T
<=3 E/ / \F4(r,t)|2dtdr+§1E/ " ps () Pdtdr < 0.
Thus, for the equality of Ps(-) in (5.9), for any given 5 > 0, we have (noting (5.8))

(5.11)
T
E/ Pt Py(t)|2dt

T/TT| ()Ith+/Teﬁ (/ / |Py(0, 5)] dsd0+/ Ips(s)| ds) dt]
T/TT| (t)Pdt + / / |F4(r, s)|2dsdr + = / 5s|p3(8)|2dtds].

Hence, we have Ps(-) € Lz(7,T), and the map Z(ps) = P3 in L(7,T) is well-defined.

=
~—

dt

Similarly,

T T 2
/ / 0.(0,t) " Py(0,5) 0, (s,t)d0ds| dt
t s

< KE |ef

< KE |
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Now, suppose p3, ps are two elements in L3(7,T). We then have Z(p3) = Ps,
E(p3) = Ps, where P3, Pj satisfies (5.9) associated with p3, p3, respectively, and
define

A . s A= =~ = Ao~
p3=p3—p3, P3=P3—P3, Py=P— Py
Then for any ¢t € [r,T], by (5.10)—(5.11) (with the corresponding F3(-) = 0 and
F4('7') :O)a

T K [T
]E/ ¢ | By () 2dr < EE/ ¢t 5 (1) [2dt.

By choosing 3 large, we see that the map = is a contraction. Hence, (5.9) admits a
unique fixed point Ps(-). The rest of the conclusion follows easily. 0

Remark 5.3. In the above two results, there are two crucial points, i.e., the
introduction of equivalent S-norm of L2(Q;L?(A.[r,T])) and LZ(7,T), respectively,
and the subtle use of Lemma 5.1 in Theorem 5.2. We point out that the idea of using
multiplier ¢ (B-argument, for short) appeared in the literature (e.g., [26, 32]).

6. The Pontryagin’s type maximum principles and related extensions.
In this section, let us first give the main result of this paper, maximum principle
of optimal controls. Then we show that the result is consistent with the maximum
principle of FSDEs. At last we present some extensions to multiobjective problem
and multiperson dynamic games of governed by FSVIEs.

6.1. Maximum principle for FSVIEs. To begin with, let us recall the above
(3.2) and (3.3). The Pontryagin maximum principle for problem (C) can be stated as
follows.

THEOREM 6.1. Let (H1)—(H2) hold. Let (X(-),%(-)) be an optimal pair of problem
(C). Then

(6.1)
H(T»X(T)»U»W(T)a C(r),Y(),Z(-,7)) — H(T,X(T%ﬂ(T),n(T),C(T), Y(),Z(-,7))

1 § T ’ T
+5{00(T, )T PL(r)30(T,7) + B / [30(0.7) Py(0)30(0.7)

+60(T,7) " Po(0) "60(0,7) + 60(0,7) " Pa(0)60 (T, 7)

+/T [60(0/,7) T Py(6',0) T 60(0,7) + 50(0,T)TP4(9’,9)5U(9’,7)]d9'} d@} >0,
0
a.s., a.e. T €[0,T)|Vu e U,
where H is defined in (3.3), (n(-),¢(-), Y (-), Z(-)) satisfies BSVIE (3.2), (P;(-),Qi(-))

(i =1,2,3,4) is the unique adapted M-solution of the second-order adjoint equation
(4.22).

Proof. Recall that

(6.2) 50°(t,8) 2 [o(t, 5, X (s),u) — o(t, 3, X (), ()] Lir 41 (5)-
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Thanks to (6.2) and Lebesgue differentiability theorem, for almost 7 € [0,7], by
Theorem 4.1

O !
gli% € :]E{éa(T,T)TPl(T)éa(T,T)—|—ET/T

+60(0,7) " Py(0)00 (T, ) + 60 (0,7) " P3(0)60(0,7)do

5o (T,7)" Py(0) T 60 (0, 7)

+/9T [60(0,7)T Py(0',0) " 60(0,7) + 50(9,T)TP4(9’,9)50(9’,T)]d9'] de}.

According to Theorems 3.1 and 5.2, by the optimality of @(-) and the arbitrariness of
u € U, we obtain the above maximum condition (6.1) immediately. o

Remark 6.2. When the control domain is convex, our conclusion reduces to that
in Yong [36]. We refer to Wang [31, Subsection 3.4.2] for more details along this line.

6.2. The case of FSDESs. In this subsection, we show that the above maximum
principle reduces to the FSDEs case presented in [24, 38], when the following holds:

(6.3) b(t,s,x,u) =b(s,x,u), o(t,s,x,u) =o(s,z,u), o(t) ==.

Let us look at the second-order adjoint system (4.22) under (6.3). The first
equation is unchanged. The second, third, and fourth equations become, respectively,

T
Py(t) = by (t) " Pa(t) + 0. (t) T Qa(t) —/t Q2 (t, s)dW (s),

Pu(t) = Hoo () + 00(t) Pa(t)0 (1) — / Qs(t, 5)dW (s),

Palrt) = bo(0) Palrt) + 0,07 Q) — [ Qulrit, )V (o),
where
T T
Palt) = Pi(t) + / Pa(s)ds,  Qalt) = Qu(t) + / Qa(s.)ds,
T T
Pa(t) = Py (1) +/ [PQ(S)T + Po(s) + Py(s) +/ (P4(9, $)T + Py(6, s))do} ds,

S

T r
734(7°,t)=P2(r)T+P3(7")—|—/ P4(5,7")Td8+/ Py(r,s)ds,

T ld
Qu(r,t) = Qa(r, t)T + Qs(r,t) + / Q4(s,r, t)Tds + / Qa4(r,s,t)ds.
T t

The Hamiltonian takes the form

H(&%Uﬂ?(s)aC(S)’Y(')aZ('73))
={(V(s),b(s,z,u))+{Z(s),0(s,z.u)) +g(s,z,u) =H(s,x,u,Y(s), Z(s)),

where

V(s) = n(s) +Es / Y(O)dt,  Z(s)=C(s)+Es / Z(t, )dt.
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The maximum condition becomes

0<H(T, X(7),u,V(7), Z(7))=H(7, X (7),u(7),V(T), Z(7))
(6.4) 1 -
+§50(7) E,Ps(1)do(T).

Next, we check that (Y, Z) satisfies the following first-order adjoint equation:

(6.5) {dy(t)—[gx(t)T+bx(t)Ty(t)+0x(t)TZ(t)]dt+3(t)dW(t)7 te[0,7],
' V(T) = h(X(T))".

Note that in the current case, we have

Y(t)=g.(t) " +b.(t)" (h; +/t Y(s)ds> +0.(t)" (C(t) +/t Z(s,t)ds>
- /t " 2t )W (s).

Thus, applying E; on both sides, we get
(6.6) Y(t)=g:(t)" +b.(6)" V() +0.(t)TZ(2).

By Fubini’s theorem,

/tTY(SWSZ]Et/tTY(s)dH/tT /TTZ(S,r)dde(r).

Hence

hI+/TY(s)ds—y(t)—i—/TZ(r)dW(r)‘

Plugging (6.6) into the above, we have BSDE (6.5), the first-order adjoint equation.

Finally, it suffices to prove that .#(-) 2 E.P;3(-) satisfies the second-order adjoint
equation, i.e., for r € [0,7T],

o O" haa (XN + [ [b2) MO 4000 H O+ 0010
| A (t)ox(t) +Hm(t)Jar(t)T///(t)%(t)}dt—/T«/V(t)dW(t)’

where
T
(6.8) A ()L (1) + / Q4(s,£)ds.

To this end, we observe the following: For the equation of P, one has
T
[Py(s) + PQ(S)T] ds

T

T
_ / [0a(9) TESPo(5) + 00(5) Qals) + BaP(5) bal(s) + Qals) o (s) s
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For the equation of Ps, one has
T T T
/ Py(tydt = [ Hoo(t)dt + / o (8) B, Py () (1)t
For the equation of P, we have

/ / Py(s,t) dsdt—/ / TEPu(s,t) + 0. (t) " Quls,t)|dsdt.

Therefore,

T
Palr) = has (X(D) + [ b0 0) 4 000 A 10) 4 A (00
+ N ()op(t) + Hyw(t) + 02 (t) Tt (t) 0, (2) | dt,

(6.9)

where A4(-) is defined in (6.8).
By the definitions of @2, @3, and Fubini’s theorem, we see that

(6.10) /TTH(t)dtIET/TTPi(t)dt+/TT/STQi(t,s)dtdW(s), i=2.3.

Using Fubini’s theorem, we have

/TT/tT/: Q4(s,t,9)dW(9)d5dt/rT /eT/tTQ4(s,t,9)dsdtdW(9).

Therefore,

6.11) // [Py(s,t) + Pu(s,t) " |dsdt =E // [Py(s,t) + Py(s,t) " | dsdt
/// [Qa(s,t,0) + Qa(s,t,0) " | dsdtdW (6).

Combining (6.10) and (6.11), we have
T
Ps(r) =4 (r) +/ N (0)dW (0)

Consequently, by (6.9) we have BSDE (6.7), the second-order adjoint equation.

To sum up, the maximum condition (6.4), the first-order adjoint equation (6.5)
and the second-order adjoint equation (6.7) form the Pontryagin’s maximum principle
for optimal control of FSDEs.

6.3. Multiperson dynamic games for FSVIEs. For integer N > 2, we con-
sider an N-person dynamic game for an FSVIE. In this case, the cost functional is
defined as in (1.2), where h: Q x R* = RN, g:[0,7] x @ x R" x R™ — RY are vector-
valued functions. For simplicity, we only discuss the noncooperative dynamic games,
namely, the ¢th player in the game wants to minimize his/her own cost functional
J (u(-)) (1<L< N), regardless of other players’ cost functional.

Let u(-) = (uy(+),u2(+), ..., un(-)) with u,(-) €U, Here U’, is defined associated
with Uy CR™¢, 1 </ < N. For notational simplicity, let

A

(u@,v) -

(Ugy. .oy Up1, 0, Uy 1, un), 1<EKN.
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Then player ¢ selects u,(-) € U’ to minimize the functional
v(-) = JEE(),v()) = T (ur (), we—1,v() g, - - un(4)).
Obviously, J*(u(-)) not only depends on wu,(-), but also uy(-), k # £. Therefore, the

optimal control of Player ¢ depends on the controls of the other players.
DEFINITION 6.3. An N-tuple 4(-) = (ai(), -+ ,an(:)) € Hévzllxlfd is called an
open-loop Nash equilibrium of the game if the following holds:

T a() <@g (), v())  Vu(-) €Uga, 1SESN.

We have the following Pontryagin type maximum principle for Nash equilibria of
the N-person dynamic game of FSVIEs. To state the result, let (n*, ¢, Y, Z*) be the
solution of (3.2) associated with (h%(X(T)),g%(:)). Then we define H*(-) as in (3.3)
accordingly. Similarly, with (h’,, H. ), let (P{, Ps, P%, Pf) be the solution of (4.22).

THEOREM 6.4. Let (H1)-(H2) hold with g and h being RN -valued. Let u =

(a1(+),...,an(")) € Hévzl U’ be a Nash equilibrium of the game. Then for any u € U*,
H (7, X (1), a§(1),u,n" (1), ¢ (1), Y(-), Z2°(-,7))
_HE(TaX(T)aa(T)anZ(T)7Ce(T)7Y£(')7ZE('7T))

1 T
t5 {§J(T, ) Pi(1)60(T,7) + E, / 6o (T, )T PE(6) T60(6,7)

+60(0,7) " P5(0)60(T, ) + 60(0,7) " PL(0)50(0,7)dO
+/T [60(0/,7) T P{(0',0) 60 (0,7) + 60(8, T)TPf(9/,9)5U(9/,T)]d9/] de} >0.
0

Let us continue to look at a special case: the two-person zero-sum dynamical
games. In this case, N = 2, and J(u(-)) + J2(a(-)) = 0. Now, if (u(-),ua(-)) €
UL, x U2, is a Nash equilibrium, then

JHan (), a2() < T (ua (), @2())  Vua(s) €Uy,
(1), ue () S S (@ (), ua()  Vua() €Usy
This also implies that (denoting J(u(-)) = J* (u(-)))
J( (), uz () < J (A (), () < J(ua (), iz ().
Hence (@1(-),@a(-)) is referred to as a saddle point of the game. In this case, to

state the maximum principle, let (n,(,Y, Z, P;) satisfies (3.2), (4.22) associated with
(ht,g'). We define

H(r u,u2) 2 H(7, X (7),u1,u2,m(7), C(7), Y (-), Z(-,7))
! 5U(T,7')TP2(9)T50(0,7')

T

= ;{&;(T, ' P ()60 (T, T) + ]ET/

+60(0,7) " Py(0)60(T,7) + 60 (0,7) " P3(0)60(6,7)db

+/9T [50(0’,T)TP4(9’,9)T50(9,T)+5a(9,T)TP4(9',9)50(9’,7)]d9’] de}.
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THEOREM 6.5. Let (H1)—(H2) hold with g and h being R*-valued. Suppose (u1(-),

us()) €U, x U2, is the saddle point of the game. Then

%(T,’L_Ll(T),Ug) g%(’]’,l—l/l(’r),%—@) <<%0(T7’U,1(7’),’L_L2) V(’U,l,'UQ) GUl X U2.

7. Concluding remarks. In this paper, we have developed a spike variation

technique for optimal controls of FSVIEs and obtained Pontryagin’s type maximum
principle. One main contribution is the derivation of the second-order adjoint equation
which is different from standard BSVIE. Thus its well-posedness is a part of novelty.
The developed methodologies are expected to be extended/adjusted in more general
framework, such as the infinite horizon case, the infinite-dimensional case, or the
forward-backward SVIEs case. We hope to show more results in the future.

In this article, we have seen that for multiperson dynamic games of FSVIEs,

one can obtain the corresponding maximum principle for the Nash equilibria. It is
natural to ask what happens when N — co? Under certain structure conditions, this
will relate to mean-field games of FSVIEs. The relevant results will be reported in
our forthcoming work.
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