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LINEAR-QUADRATIC OPTIMAL CONTROLS FOR STOCHASTIC
VOLTERRA INTEGRAL EQUATIONS: CAUSAL STATE FEEDBACK

AND PATH-DEPENDENT RICCATI EQUATIONS*

HANXIAO WANG\dagger , JIONGMIN YONG\ddagger , AND CHAO ZHOU\S 

Abstract. A linear-quadratic optimal control problem for a forward stochastic Volterra integral
equation (FSVIE) is considered. Under the usual convexity conditions, open-loop optimal control
exists, which can be characterized by the optimality system, a coupled system of an FSVIE and a
type-II backward SVIE (BSVIE). To obtain a causal state feedback representation for the open-loop
optimal control, a path-dependent Riccati equation for an operator-valued function is introduced,
via which the optimality system can be decoupled. In the process of decoupling, a type-III BSVIE
is introduced whose adapted solution can be used to represent the adapted M-solution of the cor-
responding type-II BSVIE. Under certain conditions, it is proved that the path-dependent Riccati
equation admits a unique solution, which means that the decoupling field for the optimality system
is found. Therefore, a causal state feedback representation of the open-loop optimal control is con-
structed. An additional interesting finding is that when the control only appears in the diffusion
term, not in the drift term of the state system, the causal state feedback reduces to a Markovian
state feedback.

Key words. linear-quadratic optimal control, stochastic Volterra integral equation, optimal-
ity system, coupled forward-backward stochastic Volterra integral equation, decoupling field, path-
dependent Riccati equation, causal state feedback representation

MSC codes. 93E20, 49N10, 60H20, 45D05
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1. Introduction. Let (\Omega ,\scrF ,F,P) be a complete filtered probability space, on
which a one-dimensional standard Brownian motion W is defined, whose natural
filtration augmented by all the P-null sets in \scrF is denoted by F \equiv \{ \scrF s\} s\geq 0, and let
T > 0 be a fixed time horizon. For any t\in [0, T ), let Ft = \{ \scrF t

s\} s\geq 0 with

\scrF t
s =

\Biggl\{ 
\sigma 
\bigl( 
\{ W (s) - W (t)

\bigm| \bigm| s\geq t
\bigr\} 
\cup 
\bigl\{ 
N \in \scrF 

\bigm| \bigm| P(N) = 0\} 
\bigr) 
, s\in [t, T ],

\sigma 
\bigl( 
\{ N \in \scrF 

\bigm| \bigm| P(N) = 0\} 
\bigr) 
, s\in [0, t).

Clearly, F0 = F. Next, let Xt =C([t, T ];Rn) =
\bigl\{ 
xt : [t, T ]\rightarrow Rn | xt(\cdot ) is continuous

\bigr\} 
,

t \in [0, T ]. For each t \in [0, T ], Xt is a Banach space (of deterministic continuous
functions) under the norm \| xt(\cdot )\| = sups\in [t,T ] | xt(s)| . We will use xt(\cdot ) below to
denote an element in Xt to emphasize the role played by t. For any x0(\cdot ) \in X0, we
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2596 HANXIAO WANG, JIONGMIN YONG, AND CHAO ZHOU

usually write [x0]t(\cdot ) to represent x0(s); s \in [t, T ], the restriction of x0(\cdot ) on [t, T ],
or simply as xt(\cdot ). Similarly, for any xt(\cdot ) \in Xt, we simply write [xt]0(\cdot ) or x0(\cdot ) to
represent xt(s\vee t); s\in [0, T ], the extension of xt(\cdot ) to [0, T ]. Next, we introduce

(1.1) \Lambda =
\bigl\{ 
(t,xt(\cdot )) | t\in [0, T ), xt(\cdot )\in Xt

\bigr\} 
.

For any given free pair (t,xt(\cdot )) \in \Lambda , consider the following controlled linear forward
stochastic Volterra integral equation (FSVIE) on [t, T ]:

X(s) = xt(s) +

\int s

t

\bigl[ 
A(s, \tau )X(\tau ) +B(s, \tau )u(\tau )

\bigr] 
d\tau 

+

\int s

t

\bigl[ 
C(s, \tau )X(\tau ) +D(s, \tau )u(\tau )

\bigr] 
dW (\tau ), s\in [t, T ],(1.2)

where A,C : \Delta \ast [0, T ] \rightarrow Rn\times n, B,D : \Delta \ast [0, T ] \rightarrow Rn\times m are deterministic functions
satisfying proper conditions, called the coefficients of the state equation (1.2). Here,
\Delta \ast [0, T ] \triangleq \{ (s, r)

\bigm| \bigm| 0 \leq r \leq s \leq T\} is the lower triangle domain. The process u(\cdot ) is
called the control process, which belongs to the space

U [t, T ] =

\Biggl\{ 
u : [t, T ]\times \Omega \rightarrow Rm

\bigm| \bigm| u(\cdot ) is Ft-progressively measurable,

E
\int T

t

| u(\tau )| 2d\tau <\infty 

\Biggr\} 
,

and the corresponding solution X(\cdot )\equiv X(\cdot ; t,xt(\cdot ), u(\cdot )) of (1.2), which uniquely exists
under some proper conditions on the coefficients, is called a state process. To measure
the performance of the control u(\cdot ), we introduce the following cost functional:

J(t,xt(\cdot );u(\cdot )) =
1

2
Et

\Biggl\{ \int T

t

\bigl[ 
\langle Q(\tau )X(\tau ),X(\tau )\rangle + \langle R(\tau )u(\tau ), u(\tau )\rangle 

\bigr] 
d\tau 

+ \langle GX(T ),X(T )\rangle 

\Biggr\} 
,(1.3)

where G \in Sn, the set of all (n \times n) symmetric matrices; Q : [0, T ] \rightarrow Sn and R :
[0, T ]\rightarrow Sm are deterministic functions. The problem that we are going to study can
be stated as follows.

Problem (LQ-FSVIE). For any given free pair (t,xt(\cdot )) \in \Lambda , find a control
\=u(\cdot )\in U [t, T ] such that

(1.4) J(t,xt(\cdot ); \=u(\cdot ))\leq J(t,xt(\cdot );u(\cdot )) \forall u(\cdot )\in U [t, T ].

The above is called a linear-quadratic (LQ) optimal control problem for FSVIEs.
Any \=u(\cdot ) \in U [t, T ] satisfying (1.4) is called an (open-loop) optimal control of Prob-
lem (LQ-FSVIE) for the free pair (t,xt(\cdot )); the corresponding state process \=X(\cdot ) \equiv 
X(\cdot ; t,xt(\cdot ), \=u(\cdot )) is called an optimal state process ; and the function V (\cdot , \cdot ), defined by

(1.5) V (t,xt(\cdot ))\triangleq inf
u(\cdot )\in U [t,T ]

J(t,xt(\cdot );u(\cdot )) \forall (t,xt(\cdot ))\in \Lambda ,

is called the value function of Problem (LQ-FSVIE). We point out that the value
function, xt(\cdot ) \mapsto \rightarrow V (t,xt(\cdot )) is defined on the infinite dimensional Banach space Xt (of
deterministic continuous functions on [t, T ]). Moreover, by regarding Problem (LQ-
FSVIE) as an optimization of the quadratic functional on U [t, T ], with the parameter
(t,xt(\cdot )), we expect that the value function has the following quadratic form:
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LQ PROBLEMS FOR SVIE\mathrm{S}: CAUSAL STATE FEEDBACK 2597

(1.6) V (t,xt(\cdot )) =
1

2
P (t)

\bigl( 
xt(\cdot ),xt(\cdot )

\bigr) 
\forall (t,xt(\cdot ))\in \Lambda .

Here, for any t\in [0, T ], P (t) is a symmetric bilinear functional on Xt \times Xt.
When the coefficients A(s, \tau ), B(s, \tau ), C(s, \tau ), and D(s, \tau ) are independent

of s and the free pair (t,xt(\cdot )) \equiv (t, x), which is called an initial pair, for some
x\in Rn, Problem (LQ-FSVIE) reduces to a classical LQ optimal control for stochastic
differential equations (SDEs), denoted by Problem (LQ-SDE). This has occupied a
main part of the center stage for a long time in control theory. Since we prefer not
to conduct a lengthy survey on the literature of Problem (LQ-SDE), let us just list
some books [40, 4, 30, 31], where good surveys and tutorials along with extensive
references (up to that time) can be found. It is well known by now that (see [40,
Chapter 6], for example), Problem (LQ-SDE) can be solved by the following three
steps in general: (i) By a variational method, the optimality system is derived, which
is a coupled forward-backward SDE (FBSDE); (ii) the optimality system is decoupled
by introducing the associated Riccati equation, which is solvable under certain con-
ditions; and (iii) the optimal control is represented as a (Markovian) state feedback
in terms of of the solution to the Riccati equation. This gives a very satisfactory
solution to Problem (LQ-SDE) and provides a very good prototype of studying
coupled FBSDEs as well. In recent years, FSVIEs have received more and more
attention due to their applications in rough volatility models of mathematical finance;
see, for example, Comte and Renault [6], Gatheral, Jaisson, and Rosenbaum [12], El
Euch and Rosenbaum [9, 10], and Viens and Zhang [32]. In the control theory, the
optimal control problem for general FSVIEs has been also widely studied, even before
the above-mentioned literature of rough volatility appeared. Under the assumption
that the control domain is convex, the maximum principle (MP) for FSVIEs was first
established by Yong [39], in which the so-called type-II backward stochastic Volterra
integral equations (BSVIEs) were introduced as the associated adjoint equations. See
[3, 28, 37, 36, 14] for some further results on the MP for FSVIEs. More recently, the
dynamical programming principle (DPP) for FSVIEs was first established by Viens
and Zhang [32] by lifting the state space into the space of continuous functions. We
point out that in [32] a functional It\^o formula for FSVIEs was established, which
serves as a fundamental tool in the current paper. On the other hand, for LQ problems
of FSVIEs, namely, for Problem (LQ-FSVIE), some early stage of investigation can
be found in Chen and Yong [5], Yong [39, section 5], and Wang [35], where the authors
studied the corresponding MP under different assumptions, but the associated Riccati
equation was not concerned at all. In Abi Jaber, Miller, and Pham [1, 2], the associ-
ated Riccati equation was derived, which, of course, brought some new insights into
the LQ theory of FSVIEs. However, their problem was formulated only in the case of
convolution form; that is, \alpha (s, \tau ) = \alpha (s - \tau ) for \alpha (\cdot , \cdot ) =A(\cdot , \cdot ),B(\cdot , \cdot ),C(\cdot , \cdot ),D(\cdot , \cdot ),
and one cannot directly extend the results in [1, 2] to the general LQ problems of
FSVIEs, because of the limitation in their lifting methods.

We emphasize that in all the works mentioned above, the general question of how
to decouple the optimality system associated with Problem (LQ-FSVIE) has not been
touched. In other words, the crucial step (ii) in the standard path of solving Problem
(LQ-SDE) mentioned above is completely missing for the case of FSVIEs. As a result,
step (iii) for general FSVIEs does not have its foundation. In our opinion, this step (ii),
which is essentially an analytic approach to the coupled system of linear FBSVIEs,
is more important than solving Problem (LQ-FSVIE) itself, because on one hand, it
links the Hamiltonian system and the (fully nonlinear) path-dependent HJB equation
of controlled FSVIEs, and on the other hand, it provides some important prototypes

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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2598 HANXIAO WANG, JIONGMIN YONG, AND CHAO ZHOU

for decoupling general coupled FBSVIEs. We refer the reader to Ma, Protter, and
Yong [22], Delarue [7], Yong [38], Ma, et al. [23], and the books of Ma and Yong [24]
and Zhang [41] for the related results in the SDE setting. From this point of view, we
may also say that the main objective of the current paper is to explore the decoupling
method of linear FBSVIEs (i.e., the famous four-step scheme of Ma, Protter, and
Yong [22] for linear FBSVIEs), taking Problem (LQ-FSVIE) as a carrier, which needs
a completely new creative method.

By a variational method and the duality principle of Yong [39], we can obtain the
following optimality system associated with Problem (LQ-FSVIE) (see Theorem 3.3):
Let ( \=X(\cdot ), \=u(\cdot )) be an open-loop optimal pair. Then

(1.7) R(s)\=u(s) + Y 0(s) = 0, s\in [t, T ],

with

(1.8)

\left\{                                             

\=X(s) = xt(s) +

\int s

t

\bigl[ 
A(s, \tau ) \=X(\tau ) +B(s, \tau )\=u(\tau )

\bigr] 
d\tau 

+

\int s

t

\bigl[ 
C(s, \tau ) \=X(\tau ) +D(s, \tau )\=u(\tau )

\bigr] 
dW (\tau ),

\eta (s) =G \=X(T ) - 
\int T

s

\zeta (\tau )dW (\tau ),

Y (s) =Q(s) \=X(s) +A(T, s)\top G \=X(T ) +C(T, s)\top \zeta (s)

+

\int T

s

\bigl[ 
A(\tau , s)\top Y (\tau ) +C(\tau , s)\top Z(\tau , s)

\bigr] 
d\tau  - 

\int T

s

Z(s, \tau )dW (\tau ),

Y 0(s) =B(T, s)\top G \=X(T ) +D(T, s)\top \zeta (s)

+

\int T

s

\bigl[ 
B(\tau , s)\top Y (\tau ) +D(\tau , s)\top Z(\tau , s)

\bigr] 
d\tau  - 

\int T

s

Z0(s, \tau )dW (\tau ).

Basically, the above is the MP for Problem (LQ-FSVIE), that is, the step (i)
mentioned above associated with Problem (LQ-FSVIE). Note that in the above (1.8),
the second equation is a BSDE with unknown (\eta (\cdot ), \zeta (\cdot )); the third is called a type-II
BSVIE with unknown (Y (\cdot ),Z(\cdot , \cdot )), whose main feature is that both Z(s, \tau ) and
Z(\tau , s) appear; the last equation is a type-I BSVIE with unknown (Y 0(\cdot ),Z0(\cdot , \cdot )),
whose free term and drift term are known processes from the first three equations.
Therefore, system (1.8) is a fully coupled FBSVIE, with the coupling being through
(1.7).

It is not hard to see that the representation of the optimal control obtained from
(1.7) (assuming R(s) to be invertible for all s\in [0, T ]) is not practically feasible. The
reason is that in determining Y 0(s), future information \=X(r); r \in [s,T ] of the optimal
state process \=X(\cdot ) is involved. In the classical LQ theory (either for ODEs or SDEs),
under proper conditions, the optimality system (which is a two-point boundary value
problem for ODEs, or an FBSDE for SDEs) can be decoupled by the solution to a
proper Riccati equation. Further, the state feedback representation of the open-loop
optimal control can be obtained as a by-product. See [40, Chapter 6] for the standard
LQ problems of ODEs and SDEs. The main tool used in the decoupling procedure
for SDEs is the (classical) It\^o formula (and the chain rule for ODEs). However, for
FBSVIEs, the classical It\^o formula is not applicable. By looking at the problem
more deeply, one realizes that the decoupling technique essentially relies on the flow
property of the equations, or some kind of semigroup property of the dynamic system.
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LQ PROBLEMS FOR SVIE\mathrm{S}: CAUSAL STATE FEEDBACK 2599

Unfortunately, the controlled FSVIE in the optimality system does not satisfy the flow
property in the standard sense. In fact, for t\leq r < s\leq T ,

\=X(s) \not = \=X(r) +

\int s

r

\bigl[ 
A(s, \tau ) \=X(\tau ) +B(s, \tau )\=u(\tau )

\bigr] 
d\tau 

+

\int s

r

\bigl[ 
C(s, \tau ) \=X(\tau ) +D(s, \tau )\=u(\tau )

\bigr] 
dW (\tau ),(1.9)

due to which the usual decoupling method for SDEs (see Ma, Protter, and Yong [22],
called the four-step scheme) cannot be applied here, and the corresponding Riccati-
type equation, which plays the role of a decoupling field (see Delarue [7] and Ma et al.
[23]), is completely unclear from this path. Indeed, this problem has been widely open
for more than ten years (see [5, 39] for some early suggestions by the second author
of this paper on the topic).

Recently, Viens and Zhang [32] and Wang, Yong, and Zhang [34] have developed
a theory establishing some relations between decoupled type-I FBSVIEs and semilin-
ear path-dependent PDEs, which are natural and significant extensions of the famous
(path-dependent) nonlinear Feynman--Kac formula (see Pardoux and Peng [25], Peng
and Wang [26], and Ekren et al. [8] for examples) to the FBSVIEs. These results pro-
vide some hope for our decoupling of the optimality system of Problem (LQ-FSVIE).

We now briefly describe the main clue of this paper. Let ( \=X(\cdot ), \=u(\cdot )) be an open-
loop optimal pair. First, inspired by [32], we introduce the following auxiliary process
\=\scrX (\cdot , \cdot ) with two time variables:

\=\scrX (s, r) = xt(s) +

\int r

t

\bigl[ 
A(s, \tau ) \=X(\tau ) +B(s, \tau )\=u(\tau )

\bigr] 
d\tau 

+

\int r

t

\bigl[ 
C(s, \tau ) \=X(\tau ) +D(s, \tau )\=u(\tau )

\bigr] 
dW (\tau ), t\leq r\leq s\leq T.

Then the flow property holds for the state process \=X(\cdot ) in the following sense:

\=X(s) = \=\scrX (s, r) +

\int s

r

\bigl[ 
A(s, \tau ) \=X(\tau ) +B(s, \tau )\=u(\tau )

\bigr] 
d\tau 

+

\int s

r

\bigl[ 
C(s, \tau ) \=X(\tau ) +D(s, \tau )\=u(\tau )

\bigr] 
dW (\tau ), t\leq r\leq s\leq T.

It is worth pointing out that if r is the current time, then for s \in [r,T ], s \mapsto \rightarrow \=\scrX (s, r)
only depends on the history \{ ( \=X(\tau ), \=u(\tau ))

\bigm| \bigm| \tau \in [t, r]\} of the optimal pair ( \=X(\cdot ), \=u(\cdot ))
and no future information of the state and control is involved. Therefore, we say
that s \mapsto \rightarrow \=\scrX (s, r) is causal. Next, we are trying to express the optimal control in the
following manner:

(1.10) \=u(r) =\Theta (r) \=\scrX (\cdot , r), r \in [t, T ],

where \Theta (r) : Xr \rightarrow Rm is a bounded linear operator which can be determined by
the coefficients of the state equation and the weighting matrix functions in the cost
functional. As s \mapsto \rightarrow \=\scrX (s, r) is causal, the above representation implies that the value
\=u(r) of the optimal control \=u(\cdot ) at current time r does not involve future information
of the corresponding state process \=X(\cdot ). Thus, we call the above (1.10) a casual state
feedback representation of optimal control \=u(\cdot ) (see Definition 2.5). Such a path is
basically the analogue of steps (ii) and (iii) for solving classical LQ problems of ODEs
and SDEs. The idea is pretty natural. But to achieve the goal, namely to determine
the operator \Theta (\cdot ), is by no means trivial.
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2600 HANXIAO WANG, JIONGMIN YONG, AND CHAO ZHOU

We now highlight the main contributions of this paper.
\bullet We derive the (path-dependent) Riccati equation (4.10) for the bilinear operator-

valued function P (\cdot ), through which the operator \Theta (\cdot ) can be determined. Note that
if we mimicked the four-step scheme for FBSDEs (see [22, 24, 40]) trying to decouple
the optimality system, we would encounter some difficulties that seem impossible to
overcome. To get around this, we first make use of the above flow property and the
functional It\^o formula established in [32] to derive the path-dependent HJB equation
for the value function V (t,xt(\cdot )) (see (4.5)), and from that we correctly identify the
Riccati equation for the bilinear operator-valued function P (\cdot ), whose coefficients are
path-dependent. In the process of deriving the (path-dependent) Riccati equation, a
key point is that the value function at time r \in [t, T ] can be uniquely determined by
the auxiliary process \=\scrX (\cdot , r) on [r,T ], without using the state process \=X(\cdot )| [0,r]. This
is a new feature of our paper compared with [32, 34].

\bullet We introduce a type-III BSVIE whose adapted solution can be used to rep-
resent the adapted M-solution of the type-II BSVIEs in the adjoint equation (see
Proposition 3.5), which will play a crucial role in decoupling the optimality system
via the solution of Riccati equation (4.10). By a type-III BSVIE, we mean a BSVIE
that contains the diagonal value Z(s, s) of Z(\cdot , \cdot ) in the drift. Such an equation
was introduced by Wang and Yong [33] the first time and has been widely used in
[16, 13, 17, 19, 18] while studying time-inconsistent optimal control problems. We
coin the name of type-III BSVIEs (for the first time) here to distinguish this kind of
equation from the other two types of BSVIEs. With such a relation, the optimality
condition for Problem (LQ-FSVIE) can be characterized by a type-III BSVIE (see
Theorem 3.6). From this, we are able to successfully decouple the optimality system
(see Theorem 5.1) of Problem (LQ-FSVIE). The method is significantly different from
that for Problem (LQ-SDE).

\bullet We prove the existence and uniqueness of the strongly regular solution P (\cdot ) to
the path-dependent Riccati equation (4.10) by an analytic method, under the following
standard condition:

(1.11) Q(s)\geq 0, R(s)\geq \lambda Im, s\in [0, T ]; G\geq 0,

where \lambda > 0 is a given constant (see Definition 4.1 and Theorem 6.1). It follows that
the (fully nonlinear) path-dependent HJB equation (4.5) admits a unique classical
solution, and the decoupling field of the optimality system really exists. Note that
for any t \in [0, T ], P (t) is a bilinear functional on Xt \times Xt, which is a Banach space
depending on t (rather than a Hilbert space). This feature makes it different from the
operator-valued Riccati equation derived from the LQ control problems for (stochas-
tic) evolution equation (see [20, 21] for examples). Moreover, we see that the form of
(4.10) is very similar to the classical stochastic Riccati equation (see (4.14)), except
that the range of P (\cdot ) is not a Euclidean space. Needless to say, the form of (4.10) is
more natural than the ones derived in [1, 2].

\bullet An additional interesting finding is that when the drift term is not controlled,
the causal state feedback representation of the optimal control will reduce to a Mar-
kovian state feedback, which means that the value \=u(s) of the optimal control \=u(\cdot ) at
current time s only depends on the current state \=X(s) (see Remark 5.3). Moreover,
using the solution of the path-dependent Riccati equation, we can obtain a repre-
sentation for (Es[Y (\cdot )]1[s,T ](\cdot ),Z(\cdot , s)1[s,T ](\cdot )) in the dual space of Xs \equiv C([s,T ];Rn)
(see Theorem 5.5), by regarding it as a bounded linear functional on Xs.

The rest of the paper is organized as follows. Section 2 collects some preliminary
results. In section 3, the optimality system associated with Problem (LQ-FSVIE) is
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LQ PROBLEMS FOR SVIE\mathrm{S}: CAUSAL STATE FEEDBACK 2601

derived. We introduce the path-dependent Riccati equation in section 4 and establish
the decoupling method for the optimality system in section 5. Finally, in section 6
the well-posedness of the Riccati equation is established.

2. Preliminaries. Throughout this paper, we let T > 0 be a fixed time horizon
and denote

\Delta \ast [t, T ] =
\bigl\{ 
(s, r)

\bigm| \bigm| t\leq r\leq s\leq T
\bigr\} 
, \Delta \ast [t, T ] =

\bigl\{ 
(s, r)

\bigm| \bigm| t\leq s\leq r\leq T
\bigr\} 
,

which are the lower and the upper triangle domains in [t, T ]2, respectively. For any
Euclidean space H which could be Rn\times m, or Sn, and so on, we introduce the following
spaces: For any t\in [0, T ) (with \scrB ([t, T ]) being the Borel \sigma -field of [t, T ]),

L\infty (t, T ;H) =
\bigl\{ 
\varphi : [t, T ]\rightarrow H | \varphi (\cdot ) is essentially bounded

\bigr\} 
,

L2
\scrF t

T
(t, T ;H) =

\Biggl\{ 
\varphi : [t, T ]\times \Omega \rightarrow H

\bigm| \bigm| \varphi (\cdot ) is \scrB ([t, T ])\otimes \scrF t
T -measurable,

E
\int T

t

| \varphi (\tau )| 2d\tau <\infty 

\Biggr\} 
,

L2
Ft(t, T ;H) =

\Bigl\{ 
\varphi (\cdot )\in L2

\scrF t
T
(t, T ;H)

\bigm| \bigm| \varphi (\cdot ) is Ft-progressively measurable on [t, T ]
\Bigr\} 
,

L2
Ft(\Omega ;C([t, T ];H)) =

\Biggl\{ 
\varphi (\cdot )\in L2

Ft(t, T ;H)
\bigm| \bigm| \varphi (\cdot )has continuous paths,

E

\Biggl[ 
sup

s\in [t,T ]

| \varphi (s)| 2
\Biggr] 
<\infty 

\Biggr\} 
,

L2
Ft([t, T ]2;H) =

\Biggl\{ 
\varphi : [t, T ]2 \times \Omega \rightarrow H

\bigm| \bigm| \varphi (s, \cdot )\in L2
Ft(t, T ;H), a.e. s\in [t, T ],

E
\int T

t

\int T

t

| \varphi (s, \tau )| 2d\tau ds <\infty 

\Biggr\} 
,

L2
Ft(\Delta \ast [t, T ];H) =

\Biggl\{ 
\varphi :\Delta \ast [t, T ]\times \Omega \rightarrow H

\bigm| \bigm| \varphi (s, \cdot )\in L2
Ft(s,T ;H), a.e. s\in [t, T ],

esssups\in [t,T ]E
\int T

s

| \varphi (s, \tau )| 2d\tau <\infty 

\Biggr\} 
,

L2
Ft(\Omega ;C(\Delta \ast [t, T ];H)) =

\Biggl\{ 
\varphi :\Delta \ast [t, T ]\times \Omega \rightarrow H

\bigm| \bigm| \varphi (s, \cdot )\in L2
Ft(\Omega ;C([t, s];H)),

s\in [t, T ], the map (s, r) \mapsto \rightarrow \varphi (s, r) is jointly continuous,

E

\Biggl[ 
sup

(s,r)\in \Delta \ast [t,T ]

| \varphi (s, r)| 2
\Biggr] 
<\infty 

\Biggr\} 
.

Similarly, one can define the spaces L\infty (\Delta \ast [t, T ];H) and L2
Ft(\Omega ;C([t, T ]2;H)).

2.1. Basic results for FSVIEs and BSVIEs. For the state equation (1.2)
and the cost functional (1.3), we impose the following assumptions.

(H1) The coefficients A,C : \Delta \ast [0, T ] \rightarrow Rn\times n and B,D : \Delta \ast [0, T ] \rightarrow Rn\times m of the
state equation (1.2) are (deterministic) bounded and partially differentiable
with respect to the two variables, with bounded derivatives.
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2602 HANXIAO WANG, JIONGMIN YONG, AND CHAO ZHOU

(H2) The weighting coefficients in the cost functional (1.3) satisfy

Q(\cdot )\in L\infty (0, T ;Sn), R(\cdot )\in L\infty (0, T ;Sm), G\in Sn.

Applying the results of Ruan [27], we have the following result.

Lemma 2.1. Let (H1) hold. Then for any (t,xt(\cdot )) \in \Lambda and u(\cdot ) \in U [t, T ], state
equation (1.2) admits a unique solution X(\cdot ) \equiv X(\cdot ; t,xt(\cdot ), u(\cdot )) \in L2

Ft(\Omega ;C([t, T ];
Rn)). Moreover, there exists a constant K > 0, independent of (t,xt(\cdot )) \in \Lambda and
u(\cdot )\in U [t, T ], such that

E

\Biggl[ 
sup

s\in [t,T ]

| X(s)| 2
\Biggr] 
\leq K

\Biggl[ 
sup

s\in [t,T ]

| xt(s)| 2 +E
\int T

t

| u(s)| 2ds

\Biggr] 
.(2.1)

From Lemma 2.1, we see that Problem (LQ-FSVIE) is well formulated under the
assumptions (H1) and (H2). The differentiability of A(\cdot , \cdot ), B(\cdot , \cdot ), C(\cdot , \cdot ), and D(\cdot , \cdot )
with respect to the first variable plays an important role in the proof of Lemma 2.1.
The differentiability of C(\cdot , \cdot ) and D(\cdot , \cdot ) with respect to the second variable will be
used in the proof of Proposition 3.5. Since we mainly focus on the form of the associ-
ated Riccati equation (or the decoupling field of the optimality system) in this paper,
we prefer not to pursue the weakest possible conditions to simplify our presentation.

We now recall some fundamental results of the following type-II linear BSVIEs:

(2.2) Y (s) = \psi (s) +

\int T

s

\bigl[ 
\scrA (s, \tau )Y (\tau ) + \scrC (s, \tau )Z(\tau , s)

\bigr] 
d\tau  - 

\int T

s

Z(s, \tau )dW (\tau ),

which can be found in Yong [39].

Definition 2.2. A pair of processes (Y (\cdot ),Z(\cdot , \cdot ))\in L2
Ft(t, T ;Rn)\times L2

Ft([t, T ]2;Rn)
is called an adapted M-solution to BSVIE (2.2) if (2.2) is satisfied in the usual It\^o
sense for the Lebesgue measure almost every t\leq s\leq T and, in addition, the following
holds:

(2.3) Y (s) =Et[Y (s)] +

\int s

t

Z(s, \tau )dW (\tau ), t\leq s\leq T.

Lemma 2.3. Let \scrA (\cdot , \cdot ),\scrC (\cdot , \cdot ) \in L\infty (\Delta \ast [t, T ];Rn\times n). Then for any \psi (\cdot ) \in 
L2
\scrF t

T
(t, T ;Rn), BSVIE (2.2) admits a unique adapted M-solution (Y (\cdot ),Z(\cdot , \cdot )) \in 

L2
Ft(t, T ;Rn)\times L2

Ft([t, T ]2;Rn).

Let \scrL (Xt;Rm) be the set of all bounded Rm-valued linear functionals on Xt, with
the norm \| \cdot \| \scrL defined by

\| L\| \scrL \triangleq sup
\| xt(\cdot )\| \leq 1

| Lxt(\cdot )| \forall L\in \scrL (Xt;Rm).

Let L\infty (0, T ;\scrL (Xs;Rm)) be the set of all bounded \scrL (Xs;Rm)-valued functions defined
on [0, T ]. In other words, for any L(\cdot )\in L\infty (0, T ;\scrL (Xs;Rm)),

L(s)\in \scrL (Xs;Rm), a.e. s\in [0, T ], and esssups\in [0,T ]\| L(s)\| \scrL <\infty .

For any \Theta (\cdot )\in L\infty (0, T ;\scrL (Xs;Rm)), we consider the closed-loop auxiliary system,

\scrX (s, r) = xt(s) +

\int r

t

\bigl[ 
A(s, \tau )X(\tau ) +B(s, \tau )\Theta (\tau )\scrX (\cdot , \tau )

\bigr] 
d\tau 

+

\int r

t

\bigl[ 
C(s, \tau )X(\tau ) +D(s, \tau )\Theta (\tau )\scrX (\cdot , \tau )

\bigr] 
dW (\tau ), (s, r)\in \Delta \ast [t, T ],(2.4)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

04
/0

9/
24

 to
 5

.1
98

.1
37

.2
5 

. R
ed

is
tri

bu
tio

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.si

am
.o

rg
/te

rm
s-

pr
iv

ac
y



LQ PROBLEMS FOR SVIE\mathrm{S}: CAUSAL STATE FEEDBACK 2603

and the closed-loop system,

X(s) = xt(s) +

\int s

t

\bigl[ 
A(s, \tau )X(\tau ) +B(s, \tau )\Theta (\tau )\scrX (\cdot , \tau )

\bigr] 
d\tau 

+

\int s

t

\bigl[ 
C(s, \tau )X(\tau ) +D(s, \tau )\Theta (\tau )\scrX (\cdot , \tau )

\bigr] 
dW (\tau ), s\in [t, T ].(2.5)

We have the following well-posedness results of the above systems.

Proposition 2.4. Let (H1) hold. Then for any (t,xt(\cdot )) \in \Lambda and \Theta (\cdot ) \in 
L\infty (0, T ;\scrL (Xs;Rm)), the auxiliary closed-loop system (2.4) and the closed-loop sys-
tem (2.5) admit unique solutions \scrX (\cdot , \cdot ) \in L2

Ft(\Omega ;C(\Delta \ast [t, T ];Rn)) and X(\cdot ) \in 
L2
Ft(\Omega ;C([t, T ];Rn)), respectively. Moreover, the relation \scrX (s, s) = X(s); s \in [t, T ]

holds.

Proof. Let us consider the following auxiliary systems with adapted solution
\~\scrX (\cdot , \cdot ) on [t, T ]\times [t, T ]:

\~\scrX (s, r) = xt(s) +

\int r

t

\bigl[ 
A(s\vee \tau , \tau ) \~\scrX (\tau , \tau ) +B(s\vee \tau , \tau )\Theta (\tau ) \~\scrX (\cdot , \tau )

\bigr] 
d\tau 

+

\int r

t

\bigl[ 
C(s\vee \tau , \tau ) \~\scrX (\tau , \tau ) +D(s\vee \tau , \tau )\Theta (\tau ) \~\scrX (\cdot , \tau )

\bigr] 
dW (\tau ).(2.6)

Then to obtain the desired results, it is sufficient to show the above system admits a
unique solution in L2

Ft(\Omega ;C([t, T ]2;Rn)).
For any S \in (t, T ] and x(\cdot , \cdot )\in L2

Ft(\Omega ;C([t, T ]\times [t,S];Rn)), we can uniquely define
the process \scrX (\cdot , \cdot ) on [t, T ]\times [t,S] as follows:

\scrX (s, r) = xt(s) +

\int r

t

\bigl[ 
A(s\vee \tau , \tau )x(\tau , \tau ) +B(s\vee \tau , \tau )\Theta (\tau )x(\cdot , \tau )

\bigr] 
d\tau 

+

\int r

t

\bigl[ 
C(s\vee \tau , \tau )x(\tau , \tau ) +D(s\vee \tau , \tau )\Theta (\tau )x(\cdot , \tau )

\bigr] 
dW (\tau ).

Denote \^\scrX (s, r) = \scrX (s, r) - xt(s); (s, r) \in [t, T ]\times [t,S]. For any fixed s\prime , s\prime \prime \in [t, T ], by
the B-D-G inequality, we have

E

\Biggl[ 
sup

r\in [t,S]

| \^\scrX (s\prime , r) - \^\scrX (s\prime \prime , r)| 2
\Biggr] 
\leq K(S  - t)E

\Biggl[ 
sup

(s,r)\in [t,T ]\times [t,S]

| x(s, r)| 2
\Biggr] 
| s\prime  - s\prime \prime | 2.

Then following the proof of Kolmogorov's criterion theorem (see [11, Theorem 3.1],
for example), for any given \alpha \in (0, 12 ), there exists a square-integrable random variable
C\alpha (\omega )> 0 such that

sup
r\in [t,S]

| \^\scrX (s\prime , r) - \^\scrX (s\prime \prime , r)| \leq C\alpha (\omega )| s\prime  - s\prime \prime | \alpha \forall s\prime , s\prime \prime \in 
\bigcup 
n

Dn, a.e.\omega \in \Omega ,

where for any positive integer n, Dn \triangleq \{ t + k T - t
2n | k = 0,1,2, . . . ,2n\} . For any

s \in [t, T ], there exists a sequence \{ sn\} \subseteq 
\bigcup 

nDn such that sn \rightarrow s. Clearly,
\{ \^\scrX (sn, \cdot )\} is a Cauchy sequence in C([t,S];Rn) almost surely. We denote the limit
of \{ \^\scrX (sn, \cdot )\} as n\rightarrow \infty by \v \scrX (s, \cdot ), which is independent of the choice of \{ sn\} . Since
limn\rightarrow \infty E[supr\in [t,S] | \^\scrX (sn, r)  - \^\scrX (s, r)| 2] = 0, we know that \v \scrX (s, \cdot ) = \^\scrX (s, \cdot ) almost

surely. We always consider the version \v \scrX (s, \cdot ) of \^\scrX (s, \cdot ) and still denote it by \^\scrX (s, \cdot ).
Then from the fact limn\rightarrow \infty supr\in [t,S] | \^\scrX (sn, r) - \^\scrX (s, r)| = 0, we have

sup
r\in [t,S]

| \^\scrX (s\prime , r) - \^\scrX (s\prime \prime , r)| \leq C\alpha (\omega )| s\prime  - s\prime \prime | \alpha \forall s\prime , s\prime \prime \in [t, T ], a.e.\omega \in \Omega .
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2604 HANXIAO WANG, JIONGMIN YONG, AND CHAO ZHOU

Note that for any fixed s \in [t, T ], there exists an \Omega s \subseteq \Omega with P(\Omega s) = 1 such that
r \mapsto \rightarrow \^\scrX (s, r)(\omega ) is continuous for any \omega \in \Omega s. By the arguments employed in the proof
of [34, Proposition 2.4], noting that

\bigcup 
nDn is countable and dense in [t, T ] and the

definition of \^\scrX (s, \cdot ) for s \in [t, T ]\setminus 
\bigl( \bigcup 

nDn

\bigr) 
, we can show that there exists an \Omega 1 \subseteq \Omega 

with P(\Omega 1) = 1 such that for any s \in [t, T ] and \omega \in \Omega 1, r \mapsto \rightarrow \^\scrX (s, r)(\omega ) is continuous.
It follows that \^\scrX (s, r) is jointly continuous in (s, r) almost surely. By the Kolmogorov
criterion theorem again (also see [32, Lemma 3.11]), we have

E

\Biggl[ 
sup

(s,r)\in [t,T ]\times [t,S]

| \^\scrX (s, r)| 2
\Biggr] 

\leq KE

\Biggl[ 
sup

r\in [t,S]

| \^\scrX (t, r)| 2
\Biggr] 
+K(S  - t)E

\Biggl[ 
sup

(s,r)\in [t,T ]\times [t,S]

| x(s, r)| 2
\Biggr] 

\leq K(S  - t)E

\Biggl[ 
sup

(s,r)\in [t,T ]\times [t,S]

| x(s, r)| 2
\Biggr] 
.(2.7)

Then from \scrX (s, r) = \^\scrX (s, r) + xt(s), we get \scrX (\cdot , \cdot ) \in L2
Ft(\Omega ;C([t, T ] \times [t,S];Rn)).

Thus, the map \Gamma : L2
Ft(\Omega ;C([t, T ]\times [t,S];Rn)) \rightarrow L2

Ft(\Omega ;C([t, T ]\times [t,S];Rn)), given
by \scrX (\cdot , \cdot ) = \Gamma 

\bigl( 
x(\cdot , \cdot )

\bigr) 
, is well defined. For any x1(\cdot , \cdot ), x2(\cdot , \cdot ) \in L2

Ft(\Omega ;C([t, T ] \times 
[t,S];Rn)), denote

\scrX i(\cdot \cdot ) = \Gamma (xi(\cdot , \cdot )), \Delta \scrX (\cdot , \cdot ) =\scrX 1(\cdot , \cdot ) - \scrX 2(\cdot , \cdot ), \Delta x(\cdot , \cdot ) = x1(\cdot , \cdot ) - x2(\cdot , \cdot ).

Then

\Delta \scrX (s, r) =

\int r

t

\bigl[ 
A(s\vee \tau , \tau )\Delta x(\tau , \tau ) +B(s\vee \tau , \tau )\Theta (\tau )\Delta x(\cdot , \tau )

\bigr] 
d\tau 

+

\int r

t

\bigl[ 
C(s\vee \tau , \tau )\Delta x(\tau , \tau ) +D(s\vee \tau , \tau )\Theta (\tau )\Delta x(\cdot , \tau )

\bigr] 
dW (\tau ).

Similar to (2.7), we have

E

\Biggl[ 
sup

(s,r)\in [t,T ]\times [t,S]

| \Delta \scrX (s, r)| 2
\Biggr] 
\leq K(S  - t)E

\Biggl[ 
sup

(s,r)\in [t,T ]\times [t,S]

| \Delta x(s, r)| 2
\Biggr] 
.

Thus, when S  - t > 0 is small, the map \Gamma : L2
Ft(\Omega ;C([t, T ] \times [t,S];Rn)) \rightarrow 

L2
Ft(\Omega ;C([t, T ] \times [t,S];Rn)) is a contraction. Hence, it admits a unique fixed point
\=\scrX (\cdot , \cdot ) \in L2

Ft(\Omega ;C([t, T ] \times [t,S];Rn)) which is the unique solution of (2.6) over
[t, T ]\times [t,S]. Next, we consider the following auxiliary systems on [t, T ]\times [S,T ]:

\~\scrX (s, r) = \=\scrX (s,S) +

\int r

S

\bigl[ 
A(s\vee \tau , \tau ) \~\scrX (\tau , \tau ) +B(s\vee \tau , \tau )\Theta (\tau ) \~\scrX (\cdot , \tau )

\bigr] 
d\tau 

+

\int r

S

\bigl[ 
C(s\vee \tau , \tau ) \~\scrX (\tau , \tau ) +D(s\vee \tau , \tau )\Theta (\tau ) \~\scrX (\cdot , \tau )

\bigr] 
dW (\tau ).

By continuing the above arguments, we can show that (2.6) admits a unique solution
over [t, T ]\times [t, T ].

Definition 2.5. Any \=\Theta (\cdot ) \in L\infty (0, T ;\scrL (Xs;Rm)) is called an optimal causal
feedback operator of Problem (LQ-FSVIE) if

(2.8) J(t,xt(\cdot ); \=\Theta (\cdot ) \=\scrX (\cdot , \cdot ))\leq J(t,xt(\cdot );u(\cdot )) \forall u(\cdot )\in U [t, T ] \forall (t,xt)\in \Lambda ,
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where (s, r) \mapsto \rightarrow \=\scrX (s, r) \equiv \=\scrX r(s) and s \mapsto \rightarrow \=X(s) are the unique solutions to (2.4) and
(2.5), with the operator-valued function \=\Theta (\cdot ), respectively.

Remark 2.6. It is clear that the outcome \tau \mapsto \rightarrow \=u(\tau ) = \=\Theta (\tau ) \=\scrX (\cdot , \tau ) of the optimal
causal state feedback operator \=\Theta (\cdot ) is an open-loop optimal control. Note that the
auxiliary process \=\scrX r(\cdot ) = \=\scrX (\cdot , r) is uniquely determined by the portion \=X(l); l \in [t, r]
of the state process \=X(\cdot ). Thus, \=u(\cdot ) has a causal state feedback representation.
Namely, the value \=u(r) of the optimal control \=u(\cdot ) at any time r does not involve
future information of the corresponding state process \=X(\cdot ).

Remark 2.7. In the proof of the well-posedness of the closed-loop auxiliary system
(2.4), we use the property that the map (\tau ,\omega ) \mapsto \rightarrow \Theta (\tau )\scrX (\cdot , \tau ) is progressively measur-
able for any \scrX (\cdot , \cdot ) \in L2

F(\Omega ;C([t, T ]2;Rn)), without imposing the specific measurable
condition for the operator-valued function \Theta (\cdot ). We always assume this property holds
for any \Theta (\cdot ) \in L\infty (0, T ;\scrL (Xt;Rm)). It can be easily checked that the optimal causal
feedback operator obtained in the paper satisfies such a property.

2.2. Bilinear operators. For any Banach space X, let \scrL 2(X) be the set of all
bounded bilinear functionals on X\times X, with the norm \| \cdot \| \scrL 2 defined by

\| P\| \scrL 2 \triangleq sup
\| x\| ,\| y\| \leq 1

| P (x,y)| \forall P \in \scrL 2(X).

We denote

P (x,y) = \langle Px,y\rangle = y\top Px \forall x,y \in X,

where Px \in X\ast , the dual of X, and \langle \cdot , \cdot \rangle is the duality pairing between X\ast and X. A
bilinear functional P \in \scrL 2(X) is said to be symmetric if it satisfies

y\top Px= P (x,y) = P (y,x) = x\top Py \forall x,y \in X.

Let \scrS (X) be the set of all symmetric bounded bilinear functionals on X, and \scrS +(X) be
the subset of \scrS (X) consisting of all nonnegative bilinear functionals; that is, P \in \scrS +(X)
if and only if P \in \scrS (X) and

P (x,x)\geq 0 \forall x\in X.

For any P \in \scrS (X), define

\| P\| \scrS \triangleq sup
\| x\| \leq 1

| P (x,x)| .

The following result shows that \| \cdot \| \scrS is an equivalent norm of \| \cdot \| \scrL 2 on \scrS (X).
Lemma 2.8. For any P \in \scrS (X), it holds that

(2.9) \| P\| \scrS \leq \| P\| \scrL 2 \leq 2\| P\| \scrS .

Proof. Since the bilinear functional P satisfies P (x,y) = P (y,x), we have

P (x+ y,x+ y) - P (x - y,x - y) = 2P (x,y) + 2P (y,x) = 4P (x,y) \forall x,y \in X.

Thus

| P (x,y)| = | P (x+ y,x+ y) - P (x - y,x - y)| 
4

\leq \| P\| \scrS 
\| x+ y\| 2 + \| x - y\| 2

4
\leq \| P\| \scrS [\| x\| 2 + \| y\| 2] \forall x,y \in X,
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2606 HANXIAO WANG, JIONGMIN YONG, AND CHAO ZHOU

which implies

\| P\| \scrL 2 = sup
\| x\| ,\| y\| \leq 1

| P (x,y)| \leq \| P\| \scrS sup
\| x\| ,\| y\| \leq 1

[\| x| 2 + | y\| 2] = 2\| P\| \scrS .

Combining the above with the fact \| P\| \scrS \leq \| P\| \scrL 2 , we get the conclusion.

Remark 2.9. Since X is merely a Banach space, it is not expected that \| \cdot \| \scrS = \| \cdot \| \scrL 2

holds in general. However, we still have the equivalence between \| \cdot \| \scrS and \| \cdot \| \scrL 2 on
\scrS (X). This equivalence will play a crucial role in establishing the well-posedness of the
Riccati equation associated with Problem (LQ-FSVIE). When there is no confusion,
we often simply write \| \cdot \| \scrS (or \| \cdot \| \scrL 2) as \| \cdot \| .

2.3. Functional It\^o formula. Recall \Lambda from (1.1). As in Viens and Zhang [32],
we introduce the following metric:

d
\bigl( 
(t,xt(\cdot )), (t\prime ,x\prime 

t\prime (\cdot ))
\bigr) 
\triangleq | t - t\prime | + sup

s\in [0,T ]

| xt(s\vee t) - x\prime 
t\prime (s\vee t\prime )| 

\forall (t,xt(\cdot )), (t\prime ,x\prime 
t\prime (\cdot ))\in \Lambda .

It can be shown that \Lambda is a complete metric space under d. Let C0(\Lambda ) denote the
set of all functions v : \Lambda \rightarrow R which are continuous under d. For any v(\cdot , \cdot ) \in C0(\Lambda )
and given (t,xt(\cdot )) \in \Lambda , v(t,xt(\cdot )) takes real values. We denote vx(t,xt(\cdot )) to be the
Fr\'echet derivative of v(t,xt(\cdot )) with respect to xt(\cdot ). Namely, vx(t,xt(\cdot )) : Xt \rightarrow R is
the linear functional satisfying the following:

(2.10) v(t,xt(\cdot ) + \eta t(\cdot )) - v(t,xt(\cdot )) = vx(t,xt(\cdot ))(\eta t(\cdot )) + o(\| \eta t(\cdot )\| ) \forall \eta t(\cdot )\in Xt.

It is clear that the above Fr\'echet derivative can be calculated in the following way,
which defines the G\^ateaux derivative:

(2.11) vx(t,xt(\cdot ))(\eta t(\cdot )) = lim
\varepsilon \rightarrow 0

v(t,xt(\cdot ) + \varepsilon \eta t(\cdot )) - v(t,xt(\cdot ))
\varepsilon 

\forall \eta t(\cdot )\in Xt.

Similarly, we define the second order derivative vxx(t,xt(\cdot )) as a bilinear functional
on Xt \times Xt:

vx(t,xt(\cdot ) + \eta t(\cdot ))(\eta \prime t(\cdot )) - vx(t,xt(\cdot ))(\eta \prime t(\cdot ))
= vxx(t,xt(\cdot ))(\eta t(\cdot ), \eta \prime t(\cdot )) + o(\| \eta t\| ) \forall \eta t(\cdot ), \eta \prime t(\cdot )\in Xt.(2.12)

To define the right t-partial derivative vt(t,xt(\cdot )) of v(\cdot , \cdot ) at (t,xt(\cdot )), we need to
``fix"" xt(\cdot ) and define v(t+ \varepsilon ,xt(\cdot )). Naturally, we define

(2.13) v(t+ \varepsilon ,xt(\cdot )) = v(t+ \varepsilon ,xt+\varepsilon (\cdot )) = v(t+ \varepsilon , [xt]t+\varepsilon (\cdot )) \forall xt(\cdot )\in Xt,

where

(2.14) xt+\varepsilon (s) = [xt]t+\varepsilon (s) = xt(s), s\in [t+ \varepsilon ,T ], \forall xt(\cdot )\in Xt.

According to the above, we see that

xt+\varepsilon (\cdot ) = [xt]t+\varepsilon (\cdot )\in Xt+\varepsilon \forall xt(\cdot )\in Xt,

which can be regarded as the natural ``projection"" from Xt to Xt+\varepsilon . Thus, (2.13)
makes sense. Having such a natural restriction, we can define the right t-partial
derivative vt(t,xt(\cdot )) as follows:
(2.15)

vt(t,xt(\cdot ))\triangleq lim
\varepsilon \rightarrow 0+

v(t+ \varepsilon ,xt(\cdot )) - v(t,xt(\cdot ))
\varepsilon 

\equiv lim
\varepsilon \rightarrow 0+

v(t+ \varepsilon , [xt]t+\varepsilon (\cdot )) - v(t,xt(\cdot ))
\varepsilon 

,

provided the limit exists. Let us introduce the following spaces.
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LQ PROBLEMS FOR SVIE\mathrm{S}: CAUSAL STATE FEEDBACK 2607

Definition 2.10. (i) Let C1,2(\Lambda ) be the set of all v(\cdot , \cdot ) \in C0(\Lambda ) such that
vt(\cdot , \cdot ), vx(\cdot , \cdot ), vxx(\cdot , \cdot ) exist on \Lambda . (ii) Let C1,2

+ (\Lambda ) denote the set of all v(\cdot , \cdot )\in C1,2(\Lambda )
such that the following are satisfied:

(a) There exist constants \kappa ,K > 0 such that, for any (t,xt(\cdot ))\in \Lambda ,

| vt(t,xt(\cdot ))| + sup
\eta t(\cdot )\in Xt
\| \eta t(\cdot )\| \leq 1

| vx(t,xt(\cdot ))(\eta t(\cdot ))| 

+ sup
\eta t(\cdot ),\eta \prime 

t(\cdot )\in Xt

\| \eta t(\cdot )\| ,\| \eta \prime 
t(\cdot )\| \leq 1

| vxx(t,xt(\cdot ))(\eta t(\cdot ), \eta \prime t(\cdot ))| \leq K[1 + \| xt(\cdot )\| \kappa ].

(b) For any \eta (\cdot ), \eta \prime (\cdot )\in X0, vt(t,xt(\cdot )), vx(t,xt(\cdot ))(\eta t(\cdot )), vxx(t,xt(\cdot ))(\eta t(\cdot ), \eta \prime t(\cdot ))
are continuous in (t,xt(\cdot )), where the continuity in t always means right-
continuity, \eta t(\cdot ) = [\eta (\cdot )]t(\cdot ), and \eta \prime t(\cdot ) = [\eta \prime (\cdot )]t(\cdot ).

(c) There exist \kappa > 0 and a modulus of continuity \rho (\cdot ) such that\bigm| \bigm| [vxx(t,xt(\cdot )) - vxx(t,x
\prime 
t(\cdot ))](\eta t(\cdot ), \eta t(\cdot ))

\bigm| \bigm| 
\leq 
\bigl[ 
1 + \| xt(\cdot )\| \kappa + \| x\prime 

t(\cdot )\| \kappa 
\bigr] 
\| \eta t(\cdot )\| 2\rho (\| xt(\cdot ) - x\prime 

t(\cdot )\| )
\forall xt(\cdot ),x\prime 

t(\cdot ), \eta t(\cdot )\in Xt, t\in [0, T ].

The following is a version of the functional It\^o formula for SVIEs found in Viens
and Zhang [32].

Proposition 2.11. Let b, \sigma : \Delta \ast [0, T ] \times \Omega \rightarrow Rn be measurable such that s \mapsto \rightarrow 
(b(s, \tau ), \sigma (s, \tau )) is differential with bounded derivatives, \tau \mapsto \rightarrow (b(s, \tau ), \sigma (s, \tau )) is Ft-
progressively measurable on [t, T ], and

E

\Biggl[ \int T

t

sup
s\in [\tau ,T ]

\Bigl( 
| b(s, \tau )| 2 + | \sigma (s, \tau )| 2

\Bigr) 
d\tau 

\Biggr] 
<\infty .

Let

(2.16) \scrX (s, r) = xt(s) +

\int r

t

b(s, \tau )d\tau +

\int r

t

\sigma (s, \tau )dW (\tau ), t\leq r\leq s\leq T,

and v(\cdot , \cdot )\in C1,2
+ (\Lambda ). Then the following functional It\^o formula holds:

dv(r,\scrX (\cdot , r)) =
\Bigl[ 
vr(r,\scrX (\cdot , r)) + 1

2
vxx(r,\scrX (\cdot , r))

\bigl( 
\sigma (\cdot , r), \sigma (\cdot , r)

\bigr) 
+ vx(r,\scrX (\cdot , r))b(\cdot , r)

\Bigr] 
dr+ vx(r,\scrX (\cdot , r))\sigma (\cdot , r)dW (r), r \in [t, T ].

We denote by \scrS n
t \triangleq \scrS (Xt) the set of all bounded symmetric bilinear functionals

on Xt \times Xt, and we let C([0, T ];\scrS n) be the set of all P (\cdot ) having the property that

P (t)\in \scrS n
t \forall t\in [0, T ], and sup

t\in [0,T ]

\| P (t)\| <\infty ,

and the map t \mapsto \rightarrow P (t) is continuous in the following sense:

lim
t\rightarrow t0

\bigm| \bigm| P (t)\bigl( [x]t(\cdot ), [x]t(\cdot )\bigr)  - P (t0)
\bigl( 
[x]t0(\cdot ), [x]t0(\cdot )

\bigr) \bigm| \bigm| = 0 \forall x(\cdot )\in X0.

Note that for any P (\cdot )\in C([0, T ];\scrS n), the map (t,xt(\cdot )) \mapsto \rightarrow v(t,xt(\cdot )), defined by

v(t,xt(\cdot ))\triangleq P (t)
\bigl( 
xt(\cdot ),xt(\cdot )

\bigr) 
\equiv xt(\cdot )\top P (t)xt(\cdot ) \forall (t,xt(\cdot ))\in \Lambda ,
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2608 HANXIAO WANG, JIONGMIN YONG, AND CHAO ZHOU

is continuous on \Lambda under d. Indeed,

| v(t, \~xt(\cdot )) - v(t0,xt0(\cdot ))| = | P (t)
\bigl( 
\~xt(\cdot ), \~xt(\cdot )

\bigr) 
 - P (t0)

\bigl( 
xt0(\cdot ),xt0(\cdot )

\bigr) 
| 

\leq K sup
t\in [0,T ]

\| P (t)\| sup
s\in [0,T ]

| \~xt(s\vee t) - xt0(s\vee t0)| 

+ | P (t)(xt(\cdot ),xt(\cdot )) - P (t0)(xt0(\cdot ),xt0(\cdot ))| \rightarrow 0,

as (t, \~xt(\cdot )) \rightarrow (t0,xt0(\cdot )) under d, where K > 0 only depends on \| xt0(\cdot )\| . Here, if
t < t0, we simply write xt(\cdot ) to represent xt0(s \vee t0); s \in [t, T ]. Similar to the above,
for any \scrX (\cdot , \cdot ),\scrX \prime (\cdot , \cdot )\in C(\Delta \ast [0, T ];Rn) and P (\cdot )\in C([0, T ];\scrS n), it can be shown that
the map t \mapsto \rightarrow P (t)

\bigl( 
\scrX (\cdot , t),\scrX \prime (\cdot , t)

\bigr) 
is continuous. Further, we let C1([0, T ];\scrS n) be the

set of all P (\cdot )\in C([0, T ];\scrS n) such that

v(t,xt(\cdot )) = P (t)
\bigl( 
xt(\cdot ),xt(\cdot )

\bigr) 
\forall (t,xt(\cdot ))\in \Lambda 

admits

vt(t,xt(\cdot ))\equiv \.P (t)
\bigl( 
xt(\cdot ),xt(\cdot )

\bigr) 
\forall (t,xt(\cdot ))\in \Lambda ,

for some \.P (\cdot ), which is continuous. Similarly, we can define C([a, b];\scrS n) and
C1([a, b];\scrS n). We remark that for any P (\cdot ) \in C([a, b];\scrS n) and t \in [a, b], P (t) is still
a bounded symmetric bilinear functional on Xt \times Xt = C([t, T ];Rn)\times C([t, T ];Rn).
Note that for any t \in [0, T ], if the stochastic processes X(\cdot ) and Y (\cdot ) are in Xt al-
most surely, i.e., X(\cdot ) and Y (\cdot ) have continuous paths on [t, T ], then Y (\cdot )\top P (t)X(\cdot )\equiv 
P (t)

\bigl( 
X(\cdot ), Y (\cdot )

\bigr) 
is well defined almost surely. As a direct consequence of Proposi-

tion 2.11, we have the following result.

Proposition 2.12. Let the assumptions of Proposition 2.11 hold. Let \scrX (\cdot , \cdot ) be
defined by (2.16). Then the following functional It\^o formula holds:

d
\bigl[ 
P (r)

\bigl( 
[x\prime 

s(\cdot )]r,\scrX (\cdot , r)
\bigr) \bigr] 

=
\bigl[ 
\.P (r)

\bigl( 
[x\prime 

s(\cdot )]r,\scrX (\cdot , r)
\bigr) 
+ P (r)

\bigl( 
[x\prime 

s(\cdot )]r, b(\cdot , r)
\bigr) \bigr] 
dr

+ P (r)
\bigl( 
[x\prime 

s(\cdot )]r, \sigma (\cdot , r)
\bigr) 
dW (r), r \in [s,T ], \forall (s,x\prime 

s(\cdot ))\in \Lambda ,

d
\bigl[ 
P (r)

\bigl( 
\scrX (\cdot , r),\scrX (\cdot , r)

\bigr) \bigr] 
=
\bigl[ 
\.P (r)

\bigl( 
\scrX (\cdot , r),\scrX (\cdot , r)

\bigr) 
+ 2P (r)

\bigl( 
\scrX (\cdot , r), b(\cdot , r)

\bigr) 
+ P (r)

\bigl( 
\sigma (\cdot , r), \sigma (\cdot , r)

\bigr) \bigr] 
dr+ 2P (r)

\bigl( 
\scrX (\cdot , r), \sigma (\cdot , r)

\bigr) 
dW (r), r \in [t, T ].

3. Solvability of Problem (LQ-FSVIE) and optimality system. In this
section, we shall study the cost functional (1.3) as a quadratic functional of the control
u(\cdot ) on the Hilbert space U [t, T ]. A necessary condition and a sufficient condition for
the existence of an open-loop optimal control will be derived by a standard variational
method. This will be expressed by an optimality system which is a coupled system
of an FSVIE and a type-II BSVIE. The innovation of this section is that we shall
provide a new representation for the optimality system by establishing an interesting
relation between linear type-II and type-III BSVIEs.

For any u(\cdot )\in U [t, T ], consider the following FSVIE:

X0,u(s) =

\int s

t

\bigl[ 
A(s, \tau )X0,u(\tau ) +B(s, \tau )u(\tau )

\bigr] 
d\tau 

+

\int s

t

\bigl[ 
C(s, \tau )X0,u(\tau ) +D(s, \tau )u(\tau )

\bigr] 
dW (\tau ), s\in [t, T ].
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LQ PROBLEMS FOR SVIE\mathrm{S}: CAUSAL STATE FEEDBACK 2609

By Lemma 2.1, the above FSVIE admits a unique solution X0,u(\cdot ) \in L2
Ft(\Omega ;C([t, T ];

Rn)) satisfying

E

\Biggl[ 
sup

s\in [t,T ]

| X0,u(s)| 2
\Biggr] 
\leq KE

\int T

t

| u(s)| 2ds,

where the constant K > 0 is independent of u(\cdot ). Thus we can define two bounded
linear operators \Gamma : U [t, T ]\rightarrow L2

Ft(\Omega ;C([t, T ];Rn)) and \^\Gamma : U [t, T ]\rightarrow L2
\scrF t

T
(\Omega ;Rn) as

follows:

(3.1) [\Gamma u(\cdot )](\cdot ) =X0,u(\cdot ), [ \^\Gamma u(\cdot )] =X0,u(T ) \forall u(\cdot )\in U [t, T ].

For any xt(\cdot ) \in Xt, let X
xt,0(\cdot ) be the unique solution to the following linear uncon-

trolled FSVIE:

Xxt,0(s) = xt(s) +

\int s

t

A(s, \tau )Xxt,0(\tau )d\tau +

\int s

t

C(s, \tau )Xxt,0(\tau )dW (r), s\in [t, T ].

Then the following linear operators \Xi : C([t, T ];Rn) \rightarrow L2
Ft(\Omega ;C([t, T ];Rn)) and \^\Xi :

C([t, T ];Rn)\rightarrow L2
\scrF t

T
(\Omega ;Rn) can be also well defined:

(3.2) [\Xi xt(\cdot )](\cdot ) =Xxt,0(\cdot ), [ \^\Xi xt(\cdot )] =Xxt,0(T ) \forall xt(\cdot )\in Xt.

With (3.1) and (3.2), the unique solution X(\cdot ) \equiv X(\cdot ; t,xt(\cdot ), u(\cdot )) of state equation
(1.2) corresponding to (t,xt(\cdot ))\in \Lambda and u(\cdot )\in U [t, T ] can be represented by

(3.3) X(\cdot ) = [\Gamma u(\cdot )](\cdot ) + [\Xi xt(\cdot )](\cdot ), X(T ) = [ \^\Gamma u(\cdot )] + [ \^\Xi xt(\cdot )].

By substituting the above into (1.3), we obtain the following representation of the
functional (1.3):

(3.4) J(t,xt(\cdot );u(\cdot )) = \langle \scrM 2u,u\rangle + 2\langle \scrM 1xt, u\rangle +
1

2
\langle Q\Xi xt,\Xi xt\rangle +

1

2
\langle G \^\Xi xt, \^\Xi xt\rangle ,

where

\scrM 2 \triangleq 
\Gamma \ast Q\Gamma + \^\Gamma \ast G \^\Gamma +R

2
and \scrM 1 \triangleq 

\Gamma \ast Q\Xi + \^\Gamma \ast G \^\Xi 

2
.

Using the representation (3.4), we get the following abstract characterization for the
open-loop optimal controls of Problem (LQ-FSVIE).

Proposition 3.1. Let (t,xt(\cdot )) \in \Lambda be any given free pair and \=u(\cdot ) \in U [t, T ].
Then \=u(\cdot ) is an open-loop optimal control of Problem (LQ-FSVIE) for (t,xt(\cdot )) if and
only if

(3.5) \scrM 2 \geq 0 and \scrM 2\=u+\scrM 1xt = 0.

Proof. It is clear to see that \=u(\cdot ) is an optimal control of Problem (LQ-FSVIE) if
and only if

(3.6) J(t,xt(\cdot ); \=u(\cdot ) + \lambda u(\cdot )) - J(t,xt(\cdot ); \=u(\cdot ))\geq 0 \forall u(\cdot )\in U [t, T ], \lambda \in R.

For any u(\cdot )\in U [t, T ] and \lambda \in R, by (3.4) we have

(3.7) J(t,xt(\cdot ); \=u(\cdot ) + \lambda u(\cdot )) - J(t,xt(\cdot ); \=u(\cdot )) = \lambda 2\langle \scrM 2u,u\rangle + 2\lambda \langle \scrM 2\=u+\scrM 1xt, u\rangle .

Thus (3.6) holds if and only if (3.5) holds. The proof is thus complete.
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2610 HANXIAO WANG, JIONGMIN YONG, AND CHAO ZHOU

To solve Problem (LQ-FSVIE), we introduce the following assumption.
(H3) There exists a constant \lambda > 0 such that

(3.8) \langle \scrM 2u,u\rangle = J(t,0;u(\cdot ))\geq \lambda E
\int T

t

| u(s)| 2ds \forall u(\cdot )\in U [t, T ].

Combining this condition with Proposition 3.1, we can obtain the following result
easily.

Corollary 3.2. Let (H1)--(H3) hold. Then, for any free pair (t,xt(\cdot )) \in \Lambda ,
Problem (LQ-FSVIE) admits a unique optimal control \=u(\cdot ), which is given by

(3.9) \=u(\cdot ) = - (\scrM  - 1
2 \scrM 1xt)(\cdot ).

Combining Proposition 3.1 and [39, Theorem 5.2], we have the following results.

Theorem 3.3. Suppose that the following convexity condition holds:

(3.10) \langle \scrM 2u,u\rangle = J(t,0;u(\cdot ))\geq 0 \forall u(\cdot )\in U [t, T ].

The control \=u(\cdot ) \in U [t, T ] is an optimal control of Problem (LQ-FSVIE) if and only
if the optimality system (1.7)--(1.8) holds.

Proof. From (3.7) we see that

lim
\lambda \rightarrow 0

J(t,xt(\cdot ); \=u(\cdot ) + \lambda u(\cdot )) - J(t,xt(\cdot ); \=u(\cdot ))
\lambda 

= 2\langle \scrM 2\=u+\scrM 1xt, u\rangle \forall u(\cdot )\in U [t, T ].

On the other hand, by [39, Theorem 5.2] we have

lim
\lambda \rightarrow 0

J(t,xt(\cdot ); \=u(\cdot ) + \lambda u(\cdot )) - J(t,xt(\cdot ); \=u(\cdot ))
\lambda 

=E
\int T

t

\langle R(s)\=u(s) + Y 0(s), u(s)\rangle ds

for any u(\cdot )\in U [t, T ], where Y 0(\cdot ) is uniquely determined by (1.8). Thus,

2(\scrM 2\=u+\scrM 1xt)(\cdot ) = (R\=u+ Y 0)(\cdot ).

Then the desired results follow from Proposition 3.1.

Remark 3.4. Let the controlled system (1.2) reduce to an SDE. In this case, if we
denote

p(s) =Es

\Biggl( 
G \=X(T ) +

\int T

s

Y (r)dr

\Biggr) 
, q(s) = \zeta (s) +

\int T

s

Z(r, s)dr, s \in [t, T ],

then (p(\cdot ), q(\cdot )) satisfies the BSDE

p(s) =G \=X(T ) +

\int T

s

\bigl[ 
A(r)\top p(r) +C(r)\top q(r) +Q(r) \=X(r)

\bigr] 
dr - 

\int T

s

q(r)dW (r)

on [t, T ] and the corresponding optimality condition (1.7) can be rewritten as

R(s)\=u(s) +B(s)\top p(s) +D(s)\top q(s) = 0, s\in [t, T ],

which recovers the corresponding results of Problem (LQ-SDE) (see [40, Chapter 6],
for example).
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Let us now return to BSVIEs. Denote

\psi (s) =Q(s) \=X(s) +A(T, s)\top G \=X(T ) +C(T, s)\top \zeta (s),

\psi 0(s) =B(T, s)\top G \=X(T ) +D(T, s)\top \zeta (s), s\in [t, T ].(3.11)

Then (1.8) can be written as (assuming that R(s) - 1 exists)
(3.12)\left\{                                   

\=X(s) = xt(s) +

\int s

t

\bigl[ 
A(s, \tau ) \=X(\tau ) - B(s, \tau )R(\tau ) - 1Y 0(\tau )

\bigr] 
d\tau 

+

\int s

t

\bigl[ 
C(s, \tau ) \=X(\tau ) - D(s, \tau )R(\tau ) - 1Y 0(\tau )

\bigr] 
dW (\tau ),

\eta (s) =G \=X(T ) - 
\int T

s

\zeta (\tau )dW (\tau ),

Y (s) = \psi (s) +

\int T

s

\bigl[ 
A(\tau , s)\top Y (\tau ) +C(\tau , s)\top Z(\tau , s)

\bigr] 
d\tau  - 

\int T

s

Z(s, \tau )dW (\tau ),

Y 0(s) = \psi 0(s) +

\int T

s

\bigl[ 
B(\tau , s)\top Y (\tau ) +D(\tau , s)\top Z(\tau , s)

\bigr] 
d\tau  - 

\int T

s

Z0(s, \tau )dW (\tau ).

Note that (3.12) is a coupled system of FBSVIEs. To the best of our knowledge,
there is no general result on the solvability of coupled FBSVIEs on an arbitrary time
horizon. In the rest of the paper, we are going to develop a decoupling method for
(3.12), which can be regarded as the most important contribution of our paper. The
key point is to find the so-called decoupling field for FBSVIE (3.12). As a preparation,
we next provide a new representation for the optimality system (1.7)--(1.8) of Problem
(LQ-FSVIE).

We introduce the following system of BSVIEs on [t, T ]:
(3.13)\left\{                           

Y A(s) =

\int T

s

A(\tau , s)\top 
\Bigl[ 
E\tau [\psi (\tau )] + Y A(\tau ) +ZC(\tau , \tau )

\Bigr] 
d\tau  - 

\int T

s

ZA(s, \tau )dW (\tau ),

Y B(s) =

\int T

s

B(\tau , s)\top 
\Bigl[ 
E\tau [\psi (\tau )] + Y A(\tau ) +ZC(\tau , \tau )

\Bigr] 
d\tau  - 

\int T

s

ZB(s, \tau )dW (\tau ),

Y C(s) =

\int T

s

C(\tau , s)\top 
\Bigl[ 
E\tau [\psi (\tau )] + Y A(\tau ) +ZC(\tau , \tau )

\Bigr] 
d\tau  - 

\int T

s

ZC(s, \tau )dW (\tau ),

Y D(s) =

\int T

s

D(\tau , s)\top 
\Bigl[ 
E\tau [\psi (\tau )] + Y A(\tau ) +ZC(\tau , \tau )

\Bigr] 
d\tau  - 

\int T

s

ZD(s, \tau )dW (\tau ).

Note that in the above, the diagonal value ZC(\tau , \tau ) of the process ZC(\cdot , \cdot ) appears,
which makes such BSVIEs essentially different from type-I and type-II BSVIEs. Thus,
we call the above type-III BSVIEs to distinguish them from the others.

BSVIEs with the diagonal values Z(\tau , \tau ) presented were initially introduced by
Wang and Yong [33] while studying the time-inconsistent optimal control problems
for SDEs. The well-posedness of such types of BSVIEs with general generators was
studied by Hern\'andez and Possamai [17]. We also highlight that Hamaguchi [14]
gave a proper definition for the diagonal value Z(\tau , \tau ) of Z(\cdot , \cdot ). In [33, 16, 17], the
diagonal value Z(\tau , \tau ) was due to the probabilistic representation of the equilibrium
HJB equations. Here, we will use this type of BSVIEs to represent the solutions of
adjoint equations in the optimality system. This is quite surprising.
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2612 HANXIAO WANG, JIONGMIN YONG, AND CHAO ZHOU

Following Hamaguchi [13], we define the diagonal value Z\diamond (\tau , \tau ) of Z\diamond (\cdot , \cdot ) with
\diamond =C,D as follows:

(3.14) Z\diamond (\tau , \tau ) :=Z\diamond (t, \tau ) +

\int \tau 

t

\partial sZ
\diamond (s, \tau )ds, a.e., a.s.,

where \partial sZ
\diamond (\cdot , \cdot ) is the derivative of Z\diamond (\cdot , \cdot ) with respect to the first variable. In other

words, (\partial sY
\diamond (\cdot , \cdot ), \partial sZ\diamond (\cdot , \cdot )) is the unique solution of the following (extended) type-I

BSVIEs:
(3.15)

\partial sY
\diamond (s, r) =

\int T

r

\diamond s(\tau , s)\top 
\Bigl[ 
E\tau [\psi (\tau )] + Y A(\tau ) +ZC(\tau , \tau )

\Bigr] 
d\tau  - 

\int T

r

\partial sZ
\diamond (s, \tau )dW (\tau ).

We call (Y \ast (\cdot ),Z\ast (\cdot , \cdot )) with \ast = A,B,C,D an adapted solution of (3.13) if it is
satisfied in the usual It\^o sense with the diagonal values ZC(\tau , \tau ) and ZD(\tau , \tau ) given
by (3.14).

Proposition 3.5. Let (H1) hold. Then for any \psi (\cdot )\in L2
\scrF t

T
([t, T ];Rn) and \psi 0(\cdot )\in 

L2
\scrF t

T
([t, T ];R), the third and the fourth BSVIEs in (3.12) admit unique adapted M-

solution (Y (\cdot ), Y 0(\cdot ),Z(\cdot , \cdot ),Z0(\cdot , \cdot )), and the type-III BSVIE (3.13) also admits a
unique adapted solution (Y \ast (\cdot ),Z\ast (\cdot , \cdot )) with \ast =A,B,C,D. Moreover, the following
representation holds:

(3.16)

\Biggl\{ 
Y (s) =Es[\psi (s)] + Y A(s) +ZC(s, s),

Y 0(s) =Es[\psi 
0(s)] + Y B(s) +ZD(s, s),

s\in [t, T ].

Proof. We first prove the uniqueness of the adapted solutions to (3.13). Suppose
that (Y \ast (\cdot ),Z\ast (\cdot , \cdot )) and ( \~Y \ast (\cdot ), \~Z\ast (\cdot , \cdot )) with \ast =A,B,C,D are two adapted solutions
of (3.13). Denote ( \^Y \ast (\cdot ), \^Z\ast (\cdot , \cdot )) = (Y \ast (\cdot ) - \~Y \ast (\cdot ),Z\ast (\cdot , \cdot ) - \~Z\ast (\cdot , \cdot )). Then by (3.13)
and (3.14), we have

(3.17) \^Y \ast (s) =

\int T

s

\ast (\tau , s)\top 
\Bigl[ 
\^Y A(\tau ) + \^ZC(\tau , \tau )

\Bigr] 
d\tau  - 

\int T

s

\^Z\ast (s, \tau )dW (\tau ),

and

(3.18) \^ZC(\tau , \tau ) = \^ZC(t, \tau ) +

\int \tau 

t

\partial s \^Z
C(s, \tau )ds, a.e., a.s.,

with

(3.19) \partial s \^Y
C(s, r) =

\int T

r

Cs(\tau , s)
\top 
\Bigl[ 
\^Y A(\tau ) + \^ZC(\tau , \tau )

\Bigr] 
d\tau  - 

\int T

r

\partial s \^Z
C(s, \tau )dW (\tau ).

For any S \in [t, T ), by (3.18) we have

E
\int T

S

| \^ZC(\tau , \tau )| 2d\tau \leq 2E
\int T

S

| \^ZC(t, \tau )| 2d\tau + 2E
\int T

S

\bigm| \bigm| \bigm| \bigm| \bigm| 
\int \tau 

t

\partial s \^Z
C(s, \tau )ds

\bigm| \bigm| \bigm| \bigm| \bigm| 
2

d\tau 

\leq KE
\int T

S

| \^ZC(t, \tau )| 2d\tau +KE
\int T

S

\int \tau 

t

| \partial s \^ZC(s, \tau )| 2dsd\tau 

\leq KE
\int T

S

| \^ZC(t, \tau )| 2d\tau +K sup
s\in [t,T ]

E
\int T

S\vee s

| \partial s \^ZC(s, \tau )| 2d\tau ,
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LQ PROBLEMS FOR SVIE\mathrm{S}: CAUSAL STATE FEEDBACK 2613

where K > 0 is a generic constant. Applying the standard results of BSVIEs to (3.17)
and (3.19), taking the diagonal value \^ZC(\tau , \tau ) as a known process, we have

E
\int T

S

| \^ZC(t, \tau )| 2d\tau + sup
s\in [t,T ]

E
\int T

S\vee s

| \partial s \^ZC(s, \tau )| 2d\tau \leq K(T  - S)E
\int T

S

| \^ZC(\tau , \tau )| 2d\tau .

It follows that

E
\int T

S

| \^ZC(\tau , \tau )| 2d\tau \leq K(T  - S)E
\int T

S

| \^ZC(\tau , \tau )| 2d\tau .

Taking S = T  - 1
2K , from the above we get \^ZC(\tau , \tau ) \equiv 0 on [S,T ]. By the standard

results of BSVIEs, taking \^ZC(\tau , \tau ) \equiv 0 in (3.17), we have ( \^Y \ast (\cdot ), \^Z\ast (\cdot , \cdot )) \equiv (0,0)
with \ast =A,B,C,D on [S,T ]. Then from (3.17), ( \^Y \ast (\cdot ), \^Z\ast (\cdot , \cdot )) satisfies the following
BSVIE on [t,S]:

\^Y \ast (s) =

\int S

s

\ast (\tau , s)\top 
\Bigl[ 
\^Y A(\tau ) + \^ZC(\tau , \tau )

\Bigr] 
d\tau  - 

\int S

s

\^Z\ast (s, \tau )dW (\tau ).

Thus, by continuing the above arguments, we can get ( \^Y \ast (\cdot ), \^Z\ast (\cdot , \cdot )) \equiv (0,0) with
\ast =A,B,C,D on [t, T ], which implies the uniqueness of adapted solutions to (3.13).

Next we use the solutions of the third and the fourth BSVIEs in (3.12) to construct
an adapted solution to (3.13), by which we can show that the representation (3.16)
holds. Let (Y (\cdot ),Z(\cdot , \cdot )) be the adapted M-solution to the third equation in (3.12).
Using the fact

Y (\tau ) =Es[Y (\tau )] +

\int \tau 

s

Z(\tau , r)dW (r), t\leq s\leq \tau \leq T,

we get\int T

s

\ast (\tau , s)\top Y (\tau )d\tau =

\int T

s

\ast (\tau , s)\top Es[Y (\tau )]d\tau +

\int T

s

\ast (\tau , s)\top 
\int \tau 

s

Z(\tau , r)dW (r)d\tau 

=Es

\int T

s

\ast (\tau , s)\top Y (\tau )d\tau +

\int T

s

\int T

\tau 

\ast (r, s)\top Z(r, \tau )drdW (\tau ),(3.20)

with \ast =A,B,C,D. On the other hand, by the third equation in (3.12),

Y (\tau ) =E\tau 

\Biggl[ 
\psi (\tau ) +

\int T

\tau 

\bigl[ 
A(r, \tau )\top Y (r) +C(r, \tau )\top Z(r, \tau )

\bigr] 
dr

\Biggr] 
, \tau \in [t, T ].

Thus, we have\int T

s

\ast (\tau , s)\top Y (\tau )d\tau =

\int T

s

\ast (\tau , s)\top E\tau [\psi (\tau )]d\tau +

\int T

s

\ast (\tau , s)\top E\tau 

\int T

\tau 

A(r, \tau )\top Y (r)drd\tau 

+

\int T

s

\ast (\tau , s)\top 
\int T

\tau 

C(r, \tau )\top Z(r, \tau )drd\tau ,

in which we use the fact that Z(r, \tau ) is \scrF \tau 
s -measurable. Substituting the above into

(3.20) yields that

Es

\int T

s

\ast (r, s)\top Y (r)dr=

\int T

s

\ast (\tau , s)\top 
\Biggl[ 
E\tau [\psi (\tau )] +E\tau 

\int T

\tau 

A(r, \tau )\top Y (r)dr

+

\int T

\tau 

C(r, \tau )\top Z(r, \tau )dr

\Biggr] 
d\tau  - 

\int T

s

\int T

\tau 

\ast (r, s)\top Z(r, \tau )drdW (\tau ).
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2614 HANXIAO WANG, JIONGMIN YONG, AND CHAO ZHOU

Thus, for \ast =A,B,C,D, if we denote

Y \ast (s) =Es

\int T

s

\ast (r, s)\top Y (r)dr, Z\ast (s, \tau ) =

\int T

\tau 

\ast (r, s)\top Z(r, \tau )dr,(3.21)

then both (3.13) and (3.14) are satisfied. Thus, the process (Y \ast (\cdot ),Z\ast (\cdot , \cdot )) defined
by (3.21) is exactly the unique adapted solution to (3.13). Applying Es[ \cdot ] on the last
two equations in (3.12) yields that

Y (s) =Es

\Biggl[ 
\psi (s) +

\int T

s

\Bigl( 
A(\tau , s)\top Y (\tau ) +C(\tau , s)\top Z(\tau , s)

\Bigr) 
d\tau 

\Biggr] 
=Es[\psi (s)] + Y A(s) +ZC(s, s),

Y 0(s) =Es

\Biggl[ 
\psi 0(s) +

\int T

s

\Bigl( 
B(\tau , s)\top Y (\tau ) +D(\tau , s)\top Z(\tau , s)

\Bigr) 
d\tau 

\Biggr] 
=Es[\psi 

0(s)] + Y B(s) +ZD(s, s),

proving our conclusion.

Proposition 3.5 gives an explicit relation between a type-II BSVIE and a type-
III BSVIE. This relation will serve as a foundation in developing our decoupling
approach for the optimality system associated Problem (LQ-FSVIE). In the proof
of Proposition 3.5, we need to use the differentiability of the coefficients C(\cdot , \cdot ) and
D(\cdot , \cdot ) with respect to the second variable.

Combining Theorem 3.3 and Proposition 3.5, we have the following new charac-
terization of the optimal control.

Theorem 3.6. Let (H1)--(H2) hold. Suppose that the convexity condition (3.10)
holds. Let \psi (\cdot ) and \psi 0(\cdot ) be defined by (3.11). Let (Y A(\cdot ), Y B(\cdot ), Y C(\cdot ), Y D(\cdot ),
ZA(\cdot , \cdot ),ZB(\cdot , \cdot ),ZC(\cdot , \cdot ),ZD(\cdot , \cdot )) be the unique adapted solution to BSVIE (3.13).
Then the control \=u(\cdot ) \in U [t, T ] is an open-loop optimal control of Problem (LQ-
FSVIE) if and only if

(3.22) R(s)\=u(s) +Es[\psi 
0(s)] + Y B(s) +ZD(s, s) = 0, s\in [t, T ], a.s.

Remark 3.7. In the literature [33, 16, 13, 17, 19, 18] of time-inconsistent prob-
lems, the diagonal term Z(s, s) was caused by the Voterra-type cost functionals, while
in this paper, the appearance of Z(s, s) was due to the Voterra-type state equation.

4. Derivation of the path-dependent Riccati equation. In this section, we
will find the path-dependent Riccait equation for our Problem (LQ-FSVIE) via the
HJB equation for the value function. The procedure is formal. However, the argument
over verification is rigorous. Thus, once the well-posedness of the Riccati equation is
established, our Problem (LQ-FSVIE) is solved. This also decouples the optimality
system (3.12).

By [32, subsection 4.3], the path-dependent HJB equation associated with Prob-
lem (LQ-FSVIE) reads
(4.1)\left\{   

vt(t,xt(\cdot )) + inf
u\in Rm

\scrH (t,xt(\cdot ), u, vx(t,xt(\cdot )), vxx(t,xt(\cdot ))) = 0 \forall (t,xt(\cdot ))\in \Lambda ,

v(T,x(T )) =
1

2
\langle Gx(T ),x(T )\rangle \forall x(T )\in Rn,
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LQ PROBLEMS FOR SVIE\mathrm{S}: CAUSAL STATE FEEDBACK 2615

where for any (t,xt(\cdot ), u)\in \Lambda \times Rm, the Hamiltonian \scrH is defined by

\scrH 
\bigl( 
t,xt(\cdot ), u, vx(t,xt(\cdot )), vxx(t,xt(\cdot ))

\bigr) 
\triangleq 

1

2

\bigl[ 
C(\cdot , t)xt(t) +D(\cdot , t)u

\bigr] \top 
vxx(t,xt(\cdot ))

\bigl[ 
C(\cdot , t)xt(t) +D(\cdot , t)u

\bigr] 
+ vx(t,xt(\cdot ))

\bigl[ 
A(\cdot , t)xt(t) +B(\cdot , t)u

\bigr] 
+

1

2
xt(t)

\top Q(t)xt(t) +
1

2
u\top R(t)u.(4.2)

To understand each term in the above, let us denote

A(s, t) =
\bigl( 
A1(s, t),A2(s, t), \cdot \cdot \cdot ,An(s, t)

\bigr) 
,

B(s, t) =
\bigl( 
B1(s, t),B2(s, t), \cdot \cdot \cdot ,Bm(s, t)

\bigr) 
,

C(s, t) =
\bigl( 
C1(s, t),C2(s, t), \cdot \cdot \cdot ,Cn(s, t)

\bigr) 
,

D(s, t) =
\bigl( 
D1(s, t),D2(s, t), \cdot \cdot \cdot ,Dm(s, t)

\bigr) 
,

where all Ai(\cdot , \cdot ),Bi(\cdot , \cdot ),Ci(\cdot , \cdot ),Di(\cdot , \cdot ) are Rn-valued functions. Then, for any
v(\cdot , \cdot )\in C1,2

+ (\Lambda ), we have the following:\bigl[ 
C(\cdot , t)xt(t) +D(\cdot , t)u

\bigr] \top 
vxx(t,xt(\cdot ))

\bigl[ 
C(\cdot , t)xt(t) +D(\cdot , t)u

\bigr] 
= xt(t)

\top \bigl[ C(\cdot , t)\top vxx(t,xt(\cdot ))C(\cdot , t)
\bigr] 
xt(t) + xt(t)

\top \bigl[ C(\cdot , t)\top vxx(t,xt(\cdot ))D(\cdot , t)
\bigr] 
u

+ u\top 
\bigl[ 
D(\cdot , t)\top vxx(t,xt(\cdot ))C(\cdot , t)

\bigr] 
xt(t) + u\top 

\bigl[ 
D(\cdot , t)\top vxx(t,xt(\cdot ))D(\cdot , t)

\bigr] 
u,

with (for all t\in [0, T ])

C(\cdot , t)\top vxx(t,xt(\cdot ))C(\cdot , t)\equiv 
\Bigl( 
Ci(\cdot , t)\top vxx(t,xt(\cdot ))Cj(\cdot , t)

\Bigr) 
\in Sn,

D(\cdot , t)\top vxx(t,xt(\cdot ))D(\cdot , t)\equiv 
\Bigl( 
Di(\cdot , t)\top vxx(t,xt(\cdot ))Dj(\cdot , t)

\Bigr) 
\in Sm,

D(\cdot , t)\top vxx(t,xt(\cdot ))C(\cdot , t)\equiv 
\Bigl( 
Di(\cdot , t)\top vxx(t,xt(\cdot ))Cj(\cdot , t)

\Bigr) 
\in Rm\times n,

C(\cdot , t)\top vxx(t,xt(\cdot ))D(\cdot , t)\equiv 
\Bigl( 
Ci(\cdot , t)\top vxx(t,xt(\cdot ))Dj(\cdot , t)

\Bigr) 
\in Rn\times m,

and

vx(t,xt(\cdot ))
\bigl[ 
A(\cdot , t)xt(t) +B(\cdot , t)u

\bigr] 
=
\bigl[ 
vx(t,xt(\cdot ))A(\cdot , t)

\bigr] 
xt(t) +

\bigl[ 
vx(t,xt(\cdot ))B(\cdot , t)

\bigr] 
u,

with (for all t\in [0, T ])

vx(t,xt(\cdot ))A(\cdot , t) =
\bigl( 
vx(t,xt(\cdot ))A1(\cdot , t), \cdot \cdot \cdot , vx(t,xt(\cdot ))An(\cdot , t)

\bigr) 
\in R1\times n,

vx(t,xt(\cdot ))B(\cdot , t) =
\bigl( 
vx(t,xt(\cdot ))B1(\cdot , t), \cdot \cdot \cdot , vx(t,xt(\cdot ))Bm(\cdot , t)

\bigr) 
\in R1\times m.

From the above, we see that the following condition makes sense:

(4.3) \bfitR (t,xt(\cdot ))\equiv D(\cdot , t)\top vxx(t,xt(\cdot ))D(\cdot , t) +R(t)\geq \lambda Im for some \lambda > 0.

If such a condition holds, then by denoting

\bfitS (t,xt(\cdot )) = [D(\cdot , t)\top vxx(t,xt(\cdot ))C(\cdot , t)]xt(t) + [vx(t,xt(\cdot ))B(\cdot , t)]\top ,
\bfitQ (t,xt(\cdot )) = [vx(t,xt(\cdot ))A(\cdot , t)]xt(t) + xt(t)

\top [vx(t,xt(\cdot ))A(\cdot , t)]\top 

+ xt(t)
\top \bigl[ C(\cdot , t)\top vxx(t,xt(\cdot ))C(\cdot , t) +Q(t)

\bigr] 
xt(t),
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2616 HANXIAO WANG, JIONGMIN YONG, AND CHAO ZHOU

we have

2\scrH 
\bigl( 
t,xt(\cdot ), u, vx(t,xt(\cdot )), vxx(t,xt(\cdot ))

\bigr) 
\geq \bfitQ (t,xt(\cdot )) - \bfitS (t,xt(\cdot ))\top \bfitR (t,xt(\cdot )) - 1\bfitS (t,xt(\cdot ))
= inf

u\in Rm
2\scrH 
\bigl( 
t,xt(\cdot ), u, vx(t,xt(\cdot )), vxx(t,xt(\cdot ))

\bigr) 
\equiv 2\scrH 

\bigl( 
t,xt(\cdot ), \=\Gamma (t,xt(\cdot )), vx(t,xt(\cdot )), vxx(t,xt(\cdot ))

\bigr) 
,

where

\=\Gamma (t,xt(\cdot )) = - \bfitR (t,xt(\cdot )) - 1\bfitS (t,xt(\cdot )) = - 
\bigl[ 
D(\cdot , t)\top vxx(t,xt(\cdot ))D(\cdot , t) +R(t)

\bigr]  - 1

\times 
\bigl\{ 
[D(\cdot , t)\top vxx(t,xt(\cdot ))C(\cdot , t)]xt(t) + [vx(t,xt(\cdot ))B(\cdot , t)]\top 

\bigr\} 
.(4.4)

Substituting the above into (4.1), by some straightforward calculations, we get
(4.5)\left\{                           

vt(t,xt(\cdot )) +
1

2
xt(t)

\top [C(\cdot , t)\top vxx(t,xt(\cdot ))C(\cdot , t)]xt(t) +
1

2
xt(t)

\top Q(t)xt(t)

+ [vx(t,xt(\cdot ))A(\cdot , t)]xt(t) - 
1

2

\Bigl( 
D(\cdot , t)\top vxx(t,xt(\cdot ))C(\cdot , t)xt(t)

+ [vx(t,xt(\cdot ))B(\cdot , t)]\top 
\Bigr) \top \bigl[ 

D(\cdot , t)\top vxx(t,xt(\cdot ))D(\cdot , t) +R(t)
\bigr]  - 1

\times 
\Bigl( 
D(\cdot , t)\top vxx(t,xt(\cdot ))C(\cdot , t)xt(t) + [vx(t,xt(\cdot ))B(\cdot , t)]\top 

\Bigr) 
= 0 \forall (t,xt(\cdot ))\in \Lambda ,

v(T,x(T )) =
1

2
x(T )\top Gx(T ) \forall x(T )\in Rn.

In the rest of the paper, we shall prove that (4.5) admits a classical solution
by introducing a new type of Riccati equation. With the solution of this Riccati
equation, the form of the optimal strategy \=\Gamma (\cdot , \cdot ), defined by (4.4), can be simplified,
and some interesting phenomena will be found. More importantly, we will show that
the solution of the derived Riccati equation is exactly the decoupling field for the
optimality system (1.7)--(1.8).

Recall from subsection 2.3 the definition of the space C([0, T ];\scrS n). From the
definition (1.5) of the value function of Problem (LQ-FSVIE), we expect that

(4.6) v(t,xt(\cdot )) =
P (t)

\bigl( 
xt(\cdot ),xt(\cdot )

\bigr) 
2

\forall (t,xt(\cdot ))\in \Lambda ,

for some bilinear operator-valued function P (\cdot )\in C([0, T ];\scrS n). We define

\.P (t)
\bigl( 
xt(\cdot ),xt(\cdot )

\bigr) 
\triangleq lim

\varepsilon \rightarrow 0+

P (t+ \varepsilon )
\bigl( 
[xt]t+\varepsilon (\cdot ), [xt]t+\varepsilon (\cdot )

\bigr) 
 - P (t)

\bigl( 
xt(\cdot ),xt(\cdot )

\bigr) 
\varepsilon 

\forall (t,xt(\cdot ))\in \Lambda ,(4.7)

provided the limit exists. Then, by (2.15) and (4.6) we have

(4.8) vt(t,xt(\cdot )) =
\.P (t)(xt(\cdot ),xt(\cdot ))

2
\forall (t,xt(\cdot ))\in \Lambda .

Moreover, by (2.11)--(2.12) and (4.6), we get

vx(t,xt(\cdot ))(\eta t(\cdot )) = P (t)
\bigl( 
xt(\cdot ), \eta t(\cdot )

\bigr) 
\forall (t,xt(\cdot ))\in \Lambda , \eta t(\cdot )\in Xt,

vxx(t,xt(\cdot ))(\eta t(\cdot ), \eta \prime t(\cdot )) = P (t)
\bigl( 
\eta t(\cdot ), \eta \prime t(\cdot )

\bigr) 
\forall (t,xt(\cdot ))\in \Lambda , \eta t(\cdot ), \eta \prime t(\cdot )\in Xt.(4.9)
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With the representation (4.6), (4.8), and (4.9), from (4.5) we identify that P (\cdot ) should
satisfy the following Riccati equation:
(4.10)\left\{           

\.P (t) + P (t)A(\cdot , t)\delta t + \delta \top t A(\cdot , t)\top P (t) + \delta \top t C(\cdot , t)\top P (t)C(\cdot , t)\delta t + \delta \top t Q(t)\delta t

 - 
\bigl[ 
B(\cdot , t)\top P (t) +D(\cdot , t)\top P (t)C(\cdot , t)\delta t

\bigr] \top \bigl[ 
R(t) +D(\cdot , t)\top P (t)D(\cdot , t)

\bigr]  - 1

\times 
\bigl[ 
B(\cdot , t)\top P (t) +D(\cdot , t)\top P (t)C(\cdot , t)\delta t

\bigr] 
= 0, t\in [0, T ],

P (T ) =G,

where \delta t is defined by

\delta txt(\cdot ) = xt(t) \forall xt(\cdot )\in Xt.

The above is understood as an equation for a symmetric bilinear operator-
valued function defined on [0, T ]. More precisely, for any (t,xt(\cdot )) \in \Lambda , the term
xt(\cdot )\top \.P (t)xt(\cdot ) \equiv \.P (t)

\bigl( 
xt(\cdot ),xt(\cdot )

\bigr) 
is understood as in (4.7), and other terms are as

follows:

xt(\cdot )\top [P (t)A(\cdot , t)\delta t]xt(\cdot ) = P (t)
\bigl( 
A(\cdot , t)xt(t),xt(\cdot )

\bigr) 
= P (t)

\bigl( 
xt(\cdot ),A(\cdot , t)xt(t)

\bigr) 
= xt(\cdot )\top [\delta \top t A(\cdot , t)\top P (t)]xt(\cdot )\in R,

xt(\cdot )\top [\delta \top t C(\cdot , t)\top P (t)C(\cdot , t)\delta t]xt(\cdot ) = xt(t)
\top 
\Bigl( 
P (t)

\bigl( 
Ci(\cdot , t),Cj(\cdot , t)

\bigr) \Bigr) 
xt(t)\in R,

xt(\cdot )\top [\delta \top t Q(t)\delta t]xt(\cdot ) = xt(t)
\top Q(t)xt(t)\in R,

D(\cdot , t)\top P (t)D(\cdot , t) =
\Bigl( 
P (t)

\bigl( 
Di(\cdot , t),Dj(\cdot , t)

\bigr) \Bigr) 
\in Sm,\bigl[ 

B(\cdot , t)\top P (t) +D(\cdot , t)\top P (t)C(\cdot , t)\delta t
\bigr] 
xt(\cdot )

=
\Bigl( 
P (t)

\bigl( 
Bj(\cdot , t),xt(\cdot )

\bigr) 
+ P (t)

\bigl( 
Dj(\cdot , t),C(\cdot , t)xt(t)

\bigr) \Bigr) 
\in Rm.

Definition 4.1. We call P (\cdot )\in C([0, T ];\scrS n) a solution of Riccati equation (4.10)
if the map t \mapsto \rightarrow P (t)

\bigl( 
[x]t(\cdot ), [x]t(\cdot )

\bigr) 
is absolutely continuous for any x(\cdot ) \in X0, and it

satisfies (4.10) for almost everywhere t\in [0, T ]. Further, it is called a strongly regular
solution, if, in addition, the following holds:

(4.11) R(t) +D(\cdot , t)\top P (t)D(\cdot , t)\geq \lambda Im, t\in [0, T ], for some \lambda > 0.

We emphasize that for any t \in [0, T ], the domain of P (t) is Xt \times Xt, which is
merely a Banach space rather than a Hilbert space, and as t\in [0, T ] varies, it changes.
Thus, (4.10) is significantly different from the so-called operator-valued Riccati equa-
tion derived from the LQ control problem for (stochastic) evolution equations (see Li
and Yong [20] and L\"u [21] for examples). To emphasize the new features, we would
like to call (4.10) a path-dependent Riccati equation.

Theorem 4.2. Suppose that the path-dependent Riccati equation (4.10) admits a
strongly regular solution P (\cdot )\in C([0, T ];\scrS n). Then the function v(\cdot , \cdot ), defined by

(4.12) v(t,xt(\cdot )) =
P (t)

\bigl( 
xt(\cdot ),xt(\cdot )

\bigr) 
2

\forall (t,xt(\cdot ))\in \Lambda ,

satisfies the path-dependent HJB equation (4.5) for almost everywhere t\in [0, T ]. More-
over, the minimizer \=\Gamma (\cdot , \cdot ) of the Hamiltonian \scrH can be represented as

\=\Gamma (t,xt(\cdot )) = - 
\bigl[ 
D(\cdot , t)\top P (t)D(\cdot , t) +R(t)

\bigr]  - 1\bigl[ 
D(\cdot , t)\top P (t)C(\cdot , t)xt(t)

+B(\cdot , t)\top P (t)xt(\cdot )
\bigr] 

\forall (t,xt(\cdot ))\in \Lambda .(4.13)
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2618 HANXIAO WANG, JIONGMIN YONG, AND CHAO ZHOU

Proof. By (4.10), with (4.8) and (4.9), we get that the function v(\cdot , \cdot ) defined by
(4.12) satisfies (4.5) immediately.

Remark 4.3. Recall that for any t \in [0, T ], the value function v(t, \cdot ) in Viens
and Zhang [32] is defined on X0 \equiv C([0, T ];Rn). The key of our derivation is that
v(t, \cdot ), as well as vt(t, \cdot ), vx(t, \cdot ), and vxx(t, \cdot ) can be well defined on the smaller space
Xt \equiv C([t, T ];Rn) in the state-dependent setting, which means that the drift and
diffusion terms of (1.2) only depend on the current value X(\tau ) of X(l); l \in [t, \tau ]. Then,
from the HJB equation (4.5), we correctly identify the Riccati equation associated with
Problem (LQ-FSVIE).

Remark 4.4. If \alpha (s, \tau ) \equiv \alpha (\tau ) for \alpha (\cdot , \cdot ) = A(\cdot , \cdot ),B(\cdot , \cdot ),C(\cdot , \cdot ),D(\cdot , \cdot ), and
xt(s) \equiv x;s \in [t, T ] for some x \in Rn, then state equation (1.2) becomes an SDE and
Problem (LQ-FSVIE) reduces to a classical stochastic LQ optimal control problem.
The corresponding Riccati equation reads (see [40, Chapter 6])

(4.14)

\left\{         
\.\Sigma (t) +\Sigma (t)A(t) +A(t)\top \Sigma (t) +C(t)\top \Sigma (t)C(t) +Q(t)

 - [\Sigma (t)B(t) +C(t)\top \Sigma (t)D(t)][R(t) +D(t)\top \Sigma (t)D(t)] - 1

\times [B(t)\top \Sigma (t) +D(t)\top \Sigma (t)C(t)] = 0, t\in [0, T ],

\Sigma (T ) =G.

By comparing the above with (4.10), we have

P (t)(xt(\cdot ),xt(\cdot )) = xt(t)
\top \Sigma (t)xt(t) \forall (t,xt(\cdot ))\in \Lambda 0.

Here, \Lambda 0 is a subspace of \Lambda with the continuous function xt(\cdot ) being a constant. In
the above sense, our result recovers the classical one for Problem (LQ-SDE).

5. Decoupling the optimality system. In this section, we shall show that
the solution P (\cdot ) to Riccati equation (4.10) is exactly the so-called decoupling field
for the optimality system (3.12), which is a coupled FBSVIE. Note that the solution
of the path-dependent HJB equation associated with Problem (LQ-FSVIE) can be
represented by (4.12). Thus, the connection between the Volterra-type stochastic
Hamiltonian system (1.8) and the path-dependent HJB equation (4.5) associated with
Problem (LQ-FSVIE) will be also established.

Theorem 5.1. Let (H1)--(H3) hold. Suppose that the path-dependent Riccati
equation (4.10) admits a strongly regular solution P (\cdot ) \in C([0, T ];\scrS n). Then the
solutions of the optimality system (3.12) admit the following representation:

\=X(s) = \=\scrX (s, s), Y 0(s) = - R(s)\Theta (s) \=\scrX (\cdot , s), Y (s) =
\bigl[ 
C(\cdot , s)\top P (s)C(\cdot , s)

+Q(s)
\bigr] 
\=X(s) +

\bigl[ 
A(\cdot , s)\top P (s) +C(\cdot , s)\top P (s)D(\cdot , s)\Theta (s)

\bigr] 
\=\scrX (\cdot , s), s\in [t, T ],

where

(5.1) \Theta (s)\triangleq  - [R(s)+D(\cdot , s)\top P (s)D(\cdot , s)] - 1[B(\cdot , s)\top P (s)+D(\cdot , s)\top P (s)C(\cdot , s)\delta s],

with \=X(\cdot ) being the unique solution to the closed-loop system

\=X(s) = xt(s) +

\int s

t

\bigl[ 
A(s, \tau ) \=X(\tau ) +B(s, \tau )\Theta (\tau ) \=\scrX (\cdot , \tau )

\bigr] 
d\tau 

+

\int s

t

\bigl[ 
C(s, \tau ) \=X(\tau ) +D(s, \tau )\Theta (\tau ) \=\scrX (\cdot , \tau )

\bigr] 
dW (\tau ), s\in [t, T ],(5.2)
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and \=\scrX (\cdot , \cdot ) being the unique solution to the closed-loop auxiliary system

\=\scrX (s, r) = xt(s) +

\int r

t

\bigl[ 
A(s, \tau ) \=\scrX (\tau , \tau ) +B(s, \tau )\Theta (\tau ) \=\scrX (\cdot , \tau )

\bigr] 
d\tau 

+

\int r

t

\bigl[ 
C(s, \tau ) \=\scrX (\tau , \tau ) +D(s, \tau )\Theta (\tau ) \=\scrX (\cdot , \tau )

\bigr] 
dW (\tau ), (s, r)\in \Delta \ast [t, T ].(5.3)

Moreover, the optimal control \=u(\cdot ) admits the following causal state feedback represen-
tation:

(5.4) \=u(s) =\Theta (s) \=\scrX (\cdot , s), s\in [t, T ].

Remark 5.2. By Theorem 5.1, the optimality system (3.12) is decoupled, and the
optimal control \=u(\cdot ) is represented as a causal state feedback (see (5.4)). Consequently,
in principle, the optimal control is practically realizable.

Remark 5.3. Note that when B(\cdot , \cdot ) \equiv 0, the optimal control \=u(\cdot ) can be repre-
sented by

\=u(s) =\Theta (s) \=\scrX (\cdot , s) = - [R(s) +D(\cdot , s)\top P (s)D(\cdot , s)] - 1D(\cdot , s)\top P (s)C(\cdot , s) \=X(s)

\triangleq \Theta \ast (s) \=X(s), s\in [t, T ],(5.5)

with

\=X(s) = xt(s) +

\int s

t

A(s, \tau ) \=X(\tau )d\tau 

+

\int s

t

\bigl[ 
C(s, \tau ) \=X(\tau ) +D(s, \tau )\Theta \ast (\tau ) \=X(\tau )

\bigr] 
dW (\tau ), s\in [t, T ].(5.6)

It is particularly noteworthy that though the state equation (5.6) is a non-Markovian
system, the optimal control \=u(\cdot ), defined by (5.5), can be uniquely determined by the
current value of the state process \=X(\cdot ). Thus, when the drift term of (1.2) does not
contain controls, the causal feedback representation of the optimal control, obtained
by Theorem 5.1, reduces to a state feedback (also called a Markovian feedback), which
is really unexpected.

Proof of Theorem 5.1. By Proposition 2.4, the systems (5.2) and (5.3) admit
unique solution \=X(\cdot ) \in L2

Ft(\Omega ;C([t, T ];Rn)) and \=\scrX (\cdot , \cdot ) \in L2
Ft(\Omega ;C(\Delta \ast [t, T ];Rn)), re-

spectively. Moreover, we have \=X(s) = \=\scrX (s, s); s\in [t, T ]. Let

(5.7) \eta (s) =G \=\scrX (T,T ) - 
\int T

s

\zeta (r)dW (r), s\in [t, T ],

and denote

\psi (s) =Q(s) \=\scrX (s, s) +A(T, s)\top G \=\scrX (T,T ) +C(T, s)\top \zeta (s),

\psi 0(s) =B(T, s)\top G \=\scrX (T,T ) +D(T, s)\top \zeta (s), s\in [t, T ].(5.8)

Then for any (s,xs(\cdot )) \in \Lambda , by the functional It\^o formula (see Proposition 2.12), we
have
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2620 HANXIAO WANG, JIONGMIN YONG, AND CHAO ZHOU

d
\bigl\{ 
[xs]r(\cdot )\top P (r) \=\scrX (\cdot , r)

\bigr\} 
\equiv d
\bigl\{ 
P (r)

\bigl( 
\=\scrX (\cdot , r), [xs]r(\cdot )

\bigr) \bigr\} 
=
\bigl\{ 
[xs]r(\cdot )\top \.P (r) \=\scrX (\cdot , r) + [xs]r(\cdot )\top P (r)[A(\cdot , r) \=\scrX (r, r) +B(\cdot , r)\Theta (r) \=\scrX (\cdot , r)]

\bigr\} 
dr

+ [xs]r(\cdot )\top P (r)
\bigl[ 
C(\cdot , r) \=\scrX (r, r) +D(\cdot , r)\Theta (r) \=\scrX (\cdot , r)

\bigr] 
dW (r)

= - 
\bigl\{ 
xs(r)

\top A(\cdot , r)\top P (r) \=\scrX (\cdot , r) + xs(r)
\top C(\cdot , r)\top P (r)C(\cdot , r) \=\scrX (r, r)

+ xs(r)
\top Q(r) \=\scrX (r, r) + xs(r)

\top C(\cdot , r)\top P (r)D(\cdot , r)\Theta (r) \=\scrX (\cdot , r)
\bigr\} 
dr

+ [xs]r(\cdot )\top P (r)
\bigl[ 
C(\cdot , r) \=\scrX (r, r) +D(\cdot , r)\Theta (r) \=\scrX (\cdot , r)

\bigr] 
dW (r), r \in [s,T ].

Combining the above with (5.7), we have

[xs]r(\cdot )\top P (r) \=\scrX (\cdot , r) - xs(T )
\top Er[G \=\scrX (T,T )]

=

\int T

r

\Bigl\{ 
xs(\tau )

\top A(\cdot , \tau )\top P (\tau ) \=\scrX (\cdot , \tau ) + xs(\tau )
\top C(\cdot , \tau )\top P (\tau )C(\cdot , \tau ) \=\scrX (\tau , \tau )

+ xs(\tau )
\top Q(\tau ) \=\scrX (\tau , \tau ) + xs(\tau )

\top C(\cdot , \tau )\top P (\tau )D(\cdot , \tau )\Theta (\tau ) \=\scrX (\cdot , \tau )
\Bigr\} 
d\tau 

 - 
\int T

r

\Bigl\{ 
[xs]\tau (\cdot )\top P (\tau )[C(\cdot , \tau ) \=\scrX (\tau , \tau ) +D(\cdot , \tau )\Theta (\tau ) \=\scrX (\cdot , \tau )]

 - xs(T )
\top \zeta (\tau )

\Bigr\} 
dW (\tau ).(5.9)

For \ast =A,B,C,D, denote

Y \ast (s) = \ast (\cdot , s)\top P (s) \=\scrX (\cdot , s) - \ast (T, s)\top Es[G \=\scrX (T,T )],

Z\ast (s, \tau ) = [\ast (\cdot , s)]\top \tau P (\tau )
\bigl[ 
C(\cdot , \tau ) \=\scrX (\tau , \tau ) +D(\cdot , \tau )\Theta (\tau ) \=\scrX (\cdot , \tau )

\bigr] 
 - \ast (T, s)\top \zeta (\tau ).(5.10)

Taking xs(\cdot ) = \ast (\cdot , s) and r= s in (5.9), we have

Y \ast (s) =

\int T

s

\Bigl\{ 
\ast (\tau , s)\top Y A(\tau ) + \ast (\tau , s)\top E\tau [A(T, \tau )

\top G \=\scrX (T,T )] + \ast (\tau , s)\top ZC(\tau , \tau )

+ \ast (\tau , s)\top C(T, \tau )\top \zeta (\tau ) + \ast (\tau , s)\top Q(\tau ) \=\scrX (\tau , \tau )
\Bigr\} 
d\tau  - 

\int T

s

Z\ast (s, \tau )dW (\tau )

=

\int T

s

\ast (\tau , s)\top 
\Bigl[ 
E\tau [\psi (\tau )] + Y A(\tau ) +ZC(\tau , \tau )

\Bigr] 
d\tau  - 

\int T

s

Z\ast (s, \tau )dW (\tau ),(5.11)

where \psi (\cdot ) is defined by (5.8). Thus, by Proposition 3.5, the process (Y \ast (\cdot ),Z\ast (\cdot , \cdot ))
(with \ast =A,B,C,D) defined by (5.10) is the unique adapted solution to the type-III
BSVIE (3.13). Let (Y (\cdot ),Z(\cdot , \cdot ), Y 0(\cdot ), Z0(\cdot , \cdot )) be the unique adapted solution to the
following type-II BSVIE:\left\{         

Y (s) = \psi (s) +

\int T

s

\bigl[ 
A(\tau , s)\top Y (\tau ) +C(\tau , s)\top Z(\tau , s)

\bigr] 
d\tau  - 

\int T

s

Z(s, \tau )dW (\tau ),

Y 0(s) = \psi 0(s) +

\int T

s

\bigl[ 
B(\tau , s)\top Y (\tau ) +D(\tau , s)\top Z(\tau , s)

\bigr] 
d\tau  - 

\int T

s

Z0(s, \tau )dW (\tau ).

Then by Proposition 3.5 again, we have

Y (s) =Es[\psi (s)] + Y A(s) +ZC(s, s), Y 0(s) =Es[\psi 
0(s)] + Y B(s) +ZD(s, s).
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Substituting (5.10) into the above, we get

Y (s) =Q(s) \=\scrX (s, s) +A(T, s)\top GEs[ \=\scrX (T,T )] +C(T, s)\top \zeta (s) +A(\cdot , s)\top P (s) \=\scrX (\cdot , s)
 - A(T, s)\top Es[G \=\scrX (T,T )] +C(\cdot , s)\top P (s)[C(\cdot , s) \=\scrX (s, s) +D(\cdot , s)\Theta (s) \=\scrX (\cdot , s)]
 - C(T, s)\top \zeta (s)

=A(\cdot , s)\top P (s) \=\scrX (\cdot , s) +C(\cdot , s)\top P (s)C(\cdot , s) \=\scrX (s, s) +Q(s) \=\scrX (s, s)

+C(\cdot , s)\top P (s)D(\cdot , s)\Theta (s) \=\scrX (\cdot , s), s\in [t, T ],

and

Y 0(s) =B(T, s)\top GEs[ \=\scrX (T,T )] +D(T, s)\top \zeta (s) +B(\cdot , s)\top P (s) \=\scrX (\cdot , s)
 - B(T, s)\top Es[G \=\scrX (T,T )] +D(\cdot , s)\top P (s)[C(\cdot , s) \=\scrX (s, s)

+D(\cdot , s)\Theta (s) \=\scrX (\cdot , s)] - D(T, s)\top \zeta (s)

=B(\cdot , s)\top P (s) \=\scrX (\cdot , s) +D(\cdot , s)\top P (s)[C(\cdot , s) \=\scrX (s, s) +D(\cdot , s)\Theta (s) \=\scrX (\cdot , s)]
= - R(s)\Theta (s) \=\scrX (\cdot , s), s\in [t, T ].

Then the desired results can be obtained easily.

Remark 5.4. Note that the functional (r,xr(\cdot )) \mapsto \rightarrow \.P (r)(xr(\cdot ),xr(\cdot )) is not
continuous if Q(\cdot ) or R(\cdot ) is not a continuous function. However, the map
r \mapsto \rightarrow P (r)(xr(\cdot ),xr(\cdot )) is absolutely continuous, and from (4.10) the maps r \mapsto \rightarrow 
\.P (r)

\bigl( 
[x]r(\cdot ), \=\scrX (\cdot , r)

\bigr) 
and r \mapsto \rightarrow \.P (r)

\bigl( 
\=\scrX (\cdot , r), \=\scrX (\cdot , r)

\bigr) 
are progressively measurable and

square integrable on [t, T ]. Thus, the functional It\^o formula still holds true here. In
what follows, we will always apply the functional It\^o formula to this case without the
explanation.

Let X \ast 
s be the dual space of Xs \equiv C([s,T ];Rn) that is, the space consisting of

all the bounded linear functionals on Xs. Clearly, for a.s. \omega \in \Omega ,

\{ Es[Y (\cdot )]1[s,T ](\cdot )\} (\omega )\in X \ast 
s and \{ Z(\cdot , s)1[s,T ](\cdot )\} (\omega )\in X \ast 

s ,

by letting

\langle Es[Y (\cdot )]1[s,T ](\cdot ),xs(\cdot )\rangle (\omega )\triangleq 
\int T

s

xs(r)
\top Es[Y (r)](\omega )dr=

\Biggl[ 
Es

\int T

s

xs(r)
\top Y (r)dr

\Biggr] 
(\omega ),

\langle Z(\cdot , s)1[s,T ](\cdot ),xs(\cdot )\rangle (\omega )\triangleq 

\Biggl[ \int T

s

xs(r)
\top Z(r, s)dr

\Biggr] 
(\omega ) \forall xs(\cdot )\in Xs.

By the similar arguments to that employed in the proof of Theorem 5.1, we get the
following representation for (Es[Y (\cdot )]1[s,T ](\cdot ), Z(\cdot , s)1[s,T ](\cdot )) in the space X \ast 

s .

Theorem 5.5. For any s\in [t, T ], the following equalities hold:

Es[Y (\cdot )]1[s,T ](\cdot ) = P (s) \=\scrX (\cdot , s) - \delta \top T Es[G \=\scrX (T,T )],

Z(\cdot , s)1[s,T ](\cdot ) = P (s)C(\cdot , s) \=\scrX (s, s) + P (s)D(\cdot , s)\Theta (s) \=\scrX (\cdot , s) - \delta \top T \zeta (s),
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2622 HANXIAO WANG, JIONGMIN YONG, AND CHAO ZHOU

in the space X \ast 
s ; that is for any xs(\cdot )\in Xs and a.s. \omega \in \Omega ,\Biggl[ 

Es

\int T

s

xs(r)
\top Y (r)dr

\Biggr] 
(\omega ) =

\bigl\{ 
xs(\cdot )\top P (s) \=\scrX (\cdot , s) - xs(T )

\top Es[G \=\scrX (T,T )]
\bigr\} 
(\omega ),\Biggl[ \int T

s

xs(r)
\top Z(r, s)dr

\Biggr] 
(\omega ) =

\bigl\{ 
xs(\cdot )\top P (s)C(\cdot , s) \=\scrX (s, s) - xs(T )

\top \zeta (s)

+ xs(\cdot )\top P (s)D(\cdot , s)\Theta (s) \=\scrX (\cdot , s)
\bigr\} 
(\omega ).

Remark 5.6. If we let G= 0, then

Es[Y (\cdot )]1[s,T ](\cdot ) = P (s) \=\scrX (\cdot , s),
Z(\cdot , s)1[s,T ](\cdot ) = P (s)C(\cdot , s) \=\scrX (s, s) + P (s)D(\cdot , s)\Theta (s) \=\scrX (\cdot , s),

which is very similar to the results of classical stochastic LQ control problems (see
[40, Chapter 6], for example). Thus, it should be more natural to regard the solution
(Y (\cdot ),Z(\cdot , \cdot )) as a bounded linear functional on Xs;s\in [0, T ].

6. Well-posedness of the path-dependent Riccati equation. In this sec-
tion, we shall establish the well-posedness of path-dependent Riccati equation (4.10)
which is rewritten here, for convenience:
(6.1)\left\{           

\.P (t) + P (t)A(\cdot , t)\delta t + \delta \top t A(\cdot , t)\top P (t) + \delta \top t C(\cdot , t)\top P (t)C(\cdot , t)\delta t + \delta \top t Q(t)\delta t

 - 
\bigl[ 
D(\cdot , t)\top P (t)C(\cdot , t)\delta t +B(\cdot , t)\top P (t)

\bigr] \top \bigl[ 
D(\cdot , t)\top P (t)D(\cdot , t) +R(t)

\bigr]  - 1

\times 
\bigl[ 
D(\cdot , t)\top P (t)C(\cdot , t)\delta t +B(\cdot , t)\top P (t)

\bigr] 
= 0, t\in [0, T ],

P (T ) =G.

We assume the following condition.
(H4) The weighting matrices Q(\cdot ), R(\cdot ), and G satisfy

(6.2) Q(t)\geq 0, R(t)\geq \lambda Im, t\in [0, T ]; G\geq 0,

where \lambda > 0 is a given constant.

Theorem 6.1. Let (H1)--(H2) and (H4) hold. Then the path-dependent Riccati
equation (6.1) admits a unique strongly regular solution P (\cdot ) \in C([0, T ];\scrS n). More-
over,

P (t)
\bigl( 
xt(\cdot ),xt(\cdot )

\bigr) 
\geq 0 \forall (t,xt(\cdot ))\in \Lambda .

Remark 6.2. For the corresponding results of Theorem 6.1 in the SDE setting,
we refer the reader to [40, Chapter 6], in which (H4) was called a standard condition.
It is known that (H4) implies the uniformly convexity condition (H3). An interesting
question is whether Riccati equation (6.1) has the well-posedness under (H3), as
shown by Sun, Li, and Yong [29] in the SDE setting. We shall explore that in the
near future. We highlight that in the recent work [15] by Hamaguchi and Wang, they
provide another method of constructing the optimal causal feedback strategy under
the uniform convexity condition.

To establish the well-posedness of (6.1), we introduce the following path-dependent
Lyapunov equation:
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(6.3)

\left\{               

\.P (t) + P (t)A(\cdot , t)\delta t + \delta \top t A(\cdot , t)\top P (t) + \delta \top t C(\cdot , t)\top P (t)C(\cdot , t)\delta t
+ \delta \top t Q(t)\delta t  - 

\bigl[ 
P (t)B(\cdot , t) + \delta \top t C(\cdot , t)\top P (t)D(\cdot , t)

\bigr] 
\Psi (t)

 - \Psi (t)\top 
\bigl[ 
B(\cdot , t)\top P (t) +D(\cdot , t)\top P (t)C(\cdot , t)\delta t

\bigr] 
+\Psi (t)\top 

\bigl[ 
R(t) +D(\cdot , t)\top P (t)D(\cdot , t)

\bigr] 
\Psi (t) = 0, t\in [0, T ],

P (T ) =G,

where \Psi (\cdot ) \in L\infty (0, T ;\scrL (Xt;Rm)). As pointed out in Remark 2.7, we assume that
the map (t,\omega ) \mapsto \rightarrow \Psi (t)\scrX (\cdot , t) is progressively measurable for any \scrX (\cdot , \cdot ) \in L2

F
(\Omega ;C(\Delta \ast [0, T ];Rn)). For any x(\cdot )\in X0, the map t \mapsto \rightarrow \Psi (t)[x]t(\cdot ) is in L\infty (0, T ;Rm).

We call P (\cdot )\in C([0, T ];\scrS n) a solution of (6.3) if the map t \mapsto \rightarrow P (t)
\bigl( 
[x]t(\cdot ), [x]t(\cdot )

\bigr) 
is absolutely continuous for any x(\cdot )\in X0, and it satisfies (6.3) for almost everywhere
t \in [0, T ]. Clearly, noting that P (\cdot ) is symmetric, (6.3) is equivalent to that for any
x(\cdot ),x\prime (\cdot )\in X0, the following holds on [0, T ]:

[x]t(\cdot )\top P (t)[x\prime ]t(\cdot ) = x(T )\top Gx\prime (T ) +

\int T

t

\Bigl\{ 
[x]s(\cdot )\top P (s)A(\cdot , s)x\prime (s)

+ x(s)\top A(\cdot , s)\top P (s)[x\prime ]s(\cdot ) + x(s)\top C(\cdot , s)\top P (s)C(\cdot , s)x\prime (s)

+ x(s)\top Q(s)x\prime (s) - [x]s(\cdot )\top P (s)B(\cdot , s)\Psi (s)[x\prime ]s(\cdot ) - x(s)\top C(\cdot , s)\top 

\times P (s)D(\cdot , s)\Psi (s)[x\prime ]s(\cdot ) - \{ \Psi (s)[x]s(\cdot )\} \top B(\cdot , s)\top P (s)[x\prime ]s(\cdot )
 - \{ \Psi (s)[x]s(\cdot )\} \top D(\cdot , s)\top P (s)C(\cdot , s)x\prime (s) + \{ \Psi (s)[x]s(\cdot )\} \top R(s)

\times \{ \Psi (s)[x\prime ]s(\cdot )\} + \{ \Psi (s)[x]s(\cdot )\} \top D(\cdot , s)\top P (s)D(\cdot , s)\{ \Psi (s)[x\prime ]s(\cdot )\} 
\Bigr\} 
ds.

Lemma 6.3. Let (H1)--(H2) hold. Then the path-dependent Lyapunov equation
(6.3) admits a unique solution P (\cdot ) \in C([0, T ];\scrS n). If, in addition, (H4) holds, then
we have

(6.4) P (t)
\bigl( 
xt(\cdot ),xt(\cdot )

\bigr) 
\geq 0 \forall (t,xt(\cdot ))\in \Lambda .

Proof. We first prove the existence and the uniqueness of the solution to Lyapunov
equation (6.3). For any \varepsilon \in (0, T ] and \=P (\cdot ) \in C([T  - \varepsilon ,T ];\scrS n), denote the operator-
valued function P (\cdot ) on [T  - \varepsilon ,T ] by

[x]t(\cdot )\top P (t)[x\prime ]t(\cdot ) = x(T )\top Gx\prime (T ) +

\int T

t

\Bigl\{ 
[x]s(\cdot )\top \=P (s)A(\cdot , s)x\prime (s)

+ x(s)\top A(\cdot , s)\top \=P (s)[x\prime ]s(\cdot ) + x(s)\top C(\cdot , s)\top \=P (s)C(\cdot , s)x\prime (s)

+ x(s)\top Q(s)x\prime (s) - [x]s(\cdot )\top \=P (s)B(\cdot , s)\Psi (s)[x\prime ]s(\cdot ) - x(s)\top C(\cdot , s)\top 

\times \=P (s)D(\cdot , s)\Psi (s)[x\prime ]s(\cdot ) - \{ \Psi (s)[x]s(\cdot )\} \top B(\cdot , s)\top \=P (s)[x\prime ]s(\cdot )
 - \{ \Psi (s)[x]s(\cdot )\} \top D(\cdot , s)\top \=P (s)C(\cdot , s)x\prime (s) + \{ \Psi (s)[x]s(\cdot )\} \top R(s)

\times \{ \Psi (s)[x\prime ]s(\cdot )\} + \{ \Psi (s)[x]s(\cdot )\} \top D(\cdot , s)\top \=P (s)D(\cdot , s)\{ \Psi (s)[x\prime ]s(\cdot )\} 
\Bigr\} 
ds.(6.5)

From the fact that \=P (\cdot ) is symmetric, we see that P (\cdot )\in C([T  - \varepsilon ,T ];\scrS n). Thus, the
map \Gamma :C([T  - \varepsilon ,T ];\scrS n)\rightarrow C([T  - \varepsilon ,T ];\scrS n), given by

P (\cdot ) = \Gamma 
\bigl( 
\=P (\cdot )

\bigr) 
,

is well defined. For any \=P1(\cdot ), \=P2(\cdot )\in C([T  - \varepsilon ,T ];\scrS n), denote

Pi(\cdot ) = \Gamma ( \=Pi(\cdot )), \Delta P (\cdot ) = P1(\cdot ) - P2(\cdot ), \Delta \=P (\cdot ) = \=P1(\cdot ) - \=P2(\cdot ).
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2624 HANXIAO WANG, JIONGMIN YONG, AND CHAO ZHOU

Then from (6.5), taking x\prime (\cdot ) = x(\cdot ), we have

[x]t(\cdot )\top \Delta P (t)[x]t(\cdot ) =
\int T

t

\Bigl\{ 
2[x]s(\cdot )\top \Delta \=P (s)A(\cdot , s)x(s) - 2[x]s(\cdot )\top \Delta \=P (s)B(\cdot , s)

\times \Psi (s)[x]s(\cdot ) + x(s)\top C(\cdot , s)\top \Delta \=P (s)C(\cdot , s)x(s) - 2x(s)\top C(\cdot , s)\top \Delta \=P (s)

\times D(\cdot , s)\Psi (s)[x]s(\cdot ) + \{ \Psi (s)[x]s(\cdot )\} \top D(\cdot , s)\top \Delta \=P (s)D(\cdot , s)\{ \Psi (s)[x]s(\cdot )\} 
\Bigr\} 
ds.

Thus, by Lemma 2.8, we get

sup
s\in [T - \varepsilon ,T ]

\| \Delta P (s)\| \leq K\varepsilon sup
s\in [T - \varepsilon ,T ]

\| \Delta \=P (s)\| ,

where K > 0, only depending on the norms of the coefficients, is a fixed constant.
Then when \varepsilon > 0 is small, by the fixed point theorem, the Lyapunov equation (6.3)
admits a unique solution \^P (\cdot ) \in C([T  - \varepsilon ,T ];\scrS n) over [T  - \varepsilon ,T ]. Next, on [0, T  - \varepsilon ],
we consider the following equation:

[x]t(\cdot )\top P (t)[x\prime ]t(\cdot ) = [x]T - \varepsilon (\cdot )\top \^P (T  - \varepsilon )[x\prime ]T - \varepsilon (\cdot )

+

\int T - \varepsilon 

t

\Bigl\{ 
[x]s(\cdot )\top P (s)A(\cdot , s)x\prime (s) + x(s)\top A(\cdot , s)\top P (s)[x\prime ]s(\cdot ) + x(s)\top C(\cdot , s)\top 

\times P (s)C(\cdot , s)x\prime (s) + x(s)\top Q(s)x\prime (s) - [x]s(\cdot )\top P (s)B(\cdot , s)\Psi (s)[x\prime ]s(\cdot )
 - x(s)\top C(\cdot , s)\top P (s)D(\cdot , s)\Psi (s)[x\prime ]s(\cdot ) - \{ \Psi (s)[x]s(\cdot )\} \top B(\cdot , s)\top P (s)[x\prime ]s(\cdot )
 - \{ \Psi (s)[x]s(\cdot )\} \top D(\cdot , s)\top P (s)C(\cdot , s)x\prime (s) + \{ \Psi (s)[x]s(\cdot )\} \top R(s)\{ \Psi (s)[x\prime ]s(\cdot )\} 

+ \{ \Psi (s)[x]s(\cdot )\} \top D(\cdot , s)\top P (s)D(\cdot , s)\{ \Psi (s)[x\prime ]s(\cdot )\} 
\Bigr\} 
ds.

Note that in the above, the integral is from t to T  - \varepsilon , and for any x(\cdot ),x\prime (\cdot )\in X0, the
map s \mapsto \rightarrow [x]s(\cdot )\top P (s)[x\prime ]s(\cdot ) is only considered on [0, T  - \varepsilon ]. Moreover, we see that
for any t \in [0, T  - \varepsilon ], P (t) is still defined on Xt \times Xt \equiv C([t, T ];Rn)\times C([t, T ];Rn).
Thus, using the same arguments as above, we can prove that the above equation
admits a unique solution in C([T  - 2\varepsilon ,T  - \varepsilon ];\scrS n). Then we can complete the proof
by induction.

We now prove (6.4). Let \scrX (\cdot , \cdot ) be the unique solution to the following SVIE:

\scrX (s, r) = xt(s) +

\int r

t

[A(s, \tau )\scrX (\tau , \tau ) - B(s, \tau )\Psi (\tau )\scrX (\cdot , \tau )]d\tau 

+

\int r

t

[C(s, \tau )\scrX (\tau , \tau ) - D(s, \tau )\Psi (\tau )\scrX (\cdot , \tau )]dW (\tau ), (s, r)\in \Delta \ast [t, T ].

Then by the functional It\^o formula (see Proposition 2.12), we have

P (s)
\bigl( 
\scrX (\cdot , s),\scrX (\cdot , s)

\bigr) 
=Es

\Biggl\{ \int T

s

\bigl[ 
\langle Q(r)\scrX (r, r),\scrX (r, r)\rangle 

+ \langle R(r)\Psi (r)\scrX (\cdot , r),\Psi (r)\scrX (\cdot , r)\rangle 
\bigr] 
dr+ \langle G\scrX (T,T ),\scrX (T,T )\rangle 

\Biggr\} 
, s\in [t, T ].
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In particular, taking s= t, we have (noting \scrX (\cdot , t) = xt(\cdot ))

P (t)
\bigl( 
xt(\cdot ),xt(\cdot )

\bigr) 
=Et

\Biggl\{ \int T

t

\bigl[ 
\langle Q(r)\scrX (r, r),\scrX (r, r)\rangle + \langle R(r)\Psi (r)\scrX (\cdot , r),

\Psi (r)\scrX (\cdot , r)\rangle 
\bigr] 
dr+ \langle G\scrX (T,T ),\scrX (T,T )\rangle 

\Biggr\} 
\geq 0 \forall (t,xt(\cdot ))\in \Lambda ,

where the last inequality is due to the facts G\geq 0, Q(\cdot )\geq 0, and R(\cdot )\geq 0.

Proof of Theorem 6.1. The uniqueness of the solution to Riccati equation (6.1)
can be obtained by a standard method. We now prove the existence of a solution to
Riccati equation (6.1) by a iterative method. For any t\in [0, T ], we denote

\Psi (t) = [D(\cdot , t)\top P (t)D(\cdot , t) +R(t)] - 1[D(\cdot , t)\top P (t)C(\cdot , t)\delta t +B(\cdot , t)\top P (t)].

Then from the fact

[D(\cdot , t)\top P (t)D(\cdot , t) +R(t)]\Psi (t) = [D(\cdot , t)\top P (t)C(\cdot , t)\delta t +B(\cdot , t)\top P (t)], t\in [0, T ],

it is easily checked that (6.1) is equivalent to the following:\left\{               

\.P (t) + P (t)A(\cdot , t)\delta t + \delta \top t A(\cdot , t)\top P (t) - P (t)B(\cdot , t)\Psi (t) - \Psi (t)\top B(\cdot , t)\top P (t)
+ \delta \top t C(\cdot , t)\top P (t)C(\cdot , t)\delta t  - \delta \top t C(\cdot , t)\top P (t)D(\cdot , t)\Psi (t)

 - \Psi (t)\top D(\cdot , t)\top P (t)C(\cdot , t)\delta t +\Psi (t)\top D(\cdot , t)\top P (t)D(\cdot , t)\Psi (t)

+ \delta \top t Q(t)\delta t +\Psi (t)\top R(t)\Psi (t) = 0,

P (T ) =G.

By Lemma 6.3, with \Psi (\cdot )\equiv 0, the following equation admits a unique solution P0(\cdot ):\Biggl\{ 
\.P0(t) + P0(t)A(\cdot , t)\delta t + \delta \top t A(\cdot , t)\top P0(t) + \delta \top t C(\cdot , t)\top P0(t)C(\cdot , t)\delta t + \delta \top t Q(t)\delta t = 0,

P0(T ) =G.

Moreover, P0(\cdot ) satisfies

P0(t)
\bigl( 
xt(\cdot ),xt(\cdot )

\bigr) 
\geq 0 \forall (t,xt(\cdot ))\in \Lambda ,

which, together with (H4), implies

R(t) +D(\cdot , t)\top P0(t)D(\cdot , t)\geq \lambda Im, t\in [0, T ].

For i= 0,1,2, . . ., define

\Psi i(t) = [D(\cdot , t)\top Pi(t)D(\cdot , t) +R(t)] - 1[D(\cdot , t)\top Pi(t)C(\cdot , t)\delta t +B(\cdot , t)\top Pi(t)],(6.6)

with Pi(\cdot ) being the unique solution to the following Lyapunov equation:

(6.7)

\left\{               

\.Pi+1(t) + Pi+1(t)A(\cdot , t)\delta t + \delta \top t A(\cdot , t)\top Pi+1(t) - Pi+1(t)B(\cdot , t)\Psi i(t)

 - \Psi i(t)
\top B(\cdot , t)\top Pi+1(t) + \delta \top t C(\cdot , t)\top Pi+1(t)C(\cdot , t)\delta t

 - \delta \top t C(\cdot , t)\top Pi+1(t)D(\cdot , t)\Psi i(t) - \Psi i(t)
\top D(\cdot , t)\top Pi+1(t)C(\cdot , t)\delta t

+\Psi i(t)
\top D(\cdot , t)\top Pi+1(t)D(\cdot , t)\Psi i(t) + \delta \top t Q(t)\delta t +\Psi i(t)

\top R(t)\Psi i(t) = 0,

Pi+1(T ) =G,
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2626 HANXIAO WANG, JIONGMIN YONG, AND CHAO ZHOU

which is equivalent to

[x]t(\cdot )\top Pi+1(t)[x
\prime ]t(\cdot ) = x(T )\top Gx\prime (T ) +

\int T

t

\Bigl\{ 
[x]s(\cdot )\top Pi+1(s)A(\cdot , s)x\prime (s)

+ x(s)\top A(\cdot , s)\top Pi+1(s)[x
\prime ]s(\cdot ) + x(s)\top C(\cdot , s)\top Pi+1(s)C(\cdot , s)x\prime (s)

+ x(s)\top Q(s)x\prime (s) - [x]s(\cdot )\top Pi+1(s)B(\cdot , s)\Psi i(s)[x
\prime ]s(\cdot )

 - x(s)\top C(\cdot , s)\top Pi+1(s)D(\cdot , s)\Psi i(s)[x
\prime ]s(\cdot ) - \{ \Psi i(s)[x]s(\cdot )\} \top B(\cdot , s)\top 

\times Pi+1(s)[x
\prime ]s(\cdot ) - \{ \Psi i(s)[x]s(\cdot )\} \top D(\cdot , s)\top Pi+1(s)C(\cdot , s)x\prime (s)

+ \{ \Psi i(s)[x]s(\cdot )\} \top R(s)\{ \Psi i(s)[x
\prime ]s(\cdot )\} + \{ \Psi i(s)[x]s(\cdot )\} \top D(\cdot , s)\top 

\times Pi+1(s)D(\cdot , s)\{ \Psi i(s)[x
\prime ]s(\cdot )\} 

\Bigr\} 
ds, t\in [0, T ] \forall x(\cdot ),x\prime (\cdot )\in X0.(6.8)

It is easily checked that the above operator-valued function \Psi i(\cdot ) satisfies the assump-
tion imposed for \Psi (\cdot ) in the Lyapunov equation (6.3). Then by Lemma 6.3 again, we
have

Pi(t)
\bigl( 
xt(\cdot ),xt(\cdot )

\bigr) 
\geq 0 \forall (t,xt(\cdot ))\in \Lambda , i\geq 0.

It follows that

(6.9) R(t) +D(\cdot , t)\top Pi(t)D(\cdot , t)\geq \lambda Im, t\in [0, T ], i\geq 0.

For i\geq 1, denote

\Delta i(\cdot ) = Pi(\cdot ) - Pi+1(\cdot ), \Pi i(\cdot ) =\Psi i(\cdot ) - \Psi i - 1(\cdot ).

Then by (6.7), we get
(6.10)\left\{                               

\.\Delta i(t) +\Delta i(t)A(\cdot , t)\delta t + \delta \top t A(\cdot , t)\top \Delta i(t) - \Delta i(t)B(\cdot , t)\Psi i(t)

 - \Psi i(t)
\top B(\cdot , t)\top \Delta i(t) + Pi(t)B(\cdot , t)\Pi i(t) +\Pi i(t)

\top B(\cdot , t)\top Pi(t)

+ \delta \top t C(\cdot , t)\top \Delta i(t)C(\cdot , t)\delta t  - \delta \top t C(\cdot , t)\top \Delta i(t)D(\cdot , t)\Psi i(t)

 - \Psi i(t)
\top D(\cdot , t)\top \Delta i(t)C(\cdot , t)\delta t + \delta \top t C(\cdot , t)\top Pi(t)D(\cdot , t)\Pi i(t)

+\Pi i(t)
\top D(\cdot , t)\top Pi(t)C(\cdot , t)\delta t +\Psi i(t)

\top D(\cdot , t)\top \Delta i(t)D(\cdot , t)\Psi i(t)

+\Psi i - 1(t)
\top D(\cdot , t)\top Pi(t)D(\cdot , t)\Psi i - 1(t) - \Psi i(t)

\top D(\cdot , t)\top Pi(t)D(\cdot , t)\Psi i(t)

+\Psi i - 1(t)
\top R(t)\Psi i - 1(t) - \Psi i(t)

\top R(t)\Psi i(t) = 0,

\Delta i(T ) = 0.

By some straightforward calculations, we have

Pi(t)B(\cdot , t)\Pi i(t) +\Pi i(t)
\top B(\cdot , t)\top Pi(t) + \delta \top t C(\cdot , t)\top Pi(t)D(\cdot , t)\Pi i(t)

+\Pi i(t)
\top D(\cdot , t)\top Pi(t)C(\cdot , t)\delta t +\Psi i - 1(t)

\top D(\cdot , t)\top Pi(t)D(\cdot , t)\Psi i - 1(t)

 - \Psi i(t)
\top D(\cdot , t)\top Pi(t)D(\cdot , t)\Psi i(t) +\Psi i - 1(t)

\top R(t)\Psi i - 1(t) - \Psi i(t)
\top R(t)\Psi i(t)

= Pi(t)B(\cdot , t)\Pi i(t) +\Pi i(t)
\top B(\cdot , t)\top Pi(t) + \delta \top t C(\cdot , t)\top Pi(t)D(\cdot , t)\Pi i(t)

+\Pi i(t)
\top D(\cdot , t)\top Pi(t)C(\cdot , t)\delta t +\Pi i(t)

\top [D(\cdot , t)\top Pi(t)D(\cdot , t) +R(t)]\Pi i(t)

 - \Pi i(t)
\top [D(\cdot , t)\top Pi(t)D(\cdot , t) +R(t)]\Psi i(t)

 - \Psi i(t)
\top [D(\cdot , t)\top Pi(t)D(\cdot , t) +R(t)]\Pi i(t)

=\Pi i(t)
\top [D(\cdot , t)\top Pi(t)D(\cdot , t) +R(t)]\Pi i(t)\geq 0.
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Then by Lemma 6.3 again, (6.10) admits a unique solution \Delta i(\cdot ) satisfying \Delta i(\cdot )\geq 0.
It follows that

(6.11) Pi(t)
\bigl( 
xt(\cdot ),xt(\cdot )

\bigr) 
\geq Pi+1(t)

\bigl( 
xt(\cdot ),xt(\cdot )

\bigr) 
\geq 0 \forall (t,xt(\cdot ))\in \Lambda , i\geq 0.

Thus, for any (t,xt(\cdot )) \in \Lambda , \{ Pi(t)(xt(\cdot ),xt(\cdot ))\} i\geq 0 is a decreasing sequence, which is
convergent as i\rightarrow \infty . Denote

(6.12) P (t)
\bigl( 
xt(\cdot ),xt(\cdot )

\bigr) 
\triangleq lim

i\rightarrow \infty 
Pi(t)

\bigl( 
xt(\cdot ),xt(\cdot )

\bigr) 
\forall (t,xt(\cdot ))\in \Lambda .

Note that

Pi(t)
\bigl( 
xt(\cdot ),x\prime 

t(\cdot )
\bigr) 
=
Pi(t)

\bigl( 
xt(\cdot ) + x\prime 

t(\cdot ),xt(\cdot ) + x\prime 
t(\cdot )
\bigr) 

4

 - 
Pi(t)

\bigl( 
xt(\cdot ) - x\prime 

t(\cdot ),xt(\cdot ) - x\prime 
t(\cdot )
\bigr) 

4
.

Thus, the limit of Pi(t)
\bigl( 
xt(\cdot ),x\prime 

t(\cdot )
\bigr) 
also exists as i\rightarrow \infty , and then for any t \in [0, T ],

we can extend the domain of P (t) to Xt \times Xt by

P (t)
\bigl( 
xt(\cdot ),x\prime 

t(\cdot )
\bigr) 
= lim

i\rightarrow \infty 
Pi(t)

\bigl( 
xt(\cdot ),x\prime 

t(\cdot )
\bigr) 

\forall xt(\cdot ),x\prime 
t(\cdot )\in Xt.

Combining the above with (6.6) and (6.9) yields that

lim
i\rightarrow \infty 

\Psi i(t) = [D(\cdot , t)\top P (t)D(\cdot , t) +R(t)] - 1[D(\cdot , t)\top P (t)C(\cdot , t)\delta t +B(\cdot , t)\top P (t)]

for any t\in [0, T ]. Moreover, by Lemma 2.8 and (6.11), we have

sup
i\geq 0

sup
t\in [0,T ]

\| Pi(t)\| \scrL 2 \leq 2 sup
i\geq 0

sup
t\in [0,T ]

\| Pi(t)\| \scrS \leq 2 sup
t\in [0,T ]

\| P0(t)\| \scrS <\infty ,

and then

sup
i\geq 0

sup
t\in [0,T ]

\| \Psi i(t)\| \leq K sup
t\in [0,T ]

\| P0(t)\| \scrS <\infty .

Taking i\rightarrow \infty in (6.8), we see that P (\cdot ) satisfies (6.6), and hence (6.1). Moreover, by
(6.9) we get that P (\cdot ) is a strongly regular solution.

By Theorem 6.1, we show that under (H1)--(H2) and (H4), the decoupling field
of the optimality system associated with Problem (LQ-FSVIE) really exists. Note
that if, in addition, Q(\cdot ) and R(\cdot ) are continuous functions, then P (\cdot )\in C1([0, T ];\scrS n).
Combining Theorems 4.2 and 6.1, we get the following result, in which the uniqueness
of the classical solution to (4.5) is due to the uniqueness of the value function of
Problem (LQ-FSVIE).

Corollary 6.4. Let (H1)--(H2) and (H4) hold. In addition, we assume that Q(\cdot )
and R(\cdot ) are continuous functions. Then v(t,xt(\cdot ))\triangleq P (t)(xt(\cdot ),xt(\cdot ))

2 \in C1,2
+ (\Lambda ), and it

is the unique classical solution to the path-dependent HJB equation (4.5).

7. Conclusion. The most important contribution of this paper is that we de-
velop a decoupling method (Theorems 5.1 and 5.5) for the optimality system associ-
ated with Problem (LQ-FSVIE), which is a linear coupled system of an FSVIE and
a type-II BSVIE. As a result, the open-loop optimal control of Problem (LQ-FSVIE)
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can be represented as a causal feedback of the state process, and then an interest-
ing phenomenon is found (Remark 5.3). The key techniques developed in the paper
are establishing a link between the type-II and type-III BSVIEs (Proposition 3.5),
deriving the associated path-dependent Riccati equation (Theorem 4.2), and proving
the solvability of this new type of Riccati equation (Theorem 6.1). Such a Riccati-
equation approach should have a big impact on the study of LQ control (or game)
problems for SVIEs. It is also expected that by modifying this approach, one can
decouple some general coupled FBSVIEs and solve some general control problems
evolved by SVIEs. We will report the related results in our future publications.
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