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SPIKE VARIATIONS FOR STOCHASTIC VOLTERRA
INTEGRAL EQUATIONS\ast 

TIANXIAO WANG\dagger AND JIONGMIN YONG\ddagger 

Abstract. The spike variation technique plays a crucial role in deriving Pontryagin's type
maximum principle of optimal controls for ordinary differential equations (ODEs), partial differential
equations (PDEs), stochastic differential equations (SDEs), and (deterministic forward) Volterra
integral equations (FVIEs), when the control domains are not assumed to be convex. It is natural to
expect that such a technique could be extended to the case of (forward) stochastic Volterra integral
equations (FSVIEs). However, by mimicking the case of SDEs, one encounters an essential difficulty
of handling an involved quadratic term. To overcome this difficulty, we introduce an auxiliary
process for which one can use It\^o's formula, and develop new technologies inspired by stochastic
linear-quadratic optimal control problems. Then the suitable representation of the above-mentioned
quadratic form is obtained, and the second-order adjoint equations are derived. Consequently, the
maximum principle of Pontryagin type is established. Some relevant extensions are investigated as
well.

Key words. backward stochastic Volterra integral equations, single variation, second-order ad-
joint equations, nonconvex control domain

MSC codes. 45D05, 60H20, 93E20
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1. Introduction. We begin with a main motivation of our study. Let T >0
and n,m \in N be given, let (\Omega ,\scrF ,P) be a complete probability space, on which a
one-dimensional standard Brownian process W (\cdot ) is defined, with the completed aug-
mented natural filtration denoted by F= \{ \scrF t\} 0\leqslant t\leqslant T . Consider the following controlled
(forward) stochastic Volterra integral equation (FSVIE):

X(t)=\varphi (t)+

\int t

0

b(t, s,X(s), u(s))ds+

\int t

0

\sigma (t, s,X(s), u(s))dW (s), t\in [0, T ],(1.1)

with the cost functional

J(u(\cdot )) =E

\Biggl[ 
h(X(T )) +

\int T

0

g(s,X(s), u(s))ds

\Biggr] 
.(1.2)

Here u(\cdot ) is a control process valued in U \subseteq Rm, X(\cdot ) is the corresponding state process
valued in Rn, \varphi : [0, T ]\times \Omega \rightarrow Rn is called a free term, (b, \sigma ) : [0, T ]2\times \Omega \times Rn\times Rm \rightarrow 
Rn\times Rn is called the generator, and h : \Omega \times Rn \rightarrow R, g : [0, T ]\times \Omega \times Rn\times Rm \rightarrow R are
called the terminal cost and running cost rate, respectively. Under certain conditions,
for any u(\cdot )\in Uad (to be defined later), (1.1) admits a unique solution X(\cdot ) such that
J(u(\cdot )) is well-defined. The optimal control problem can be stated as follows:
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SPIKE VARIATIONS OF SVIES 3609

Problem (C). Find a \=u(\cdot )\in Uad such that

J(\=u(\cdot )) = inf
u(\cdot )\in Uad

J(u(\cdot )).(1.3)

Here \=u(\cdot ) is called an open-loop optimal control, the corresponding \=X(\cdot ) and
( \=X(\cdot ), \=u(\cdot )) are called the (open-loop) optimal state process and an (open-loop) op-
timal pair, respectively.

Pontryagin's maximum principle for (deterministic) controlled ordinary differ-
ential equations (ODEs) was formulated and proved by Boltyanskii, Gamkrelidze,
andPontryagin in 1956 [6] (see also [25]). Since then, the research in this direction
has attracted many authors. Shortly after, people extended the results to stochastic
differential equations (SDEs). In 1965, Kushner first proved a maximum principle for
SDEs where the diffusion is independent of the state and control [15]. In 1972, Kush-
ner further considered the case that the diffusion of the state equation contains the
state [16], in which the adjoint process was not successfully characterized. In 1973,
Bismut [4] introduced the duality between an initial value problem of linear SDE
(called FSDE) and a terminal value problem of a linear SDE (now called BSDE, a
name coined by Pardoux and Peng in 1990 [23]). With this, he proved the maximum
principle for FSDEs with the diffusion contains state and control, provided the control
domain is convex; the adjoint process was successfully characterized by the adapted
solution (again, named by Pardoux and Peng in 1990) of corresponding linear BSDE.
There were a number of following-up works (e.g., Bensoussan [3]). The maximum
principle for general controlled SDEs is of the following form:

X(t) = x+

\int t

0

b(s,X(s), u(s))ds+

\int t

0

\sigma (s,X(s), u(s))dW (s), t\in [0, T ],(1.4)

without assuming the convexity of the control domain was proved by Peng in 1990
[24], with the development of spike variation technique for FSDEs. We refer to the
monograph of Yong and Zhou [38] for a self-contained presentation, and Hu [13],
Yong [37] for the extension to the forward-backward case. By the way, spike variation
techniques for partial differential equations (PDEs) and abstract evolution equations
in Hilbert/Banach spaces were also fully developed during the 1970--1990s. See, e.g.,
Li--Yong [18], Casas and Yong [8], and Hu and Yong [12], Fattorini [9] for systematic
presentations.

The integral equation was first introduced by Abel in 1825. The follow-up contrib-
utors include Liouville, Fredholm, Hilbert, Wiener, Bellman, etc. We refer to B\^ocher
[5] and Yosida [39] for two early monographs in this topic. The (forward) Volterra inte-
gral equation (FVIEs) was introduced by Italian mathematician Volterra. In contrast
with ODEs, FVIEs bring us new theories (e.g., Volterra operator theory in Gohberg
and Krein [11]) and new phenomena (e.g., the hereditary property in Bellman and-
Cooke [2], Volterra [28]). In the real world, there are many models that cannot be
simply described by ODEs but by (deterministic) FVIEs. Therefore, up until now, it
is still an active research topic, see, e.g., the recent monograph of Brunner [7]. For
the optimal control theory of FVIEs, to the best of our knowledge, the earliest work
was due to Friedman [10] in 1964. Later in 1967, Vinokurov [27] investigated the
optimal control for FVIEs with various type constraints and closed control domains
(described by level sets of smooth functions). There are quite a few literature con-
cerning optimal control of FVIEs in the past several decades (e.g., Kamien and Muller
[14], Medhin [21]). Recently, Lin and Yong [20] established a maximum principle for
singular FVIEs by spike variation technique.
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3610 TIANXIAO WANG AND JIONGMIN YONG

In contrast with the existing literatures for optimal control of (deterministic)
FVIEs, there were much less literature on optimal control of FSVIEs, to the best of
our knowledge. The simple reason is that the theory of adjoint equation for FSVIEs,
i.e., the backward SVIEs (BSVIEs) was not available until the appearance of the work
on Type-I BSVIEs by Lin [19] in 2002. Even then, the result was not connected with
the maximum principle of optimal control for FSVIEs. In 2006, Yong introduced
Type-II BSVIEs and established maximum principle for FSVIEs the first time [35],
provided the control domain is convex (see also Yong [36]). There are some further
extensions appeared lately. Here are some of those results. Shi, Wang, and Yong
[26] studied the case of forward-backward SVIEs. Agram and {\O}ksendal [1] presented
some investigations by means of Malliavin calculus, when the control domain U is
open. Wang and Zhang [34] considered the case with closed set U where the necessary
conditions were obtained from those directions that approximate convex perturbations
at the optimal control are admissible. Here spike variations are not necessary.

Recently, Wang [31] studied the general case without the convexity of the control
domain and attempted to develop the spike variation techniques for FSVIEs. In doing
so, the following form of quadratic functional

E (\varepsilon ) =E
\biggl[ 
X\varepsilon 

1(T )
\top hxxX

\varepsilon 
1(T ) +

\int T

0

X\varepsilon 
1(t)

\top Hxx(t)X
\varepsilon 
1(t)dt

\biggr] 
(1.5)

appeared in the variation of the cost functional, where hxx and Hxx(\cdot ) are Sn (the
set of all real (n \times n) symmetric matrices) valued functions only depending on the
optimal pair ( \=X(\cdot ), \=u(\cdot )), and X\varepsilon 

1(\cdot ) is the solution of the first-order variational equa-
tion, depending on the spike variation of the control. In the case that the control
domain is convex, convex variation of the control is allowed and by doing that the
above quadratic form does not appear. Thus, it is not necessary for [1, 26, 34, 35, 36]
to introduce techniques of handling the above. On the other hand, recall that sim-
ilar quadratic form as E (\varepsilon ) appears in the FSDE case, which can be handled by a
duality between the second-order adjoint BSDE and the variational SDE satisfied
by X\varepsilon 

1(\cdot )X\varepsilon 
1(\cdot )\top (see Peng [24]). It is unlikely that for FSVIEs one can obtain a

good-looking linear FSVIE for X\varepsilon 
1(\cdot )X\varepsilon 

1(\cdot )\top . Hence, the idea of Peng [24] cannot be
directly borrowed here. In Wang [31], the author introduced two abstract and im-
plicit operator-valued stochastic processes, which are regarded as a replacement of the
second-order adjoint processes, in the statement of the maximum principle. However,
there was no second-order adjoint equation in [31].

In the current paper, we are going to develop a spike variation technique for
FSVIEs. The main ideas can be described as follows. Some recent studies (e.g.,
Li, Sun, and Yong [17], Wang [29]) show that Lyapunov type equations, obtained via
decoupling forward-backward system, play crucial rules in obtaining Riccati equations
in linear-quadratic (LQ) optimal controls. Here we find a slightly different manner to
derive the Lyapunov type equation (with solution P (\cdot )) by applying the It\^o's formula
to X(\cdot )\top P (\cdot )X(\cdot ) with X(\cdot ) satisfying an SDE. It turns out that this idea can be
adopted to our current SVIE's problem. Together with the introduction of a suitable
auxiliary process, we are able to represent the quadratic form involved X\varepsilon 

1(\cdot ) in a
desired fashion. Consequently, the second-order adjoint equation will be derived which
leads to the maximum principle. Moreover, we will go a little further. Recall that
in 2007, Mou and Yong [22] established a variational formula for an SDE type state
equation and the possibly vector-valued cost/payoff functionals. Those results are
applicable to multiobjective problems and multiperson differential games of SDEs.
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SPIKE VARIATIONS OF SVIES 3611

Inspired by this, in the current paper, for FSVIEs, we will do the same thing, so that
it will lead to necessary conditions for the Nash equilibria of multiperson dynamic
games for FSVIEs. By letting the number of players go to infinity, and under some
structure conditions, it is expected to obtain the necessary conditions for the equilibria
of the mean-field games governed by FSVIEs, which includes the standard SDE case.
We hope to report more details in our forthcoming publications.

The rest of this paper is organized as follows. In section 2, we introduce some
preliminary notations and assumptions. In section 3, we present the variations of the
state and the cost functional under the spike variation of the control process. In sec-
tion 4, we give a representation of the involved quadratic functional by introducing a
system of BSVIEs, called the second-order adjoint equations. In section 5, we prove
the well-posedness of the aforementioned adjoint equations. We present the Pontrya-
gin's type maximum principle and some extensions to multiperson dynamic games for
FSVIEs in section 6. Finally, some concluding remarks are collected in section 7.

2. Preliminaries. Let Rn and Rn\times d be the usual n-dimensional space of real
numbers and the set of all (n\times d) real matrices, respectively. Also, let Sn be the set
of all (n\times n) real symmetric matrices. Next, for any Euclidean space H which could
be Rn,Rn\times d, Sn, etc., we define

Lp
\scrF t
(\Omega ;H)

\bigtriangleup 
=
\Bigl\{ 
\xi : \Omega \rightarrow H

\bigm| \bigm| \xi is \scrF t-measurable, \| \xi \| p \equiv 
\bigl( 
E| \xi | p

\bigr) 1
p <\infty 

\Bigr\} 
, p\in [1,\infty ).

In an obvious way, we can define L\infty 
\scrF t
(\Omega ;H). For each p \in [1,\infty ], Lp

\scrF t
(\Omega ;H) is a

Banach space under \| \cdot \| p. When the range space H is clear from the context and is

not necessarily to be emphasized, we will omit H. In particular, Lp
\scrF T

(\Omega )
\bigtriangleup 
=Lp

\scrF T
(\Omega ;H).

We introduce spaces of stochastic processes. To avoid repetition, all processes
(t,\omega ) \mapsto \rightarrow \varphi (t,\omega ) are assumed to be at least B[0, T ]\otimes \scrF T -measurable without further
mentioning, where B[0, T ] is the Borel \sigma -field of [0, T ]. For p, q \in [1,\infty ), \tau \in [0, T ),

Lp(\Omega ;Lq(\tau ,T ;H))
\bigtriangleup 
=

\left\{   \varphi : [\tau ,T ]\times \Omega \rightarrow H
\bigm| \bigm| E\Biggl( \int T

\tau 

| \varphi (t)| qdt

\Biggr) p
q

<\infty 

\right\}   ,

Lp(\Omega ;L\infty (\tau ,T ;H))
\bigtriangleup 
=

\Biggl\{ 
\varphi : [\tau ,T ]\times \Omega \rightarrow H

\bigm| \bigm| E\Biggl( esssup
t\in [\tau ,T ]

| \varphi (t)| p
\Biggr) 
<\infty 

\Biggr\} 
,

Lp(\Omega ;C([\tau ,T ];H))
\bigtriangleup 
=

\Biggl\{ 
\varphi : [\tau ,T ]\times \Omega \rightarrow H

\bigm| \bigm| t \mapsto \rightarrow \varphi (t,\omega ) is continuous,

E

\Biggl( 
sup

t\in [\tau ,T ]

| \varphi (t)| p
\Biggr) 
<\infty 

\Biggr\} 
,

Lq(\tau ,T ;Lp(\Omega ;H))
\bigtriangleup 
=

\Biggl\{ 
\varphi : [\tau ,T ]\times \Omega \rightarrow H

\bigm| \bigm| \int T

\tau 

\Bigl( 
E| \varphi (t)| p

\Bigr) q
p

dt <\infty 

\Biggr\} 
,

L\infty (\tau ,T ;Lp(\Omega ;H))
\bigtriangleup 
=

\Biggl\{ 
\varphi : [\tau ,T ]\times \Omega \rightarrow H

\bigm| \bigm| esssup
t\in [\tau ,T ]

\Bigl( 
E| \varphi (t)| p

\Bigr) 1
p

<\infty 

\Biggr\} 
,
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3612 TIANXIAO WANG AND JIONGMIN YONG

C([\tau ,T ];Lp(\Omega ;H))
\bigtriangleup 
=

\Biggl\{ 
\varphi : [\tau ,T ]\times \Omega \rightarrow H

\bigm| \bigm| t \mapsto \rightarrow \varphi (t, \cdot ) is continuous,

sup
t\in [0,T ]

\Bigl( 
E| \varphi (t)| p

\Bigr) 1
p

<\infty 

\Biggr\} 
.

The spaces L\infty (\Omega ;L\infty (\tau ,T ;H)), L\infty (\Omega ;C([\tau ,T ];H)) can be defined obviously. For all
p\in [1,\infty ), we denote

Lp(\tau ,T ;H)
\bigtriangleup 
=Lp(\tau ,T ;Lp(\Omega ;H)) =Lp(\Omega ;Lp(\tau ,T ;H)).

All of the F-progressive version of the above spaces can be denoted by putting F as a
subscript; for example, CF([\tau ,T ];L

p(\Omega ;H)), and so on. Finally, in the above, when the
range space H is clear from the context, we will omit H; for example, Lp

F(\Omega ;C([\tau ,T ])).
Next, the upper and lower triangle domains are defined by the following:

\Delta \ast [\tau ,T ]
\bigtriangleup 
=
\bigl\{ 
(r, s)\in [\tau ,T ]2

\bigm| \bigm| \tau \leqslant r < s\leqslant T
\bigr\} 
,

\Delta \ast [\tau ,T ]
\bigtriangleup 
=
\bigl\{ 
(r, s)\in [\tau ,T ]2

\bigm| \bigm| \tau \leqslant s < r\leqslant T
\bigr\} 
,

\tau \in [0, T ).

We introduce the following spaces:

L2
F(\Omega ;L

2(\Delta \ast [\tau ,T ]))
\bigtriangleup 
=

\Biggl\{ 
\zeta : \Delta \ast [\tau ,T ]\times \Omega \rightarrow H

\bigm| \bigm| \zeta (r, \cdot )\in L2
F(\Omega ;L

2(r,T ;H)),

a.e. r \in [\tau ,T ], E
\int T

\tau 

\int T

r

| \zeta (r, s)| 2dsdr <\infty 

\Biggr\} 
,

L2
F(\Omega ;L

2(\Delta \ast [\tau ,T ]))
\bigtriangleup 
=

\Biggl\{ 
\zeta : \Delta \ast [\tau ,T ]\times \Omega \rightarrow H

\bigm| \bigm| \zeta (r, \cdot )\in L2
F(\Omega ;L

2(\tau , r;H)),

a.e. r \in [\tau ,T ], E
\int T

\tau 

\int r

\tau 

| \zeta (r, s)| 2dsdr <\infty 

\Biggr\} 
,

L2
F(\Omega ;L

2(\Delta \ast [\tau ,T ]\times [\tau ,T ]))
\bigtriangleup 
=

\Biggl\{ 
\zeta : \Delta \ast [\tau ,T ]\times [\tau ,T ]\times \Omega \rightarrow H

\bigm| \bigm| (\theta , r)\in \Delta \ast [\tau ,T ],

\zeta (\theta , r, \cdot )\in L2
F(\tau ,T ;H), E

\int T

\tau 

\int \theta 

\tau 

\int T

\tau 

| \zeta (\theta , r, s)| 2dsdrd\theta <\infty 

\Biggr\} 
,

L2
F(\Omega ;L

2([\tau ,T ]\times [\tau ,T ]))
\bigtriangleup 
=

\Biggl\{ 
\zeta : \Delta \ast [\tau ,T ]\times \Omega \rightarrow H

\bigm| \bigm| \zeta (r, \cdot )\in L2
F(\tau ,T ;H),

a.e. r \in [\tau ,T ], E
\int T

\tau 

\int T

\tau 

| \zeta (r, s)| 2dsdr <\infty 

\Biggr\} 
.

For simplicity of presentation, let K be a generic constant which could be different
from line to line. For FSVIE (1.1), we introduce the following assumptions.

(H1) Let T > 0, ∅ \not =U \subset Rm be measurable. Let b, \sigma : \Delta \ast [0, T ]\times Rn\times U\times \Omega \rightarrow Rn

be measurable such that s \mapsto \rightarrow 
\bigl( 
b(t, s, x,u), \sigma (t, s, x,u)

\bigr) 
is F-progressively measurable on

[0, t], x \mapsto \rightarrow (b(t, s, x,u), \sigma (t, s, x,u)) is twice continuously differentiable with uniformly
bounded first and second order derivatives, and for constant L> 0,

| b(t, s,0, u)| + | \sigma (t, s,0, u)| \leqslant L, (t, s, u)\in \Delta \ast [0, T ]\times U.
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SPIKE VARIATIONS OF SVIES 3613

Further, for f
\bigtriangleup 
= b, \sigma , bx, \sigma x, (t, u) \mapsto \rightarrow f(t, s, x,u) is continuous uniformly in all the

arguments, and for f
\bigtriangleup 
= b, \sigma , (x,u) \mapsto \rightarrow fxx(t, s, x,u) is continuous uniformly in all

arguments.

Let Uad
\bigtriangleup 
=
\bigl\{ 
u : [0, T ] \times \Omega \rightarrow U

\bigm| \bigm| u(\cdot ) is F-progressively measurable
\bigr\} 

which is
the set of all admissible controls. Under (H1), for \varphi (\cdot ) \in CF([0, T ];L

p(\Omega ;Rn)) with
some p \geqslant 1 and any u(\cdot ) \in Uad, it is standard to see (1.1) admits a unique solution
X(\cdot )\equiv X(\cdot ;u(\cdot ))\in CF([0, T ];L

p(\Omega ;Rn)). For the functions h and g in (1.2), we make
the following assumption.

(H2) Let h : Rn \times \Omega \rightarrow R, g : [0, T ]\times Rn \times U \times \Omega \rightarrow R be measurable such that
x \mapsto \rightarrow (h(x), g(t, x,u)) is twice continuously differentiable with

| gx(t,0, u)| \leqslant L, | hxx(x)| + | gxx(t, x,u)| \leqslant L, (t, x,u)\in [0, T ]\times Rn \times U

for some constant L> 0 and (t, x,u) \mapsto \rightarrow gxx(t, x,u) being uniformly continuous.
Under (H1)--(H2), problem (C) is well-formulated. Further, if h and g take values

in R\ell , then our study covers multiobjective problems as well as multiperson nonzero
sum dynamic games governed by FSVIEs (if \ell \geqslant 2). Finally, we point out that (H1)--
(H2) can be relaxed somehow, for example, we may allow b, \sigma , and g to have some
growth in u. We prefer not to pursue these generalities.

3. Variations of the state and the cost functional. In this section, we
present the variations of the state process and the cost functional under the spike
variation of the control process.

Let ( \=X(\cdot ), \=u(\cdot )) be any fixed state-control pair, which could be optimal, in par-
ticular. By choosing any u \in U , \tau \in [0, T ), and sufficiently small \varepsilon > 0 such that

\tau + \varepsilon \leqslant T , we define u\varepsilon (\cdot ) \bigtriangleup 
= u1[\tau ,\tau +\varepsilon ](\cdot ) + \=u(\cdot )1[0,T ]\setminus [\tau ,\tau +\varepsilon ](\cdot ). This is called a spike

variation of \=u(\cdot ) in the direction of u on [\tau , \tau + \varepsilon ]. Let X\varepsilon (\cdot ) be the state process

corresponding to u\varepsilon (\cdot ). We introduce the following abbreviations: for f
\bigtriangleup 
= b, \sigma ,

fx(t, s)
\bigtriangleup 
= fx(t, s, \=X(s), \=u(s)),

f i
xx(t, s)

\bigtriangleup 
= f i

xx(t, s, \=X(s), \=u(s)), 1\leqslant i\leqslant n,

gx(s)
\bigtriangleup 
= gx(s, \=X(s), \=u(s)),

gxx(s)
\bigtriangleup 
= gxx(s, \=X(s), \=u(s)),

hx
\bigtriangleup 
= hx( \=X(T )),

hxx
\bigtriangleup 
= hxx( \=X(T )),

\delta f(t, s)
\bigtriangleup 
= f(t, s, \=X(s), u) - f(t, s, \=X(s), \=u(s)),

\delta \sigma x(t, s)
\bigtriangleup 
= \sigma x(t, s, \=X(s), u) - \sigma x(t, s, \=X(s), \=u(s)).

With the above notation, we introduce the following variational equations:\left\{                     

X\varepsilon 
1(t) =

\int t

0

bx(t, s)X
\varepsilon 
1(s)ds+

\int t

0

\bigl[ 
\sigma x(t, s)X

\varepsilon 
1(s) + \delta \sigma (t, s)1[\tau ,\tau +\varepsilon ](s)

\bigr] 
dW (s),

X\varepsilon 
2(t) =

\int t

0

\Bigl( 
bx(t, s)X

\varepsilon 
2(s) +

1

2
bxx(t, s)X

\varepsilon 
1(s)

2 + \delta b(t, s)1[\tau ,\tau +\varepsilon ](s)
\Bigr) 
ds

+

\int t

0

\Bigl( 
\sigma x(t, s)X

\varepsilon 
2(s) +

1

2
\sigma xx(t, s)X

\varepsilon 
1(s)

2

+\delta \sigma x(t, s)X
\varepsilon 
1(s)1[\tau ,\tau +\varepsilon ](s)

\Bigr) 
dW (s), t\in [0, T ],

(3.1)
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3614 TIANXIAO WANG AND JIONGMIN YONG

where

bxx(t, s)X
\varepsilon 
1(s)

2 \bigtriangleup 
=

\left(   X\varepsilon 
1(s)

\top b1xx(t, s)X
\varepsilon 
1(s)

...
X\varepsilon 

1(s)
\top bnxx(t, s)X

\varepsilon 
1(s)

\right)   ,

and \sigma xx(t, s)X
\varepsilon 
1(s)

2 is similar. Under (H1), the above (3.1) has unique strong solutions
X\varepsilon 

1(\cdot ) and X\varepsilon 
2(\cdot ). We also introduce the following first-order adjoint equations:\left\{                           

\eta (t) = h\top 
x  - 

\int T

t

\zeta (s)dW (s), t\in [0, T ],

Y (t) = gx(t)
\top + bx(T, t)

\top h\top 
x + \sigma x(T, t)

\top \zeta (t)

+

\int T

t

\Bigl( 
bx(s, t)

\top Y (s) + \sigma x(s, t)
\top Z(s, t)

\Bigr) 
ds

 - 
\int T

t

Z(t, s)dW (s), t\in [0, T ].

(3.2)

The first equation of the above is the simplest BSDE. The second is a Type-II BSVIE
which has a unique adapted M-solution [36]. Both (\eta (\cdot ), \zeta (\cdot )) and (Y (\cdot ),Z(\cdot , \cdot )) of
(3.2) only depend on ( \=X(\cdot ), \=u(\cdot )). Finally, let us define the following Hamiltonian:

H(s,x,u, \eta (s), \zeta (s), Y (\cdot ),Z(\cdot , s)) \bigtriangleup 
= \langle \eta (s), b(T, s,x,u) \rangle + \langle \zeta (s), \sigma (T, s,x,u) \rangle 

+ g(s,x,u) +Es

\int T

s

\Bigl( 
\langle Y (t), b(t, s, x,u) \rangle + \langle Z(t, s), \sigma (t, s, x,u) \rangle 

\Bigr) 
dt.

(3.3)

Hereafter, Es
\bigtriangleup 
=E[ \cdot | \scrF s] is the conditional expectation operator. Then the main result

of this section can be stated as follows.

Theorem 3.1. Let (H1)--(H2) hold. Then for any k\geqslant 1,\left\{                           

sup
s\in [0,T ]

E| X\varepsilon (s) - \=X(s)| k =O(\varepsilon 
k
2 ),

sup
s\in [0,T ]

E| X\varepsilon 
1(s)| k =O(\varepsilon 

k
2 ),

sup
s\in [0,T ]

E| X\varepsilon (s) - \=X(s) - X\varepsilon 
1(s)| k =O(\varepsilon k),

sup
s\in [0,T ]

E| X\varepsilon 
2(s)| k =O(\varepsilon k),

sup
s\in [0,T ]

E| X\varepsilon (s) - \=X(s) - X\varepsilon 
1(s) - X\varepsilon 

2(s)| 2 = o(\varepsilon 2).

(3.4)

Moreover,

J(u\varepsilon (\cdot )) - J(\=u(\cdot )) =E
\int \tau +\varepsilon 

\tau 

\Delta H(s)ds+
1

2
E (\varepsilon ) + o(\varepsilon ),(3.5)

where

\Delta H(s)
\bigtriangleup 
=H(s, \=X(s), u, \eta (s), \zeta (s), Y (\cdot ),Z(\cdot , s))

 - H(s, \=X(s), \=u(s), \eta (s), \zeta (s), Y (\cdot ),Z(\cdot , s)),
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SPIKE VARIATIONS OF SVIES 3615

E (\varepsilon )
\bigtriangleup 
=E

\Biggl[ 
X\varepsilon 

1(T )
\top hxx( \=X(T ))X\varepsilon 

1(T )

+

\int T

0

X\varepsilon 
1(s)

\top Hxx(s, \=X(s), \=u(s), \eta (s), \zeta (s), Y (\cdot ),Z(\cdot , s))X\varepsilon 
1(s)ds

\Biggr] 
(3.6)

\equiv E

\Biggl[ 
X\varepsilon 

1(T )
\top hxxX

\varepsilon 
1(T ) +

\int T

0

X\varepsilon 
1(s)

\top Hxx(s)X
\varepsilon 
1(s)ds

\Biggr] 
.

The above is essentially shown in [31] with the main idea of [24] (see also [38]).
A detailed proof can be found in [33]. We point out that in the last estimate of (3.4),
2 cannot be replaced by ``any k\geqslant 1"".

4. Representation of the quadratic form. Recalling (3.1) (suppressing \varepsilon in
X\varepsilon 

1(\cdot )), we have X1(t) = 0, t\in [0, \tau ], and

X1(t) =

\int t

\tau 

bx(t, s)X1(s)ds+

\int t

\tau 

\bigl[ 
\sigma x(t, s)X1(s) + \delta \sigma \varepsilon (t, s)

\bigr] 
dW (s), t\in [\tau ,T ],

where \delta \sigma \varepsilon (t, s)
\bigtriangleup 
= \delta \sigma (t, s)1[\tau ,\tau +\varepsilon ](s). Thus X1(t) = \Phi [\delta \sigma \varepsilon (\cdot , \cdot )](t), t \in [\tau ,T ], for some

operator \Phi . Let X1(T ) =\Phi [\delta \sigma \varepsilon (\cdot , \cdot )](T )\equiv \widehat \Phi [\delta \sigma \varepsilon (\cdot , \cdot )]. Consequently, by misusing the
notation,

E (\varepsilon ) = \langle 
\bigl( \widehat \Phi \ast hxx

\widehat \Phi +\Phi \ast Hxx\Phi 
\bigr) 
\delta \sigma \varepsilon , \delta \sigma \varepsilon \rangle .(4.1)

Here the dependence of E (\varepsilon ) on \delta \sigma \varepsilon (\cdot , \cdot ) is indirect since the operator \Phi is complicated.
The purpose of this section is to obtain a more direct form, whose procedure leads
to the second-order adjoint equation. To express the main idea, we look at a simple
problem on SDEs.

Consider the following linear SDE:\Biggl\{ 
dX(s) =

\bigl[ 
A(s)X(s) + b(s)

\bigr] 
ds+

\bigl[ 
C(s)X(s) + \sigma (s)

\bigr] 
dW (s), s\in [t, T ],

X(t) = x,

with suitable processes A(\cdot ),C(\cdot ), b(\cdot ), \sigma (\cdot ). Also, we consider the following quadratic
functional:

J =E

\Biggl[ 
X(T )\top GX(T ) +

\int T

t

\Bigl( 
X(s)\top Q(s)X(s) + 2q(s)\top X(s)

\Bigr) 
ds

\Biggr] 
,

with suitable G,Q(\cdot ), q(\cdot ). In the LQ problem, A, C, Q could rely on feedback strategy
(e.g., [17, 29]). Let (P (\cdot ),\Lambda (\cdot )) be the adapted solution to the following BSDE:\Biggl\{ 

dP (t) = - \Gamma (t)dt+\Lambda (t)dW (t), t\in [0, T ],

P (T ) =G,
(4.2)

with \Gamma (\cdot ) undetermined. Then by It\^o's formula (suppressing s), we have

d(X\top PX) =
\Bigl[ 
X\top 
\Bigl( 
 - \Gamma + PA+A\top P +C\top PC +\Lambda C +C\top \Lambda 

\Bigr) 
X\top 

+X\top (Pb+C\top P\sigma +\Lambda \sigma ) +
\Bigl( 
b\top P + \sigma \top PC +D\top \Lambda 

\Bigr) 
X

+\sigma \top P\sigma 
\Bigr] 
ds+ \{ \cdot \cdot \cdot \} dW (s).
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3616 TIANXIAO WANG AND JIONGMIN YONG

Consequently, the term X(T )\top GX(T ) in J has been absorbed since

J =E
\int T

t

\Bigl[ 
X(s)\top 

\Bigl( 
 - \Gamma + PA+A\top P +C\top PC +\Lambda C +C\top \Lambda +Q

\Bigr) 
X(s)

+2
\Bigl( 
b\top P + \sigma \top PC + \sigma \top \Lambda + q\top 

\Bigr) 
X + \sigma \top P\sigma 

\Bigr] 
ds+ x\top P (t)x.

To further eliminate the term X(s)\top (\cdot \cdot \cdot )X(s) under the integral, we may choose

\Gamma = PA+A\top P +C\top PC +\Lambda C +C\top \Lambda +Q,(4.3)

so that a new representation of J can be given. The ideas of obtaining \Gamma and J will
play crucial roles below. We point out that (4.2) (with \Gamma in (4.3)) corresponds to
the Lyapunov type equation in Markovian stochastic LQ problems (e.g., [17, 29]) and
second-order adjoint equations in maximum principles (e.g., [24]).

Note that the above could not be applied directly to E (\varepsilon ) as t \mapsto \rightarrow X1(t) does not
satisfy an SDE, and therefore, the It\^o's formula does not work. To overcome this
difficulty, we introduce an auxiliary process \scrX 1(\cdot , \cdot ) as follows:

\scrX 1(t, r) =

\int r

\tau 

bx(t, s)X1(s)ds+

\int r

\tau 

\bigl[ 
\sigma x(t, s)X1(s) +\delta \sigma \varepsilon (t, s)

\bigr] 
dW (s),(4.4)

with \tau \leqslant r \leqslant t \leqslant T . A similar form also appeared in [30]. Note that r \mapsto \rightarrow \scrX 1(t, r)
satisfies an SDE on [\tau , t], and thus the It\^o's formula can be used. Moreover, for any
t\in [\tau ,T ], by the second condition in (3.4),

sup
t\in [\tau ,T ]

E

\Biggl[ 
sup

r\in [\tau ,t]

| \scrX 1(t, r)| p
\Biggr] 
=O(\varepsilon 

p
2 ).(4.5)

Further, it is clear that \scrX 1(r, r) =X1(r) with r \in [\tau ,T ]. Thus,

E (\varepsilon ) =E

\Biggl[ 
\scrX 1(T,T )

\top hxx\scrX 1(T,T ) +

\int T

0

\scrX 1(s, s)
\top Hxx(s)\scrX 1(s, s)ds

\Biggr] 
.(4.6)

We now treat the terms in E (\varepsilon ). To this end, we first carry out a general calculation
which will be used several times below.

Let \Theta : \Delta \ast [\tau ,T ]\times \Omega \rightarrow Rn\times n be a process such that for each t \in [\tau ,T ], \Theta (t, \cdot ) \in 
L2
F(\tau , t; Rn\times n). For each (t, s) \in \Delta \ast [\tau ,T ], applying the martingale representation

theorem to the random variable \Theta (t, s), one can find a unique \Lambda (t, s, \cdot ) such that

\Pi (t, s, r)\equiv Er[\Theta (t, s)] =\Theta (t, s) - 
\int s

r

\Lambda (t, s, \theta )dW (\theta ), \tau \leqslant r\leqslant s\leqslant t\leqslant T.(4.7)

Then, applying the It\^o's formula to the map r \mapsto \rightarrow \scrX 1(t, r)
\top \Pi (t, s, r)\scrX 1(s, r) yields

d
\bigl[ 
\scrX 1(t, r)

\top \Pi (t, s, r)\scrX 1(s, r)
\bigr] 

=
\Bigl[ 
X1(r)

\top 
\Bigl( 
bx(t, r)

\top \Pi (t, s, r) + \sigma x(t, r)
\top \Lambda (t, s, r)

\Bigr) 
\scrX 1(s, r)

+\scrX 1(t, r)
\top 
\Bigl( 
\Pi (t, s, r)bx(s, r) + \Lambda (t, s, r)\sigma x(s, r)

\Bigr) 
X1(r)

+X1(r)
\top \sigma x(t, r)

\top \Pi (t, s, r)\sigma x(s, r)X1(r) + \delta \sigma \varepsilon (t, r)\top \Pi (t, s, r)\delta \sigma \varepsilon (s, r)

+\delta \sigma \varepsilon (t, r)\top 
\Bigl( 
\Lambda (t, s, r)\scrX 1(s, r) +\Pi (t, s, r)\sigma x(s, r)X1(r)

\Bigr) 
+
\Bigl( 
\scrX 1(r, s)

\top \Lambda (t, s, r)+X1(r)
\top \sigma x(t, r)

\top \Pi (t, s, r)
\Bigr) 
\delta \sigma \varepsilon (s, r)

\Bigr] 
dr+\Gamma (t, s, r)dW (r),
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SPIKE VARIATIONS OF SVIES 3617

where

\Gamma (t, s, r)
\bigtriangleup 
=
\Bigl( 
X1(r)

\top \sigma x(t, r)
\top + \delta \sigma \varepsilon (t, r)\top 

\Bigr) 
\Pi (t, s, r)\scrX 1(s, r)

+\scrX 1(t, r)
\top 
\Bigl[ 
\Lambda (t, s, r)\scrX 1(s, r) +\Pi (t, s, r)

\Bigl( 
\sigma x(s, r)X1(r) + \delta \sigma \varepsilon (s, r)

\Bigr) \Bigr] 
.

By the integrability of X1, \scrX 1, and (\Pi ,\Lambda ) in the later specific cases, as well as (H1),

E
\int r

\tau 

\Bigl[ 
\delta \sigma \varepsilon (t, \theta )\top 

\Bigl( 
\Lambda (t, s, \theta )\scrX 1(s, \theta ) +\Pi (t, s, \theta )\sigma x(s, \theta )X1(\theta )

\Bigr) 
+
\Bigl( 
\scrX 1(\theta , s)

\top \Lambda (t, s, \theta ) +X1(\theta )
\top \sigma x(t, \theta )

\top \Pi (t, s, \theta )
\Bigr) 
\delta \sigma \varepsilon (s, \theta )

\Bigr] 
d\theta = o(\varepsilon ).

(4.8)

Thus, (noting \tau \leqslant r\leqslant s\leqslant t\leqslant T , \scrX 1(t, r), and \scrX 1(s, r) being \scrF r-measurable)

E
\bigl[ 
\scrX 1(t, r)

\top \Theta (t, s)\scrX 1(s, r)
\bigr] 
=E

\bigl[ 
\scrX 1(t, r)

\top \Pi (t, s, r)\scrX 1(s, r)
\bigr] 

= o(\varepsilon ) +E
\int r

\tau 

\Bigl[ 
X1(\theta )

\top 
\Bigl( 
bx(t, \theta )

\top \Theta (t, s) + \sigma x(t, \theta )
\top \Lambda (t, s, \theta )

\Bigr) 
\scrX 1(s, \theta )

+\scrX 1(t, \theta )
\top 
\Bigl( 
\Theta (t, s)bx(s, \theta ) + \Lambda (t, s, \theta )\sigma x(s, \theta )

\Bigr) 
X1(\theta )

+X1(\theta )
\top \sigma x(t, \theta )

\top \Theta (t, s)\sigma x(s, \theta )X1(\theta ) + \delta \sigma \varepsilon (t, \theta )\top \Theta (t, s)\delta \sigma \varepsilon (s, \theta )
\Bigr] 
d\theta .

(4.9)

In the above, to get rid of the It\^o's integral of \Gamma (t, s, \cdot ) under the expectation, some
standard localization arguments via stopping times have been used. We point out
that the arguments of It\^o's formula on \scrX 1 also appeared in [30]. Now, we look at the
term of E (\varepsilon ) (see (3.6)).

Step 1. Treatment of the first term in E (\varepsilon ).
Take t = s = T , \Theta (T,T ) = hxx in (4.7). We denote by (\Pi (T,T, r),\Lambda (T,T, r)) \equiv 

(P1(r),Q1(r)) with r \in [\tau ,T ]. Then (4.7) reads

P1(r) = hxx  - 
\int T

r

Q1(\theta )dW (\theta ), r \in [\tau ,T ].(4.10)

By the uniqueness, P1(\cdot ) and Q1(\cdot ) take values in Sn. Making use of (3.4) and (H1),
one has

E
\int \tau +\varepsilon 

\tau 

\bigm| \bigm| X1(s)
\bigm| \bigm| \bigm| \bigm| P1(s)

\bigm| \bigm| \bigm| \bigm| \delta \sigma (T, s)\bigm| \bigm| ds
\leqslant 

\biggl[ 
E
\int \tau +\varepsilon 

\tau 

\bigm| \bigm| X1(s)
\bigm| \bigm| 4ds\biggr] 1

4
\biggl[ 
E
\int \tau +\varepsilon 

\tau 

\bigm| \bigm| \delta \sigma (T, s)\bigm| \bigm| 4ds\biggr] 1
4
\biggl[ 
E
\int \tau +\varepsilon 

\tau 

\bigm| \bigm| P1(s)
\bigm| \bigm| 2ds\biggr] 1

2

= o(\varepsilon ),

E
\int \tau +\varepsilon 

\tau 

\bigm| \bigm| \scrX 1(T, s)
\bigm| \bigm| \bigm| \bigm| Q1(s)

\bigm| \bigm| \bigm| \bigm| \delta \sigma (T, s)\bigm| \bigm| ds
\leqslant 

\biggl[ 
E
\int \tau +\varepsilon 

\tau 

\bigm| \bigm| \scrX 1(T, s)
\bigm| \bigm| 4ds\biggr] 1

4
\biggl[ 
E
\int \tau +\varepsilon 

\tau 

\bigm| \bigm| \delta \sigma (T, s)\bigm| \bigm| 4ds\biggr] 1
4
\biggl[ 
E
\int \tau +\varepsilon 

\tau 

\bigm| \bigm| Q1(s)
\bigm| \bigm| 2ds\biggr] 1

2

= o(\varepsilon ).

Therefore, the corresponding (4.8) follows. On the other hand, in the current case,
we have

\Gamma (T,T, r) =\scrX 1(T, r)
\top Q1(r)\scrX 1(T, r) +\scrX 1(T, r)

\top P1(r)
\Bigl( 
\sigma x(T, r)X1(r) + \delta \sigma \varepsilon (T, r)

\Bigr) 
+
\Bigl( 
X1(r)

\top \sigma x(T, r)
\top + \delta \sigma \varepsilon (T, r)\top 

\Bigr) 
P1(r)\scrX 1(T, r).
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3618 TIANXIAO WANG AND JIONGMIN YONG

Again, by a localization argument, we can get rid of the It\^o's integral of \Gamma (T,T, \cdot )
under expectation to obtain the following, which is a particular case of (4.9),

E
\bigl[ 
X1(T )

\top hxxX1(T )
\bigr] 
=E

\bigl[ 
\scrX 1(T,T )

\top P1(T )\scrX 1(T,T )
\bigr] 

=E
\int T

\tau 

\Bigl[ 
X1(r)

\top F1(r)\scrX 1(T, r) +\scrX 1(T, r)
\top F1(r)

\top X1(r)

+X1(r)
\top G1(r)X1(r) + \delta \sigma \varepsilon (T, r)\top P1(r)\delta \sigma 

\varepsilon (T, r)
\Bigr] 
dr+ o(\varepsilon ).

(4.11)

Here, both F1(r) and G1(r), defined below, are \scrF r-measurable and independent of
u\varepsilon (\cdot ), \left\{   F1(r)

\bigtriangleup 
= bx(T, r)

\top P1(r) + \sigma x(T, r)
\top Q1(r),

G1(r)
\bigtriangleup 
= \sigma x(T, r)

\top P1(r)\sigma x(T, r).

(4.12)

Consequently, at the end of this step, one has

E (\varepsilon ) = o(\varepsilon ) +E
\int T

\tau 

\Bigl[ 
X1(r)

\top F1(r)\scrX 1(T, r) +\scrX 1(T, r)
\top F1(r)

\top X1(r)

+X1(r)
\top 
\Bigl( 
Hxx(r) +G1(r)

\Bigr) 
X1(r) + \delta \sigma \varepsilon (T, r)\top P1(r)\delta \sigma 

\varepsilon (T, r)
\Bigr] 
dr.

(4.13)

With the above procedures, the term E
\bigl[ 
X1(T )

\top hxxX1(T )
\bigr] 
is absorbed. However, the

new terms of the form X1(r)
\top F1(r)\scrX 1(T, r) and its transpose appear under integral.

This will be handled by the next step.

Step 2. Treatment of the term X1(r)
\top F1(r)\scrX 1(T, r) and its transpose.

Take t = T in (4.7) and let \Theta (T, s) = \Theta 2(T, r) be undetermined (which is \scrF s-
measurable). By the martingale representation theorem one has

\Theta 2(T, s) =Er[\Theta 2(T, s)] +

\int s

r

\Lambda 2(T, s, \theta )dW (\theta ), \tau \leqslant r\leqslant s\leqslant T.(4.14)

In this case, (4.9) reads

E
\bigl[ 
\scrX 1(T, r)

\top \Theta 2(T, r)X1(r)
\bigr] 

=E
\int r

\tau 

\Bigl[ 
X1(\theta )

\top F2(r, \theta )\scrX 1(r, \theta ) +\scrX 1(T, \theta )
\top \widetilde F2(r, \theta )

\top X1(\theta )

+
1

2
X1(\theta )

\top G2(r, \theta )X1(\theta ) + \delta \sigma \varepsilon (T, \theta )\top \Theta 2(T, r)\delta \sigma 
\varepsilon (r, \theta )

\Bigr] 
d\theta + o(\varepsilon ),

(4.15)

where \left\{           
F2(r, \theta )

\bigtriangleup 
= bx(T, \theta )

\top \Theta 2(T, r) + \sigma x(T, \theta )
\top \Lambda 2(T, r, \theta ),

\widetilde F2(r, \theta )
\bigtriangleup 
= bx(r, \theta )

\top \Theta 2(T, r)
\top + \sigma x(r, \theta )

\top \Lambda 2(T, r, \theta )
\top ,

G2(r, \theta )
\bigtriangleup 
= \sigma x(T, \theta )

\top \Theta 2(T, r)\sigma x(r, \theta ) + \sigma x(r, \theta )
\top \Theta 2(T, r)

\top \sigma x(T, \theta ).

(4.16)
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SPIKE VARIATIONS OF SVIES 3619

Thus,

E
\int T

\tau 

\bigl[ 
\scrX 1(T, r)

\top \Theta 2(T, r)X1(r) +X1(r)
\top \Theta 2(T, r)

\top \scrX 1(T, r)
\bigr] 
dr

=E
\int T

\tau 

\int T

r

\Bigl[ 
X1(r)

\top F2(\theta , r)\scrX 1(\theta , r) +\scrX 1(\theta , r)F2(\theta , r)
\top X1(r)

+\scrX 1(T, r)
\top \widetilde F2(\theta , r)

\top X1(r) +X1(r)
\top \widetilde F2(\theta , r)\scrX 1(T, r)

+X1(r)
\top G2(\theta , r)X1(r) + \delta \sigma \varepsilon (T, r)\top \Theta 2(T, \theta )\delta \sigma 

\varepsilon (\theta , r)

+ \delta \sigma \varepsilon (\theta , r)\top \Theta 2(T, \theta )
\top \delta \sigma \varepsilon (T, r)

\Bigr] 
d\theta dr+ o(\varepsilon ).

Consequently, (4.13) becomes

E (\varepsilon ) = o(\varepsilon ) +E
\int T

\tau 

\Bigl[ 
X1(r)

\top 
\Bigl( 
F1(r) - \Theta 2(T, r)

\top +

\int T

r

\widetilde F2(\theta , r)d\theta 
\Bigr) 
\scrX 1(T, r)

+\scrX 1(T, r)
\top 
\Bigl( 
F1(r)

\top  - \Theta 2(T, r) +

\int T

r

\widetilde F2(\theta , r)
\top d\theta 

\Bigr) 
X1(r)

+

\int T

r

\bigl[ 
X1(r)

\top F2(\theta , r)\scrX 1(\theta , r) +\scrX 1(\theta , r)
\top F2(\theta , r)

\top X1(r)
\bigr] 
d\theta 

+X1(r)
\top 
\Bigl( 
Hxx(r)+G1(r)+

\int T

r

G2(\theta , r)d\theta 
\Bigr) 
X1(r)+\delta \sigma \varepsilon (T, r)\top P1(r)\delta \sigma 

\varepsilon (T, r)

+

\int T

r

\bigl[ 
\delta \sigma \varepsilon (T, r)\top \Theta 2(T, \theta )\delta \sigma 

\varepsilon (\theta , r) + \delta \sigma \varepsilon (\theta , r)\top \Theta 2(T, \theta )
\top \delta \sigma \varepsilon (T, r)

\bigr] 
d\theta 
\Bigr] 
dr.

Thus, to eliminate the term of the form X1(r)
\top (\cdot \cdot \cdot )\scrX 1(T, r) and its transpose, we let

\Theta 2(T, r) = F1(r)
\top +Er

\int T

r

\widetilde F2(\theta , r)
\top d\theta .

By denoting P2(r)
\bigtriangleup 
=\Theta 2(T, r)

\top , Q2(\theta , r)
\bigtriangleup 
=\Lambda 2(T, \theta , r)

\top , with \tau \leqslant r\leqslant \theta \leqslant T, we have

P2(r) = bx(T, r)
\top P1(r) + \sigma x(T, r)

\top Q1(r)

+

\int T

r

\Bigl( 
bx(\theta , r)

\top P2(\theta ) + \sigma x(\theta , r)
\top Q2(\theta , r)

\Bigr) 
d\theta  - 

\int T

r

\widetilde Q2(r, \theta )dW (\theta )

for some \widetilde Q2(r, \theta ) defined for \tau \leqslant r \leqslant \theta \leqslant T , with a suitable measurability and
integrability. At the same time, (4.14) reads

P2(s) =Er[P2(s)] +

\int s

r

Q2(s, \theta )dW (\theta ), \tau \leqslant r\leqslant s\leqslant T,

with Q2(s, \theta ) defined on \Delta \ast [t, T ]. We now extend Q2(s, \theta ) to [\tau ,T ]2 by Q2(s, \theta ) =\widetilde Q2(s, \theta ) with \tau \leqslant s \leqslant \theta \leqslant T. Then (P2(\cdot ),Q2(\cdot , \cdot )) is the unique adapted M-solution
to Type-II BSVIE:

P2(r) = bx(T, r)
\top P1(r) + \sigma x(T, r)

\top Q1(r) +

\int T

r

\Bigl( 
bx(\theta , r)

\top P2(\theta )

+\sigma x(\theta , r)
\top Q2(\theta , r)

\Bigr) 
d\theta  - 

\int T

r

Q2(r, \theta )dW (\theta ), r \in [\tau ,T ],

(4.17)
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3620 TIANXIAO WANG AND JIONGMIN YONG

which is independent of the spike variation u\varepsilon (\cdot ) of \=u(\cdot ). Having the above, we obtain

E (\varepsilon ) = o(\varepsilon ) +E
\int T

\tau 

\Biggl[ 
X1(r)

\top 

\Biggl( 
Hxx(r) +G1(r) +

\int T

r

G2(\theta , r)d\theta 

\Biggr) 
X1(r)

+

\int T

r

\Bigl( 
X1(r)

\top F2(\theta , r)\scrX 1(\theta , r) +\scrX 1(\theta , r)
\top F2(\theta , r)

\top X1(r)
\Bigr) 
d\theta 

\Biggr] 
dr

+E
\int T

\tau 

\Biggl[ 
\delta \sigma \varepsilon (T, r)\top P1(r)\delta \sigma 

\varepsilon (T, r)

+

\int T

r

\Bigl( 
\delta \sigma \varepsilon (T, r)\top P2(\theta )

\top \delta \sigma \varepsilon (\theta , r) + \delta \sigma \varepsilon (\theta , r)\top P2(\theta )\delta \sigma 
\varepsilon (T, r)

\Bigr) 
d\theta 

\Biggr] 
dr.

(4.18)

At this moment, we can express F2, \widetilde F2, G2 in (4.16) by (P2,Q2) accordingly. In
E (\varepsilon ) (see (4.18)), the terms of the forms X1(r)

\top (\cdot \cdot \cdot )X1(r) and X1(r)
\top (\cdot \cdot \cdot )\scrX 1(\theta , r),

together with its transpose, need to be handled. Next, we want to get rid of those
terms simultaneously.

Step 3. Treatment of the terms X1(r)
\top (\cdot \cdot \cdot )X1(r), \scrX 1(\theta , r)

\top (\cdot \cdot \cdot )X1(r), and its
transpose.

To treat X1(r)
\top (\cdot \cdot \cdot )X1(r), let t = s in (4.7) with \Theta (s, s) = \Theta 3(s) valued in Sn,

undetermined. Again, we have \Lambda (s, s, \cdot ) = \Lambda 3(s, s, \cdot ). Since \Theta 3(s) is symmetric, so is
\Lambda 3(s, s, r). Now, (4.9) becomes

E
\bigl[ 
X1(r)

\top \Theta 3(r)X1(r)
\bigr] 

=E
\int r

\tau 

\Bigl[ 
X1(\theta )

\top F3(r, \theta )\scrX 1(r, \theta ) +\scrX 1(r, \theta )
\top F3(r, \theta )

\top X1(\theta )

+X1(\theta )
\top G3(r, \theta )X1(\theta ) + \delta \sigma \varepsilon (r, \theta )\top \Theta 3(r)\delta \sigma 

\varepsilon (r, \theta )
\Bigr] 
d\theta + o(\varepsilon ),

where \Biggl\{ 
F3(r, \theta )

\bigtriangleup 
= bx(r, \theta )

\top \Theta 3(r) + \sigma x(r, \theta )
\top \Lambda 3(r, r, \theta ),

G3(r, \theta )
\bigtriangleup 
= \sigma x(r, \theta )

\top \Theta 3(r)\sigma x(r, \theta ).
(4.19)

Then, by integrating it over [\tau ,T ], one has

E
\int T

\tau 

\bigl[ 
X1(r)

\top \Theta 3(r)X1(r)
\bigr] 
dr

=E
\int T

\tau 

\int T

r

\Bigl[ 
X1(r)

\top F3(\theta , r)\scrX 1(\theta , r) +\scrX 1(\theta , r)
\top F3(\theta , r)

\top X1(r)

+X1(r)
\top G3(\theta , r)X1(r) + \delta \sigma \varepsilon (\theta , r)\top \Theta 3(\theta )\delta \sigma 

\varepsilon (\theta , r)
\Bigr] 
d\theta dr+ o(\varepsilon ).

(4.20)

Next, for the term \scrX 1(\theta , r)
\top (\cdot \cdot \cdot )X1(r), we let \Theta (t, s) = \Theta 4(t, s), \Lambda (t, s, \cdot ) = \Lambda 4(t, s, \cdot )

be undetermined. Then, (4.9) reads

E
\bigl[ 
\scrX 1(\theta , r)

\top \Theta 4(\theta , r)X1(r)
\bigr] 

=E
\int r

\tau 

\Bigl[ 
X1(\theta 

\prime )\top F4(\theta , r, \theta 
\prime )\scrX 1(r, \theta 

\prime ) +\scrX 1(\theta , \theta 
\prime )\top \widetilde F4(\theta , r, \theta 

\prime )\top X1(\theta 
\prime )

+
1

2
X1(\theta 

\prime )\top G4(\theta , r, \theta 
\prime )X1(\theta 

\prime ) + \delta \sigma \varepsilon (\theta , \theta \prime )\top \Theta 4(\theta , r)\delta \sigma 
\varepsilon (r, \theta \prime )

\Bigr] 
d\theta \prime + o(\varepsilon ),
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SPIKE VARIATIONS OF SVIES 3621

where (note that \tau \leqslant \theta \prime \leqslant r\leqslant \theta \leqslant T )\left\{       
F4(\theta , r, \theta 

\prime )
\bigtriangleup 
= bx(\theta , \theta 

\prime )\top \Theta 4(\theta , r) + \sigma x(\theta , \theta 
\prime )\top \Lambda 4(\theta , r, \theta 

\prime ),\widetilde F4(\theta , r, \theta 
\prime )

\bigtriangleup 
= bx(r, \theta 

\prime )\top \Theta 4(\theta , r)
\top + \sigma x(r, \theta 

\prime )\top \Lambda 4(\theta , r, \theta 
\prime )\top ,

G4(\theta , r, \theta 
\prime )

\bigtriangleup 
= \sigma x(\theta , \theta 

\prime )\top \Theta 4(\theta , r)\sigma x(r, \theta 
\prime ) + \sigma x(r, \theta 

\prime )\top \Theta 4(\theta , r)
\top \sigma x(\theta , \theta 

\prime ).

(4.21)

Therefore, we have

E
\int T

\tau 

\int T

r

\scrX 1(\theta , r)
\top \Theta 4(\theta , r)X1(r)d\theta dr

=E
\int T

\tau 

\int T

\theta \prime 

\int \theta \prime 

\tau 

\Bigl[ 
X1(r)

\top F4(\theta , \theta 
\prime , r)\scrX 1(\theta 

\prime , r) +\scrX 1(\theta , r)
\top \widetilde F4(\theta , \theta 

\prime , r)\top X1(r)

+
1

2
X1(r)

\top G4(\theta , \theta 
\prime , r)X1(r) + \delta \sigma \varepsilon (\theta , r)\top \Theta 4(\theta , \theta 

\prime )\delta \sigma \varepsilon (\theta \prime , r)
\Bigr] 
drd\theta d\theta \prime + o(\varepsilon )

=E
\int T

\tau 

\int \theta \prime 

\tau 

\int T

\theta \prime 

\Bigl[ 
X1(r)

\top F4(\theta , \theta 
\prime , r)\scrX 1(\theta 

\prime , r) +\scrX 1(\theta , r)
\top \widetilde F4(\theta , \theta 

\prime , r)\top X1(r)

+
1

2
X1(r)

\top G4(\theta , \theta 
\prime , r)X1(r) + \delta \sigma \varepsilon (\theta , r)\top \Theta 4(\theta , \theta 

\prime )\delta \sigma \varepsilon (\theta \prime , r)
\Bigr] 
d\theta drd\theta \prime + o(\varepsilon )

=E
\int T

\tau 

\Biggl[ \int T

r

\int T

\theta 

X1(r)
\top F4(\theta 

\prime , \theta , r)\scrX 1(\theta , r)d\theta 
\prime d\theta 

+

\int T

r

\int \theta 

r

\scrX 1(\theta , r)
\top \widetilde F4(\theta , \theta 

\prime , r)\top X1(r)d\theta 
\prime d\theta 

+

\int T

r

\int T

\theta 

\Bigl( 1
2
X1(r)

\top G4(\theta 
\prime , \theta , r)X1(r)

+\delta \sigma \varepsilon (\theta \prime , r)\top \Theta 4(\theta 
\prime , \theta )\delta \sigma \varepsilon (\theta , r)

\Bigr) 
d\theta \prime d\theta 

\Biggr] 
dr+ o(\varepsilon ).

Hence, combining (4.18) and (4.20) with the above, we have

E (\varepsilon )

=E
\int T

\tau 

\Biggl\{ 
X1(r)

\top 

\Biggl[ 
Hxx(r) +G1(r) +

\int T

r

\Biggl( 
G2(\theta , r) +G3(\theta , r) +

\int T

\theta 

G4(\theta 
\prime , \theta , r)d\theta \prime 

\Biggr) 
d\theta 

 - \Theta 3(r)

\Biggr] 
X1(r) +

\int T

r

\Biggl[ 
X1(r)

\top 

\Biggl( 
F2(\theta , r) + F3(\theta , r) - \Theta 4(\theta , r)

\top +

\int T

\theta 

F4(\theta 
\prime , \theta , r)d\theta \prime 

+

\int \theta 

r

\widetilde F4(\theta , \theta 
\prime , r)d\theta \prime 

\Biggr) 
\scrX 1(\theta , r) +\scrX 1(\theta , r)

\top 

\Biggl( 
F2(\theta , r) + F3(\theta , r) - \Theta 4(\theta , r)

\top 

+

\int T

\theta 

F4(\theta 
\prime , \theta , r)d\theta \prime +

\int \theta 

r

\widetilde F4(\theta , \theta 
\prime , r)d\theta \prime 

\Biggr) \top 

X1(r)

\Biggr] 
d\theta + \delta \sigma \varepsilon (T, r)\top P1(r)\delta \sigma 

\varepsilon (T, r)

+

\int T

r

\Biggl[ 
\delta \sigma \varepsilon (T, r)\top P2(\theta )

\top \delta \sigma \varepsilon (\theta , r) + \delta \sigma \varepsilon (\theta , r)\top P2(\theta )\delta \sigma 
\varepsilon (T, r)

+\delta \sigma \varepsilon (\theta , r)\top \Theta 3(\theta )\delta \sigma 
\varepsilon (\theta , r) +

\int T

\theta 

\Bigl( 
\delta \sigma \varepsilon (\theta \prime , r)\top \Theta 4(\theta 

\prime , \theta )\delta \sigma \varepsilon (\theta , r)

+\delta \sigma \varepsilon (\theta , r)\top \Theta 4(\theta 
\prime , \theta )\top \delta \sigma \varepsilon (\theta \prime , r)

\Bigr) 
d\theta \prime 

\Biggr] 
d\theta 

\Biggr\} 
dr+ o(\varepsilon ).
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3622 TIANXIAO WANG AND JIONGMIN YONG

Consequently, in order to eliminate the term X1(r)
\top (\cdot \cdot \cdot )X1(r), we should let

\Theta 3(r) =Hxx(r) +G1(r) +

\int T

r

\Biggl( 
G2(\theta , r) +G3(\theta , r) +

\int T

\theta 

G4(\theta 
\prime , \theta , r)d\theta \prime 

\Biggr) 
d\theta 

 - 
\int T

r

\widetilde Q3(r, \theta )dW (\theta ), r \in [\tau ,T ]

for some \widetilde Q3(r, \theta ) uniquely defined for almost \tau \leqslant r \leqslant \theta \leqslant T . Similarly, to eliminate
X1(r)

\top (\cdot \cdot \cdot )\scrX 1(\theta , r) and its transpose, we should let

\Theta 4(\theta , r)
\top = F2(\theta , r) + F3(\theta , r) +

\int T

\theta 

F4(\theta 
\prime , \theta , r)d\theta \prime +

\int \theta 

r

\widetilde F4(\theta , \theta 
\prime , r)d\theta \prime 

 - 
\int T

r

\widetilde Q4(\theta , r, \theta 
\prime )dW (\theta \prime ), (\theta , r)\in \Delta \ast [\tau ,T ]

for some \widetilde Q4(\theta , r, \theta 
\prime ) defined for \tau \leqslant r\leqslant \theta \prime \leqslant T and \tau \leqslant r\leqslant \theta \leqslant T . Let

P3(\theta )
\bigtriangleup 
=\Theta 3(\theta ), Q3(\theta , r)

\bigtriangleup 
=

\Biggl\{ 
\Lambda 3(\theta , \theta , r), \tau \leqslant r\leqslant \theta \leqslant T,\widetilde Q3(\theta , r), \tau \leqslant \theta \leqslant r\leqslant T,

P4(\theta , \theta 
\prime )

\bigtriangleup 
=\Theta 4(\theta , \theta 

\prime )\top , Q4(\theta , r, \theta 
\prime )

\bigtriangleup 
=

\Biggl\{ 
\Lambda 4(\theta , r, \theta 

\prime )\top , \tau \leqslant \theta \prime \leqslant r\leqslant \theta \leqslant T,\widetilde Q4(\theta , r, \theta 
\prime )\top , \tau \leqslant r\leqslant \theta \prime \leqslant T.

Then recall the expressions of Gi, Fj , i= 1,2,3,4, j = 2,3,4, we obtain the following
system for (P1, P2, P3, P4):

\left\{                                                                                   

P1(t) = hxx  - 
\int T

t

Q1(s)dW (s), \tau \leqslant t\leqslant T,

P2(t) = bx(T, t)
\top P1(t) + \sigma x(T, t)

\top Q1(t) +

\int T

t

\bigl( 
bx(s, t)

\top P2(s)

+\sigma x(s, t)
\top Q2(s, t)

\bigr) 
ds - 

\int T

t

Q2(t, s)dW (s), \tau \leqslant t\leqslant T,

P3(t) =Hxx(t) + \sigma x(T, t)
\top P1(t)\sigma x(T, t)

+

\int T

t

\Bigl[ 
\sigma x(T, t)

\top P2(s)
\top \sigma x(s, t) + \sigma x(s, t)

\top P2(s)\sigma x(T, t)

+

\int T

s

\Bigl( 
\sigma x(\theta , t)

\top P4(\theta , s)
\top \sigma x(s, t) + \sigma x(s, t)

\top P4(\theta , s)\sigma x(\theta , t)
\Bigr) 
d\theta 
\Bigr] 
ds

+

\int T

t

\sigma x(s, t)
\top P3(s)\sigma x(s, t)ds - 

\int T

t

Q3(t, s)dW (s), \tau \leqslant t\leqslant T,

P4(r, t) = bx(T, t)
\top P2(r)

\top + \sigma x(T, t)
\top Q2(r, t)

\top + bx(r, t)
\top P3(r)

+\sigma x(r, t)
\top Q3(r, t) +

\int T

r

\Bigl( 
bx(s, t)

\top P4(s, r)
\top + \sigma x(s, t)

\top Q4(s, r, t)
\top 
\Bigr) 
ds

+

\int r

t

\Bigl( 
bx(s, t)

\top P4(r, s) + \sigma x(s, t)
\top Q4(r, s, t)

\Bigr) 
ds

 - 
\int T

t

Q4(r, t, s)dW (s), \tau \leqslant t\leqslant r\leqslant T.

(4.22)
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By saying (Pi,Qi) to be the adapted M-solutions of the corresponding BSVIEs, the
following constraints must hold:\left\{               

P2(t) =E\theta [P2(t)] +

\int t

\theta 

Q2(t, s)dW (s), \tau \leqslant \theta \leqslant t\leqslant T,

P3(t) =E\theta [P3(t)] +

\int t

\theta 

Q3(t, s)dW (s), \tau \leqslant \theta \leqslant t\leqslant T,

P4(r, t) =E\theta [P4(r, t)] +

\int t

\theta 

Q4(r, t, s)dW (s), \tau \leqslant \theta \leqslant t\leqslant r\leqslant T.

(4.23)

The above is called the second-order adjoint equation. With the above system, we
eventually end up with the following representation theorem.

Theorem 4.1. Let (H1)--(H2) hold, and let ( \=X(\cdot ), \=u(\cdot )) be a given state-control
pair. Let (4.22) admit an adapted M-solution (Pi,Qi) (1\leqslant i\leqslant 4) on [\tau ,T ] such that

(P1,Q1)\in L2
F(\Omega ;C([\tau ,T ];Sn))\times L2

F(\tau ,T ;Sn),

(P2,Q2)\in L2
F(\tau ,T ;Rn\times n)\times L2

F(\Omega ;L
2([\tau ,T ]\times [\tau ,T ];Rn\times n)),

(P3,Q3)\in L2
F(\tau ,T ;Sn)\times L2

F(\Omega ;L
2([\tau ,T ]\times [\tau ,T ];Sn\times n)),

(P4,Q4)\in L2
F(\Omega ;L

2(\Delta \ast [\tau ,T ];Rn\times n))\times L2
F(\Omega ;L

2(\Delta \ast [\tau ,T ]\times [\tau ,T ];Rn\times n)).

Then E (\varepsilon ) admits the following representation:

E (\varepsilon ) =E
\int T

\tau 

\Biggl\{ 
\delta \sigma \varepsilon (T, r)\top P1(r)\delta \sigma 

\varepsilon (T, r) +

\int T

r

\Biggl[ 
\delta \sigma \varepsilon (T, r)\top P2(\theta )

\top \delta \sigma \varepsilon (\theta , r)

+\delta \sigma \varepsilon (\theta , r)\top P2(\theta )\delta \sigma 
\varepsilon (T, r) + \delta \sigma \varepsilon (\theta , r)\top P3(\theta )\delta \sigma 

\varepsilon (\theta , r)

+

\int T

\theta 

\Bigl( 
\delta \sigma \varepsilon (\theta \prime , r)\top P4(\theta 

\prime , \theta )\top \delta \sigma \varepsilon (\theta , r)

+\delta \sigma \varepsilon (\theta , r)\top P4(\theta 
\prime , \theta )\delta \sigma \varepsilon (\theta \prime , r)

\Bigr) 
d\theta \prime 

\Biggr] 
d\theta 

\Biggr\} 
dr+ o(\varepsilon ).

This conclusion naturally leads to the maximum principle in section 6.

5. Well-posedness of the second order adjoint equations. In this section,
we establish the well-posedness of system (4.22). To begin with, let us make some
observations. The existence and uniqueness of (P1,Q1) is easy to see, while the case
of (P2,Q2) follows from the BSVIEs theory in [36]. For the equation of (P3,Q3), it
is a classical linear BSVIE with given (P1, P2, P4). However, as to that of (P4,Q4),
its well-posedness cannot be given by the current theories. Therefore, we need to
carefully treat it.

Note that by applying conditional expectation operator Et on both sides of the
fourth equation in (4.22), we end up with the following form system (noting the third
equality in (4.23)):\left\{               

P (r, t) = F (r, t) +

\int T

r

\bigl[ 
bx(s, t)

\top EtP (s, r)\top + \sigma x(s, t)
\top Q(s, r, t)\top 

\bigr] 
ds

+

\int r

t

\bigl[ 
bx(s, t)

\top EtP (r, s) + \sigma x(s, t)
\top Q(r, s, t)

\bigr] 
ds, r\geqslant t,

E\theta P (r, t) = P (r, t) - 
\int t

\theta 

Q(r, t, s)dW (s), \tau \leqslant \theta \leqslant t\leqslant r\leqslant T,

(5.1)
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3624 TIANXIAO WANG AND JIONGMIN YONG

with P (r, t) = P4(r, t), Q(r, t, s) =Q4(r, t, s), and

F (r, t)
\bigtriangleup 
=Et

\Bigl[ 
bx(T, t)

\top P2(r)
\top + \sigma x(T, t)

\top Q2(r, t)
\top + bx(r, t)

\top P3(r) + \sigma x(r, t)
\top Q3(r, t)

\Bigr] 
.

(5.2)

The following gives the wellposedness for (5.1).

Lemma 5.1. Let bx(\cdot , \cdot ), \sigma x(\cdot , \cdot ) be bounded, and let F (\cdot , \cdot )\in L2
F(\Omega ;L

2(\Delta \ast [\tau ,T ])).
Then (5.1) admits a unique solution P (\cdot , \cdot ) \in L2

F(\Omega ;L
2(\Delta \ast [\tau ,T ])). In addition, for

any \rho \in [\tau ,T ], the following estimate holds:

E
\int T

\rho 

\int r

\rho 

| P (r, t)| 2dtdr\leqslant KE
\int T

\rho 

\int r

\rho 

| F (r, t)| 2dtdr,(5.3)

where K only depends on \| bx\| \infty , \| \sigma x\| \infty , and T , but not on \rho .

Proof. Let \rho \in [\tau ,T ] be fixed. For any p(\cdot , \cdot )\in L2
F(\Omega ;L

2(\Delta \ast [\rho ,T ])), we look at\left\{               

P (r, t) = F (r, t) +

\int T

r

\bigl[ 
bx(s, t)

\top Etp(s, r)
\top + \sigma x(s, t)

\top q(s, r, t)\top 
\bigr] 
ds

+

\int r

t

\bigl[ 
bx(s, t)

\top Etp(r, s) + \sigma x(s, t)
\top q(r, s, t)

\bigr] 
ds, r\geqslant t,

E\theta p(r, t) = p(r, t) - 
\int t

\theta 

q(r, t, s)dW (s), \rho \leqslant \theta \leqslant t\leqslant r\leqslant T.

(5.4)

By the first equality in (5.4), we have (for any \beta > 0)

E
\int T

\rho 

\int r

\rho 

e\beta (r+t)| P (r, t)| 2dtdr\leqslant KE
\int T

\rho 

\int r

\rho 

e\beta (r+t)| F (r, t)| 2dtdr

+K
\bigm\| \bigm\| bx(\cdot , \cdot )\bigm\| \bigm\| 2\infty E

\int T

\rho 

\int r

\rho 

e\beta (r+t)

\left\{   
\biggl( \int r

t

\bigm| \bigm| p(r, s)\bigm| \bigm| ds\biggr) 2

+

\Biggl( \int T

r

\bigm| \bigm| p(s, r)\bigm| \bigm| ds\Biggr) 2
\right\}   dtdr

+K
\bigm\| \bigm\| \sigma x(\cdot , \cdot )

\bigm\| \bigm\| 2
\infty E

\int T

\rho 

\int r

\rho 

e\beta (r+t)

\left\{   
\biggl( \int r

t

\bigm| \bigm| q(r, s, t)\bigm| \bigm| ds\biggr) 2

+

\Biggl( \int T

r

\bigm| \bigm| q(s, r, t)\bigm| \bigm| ds\Biggr) 2
\right\}   dtdr.

(5.5)

For the second term on the right-hand side of (5.5), by Fubini's theorem, we have

E
\int T

\rho 

\int r

\rho 

e\beta (r+t)

\left\{   
\biggl( \int r

t

\bigm| \bigm| p(r, s)\bigm| \bigm| ds\biggr) 2

+

\Biggl( \int T

r

\bigm| \bigm| p(s, r)\bigm| \bigm| ds\Biggr) 2
\right\}   dtdr

\leqslant 
1

\beta 
E
\int T

\rho 

\int r

\rho 

\int s

\rho 

\Bigl( 
e\beta (r+s)  - e\beta (t+s)

\Bigr) 
| p(r, s)| 2dtdsdr

+
1

\beta 
E
\int T

\rho 

\int T

r

\int r

\rho 

\Bigl( 
e\beta (t+s)  - e\beta (r+s+t - T )

\Bigr) 
| p(s, r)| 2dtdsdr

\leqslant 
2T

\beta 
E
\int T

\rho 

\int r

\rho 

e\beta (r+s)| p(r, s)| 2dsdr.
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SPIKE VARIATIONS OF SVIES 3625

For the third term on the right-hand side of (5.5), similarly, by Fubini's theorem,

E
\int T

\rho 

\int r

\rho 

e\beta (r+t)

\left\{   
\biggl( \int r

t

\bigm| \bigm| q(r, s, t)\bigm| \bigm| ds\biggr) 2

+

\Biggl( \int T

r

\bigm| \bigm| q(s, r, t)\bigm| \bigm| ds\Biggr) 2
\right\}   dtdr

\leqslant E
\int T

\rho 

\int r

\rho 

e\beta (r+t)

\Biggl\{ \biggl( \int r

t

e - \beta sds

\biggr) \biggl( \int r

t

e\beta s
\bigm| \bigm| q(r, s, t)\bigm| \bigm| 2ds\biggr) 

+

\Biggl( \int T

r

e - \beta sds

\Biggr) \Biggl( \int T

r

e\beta s
\bigm| \bigm| q(s, r, t)\bigm| \bigm| 2ds\Biggr) \Biggr\} dtdr

\leqslant 
2

\beta 
E
\int T

\rho 

\int r

\rho 

\int s

\rho 

e\beta (r+s)
\bigm| \bigm| q(r, s, t)\bigm| \bigm| 2dtdsdr

\leqslant 
2

\beta 
E
\int T

\rho 

\int r

\rho 

e\beta (r+s)| p(r, s)| 2dsdr.

To sum up the above arguments, we have P (\cdot , \cdot ) \in L2
F(\Omega ;L

2(\Delta \ast [\rho ,T ])), and one can
define a map \Xi from L2

F(\Omega ;L
2(\Delta \ast [\rho ,T ])) to itself as \Xi (p) = P .

Suppose \=p, \widetilde p are two elements in L2
F(\Omega ;L

2(\Delta \ast [\rho ,T ])), and (\=q, \widetilde q) is defined similarly
as in the second equality in (5.4). By the previous arguments, we have \=P = \Xi (\=p),\widetilde P =\Xi (\widetilde p), and define \=Q, \widetilde Q accordingly. Also let

\widehat p\bigtriangleup 
=p - \widetilde p, \widehat q\bigtriangleup 

= q - \widetilde q, \widehat P \bigtriangleup 
=P  - \widetilde P , \widehat Q\bigtriangleup 

=Q - \widetilde Q.

Then we have\left\{               

\widehat P (r, t) =

\int T

r

\bigl[ 
bx(s, t)

\top Et\widehat p(s, r)\top + \sigma x(s, t)
\top \widehat q(s, r, t)\top \bigr] ds

+

\int r

t

\bigl[ 
bx(s, t)

\top Et\widehat p(r, s) + \sigma x(s, t)
\top \widehat q(r, s, t)\bigr] ds, r\geqslant t,

E\theta \widehat p(r, t) = \widehat p(r, t) - \int t

\theta 

\widehat q(r, t, s)dW (s), \rho \leqslant \theta \leqslant t\leqslant r\leqslant T.

(5.6)

By the first equality in (5.6), for any \rho \in [\tau ,T ],

E
\int T

\rho 

\int r

\rho 

e\beta (r+t)| \widehat P (r, t)| 2dtdr

\leqslant KE
\int T

\rho 

\int r

\rho 

e\beta (r+t)

\left\{   
\biggl( \int r

t

\bigm| \bigm| \widehat p(r, s)\bigm| \bigm| ds\biggr) 2

+

\Biggl( \int T

r

\bigm| \bigm| \widehat p(s, r)\bigm| \bigm| ds\Biggr) 2
\right\}   dtdr

+KE
\int T

\rho 

\int r

\rho 

e\beta (r+t)

\left\{   
\biggl( \int r

t

\bigm| \bigm| \widehat q(r, s, t)\bigm| \bigm| ds\biggr) 2

+

\Biggl( \int T

r

\bigm| \bigm| \widehat q(s, r, t)\bigm| \bigm| ds\Biggr) 2
\right\}   dtdr.

(5.7)

Similar as the estimation of (5.5), we have for any \rho \in [\tau ,T ],

E
\int T

\rho 

\int r

\rho 

e\beta (r+t)| \widehat P (r, t)| 2dtdr\leqslant K

\beta 
E
\int T

\rho 

\int r

\rho 

e\beta (r+t)| \widehat p(r, t)| 2dtdr.
Therefore, by choosing \beta > 0 large enough, we obtain the existence and uniqueness of
P on [\rho ,T ], as well as the above conclusion (5.3).

Now we return to system (4.22), the second-order adjoint system in our scenario.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

04
/0

9/
24

 to
 5

.1
98

.1
37

.2
5 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



3626 TIANXIAO WANG AND JIONGMIN YONG

Theorem 5.2. Suppose (H1)--(H2) hold. Then (4.22) admits a unique adapted
M-solution (Pi,Qi), 1\leqslant i\leqslant 4, such that

(P3, P4)\in L2
F(\tau ,T ;Rn\times n)\times L2

F(\Omega ;L
2(\Delta \ast [\tau ,T ];Rn\times n)).

Proof. By standard BSVIEs theory [36], one has the following:

(P1,Q1)\in L2
F(\Omega ;C([\tau ,T ];Sn))\times L2

F(\tau ,T ;Sn),

(P2,Q2)\in L2
F(\tau ,T ;Rn\times n)\times L2(\tau ,T ;L2

F(\tau ,T ;Rn\times n)).

We now prove the remaining well-posedness of (P3, P4). Recall (4.6), we see that
Hxx(\cdot ) \in L2

F(\tau ,T ;Rn\times n). By applying conditional expectation operator Et on both
sides of the equations of (P3, P4) in (4.22), we have\left\{                                     

P3(t)=F3(t)+Et

\int T

t

\int T

s

\Bigl( 
\sigma x(\theta , t)

\top P4(\theta , s)
\top \sigma x(s, t)+\sigma x(s, t)

\top P4(\theta , s)\sigma x(\theta , t)
\Bigr) 
d\theta ds

+Et

\int T

t

\sigma x(s, t)
\top P3(s)\sigma x(s, t)ds, \tau \leqslant t\leqslant T,

P4(r, t) =F4(r, t) + bx(r, t)
\top EtP3(r) + \sigma x(r, t)

\top Q3(r, t)

+Et

\int T

r

\Bigl( 
bx(s, t)

\top P4(s, r)
\top + \sigma x(s, t)

\top Q4(s, r, t)
\top 
\Bigr) 
ds

+Et

\int r

t

\Bigl( 
bx(s, t)

\top P4(r, s)+\sigma x(s, t)
\top Q4(r, s, t)

\Bigr) 
ds, \tau \leqslant t\leqslant r\leqslant T,

where F3(\cdot ), F4(\cdot , \cdot ) are given by the following, depending on (P1,Q1), (P2,Q2),

F3(t)
\bigtriangleup 
=Hxx(t) + \sigma x(T, t)

\top P1(t)\sigma x(T, t)

+Et

\int T

t

\bigl[ 
\sigma x(s, t)

\top P2(s)\sigma x(T, t) + \sigma x(T, t)
\top P2(s)

\top \sigma x(s, t)
\bigr] 
ds,

F4(r, t)
\bigtriangleup 
= bx(T, t)

\top EtP2(r)
\top + \sigma x(T, t)

\top Q2(r, t)
\top .

Thus,

E

\Biggl( \int T

\tau 

| F3(t)| 2dt+
\int T

\tau 

\int r

\tau 

| F4(r, t)| 2dtdr

\Biggr) 
<\infty .

For a given p3(\cdot )\in L2
F(\tau ,T )\equiv L2

F(\tau ,T ;Rn\times n), let the associated q3(\cdot , \cdot ) be determined
by martingale representation theorem:

p3(t) =Erp3(t) +

\int t

r

q3(t, s)dW (s), \tau \leqslant r\leqslant t\leqslant T.

Then

E| p3(t)| 2 =E| Erp3(t)| 2 +E
\int t

r

| q3(t, s)| 2ds\geqslant E
\int t

r

| q3(t, s)| 2ds.(5.8)
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SPIKE VARIATIONS OF SVIES 3627

Now, let us consider

\left\{                           

P3(t)=F3(t) +Et

\int T

t

\int T

s

\Bigl( 
\sigma x(\theta , t)

\top P4(\theta , s)
\top \sigma x(s, t) + \sigma x(s, t)

\top P4(\theta , s)\sigma x(\theta , t)
\Bigr) 
d\theta ds

+Et

\int T

t

\sigma x(s, t)
\top p3(s)\sigma x(s, t)ds, \tau \leqslant t\leqslant T,

P4(r, t) =F4(r, t) + bx(r, t)
\top Etp3(r) + \sigma x(r, t)

\top q3(r, t)

+Et

\int T

r

\Bigl( 
bx(s, t)

\top P4(s, r)
\top + \sigma x(s, t)

\top Q4(s, r, t)
\top 
\Bigr) 
ds

+Et

\int r

t

\Bigl( 
bx(s, t)

\top P4(r, s) + \sigma x(s, t)
\top Q4(r, s, t)

\Bigr) 
ds, \tau \leqslant t\leqslant r\leqslant T.

(5.9)

By Lemma 5.1, the second equation in (5.9) is solvable and (noting (5.8))

E
\int T

\rho 

\int r

\rho 

| P4(r, t)| 2dtdr

\leqslant KE

\Biggl( \int T

\rho 

\int r

\rho 

| F4(r, t)| 2dtdr+
\int T

\rho 

| p3(r)| 2dr+
\int T

\rho 

\int r

\rho 

| q3(r, t)| 2dtdr

\Biggr) 

\leqslant KE

\Biggl( \int T

\rho 

\int r

\rho 

| F4(r, t)| 2dtdr+
\int T

\rho 

| p3(r)| 2dr

\Biggr) 
<\infty \forall \rho \in [\tau ,T ].

(5.10)

Therefore, for any given \beta > 0,

E
\int T

\tau 

e\beta t

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int T

t

\int T

s

\sigma x(s, t)
\top P4(\theta , s)\sigma x(\theta , t)d\theta ds

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

dt

\leqslant KE
\int T

\tau 

e\beta t

\Biggl( \int T

t

\int r

t

| F4(r, t)| 2dtdr+
\int T

t

| p3(r)| 2dr

\Biggr) 
dt

\leqslant 
Ke\beta T

\beta 
E
\int T

\tau 

\int r

\tau 

| F4(r, t)| 2dtdr+
K

\beta 
E
\int T

\tau 

e\beta r| p3(r)| 2dtdr <\infty .

Similarly,

E
\int T

\tau 

e\beta t

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int T

t

\int T

s

\sigma x(\theta , t)
\top P4(\theta , s)

\top \sigma x(s, t)d\theta ds

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

dt

\leqslant 
Ke\beta T

\beta 
E
\int T

\tau 

\int r

\tau 

| F4(r, t)| 2dtdr+
K

\beta 
E
\int T

\tau 

e\beta r| p3(r)| 2dtdr <\infty .

Thus, for the equality of P3(\cdot ) in (5.9), for any given \beta > 0, we have (noting (5.8))

E
\int T

\tau 

e\beta t| P3(t)| 2dt

\leqslant KE

\Biggl[ 
e\beta T

\int T

\tau 

| F3(t)| 2dt+
\int T

\tau 

e\beta t

\Biggl( \int T

t

\int \theta 

t

| P4(\theta , s)| 2dsd\theta +
\int T

t

| p3(s)| 2ds

\Biggr) 
dt

\Biggr] 

\leqslant KE

\Biggl[ 
e\beta T

\int T

\tau 

| F3(t)| 2dt+
e\beta T

\beta 

\int T

\tau 

\int r

\tau 

| F4(r, s)| 2dsdr+
1

\beta 

\int T

\tau 

e\beta s| p3(s)| 2dtds

\Biggr] 
.

(5.11)

Hence, we have P3(\cdot )\in L2
F(\tau ,T ), and the map \Xi (p3) = P3 in L2

F(\tau ,T ) is well-defined.
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3628 TIANXIAO WANG AND JIONGMIN YONG

Now, suppose \=p3, \widetilde p3 are two elements in L2
F(\tau ,T ). We then have \Xi (\=p3) = \=P3,

\Xi (\widetilde p3) = \widetilde P3, where \=P3, \widetilde P3 satisfies (5.9) associated with \=p3, \widetilde p3, respectively, and
define

\widehat p3 \bigtriangleup 
= \=p3  - \widetilde p3, \widehat P3

\bigtriangleup 
= \=P3  - \widetilde P3, \widehat P4

\bigtriangleup 
= \=P2  - \widetilde P4.

Then for any t \in [\tau ,T ], by (5.10)--(5.11) (with the corresponding F3(\cdot ) = 0 and
F4(\cdot , \cdot ) = 0),

E
\int T

\tau 

e\beta r| \widehat P3(r)| 2dr\leqslant 
K

\beta 
E
\int T

\tau 

e\beta t| \widehat p3(t)| 2dt.
By choosing \beta large, we see that the map \Xi is a contraction. Hence, (5.9) admits a
unique fixed point P3(\cdot ). The rest of the conclusion follows easily.

Remark 5.3. In the above two results, there are two crucial points, i.e., the
introduction of equivalent \beta -norm of L2

F(\Omega ;L
2(\Delta \ast [\tau ,T ])) and L2

F(\tau ,T ), respectively,
and the subtle use of Lemma 5.1 in Theorem 5.2. We point out that the idea of using
multiplier e\beta t (\beta -argument, for short) appeared in the literature (e.g., [26, 32]).

6. The Pontryagin's type maximum principles and related extensions.
In this section, let us first give the main result of this paper, maximum principle
of optimal controls. Then we show that the result is consistent with the maximum
principle of FSDEs. At last we present some extensions to multiobjective problem
and multiperson dynamic games of governed by FSVIEs.

6.1. Maximum principle for FSVIEs. To begin with, let us recall the above
(3.2) and (3.3). The Pontryagin maximum principle for problem (C) can be stated as
follows.

Theorem 6.1. Let (H1)--(H2) hold. Let ( \=X(\cdot ), \=u(\cdot )) be an optimal pair of problem
(C). Then

H(\tau , \=X(\tau ), u, \eta (\tau ), \zeta (\tau ), Y (\cdot ),Z(\cdot , \tau )) - H(\tau , \=X(\tau ), \=u(\tau ), \eta (\tau ), \zeta (\tau ), Y (\cdot ),Z(\cdot , \tau ))

+
1

2

\Bigl\{ 
\delta \sigma (T, \tau )\top P1(\tau )\delta \sigma (T, \tau ) +E\tau 

\int T

\tau 

\Bigl[ 
\delta \sigma (\theta , \tau )\top P3(\theta )\delta \sigma (\theta , \tau )

+\delta \sigma (T, \tau )\top P2(\theta )
\top \delta \sigma (\theta , \tau ) + \delta \sigma (\theta , \tau )\top P2(\theta )\delta \sigma (T, \tau )

+

\int T

\theta 

\bigl[ 
\delta \sigma (\theta \prime , \tau )\top P4(\theta 

\prime , \theta )\top \delta \sigma (\theta , \tau ) + \delta \sigma (\theta , \tau )\top P4(\theta 
\prime , \theta )\delta \sigma (\theta \prime , \tau )

\bigr] 
d\theta \prime 
\Bigr] 
d\theta 
\Bigr\} 
\geqslant 0,

a.s., a.e. \tau \in [0, T ] \forall u\in U,

(6.1)

where H is defined in (3.3), (\eta (\cdot ), \zeta (\cdot ), \=Y (\cdot ), \=Z(\cdot )) satisfies BSVIE (3.2), (Pi(\cdot ),Qi(\cdot ))
(i = 1,2,3,4) is the unique adapted M-solution of the second-order adjoint equation
(4.22).

Proof. Recall that

\delta \sigma \varepsilon (t, s)
\bigtriangleup 
=
\bigl[ 
\sigma (t, s, \=X(s), u) - \sigma (t, s, \=X(s), \=u(s))

\bigr] 
1[\tau ,\tau +\varepsilon ](s).(6.2)
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SPIKE VARIATIONS OF SVIES 3629

Thanks to (6.2) and Lebesgue differentiability theorem, for almost \tau \in [0, T ], by
Theorem 4.1

lim
\varepsilon \rightarrow 0

E (\varepsilon )

\varepsilon 
=E

\Biggl\{ 
\delta \sigma (T, \tau )\top P1(\tau )\delta \sigma (T, \tau ) +E\tau 

\int T

\tau 

\Biggl[ 
\delta \sigma (T, \tau )\top P2(\theta )

\top \delta \sigma (\theta , \tau )

+\delta \sigma (\theta , \tau )\top P2(\theta )\delta \sigma (T, \tau ) + \delta \sigma (\theta , \tau )\top P3(\theta )\delta \sigma (\theta , \tau )d\theta 

+

\int T

\theta 

\bigl[ 
\delta \sigma (\theta \prime , \tau )\top P4(\theta 

\prime , \theta )\top \delta \sigma (\theta , \tau ) + \delta \sigma (\theta , \tau )\top P4(\theta 
\prime , \theta )\delta \sigma (\theta \prime , \tau )

\bigr] 
d\theta \prime 

\Biggr] 
d\theta 

\Biggr\} 
.

According to Theorems 3.1 and 5.2, by the optimality of \=u(\cdot ) and the arbitrariness of
u\in U , we obtain the above maximum condition (6.1) immediately.

Remark 6.2. When the control domain is convex, our conclusion reduces to that
in Yong [36]. We refer to Wang [31, Subsection 3.4.2] for more details along this line.

6.2. The case of FSDEs. In this subsection, we show that the above maximum
principle reduces to the FSDEs case presented in [24, 38], when the following holds:

b(t, s, x,u) = b(s,x,u), \sigma (t, s, x,u) = \sigma (s,x,u), \varphi (t) = x.(6.3)

Let us look at the second-order adjoint system (4.22) under (6.3). The first
equation is unchanged. The second, third, and fourth equations become, respectively,\left\{                 

P2(t) = bx(t)
\top \scrP 2(t) + \sigma x(t)

\top \scrQ 2(t) - 
\int T

t

Q2(t, s)dW (s),

P3(t) =Hxx(t) + \sigma x(t)
\top \scrP 3(t)\sigma x(t) - 

\int T

t

Q3(t, s)dW (s),

P4(r, t) = bx(t)
\top \scrP 4(r, t) + \sigma x(t)

\top \scrQ 4(r, t) - 
\int T

t

Q4(r, t, s)dW (s),

where\left\{                           

\scrP 2(t) = P1(t) +

\int T

t

P2(s)ds, \scrQ 2(t) =Q1(t) +

\int T

t

Q2(s, t)ds,

\scrP 3(t) = P1(t) +

\int T

t

\Bigl[ 
P2(s)

\top + P2(s) + P3(s) +

\int T

s

\Bigl( 
P4(\theta , s)

\top + P4(\theta , s)
\Bigr) 
d\theta 
\Bigr] 
ds,

\scrP 4(r, t) = P2(r)
\top + P3(r) +

\int T

r

P4(s, r)
\top ds+

\int r

t

P4(r, s)ds,

\scrQ 4(r, t) =Q2(r, t)
\top +Q3(r, t) +

\int T

r

Q4(s, r, t)
\top ds+

\int r

t

Q4(r, s, t)ds.

The Hamiltonian takes the form

H(s,x,u, \eta (s), \zeta (s), Y (\cdot ),Z(\cdot , s))
= \langle \scrY (s), b(s,x,u) \rangle + \langle \scrZ (s), \sigma (s,x.u) \rangle +g(s,x,u)\equiv \scrH (s,x,u,\scrY (s),\scrZ (s)),

where

\scrY (s) = \eta (s) +Es

\int T

s

Y (t)dt, \scrZ (s) = \zeta (s) +Es

\int T

s

Z(t, s)dt.
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3630 TIANXIAO WANG AND JIONGMIN YONG

The maximum condition becomes

0\leqslant \scrH (\tau , \=X(\tau ), u,\scrY (\tau ),\scrZ (\tau )) - \scrH (\tau , \=X(\tau ), \=u(\tau ),\scrY (\tau ),\scrZ (\tau ))

+
1

2
\delta \sigma (\tau )\top E\tau \scrP 3(\tau )\delta \sigma (\tau ).

(6.4)

Next, we check that (\scrY ,\scrZ ) satisfies the following first-order adjoint equation:\Biggl\{ 
d\scrY (t)= - 

\bigl[ 
gx(t)

\top +bx(t)
\top \scrY (t)+\sigma x(t)

\top \scrZ (t)
\bigr] 
dt+\scrZ (t)dW (t), t\in [0, T ],

\scrY (T ) = hx( \=X(T ))\top .
(6.5)

Note that in the current case, we have

Y (t) = gx(t)
\top + bx(t)

\top 

\Biggl( 
h\top 
x +

\int T

t

Y (s)ds

\Biggr) 
+ \sigma x(t)

\top 

\Biggl( 
\zeta (t) +

\int T

t

Z(s, t)ds

\Biggr) 
 - 
\int T

t

Z(t, s)dW (s).

Thus, applying Et on both sides, we get

Y (t) = gx(t)
\top + bx(t)

\top \scrY (t) + \sigma x(t)
\top \scrZ (t).(6.6)

By Fubini's theorem,\int T

t

Y (s)ds=Et

\int T

t

Y (s)ds+

\int T

t

\int T

r

Z(s, r)dsdW (r).

Hence

h\top 
x +

\int T

t

Y (s)ds=\scrY (t) +

\int T

t

\scrZ (r)dW (r).

Plugging (6.6) into the above, we have BSDE (6.5), the first-order adjoint equation.

Finally, it suffices to prove that M (\cdot ) \bigtriangleup 
=E\cdot \scrP 3(\cdot ) satisfies the second-order adjoint

equation, i.e., for r \in [0, T ],

M (r) = hxx( \=X(T ))+

\int T

r

\Bigl[ 
bx(t)

\top M (t)+\sigma x(t)
\top N (t)+M (t)bx(t)

+N (t)\sigma x(t) +Hxx(t)+\sigma x(t)
\top M (t)\sigma x(t)

\Bigr] 
dt - 

\int T

r

N (t)dW (t),

(6.7)

where

N (t)
\bigtriangleup 
=\scrQ 2(t) +

\int T

t

\scrQ 4(s, t)ds.(6.8)

To this end, we observe the following: For the equation of P2, one has\int T

r

\bigl[ 
P2(s) + P2(s)

\top \bigr] ds
=

\int T

r

\Bigl\{ 
bx(s)

\top Es\scrP 2(s) + \sigma x(s)
\top \scrQ 2(s) +Es\scrP 2(s)

\top bx(s) +\scrQ 2(s)
\top \sigma x(s)

\Bigr\} 
ds.
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SPIKE VARIATIONS OF SVIES 3631

For the equation of P3, one has\int T

r

P3(t)dt=

\int T

r

Hxx(t)dt+

\int T

r

\sigma x(t)
\top Et\scrP 3(t)\sigma x(t)dt.

For the equation of P4, we have\int T

r

\int T

t

P4(s, t)dsdt=

\int T

r

\int T

t

\Bigl[ 
bx(t)

\top Es\scrP 4(s, t) + \sigma x(t)
\top \scrQ 4(s, t)

\Bigr] 
dsdt.

Therefore,

\scrP 3(r) = hxx( \=X(T )) +

\int T

r

\Bigl[ 
bx(t)

\top M (t) + \sigma x(t)
\top N (t) +M (t)bx(t)

+N (t)\sigma x(t) +Hxx(t) + \sigma x(t)
\top M (t)\sigma x(t)

\Bigr] 
dt,

(6.9)

where N (\cdot ) is defined in (6.8).
By the definitions of Q2, Q3, and Fubini's theorem, we see that\int T

r

Pi(t)dt=Er

\int T

r

Pi(t)dt+

\int T

r

\int T

s

Qi(t, s)dtdW (s), i= 2,3.(6.10)

Using Fubini's theorem, we have\int T

r

\int T

t

\int t

r

Q4(s, t, \theta )dW (\theta )dsdt=

\int T

r

\int T

\theta 

\int T

t

Q4(s, t, \theta )dsdtdW (\theta ).

Therefore,\int T

r

\int T

t

\bigl[ 
P4(s, t) + P4(s, t)

\top \bigr] dsdt=Er

\int T

r

\int T

t

\bigl[ 
P4(s, t) + P4(s, t)

\top \bigr] dsdt
+

\int T

r

\int T

\theta 

\int T

t

\bigl[ 
Q4(s, t, \theta ) +Q4(s, t, \theta )

\top \bigr] dsdtdW (\theta ).

(6.11)

Combining (6.10) and (6.11), we have

\scrP 3(r) =M (r) +

\int T

r

N (\theta )dW (\theta ).

Consequently, by (6.9) we have BSDE (6.7), the second-order adjoint equation.
To sum up, the maximum condition (6.4), the first-order adjoint equation (6.5)

and the second-order adjoint equation (6.7) form the Pontryagin's maximum principle
for optimal control of FSDEs.

6.3. Multiperson dynamic games for FSVIEs. For integer N \geqslant 2, we con-
sider an N -person dynamic game for an FSVIE. In this case, the cost functional is
defined as in (1.2), where h : \Omega \times Rn \rightarrow RN , g : [0, T ]\times \Omega \times Rn\times Rm \rightarrow RN are vector-
valued functions. For simplicity, we only discuss the noncooperative dynamic games,
namely, the \ell th player in the game wants to minimize his/her own cost functional
J\ell (u(\cdot )) (1\leqslant \ell \leqslant N), regardless of other players' cost functional.

Let u(\cdot ) = (u1(\cdot ), u2(\cdot ), . . . , uN (\cdot )) with u\ell (\cdot )\in \scrU \ell 
ad. Here \scrU \ell 

ad is defined associated
with U\ell \subset Rm\ell , 1\leqslant \ell \leqslant N . For notational simplicity, let

(uc
\ell , v)

\bigtriangleup 
= (u1, . . . , u\ell  - 1, v, u\ell +1, . . . , uN ), 1\leqslant \ell \leqslant N.
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3632 TIANXIAO WANG AND JIONGMIN YONG

Then player \ell selects u\ell (\cdot )\in \scrU \ell 
ad to minimize the functional

v(\cdot ) \mapsto \rightarrow J\ell (uc
\ell (\cdot ), v(\cdot ))\equiv J\ell (u1(\cdot ), . . . , u\ell  - 1, v(\cdot ), u\ell +1, . . . , uN (\cdot )).

Obviously, J\ell (u(\cdot )) not only depends on u\ell (\cdot ), but also uk(\cdot ), k \not = \ell . Therefore, the
optimal control of Player \ell depends on the controls of the other players.

Definition 6.3. An N -tuple \=u(\cdot ) = (\=u1(\cdot ), \cdot \cdot \cdot , \=uN (\cdot )) \in 
\prod N

\ell =1 \scrU \ell 
ad is called an

open-loop Nash equilibrium of the game if the following holds:

J\ell (\=u(\cdot ))\leqslant J\ell (\=uc
\ell (\cdot ), v(\cdot )) \forall v(\cdot )\in \scrU \ell 

ad, 1\leqslant \ell \leqslant N.

We have the following Pontryagin type maximum principle for Nash equilibria of
the N -person dynamic game of FSVIEs. To state the result, let (\eta \ell , \zeta \ell , Y \ell ,Z\ell ) be the
solution of (3.2) associated with (h\ell 

x( \=X(T )), g\ell x(\cdot )). Then we define H\ell (\cdot ) as in (3.3)
accordingly. Similarly, with (h\ell 

xx,H
\ell 
xx), let (P

\ell 
1 , P

\ell 
2 , P

\ell 
3 , P

\ell 
4 ) be the solution of (4.22).

Theorem 6.4. Let (H1)--(H2) hold with g and h being RN -valued. Let \=u =
(\=u1(\cdot ), . . . , \=uN (\cdot ))\in 

\prod N
\ell =1 \scrU \ell 

ad be a Nash equilibrium of the game. Then for any u\in U \ell ,

H\ell (\tau , \=X(\tau ), \=uc
\ell (\tau ), u, \eta 

\ell (\tau ), \zeta \ell (\tau ), Y \ell (\cdot ),Z\ell (\cdot , \tau ))
 - H\ell (\tau , \=X(\tau ), \=u(\tau ), \eta \ell (\tau ), \zeta \ell (\tau ), Y \ell (\cdot ),Z\ell (\cdot , \tau ))

+
1

2

\Biggl\{ 
\delta \sigma (T, \tau )\top P \ell 

1 (\tau )\delta \sigma (T, \tau ) +E\tau 

\int T

\tau 

\Biggl[ 
\delta \sigma (T, \tau )\top P \ell 

2 (\theta )
\top \delta \sigma (\theta , \tau )

+\delta \sigma (\theta , \tau )\top P \ell 
2 (\theta )\delta \sigma (T, \tau ) + \delta \sigma (\theta , \tau )\top P \ell 

3 (\theta )\delta \sigma (\theta , \tau )d\theta 

+

\int T

\theta 

\bigl[ 
\delta \sigma (\theta \prime , \tau )\top P \ell 

4 (\theta 
\prime , \theta )\top \delta \sigma (\theta , \tau ) + \delta \sigma (\theta , \tau )\top P \ell 

4 (\theta 
\prime , \theta )\delta \sigma (\theta \prime , \tau )

\bigr] 
d\theta \prime 

\Biggr] 
d\theta 

\Biggr\} 
\geqslant 0.

Let us continue to look at a special case: the two-person zero-sum dynamical
games. In this case, N = 2, and J1(\=u(\cdot )) + J2(\=u(\cdot )) = 0. Now, if (\=u1(\cdot ), \=u2(\cdot )) \in 
\scrU 1
ad \times \scrU 2

ad is a Nash equilibrium, then

J1(\=u1(\cdot ), \=u2(\cdot ))\leqslant J1(u1(\cdot ), \=u2(\cdot )) \forall u1(\cdot )\in \scrU 1
ad,

J2(\=u1(\cdot ), \=u2(\cdot ))\leqslant J2(\=u1(\cdot ), u2(\cdot )) \forall u2(\cdot )\in \scrU 2
ad.

This also implies that (denoting \=J(u(\cdot )) = J1(u(\cdot )))

\=J(\=u1(\cdot ), u2(\cdot ))\leqslant \=J(\=u1(\cdot ), \=u2(\cdot ))\leqslant \=J(u1(\cdot ), \=u2(\cdot )).

Hence (\=u1(\cdot ), \=u2(\cdot )) is referred to as a saddle point of the game. In this case, to
state the maximum principle, let (\eta , \zeta ,Y,Z,Pi) satisfies (3.2), (4.22) associated with
(h1, g1). We define

H (\tau ,u1, u2)
\bigtriangleup 
=H(\tau , \=X(\tau ), u1, u2, \eta (\tau ), \zeta (\tau ), Y (\cdot ),Z(\cdot , \tau ))

=
1

2

\Biggl\{ 
\delta \sigma (T, \tau )\top P1(\tau )\delta \sigma (T, \tau ) +E\tau 

\int T

\tau 

\Biggl[ 
\delta \sigma (T, \tau )\top P2(\theta )

\top \delta \sigma (\theta , \tau )

+\delta \sigma (\theta , \tau )\top P2(\theta )\delta \sigma (T, \tau ) + \delta \sigma (\theta , \tau )\top P3(\theta )\delta \sigma (\theta , \tau )d\theta 

+

\int T

\theta 

\bigl[ 
\delta \sigma (\theta \prime , \tau )\top P4(\theta 

\prime , \theta )\top \delta \sigma (\theta , \tau )+\delta \sigma (\theta , \tau )\top P4(\theta 
\prime , \theta )\delta \sigma (\theta \prime , \tau )

\bigr] 
d\theta \prime 

\Biggr] 
d\theta 

\Biggr\} 
.
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SPIKE VARIATIONS OF SVIES 3633

Theorem 6.5. Let (H1)--(H2) hold with g and h being R2-valued. Suppose (\=u1(\cdot ),
\=u2(\cdot ))\in \scrU 1

ad \times \scrU 2
ad is the saddle point of the game. Then

H (\tau , \=u1(\tau ), u2)\leqslant H (\tau , \=u1(\tau ), \=u2)\leqslant H (\tau ,u1(\tau ), \=u2) \forall (u1, u2)\in U1 \times U2.

7. Concluding remarks. In this paper, we have developed a spike variation
technique for optimal controls of FSVIEs and obtained Pontryagin's type maximum
principle. One main contribution is the derivation of the second-order adjoint equation
which is different from standard BSVIE. Thus its well-posedness is a part of novelty.
The developed methodologies are expected to be extended/adjusted in more general
framework, such as the infinite horizon case, the infinite-dimensional case, or the
forward-backward SVIEs case. We hope to show more results in the future.

In this article, we have seen that for multiperson dynamic games of FSVIEs,
one can obtain the corresponding maximum principle for the Nash equilibria. It is
natural to ask what happens when N \rightarrow \infty ? Under certain structure conditions, this
will relate to mean-field games of FSVIEs. The relevant results will be reported in
our forthcoming work.
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