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A B S T R A C T

In this paper, we present a brief survey for some recent developments of stochastic linear-quadratic optimal
controls. We mainly concentrate on the results obtained by the authors and their collaborators in the last
decay.
1. Introduction

Let us consider the following controlled linear ordinary differential
equation (ODE, for short)
{

𝑋̇(𝑡) = 𝐴𝑋(𝑡) + 𝐵𝑢(𝑡), 𝑡 ∈ [0, 𝑇 ],

𝑋(0) = 𝑥,
(1.1)

where 𝑋(⋅) is the state trajectory valued in R𝑛 with 𝑥 being the initial
state, and 𝑢(⋅) is a control function valued in R𝑚; 𝐴 ∈ R𝑛×𝑛 and 𝐵 ∈ R𝑛×𝑚

re given constant matrices. We refer to the above as the state equation.
learly, for any 𝑥 ∈ R𝑛 and 𝑢(⋅) ∈ 𝒰[0, 𝑇 ], the set of all R𝑚-valued,
square-integrable functions, the state equation (1.1) admits a unique
solution 𝑋(⋅) ≡ 𝑋(⋅ ; 𝑥, 𝑢(⋅)). To measure the performance of the control,
one can introduce the following quadratic cost functional:

𝐽 (𝑥; 𝑢(⋅)) ≜ ∫

𝑇

0

[

⟨𝑄𝑋(𝑡), 𝑋(𝑡)⟩ + ⟨𝑅𝑢(𝑡), 𝑢(𝑡)⟩
]

𝑑𝑡 + ⟨𝐺𝑋(𝑇 ), 𝑋(𝑇 )⟩, (1.2)

where 𝑄,𝐺 ∈ S𝑛, the set of all (𝑛 × 𝑛) symmetric real matrices, and
𝑅 ∈ S𝑚. The two terms on the right-hand side of the above are called the
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running cost and the terminal cost, respectively. Then the classical linear-
quadratic (LQ, for short) optimal control problem associated with the
above linear state equation (1.1) and quadratic cost functional (1.2) can
be formulated as follows.

Problem (DLQ). For any 𝑥 ∈ R𝑛, find a 𝑢̄(⋅) ∈ 𝒰[0, 𝑇 ] such that

𝐽 (𝑥; 𝑢̄(⋅)) = inf
𝑢(⋅)∈𝒰[0,𝑇 ]

𝐽 (𝑥; 𝑢(⋅)). (1.3)

If 𝑢̄(⋅) ∈ 𝒰[0, 𝑇 ] exists satisfying (1.3), we call it an optimal control,
the corresponding 𝑋̄(⋅) ≡ 𝑋(⋅ ; 𝑥, 𝑢̄(⋅)) and the pair (𝑋̄(⋅), 𝑢̄(⋅)) are called
an optimal trajectory and an optimal pair, respectively. The above prob-
lem is referred to as the deterministic linear-quadratic optimal control
problem (LQ problem, for short). The following collects the most basic
conclusions for Problem (DLQ).

Proposition 1.1. For Problem (DLQ), the following hold:
(i) Suppose that Problem (DLQ) admits an optimal pair (𝑋̄(⋅), 𝑢̄(⋅)). Then

it is necessary that

𝑅 ⩾ 0, (1.4)
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and the cost functional 𝐽 (𝑥; 𝑢(⋅)) is convex in the control function 𝑢(⋅).
oreover, there exists a solution to the following ODE, called the adjoint
quation:
{ ̇̄𝑌 (𝑡) = −[𝐴⊤𝑌 (𝑡) +𝑄𝑋̄(𝑡)], 𝑡 ∈ [0, 𝑇 ],

𝑌 (𝑇 ) = 𝐺𝑋̄(𝑇 ),
(1.5)

such that the following stationarity condition holds:

𝐵⊤𝑌 (𝑡) + 𝑅𝑢̄(𝑡) = 0, ∀𝑡 ∈ [0, 𝑇 ]. (1.6)

(ii) Suppose that the optimality system

⎧

⎪

⎪

⎨

⎪

⎪

⎩

̇̄𝑋(𝑡) = 𝐴𝑋̄(𝑡) + 𝐵𝑢̄(𝑡),
̇̄𝑌 (𝑡) = −[𝐴⊤𝑌 (𝑡) +𝑄𝑋̄(𝑡)],

𝑋̄(0) = 𝑥, 𝑌 (𝑇 ) = 𝐺𝑋̄(𝑇 ),

𝐵⊤𝑌 (𝑡) + 𝑅𝑢̄(𝑡) = 0

(1.7)

admits a solution (𝑋̄(⋅), 𝑢̄(⋅), 𝑌 (⋅)), and that the mapping 𝑢(⋅) ↦ 𝐽 (𝑥; 𝑢(⋅)) is
convex. Then Problem (DLQ) admits an optimal control.

(iii) Let 𝑅 > 0 and suppose that the following differential Riccati
equation has a solution 𝑃 (⋅):
{

𝑃̇ (𝑡) + 𝑃 (𝑡)𝐴 + 𝐴⊤𝑃 (𝑡) − 𝑃 (𝑡)𝐵𝑅−1𝐵⊤𝑃 (𝑡) +𝑄 = 0,

𝑃 (𝑇 ) = 𝐺.
(1.8)

Then the mapping 𝑢(⋅) ↦ 𝐽 (𝑥; 𝑢(⋅)) is uniformly convex, and Problem (DLQ)
admits a unique optimal control 𝑢̄(⋅), which has the following closed-loop
representation:

𝑢̄(𝑡) = −𝑅−1𝐵⊤𝑃 (𝑡)𝑋̄(𝑡), 𝑡 ∈ [0, 𝑇 ]. (1.9)

The above will be the case if the following canonical condition holds:

𝐺,𝑄 ⩾ 0, 𝑅 > 0. (1.10)

The study of LQ problems for ODEs began with the seminal works
of Bellman, Glicksberg, and Gross (1958), Kalman (1960) and Letov
(1961) appeared around 1960. Standard results for LQ theory of ODEs,
including the above, can be found in Lee and Markus (1967), Anderson
and Moore (1971), Willems (1971), Wonham (1979), and so on. See
also Yong and Zhou (1999).

From the above results, we see that associated with the LQ problem,
there are several notions closely related: Existence (and uniqueness)
of optimal control, (uniform) convexity of the cost functional, solv-
ability of the optimality system (two-point boundary value problem),
well-posedness of the differential Riccati equation, possibility of the
closed-loop representation of the optimal control. It seems that they
are almost equivalent somehow. It is a desire to make these relations
clear.

The stochastic LQ problem is concerned with making optimal con-
trol in the presence of randomness that is typically encountered in
most real-life problems. Its rich mathematical theory has found nu-
merous applications, within engineering, finance and economics, man-
agement sciences, and so on. A typical example of the stochastic
LQ problem is the mean–variance model, which was formulated as
a quadratic programming problem by Markowitz in his Nobel-prize-
winning work (Markowitz, 1952) in 1952.

The study of stochastic LQ problems began with the works of Kush-
ner (1962) and Wonham (1968) in the 1960s. See also Davis (1977),
Bensoussan (1981), and so on, for classical stochastic LQ theory. In
1998, Chen, Li, and Zhou (1998) found that for stochastic LQ problems,
the weighting matrices in the cost functional could be indefinite to
some extent; in particular, (1.4) is not necessary for the existence of an
optimal control for the corresponding stochastic LQ problem. See Yong
and Zhou (1999) for some presentation of the updated theory by the
end of the last century. Since the early 2010s, the authors of this paper,
together with their collaborators, started to investigate the LQ problems
for stochastic differential equations (SDEs, for short) from a different
2

angle. Notions of finiteness, open-loop and closed-loop solvability were
introduced, together with the relationship among them and to the other
relevant notions, as well as their characterizations. More precisely, the
following have been established for stochastic LQ problems in finite
time-horizons, denoted by Problem (SLQ)𝑇 :

∙ If Problem (SLQ)𝑇 is finite, then the cost functional is convex in
the control process.

∙ The closed-loop solvability implies the open-loop solvability, but
not vice versa, in general.

∙ The open-loop solvability is equivalent to the solvability of the
optimality system, which is now a forward–backward stochastic dif-
ferential equation (FBSDE, for short), plus the convexity of the cost
functional.

∙ The closed-loop solvability is equivalent the regular solvability of
a differential Riccati equation, which implicitly implies that the cost
functional is convex (in the control process). In this case, the problem
is also open-loop solvable, and any open-loop optimal control admits a
closed-loop representation (or called a state-feedback representation),
which must be the outcome of some closed-loop optimal strategy.

∙ If the cost functional is uniformly convex in the control process,
then Problem (SLQ)𝑇 is uniquely closed-loop solvable and hence also
uniquely open-loop solvable.

For stochastic LQ problems in the infinite time-horizon, denoted by
Problem (SLQ)∞, under the square integrability of the nonhomogeneous
terms and the linear weight processes, the following results have been
established:

∙ Problem (SLQ)∞ is well-formulated for every initial state if and
only if the homogeneous controlled system is 𝐿2-stabilizable, which is
equivalent to the existence of a positive definite solution to an algebraic
Riccati equation (ARE, for short).

∙ The admissible control sets are characterized explicitly, for differ-
ent initial conditions.

∙ Under the stabilizability condition, the following are equivalent:
* Problem (SLQ)∞ is open-loop solvable;
* Problem (SLQ)∞ is closed-loop solvable;
* An ARE admits a stabilizing solution, and an FBSDE over [0,∞)

admits an 𝐿2-stable adapted solution satisfying a certain condition.
The purpose of this paper is to give a brief survey for the above

developments. In the rest of the paper, we will first formulate the
stochastic LQ problem in both finite and infinite time-horizons in
Section 2. Then in Section 3, we investigate the finite time-horizon
problem from both open-loop and closed-loop point of views. In Sec-
tion 4, we further discuss the case of infinite time-horizon, and in
Section 5 we give some conclusion remarks.

2. Stochastic LQ problems

Let (𝛺, ,F,P) be a complete filtered probability space on which
a one-dimensional standard Brownian motion 𝑊 = {𝑊 (𝑡); 𝑡 ⩾ 0} is
defined, whose natural filtration augmented by all the P-null sets is F.
For a random variable 𝜉, we write 𝜉 ∈ 𝑡 if 𝜉 is 𝑡-measurable; and for
a stochastic process 𝑋, we write 𝑋 ∈ F if it is progressively measurable
with respect to the filtration F. Let H be a Euclidean space (which could
be R𝑛, R𝑛×𝑚, etc.). We define for 0 ⩽ 𝑠 < 𝑇 < ∞,

𝐶([𝑠, 𝑇 ];H) ≜
{

𝜑 ∶ [𝑠, 𝑇 ] → H |

|

|

𝜑(⋅) is continuous
}

,

𝐿2(𝑠, 𝑇 ;H) ≜
{

𝜑 ∶ [𝑠, 𝑇 ] → H |

|

| ∫

𝑇

𝑠
|𝜑(𝑡)|2𝑑𝑡 <∞

}

,

𝐿2
𝑠
(𝛺;H) ≜

{

𝜉 ∶ 𝛺 → H |

|

|

𝜉 ∈ 𝑠 and E|𝜉|2 <∞
}

,

𝐿2
F(𝑠, 𝑇 ;H) ≜

{

𝜑 ∶ [𝑠, 𝑇 ] ×𝛺 → H |

|

|

𝜑 ∈ F and E∫

𝑇

𝑠
|𝜑(𝑡)|2𝑑𝑡 <∞

}

,

𝒟 ≜
{

(𝑠, 𝜉) ||
|

𝑠 ∈ [0,∞), 𝜉 ∈ 𝐿2
𝑠
(𝛺;R𝑛)

}

.

In particular, we let 𝒰[𝑠, 𝑇 ] ≜ 𝐿2
F(𝑠, 𝑇 ;R

𝑚) and

𝒰[0,∞) ≜
{

𝜑 ∶ [0,∞) ×𝛺 → R𝑚 |

| 𝜑 ∈ F and E
∞
|𝜑(𝑡)|2𝑑𝑡 <∞

}

.

| ∫0
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Now, consider the following controlled linear stochastic differential
equation (SDE, for short):

⎧

⎪

⎨

⎪

⎩

𝑑𝑋(𝑡) = [𝐴(𝑡)𝑋(𝑡) + 𝐵(𝑡)𝑢(𝑡) + 𝑏(𝑡)]𝑑𝑡

+ [𝐶(𝑡)𝑋(𝑡) +𝐷(𝑡)𝑢(𝑡) + 𝜎(𝑡)]𝑑𝑊 (𝑡), 𝑡 ⩾ 𝑠,

𝑋(𝑠) = 𝜉.

(2.1)

In the above, 𝑋(⋅) is the state process, valued in R𝑛, 𝑢(⋅) is a control
process taken from R𝑚, and (𝑠, 𝜉) ∈ 𝒟 is called an initial pair. For the
coefficients 𝐴(⋅), 𝐵(⋅), 𝐶(⋅), 𝐷(⋅), and the non-homogeneous terms 𝑏(⋅)
nd 𝜎(⋅), we introduce the following hypothesis.
(H2.1) The coefficients 𝐴,𝐶 ∶ [0,∞) → R𝑛×𝑛, 𝐵,𝐷 ∶ [0,∞) →

𝑛×𝑚 are all deterministic, Lebesgue measurable and bounded; the
onhomogeneous terms 𝑏, 𝜎 ∶ [0,∞) × 𝛺 → R𝑛 are F-progressively
easurable and square integrable on [0,∞).
It is clear that under (H2.1), for any given initial pair (𝑠, 𝜉) ∈ 𝒟

nd any control 𝑢(⋅) ∈ 𝒰[𝑠, 𝑇 ] (0 ⩽ 𝑠 < 𝑇 < ∞), the state equation
2.1) admits a unique strong solution 𝑋(⋅) ≡ 𝑋(⋅ ; 𝑠, 𝜉, 𝑢(⋅)) on [𝑠, 𝑇 ].
o measure the performance of the control 𝑢(⋅) over [𝑠, 𝑇 ], we may
ntroduce the following quadratic cost functional:

𝑇 (𝑠, 𝜉; 𝑢(⋅)) ≜ E
{

∫

𝑇

𝑠

[

⟨𝑄(𝑡)𝑋(𝑡), 𝑋(𝑡)⟩ + 2⟨𝑆(𝑡)𝑋(𝑡), 𝑢(𝑡)⟩

+ ⟨𝑅(𝑡)𝑢(𝑡), 𝑢(𝑡)⟩ + 2⟨𝑞(𝑡), 𝑋(𝑡)⟩ + 2⟨𝑟(𝑡), 𝑢(𝑡)⟩
]

𝑑𝑡

+ ⟨𝐺𝑋(𝑇 ), 𝑋(𝑇 )⟩ + 2⟨𝑔,𝑋(𝑇 )⟩
}

,

(2.2)

where we assume the following:
(H2.2) The quadratic weighting matrices 𝑄 ∶ [0,∞) → S𝑛, 𝑆 ∶

[0,∞) → R𝑚×𝑛, 𝑅 ∶ [0,∞) → S𝑚 are deterministic, Lebesgue measurable
and bounded; the linear weighting processes 𝑞(⋅) ∶ [0,∞) × 𝛺 → R𝑛

and 𝑟(⋅) ∶ [0,∞) × 𝛺 → R𝑚 are F-progressively measurable and square
integrable on [0,∞); 𝐺 ∈ S𝑛 and 𝑔 ∈ 𝐿2

𝑇
(𝛺;R𝑛).

It is easy to see that under (H2.1)–(H2.2), the functional 𝐽𝑇 (𝑠, 𝜉; 𝑢(⋅))
is well-defined. The two terms on the right-hand side of (2.2) are called
he expected running cost and the expected terminal cost, respectively.
orrespondingly, the integrand appeared in (2.2) is called the running
ost rate function. We point out that (H2.1) and (H2.2) can be slightly
elaxed. But, we prefer not to pursue that type of generality.
In the case that the nonhomogeneous terms 𝑏(⋅) and 𝜎(⋅) are iden-

ically zero, the control system is said to be homogeneous. The state
rocess of the homogeneous system is denoted by 𝑋0(⋅) ≡ 𝑋0(⋅ ; 𝑠, 𝜉, 𝑢(⋅)).
Thus,

⎧

⎪

⎨

⎪

⎩

𝑑𝑋0(𝑡) =
[

𝐴(𝑡)𝑋0(𝑡) + 𝐵(𝑡)𝑢(𝑡)
]

𝑑𝑡

+
[

𝐶(𝑡)𝑋0(𝑡) +𝐷(𝑡)𝑢(𝑡)
]

𝑑𝑊 (𝑡), 𝑡 ⩾ 𝑠,

𝑋0(𝑠) = 𝜉.

(2.3)

In addition, if 𝑞(⋅), 𝑟(⋅), 𝑔 are all identically zero, we denote the corre-
sponding cost functional by 𝐽 0

𝑇 (𝑠, 𝜉; 𝑢(⋅)). Hence,

𝐽 0
𝑇 (𝑠, 𝜉; 𝑢(⋅)) = E

{

∫

𝑇

𝑠

[

⟨𝑄(𝑡)𝑋0(𝑡), 𝑋0(𝑡)⟩ + 2⟨𝑆(𝑡)𝑋0(𝑡), 𝑢(𝑡)⟩

+ ⟨𝑅(𝑡)𝑢(𝑡), 𝑢(𝑡)⟩
]

𝑑𝑡 + ⟨𝐺𝑋0(𝑇 ), 𝑋0(𝑇 )⟩
}

.
(2.4)

Our finite time-horizon stochastic optimal control problem can be
stated as follows.

Problem (SLQ)𝑇 . For any given (𝑠, 𝜉) ∈ 𝒟 (𝑠 < 𝑇 ), with the state
equation (2.1) and the cost functional (2.2), find a control 𝑢̄(⋅) ∈ 𝒰[𝑠, 𝑇 ]
such that

𝐽𝑇 (𝑠, 𝜉; 𝑢̄(⋅)) = inf
𝑢(⋅)∈𝒰[𝑠,𝑇 ]

𝐽𝑇 (𝑠, 𝜉; 𝑢(⋅)) ≡ 𝑉𝑇 (𝑠, 𝜉). (2.5)

The problem for the homogeneous state equation (2.3) and the cost
functional (2.4) is denoted by Problem (SLQ)0𝑇 , called a homogeneous
3

stochastic LQ problem (in finite time-horizon). a
In the case 𝑇 = ∞, we only consider the state equation

⎧

⎪

⎨

⎪

⎩

𝑑𝑋(𝑡) = [𝐴𝑋(𝑡) + 𝐵𝑢(𝑡) + 𝑏(𝑡)]𝑑𝑡

+ [𝐶𝑋(𝑡) +𝐷𝑢(𝑡) + 𝜎(𝑡)]𝑑𝑊 (𝑡), 𝑡 ⩾ 0,

𝑋(0) = 𝑥,

(2.6)

namely, the coefficients 𝐴,𝐵, 𝐶,𝐷 are constant matrices, and the
nonhomogeneous terms are random processes. The corresponding cost
functional takes the following form:

𝐽∞(𝑥; 𝑢(⋅)) ≜ E∫

∞

0

[

⟨𝑄𝑋(𝑡), 𝑋(𝑡)⟩ + 2⟨𝑆𝑋(𝑡), 𝑢(𝑡)⟩ + ⟨𝑅(𝑡)𝑢(𝑡), 𝑢(𝑡)⟩

+ 2⟨𝑞(𝑡), 𝑋(𝑡)⟩ + 2⟨𝑟(𝑡), 𝑢(𝑡)⟩
]

𝑑𝑡,
(2.7)

with no terminal cost and the quadratic weights being constant ma-
trices, but still allowing the linear weights to be random processes.
Clearly, to pose the corresponding LQ problem rigorously, we had
better to introduce the following set:

𝒰𝑎𝑑 (𝑥) ≜
{

𝑢(⋅) ∈ 𝒰[0,∞) ||
|

E∫

∞

0
|𝑋(𝑡; 𝑥, 𝑢(⋅))|2𝑑𝑡 <∞

}

. (2.8)

ny element in the above set is called an admissible control with respect
o 𝑥. Then, we may formulate the following LQ problem in the infinite
ime-horizon [0,∞).
Problem (SLQ)∞. For any given 𝑥 ∈ R𝑛, with state equation (2.6)

nd the cost functional (2.7), find a control 𝑢̄(⋅) ∈ 𝒰𝑎𝑑 (𝑥) such that

∞(𝑥; 𝑢̄(⋅)) = inf
𝑢(⋅)∈𝒰𝑎𝑑 (𝑥)

𝐽∞(𝑥; 𝑢(⋅)) ≡ 𝑉∞(𝑥).

When the system is stabilizable (see below for precise definition),
nd the nonhomogeneous terms 𝑏(⋅), 𝜎(⋅) in the state equation (2.6) as
ell as the linear weighting coefficients 𝑞(⋅), 𝑟(⋅) in the cost functional
2.7) are square integrable over [0,∞), the set 𝒰𝑎𝑑 (𝑥) of admissible
ontrols will be rich enough and one will have satisfactory results for
roblem (SLQ)∞.
Similar to the finite time-horizon case, we denote the LQ prob-

em with 𝑏(⋅), 𝜎(⋅), 𝑞(⋅), and 𝑟(⋅) being all identically zero by Problem
SLQ)0∞, called a homogeneous stochastic LQ problem in the infinite
ime-horizon [0,∞).

. Open-loop and closed-loop solvability — Finite time-horizon

In this section, we discuss the open-loop and closed-loop solvability
f the finite time-horizon problem. First, we introduce the following
efinition.

efinition 3.1. (i) Problem (SLQ)𝑇 is said to be finite at the initial pair
𝑠, 𝜉) ∈ 𝒟 if

𝑇 (𝑠, 𝜉) = inf
𝑢(⋅)∈𝒰[𝑠,𝑇 ]

𝐽𝑇 (𝑠, 𝜉; 𝑢(⋅)) > −∞.

f Problem (SLQ)𝑇 is finite at (𝑠, 𝜉) for every 𝜉 ∈ 𝐿2
𝑠
(𝛺;R𝑛), then we

ay that the problem is finite at 𝑠. We simply say that Problem (SLQ)𝑇
s finite if it is finite at every 𝑠 ∈ [0, 𝑇 ]. We call 𝑉𝑇 (⋅ , ⋅) the value function
f Problem (SLQ)𝑇 .
(ii) Problem (SLQ)𝑇 is said to be open-loop solvable at (𝑠, 𝜉) ∈ 𝒟

f there exists a 𝑢̄(⋅) ∈ 𝒰[𝑠, 𝑇 ] such that (2.5) holds. In this case,
𝑢̄(⋅) is called an open-loop optimal control for the initial pair (𝑠, 𝜉), and
̄ (⋅) ≡ 𝑋(⋅ ; 𝑠, 𝜉, 𝑢̄(⋅)) and (𝑋̄(⋅), 𝑢̄(⋅)) are called the corresponding open-
oop optimal state process and the open-loop optimal pair, respectively. If
roblem (SLQ)𝑇 is open-loop solvable at (𝑠, 𝜉) for every 𝜉 ∈ 𝐿2

𝑠
(𝛺;R𝑛),

e say that the problem is open-loop solvable at 𝑠. We simply say that
roblem (SLQ)𝑇 is open-loop solvable if it is open-loop solvable at every
∈ [0, 𝑇 ].

Since the state equation is affine in the state-control pair (𝑋(⋅), 𝑢(⋅)),

nd the cost functional consists of quadratic and linear terms in
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(𝑋(⋅), 𝑢(⋅)), we see that, under (H2.1) and (H2.2), the cost functional
has the following representation:

𝐽𝑇 (𝑠, 𝜉; 𝑢(⋅)) = ⟨𝜳 2𝑢(⋅), 𝑢(⋅)⟩ + 2⟨𝜓1(𝜉), 𝑢(⋅)⟩ + 𝜓0(𝜉) ≡ Ψ(𝑢(⋅)) (3.1)

for some bounded self-adjoint operator 𝜳 2 ∶ 𝒰[𝑠, 𝑇 ] → 𝒰[𝑠, 𝑇 ] and
ome process 𝜓1(𝜉) ∈ 𝒰[𝑠, 𝑇 ], as well as some 𝜉-dependent scalar 𝜓0(𝜉).
hus, we may regard the mapping 𝑢(⋅) ↦ 𝐽𝑇 (𝑠, 𝜉; 𝑢(⋅)) as a functional
onsisting of quadratic and linear terms of 𝑢(⋅) in the Hilbert space
[𝑠, 𝑇 ], and we want to minimize such a functional. Therefore, the

following result gives us a natural path (see Mou and Yong (2006)
r Sun and Yong (2020a) for a proof).

roposition 3.2. Let the functional Ψ(𝑢(⋅)) be given by (3.1) on the Hilbert
pace 𝒰[𝑠, 𝑇 ].
(i) If inf𝑢(⋅)∈𝒰[𝑠,𝑇 ] Ψ(𝑢(⋅)) > −∞, then

2 ⩾ 0, (3.2)

i.e., 𝜳 2 is a positive operator, or equivalently, 𝑢(⋅) ↦ Ψ(𝑢(⋅)) is convex.
(ii) Let (3.2) hold. Then Ψ(𝑢(⋅)) admits a minimum over 𝒰[𝑠, 𝑇 ] if and

nly if

1(𝜉) ∈ ℛ(𝜳 2),

.e., 𝜓1(𝜉) belongs to the range of 𝜳 2. In this case, 𝑢̄(⋅) ∈ 𝒰[𝑠, 𝑇 ] is a
inimum of Ψ if and only if

𝜳 2𝑢̄(⋅) + 𝜓1(𝜉) = 0.

Consequently, if instead of (3.2), the following holds:

𝜳 2 ⩾ 𝛿𝐼 (3.3)

for some 𝛿 > 0, then Ψ(𝑢(⋅)) admits a unique minimizer 𝑢̄(⋅) given by

̄(⋅) = −𝜳−1
2 𝜓1(𝜉).

The condition (3.3) is equivalent to the following uniform convexity
f the mapping 𝑢(⋅) ↦ Ψ(𝑢(⋅)):

Ψ(𝑢(⋅)) ⩾ 𝛿⟨𝑢(⋅), 𝑢(⋅)⟩ + 𝜆
for some constants 𝛿 > 0 and 𝜆. Directly applying the above result

to our Problem (SLQ)𝑇 , we have the following characterization of the
open-loop solvability.

Theorem 3.3. Let (H2.1)–(H2.2) hold.
(i) If Problem (SLQ)𝑇 is finite at some initial pair (𝑠, 𝜉) ∈ 𝒟, then the

mapping 𝑢(⋅) ↦ 𝐽 0
𝑇 (𝑠

′, 0; 𝑢(⋅)) is convex over 𝒰[𝑠′, 𝑇 ] for every 𝑠′ ∈ [𝑠, 𝑇 ]
(or equivalently, 𝑢(⋅) ↦ 𝐽𝑇 (𝑠′, 𝜉; 𝑢(⋅)) is convex for all (𝑠′, 𝜉) ∈ 𝒟 with
𝑠′ ∈ [𝑠, 𝑇 ]). If the problem is finite at 𝑠, then there exists a function
𝑃 (⋅) ∶ [𝑠, 𝑇 ] → S𝑛 such that

𝑉 0
𝑇 (𝑡, 𝜉) ≜ inf

𝑢(⋅)∈𝒰[𝑡,𝑇 ]
𝐽 0
𝑇 (𝑡, 𝜉; 𝑢(⋅)) = E⟨𝑃 (𝑡)𝜉, 𝜉⟩,

∀(𝑡, 𝜉) ∈ 𝒟 with 𝑡 ⩾ 𝑠.
(3.4)

(ii) Let 𝑢(⋅) ↦ 𝐽𝑇 (𝑠, 𝜉; 𝑢(⋅)) be convex. Then Problem (SLQ)𝑇 is open-loop
solvable at (𝑠, 𝜉) ∈ 𝒟 if and only if the following optimality system admits
an adapted solution (𝑋̄(⋅), 𝑢̄(⋅), 𝑌 (⋅), 𝑍̄(⋅)):

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑑𝑋̄(𝑡) = [𝐴(𝑡)𝑋̄(𝑡) + 𝐵(𝑡)𝑢̄(𝑡) + 𝑏(𝑡)]𝑑𝑡

+ [𝐶(𝑡)𝑋̄(𝑡) +𝐷(𝑡)𝑢̄(𝑡) + 𝜎(𝑡)]𝑑𝑊 (𝑡),

𝑑𝑌 (𝑡) = − [𝐴(𝑡)⊤𝑌 (𝑡) + 𝐶(𝑡)⊤𝑍̄(𝑡) +𝑄(𝑡)𝑋̄(𝑡)

+ 𝑆(𝑡)⊤𝑢̄(𝑡) + 𝑞(𝑡)]𝑑𝑡 + 𝑍̄(𝑡)𝑑𝑊 (𝑡),

𝑋̄(𝑠) = 𝜉, 𝑌 (𝑇 ) = 𝐺𝑋̄(𝑇 ) + 𝑔,

𝐵(𝑡)⊤𝑌 (𝑡) +𝐷(𝑡)⊤𝑍̄(𝑡) + 𝑆(𝑡)𝑋̄(𝑡) + 𝑅(𝑡)𝑢̄(𝑡) + 𝑟(𝑡) = 0.

(3.5)

In this case, the pair (𝑋̄(⋅), 𝑢̄(⋅)) is an open-loop optimal pair.
(iii) In the case that the mapping 𝑢(⋅) ↦ 𝐽 0

𝑇 (𝑠, 0; 𝑢(⋅)) is uniformly convex
over 𝒰[𝑠, 𝑇 ], i.e., there exists a constant 𝛿 > 0 such that

𝐽 0(𝑠, 0; 𝑢(⋅)) ⩾ 𝛿 E
𝑇
|𝑢(𝑡)|2𝑑𝑡, ∀𝑢(⋅) ∈ 𝒰[𝑠, 𝑇 ], (3.6)
4

𝑇 ∫𝑠 𝑢
Problem (SLQ)𝑇 is uniquely open-loop solvable at all 𝑠′ ∈ [𝑠, 𝑇 ]. Moreover,
(3.4) holds with

𝑅(𝑡) +𝐷(𝑡)⊤𝑃 (𝑡)𝐷(𝑡) ⩾ 𝛿𝐼, a.e. 𝑡 ∈ [𝑠, 𝑇 ]. (3.7)

The second equation in (3.5) is called a backward stochastic differ-
ential equation (BSDE, for short), whose adapted solution is the pair of
F-adapted processes (𝑌 (⋅), 𝑍̄(⋅)). System (3.5) is a coupled FBSDE, with
the coupling through the last equality in (3.5), which is called the
stationarity condition. Basically, part (ii) of Theorem 3.3 is called the
Pontryagin’s maximum principle, a set of necessary conditions for optimal
controls. Since our problem is linear-quadratic, the necessary condition
is also sufficient under the convexity condition. Hence, (ii) becomes a
characterization of the open-loop solvability of Problem (SLQ)𝑇 . Note
that (ii) does not tell when the problem is actually open-loop solvable.
Part (iii) gives a sufficient condition for that. Finally, it is easy to prove
that (3.6) holds if and only if 𝑢(⋅) ↦ 𝐽𝑇 (𝑠, 𝜉; 𝑢(⋅)) is uniformly convex for
any 𝜉 ∈ 𝐿2

𝑠
(𝛺;R𝑛). In principle, the uniform convexity of the mapping

𝑢(⋅) ↦ 𝐽 0
𝑇 (𝑠, 0; 𝑢(⋅)) is checkable.

We now present an interesting example.

Example 3.4. Consider the controlled SDE
{

𝑑𝑋(𝑡) = 𝑢(𝑡)𝑑𝑊 (𝑡), 𝑡 ∈ [𝑠, 𝑇 ],

𝑋(𝑠) = 𝜉,

with the cost functional

𝐽𝑇 (𝑠, 𝜉; 𝑢(⋅)) ≜ E
[

2|𝑋(𝑇 )|2 − ∫

𝑇

𝑠
|𝑢(𝑡)|2𝑑𝑡

]

.

Clearly.

E|𝑋(𝑡)|2 = E
[

|𝜉|2 + ∫

𝑡

𝑠
|𝑢(𝜏)|2𝑑𝜏

]

, 𝑡 ∈ [𝑠, 𝑇 ].

Thus,

𝐽𝑇 (𝑠, 𝜉; 𝑢(⋅)) = E
[

∫

𝑇

𝑠
|𝑢(𝑡)|2𝑑𝑡 + 2|𝜉|2

]

.

Hence, the corresponding stochastic LQ problem has the unique open-
loop optimal control 𝑢̄(⋅) = 0. However, in the current case, 𝑅 = −1 <
0. This means that for Problem (SLQ)𝑇 , the condition 𝑅 ⩾ 0 is not
necessary for the existence of an open-loop optimal control, unlike
deterministic LQ problems.

Having the results about the open-loop solvability of Problem
(SLQ)𝑇 , we now move to the next step. It is not hard to see that the FB-
SDE characterization (3.5) of open-loop optimal pair is not practically
feasible. The reason is as follows: Suppose that 𝑅(𝑡)−1 exists. Then the
open-loop optimal control can be obtained through the following:

𝑢̄(𝑡) = −𝑅(𝑡)−1
[

𝐵(𝑡)⊤𝑌 (𝑡) +𝐷(𝑡)⊤𝑍̄(𝑡) + 𝑆(𝑡)𝑋̄(𝑡) + 𝑟(𝑡)
]

, 𝑡 ∈ [𝑠, 𝑇 ].

The above shows that to determine the value 𝑢̄(𝑡) of 𝑢̄(⋅) at the current
time 𝑡, besides the value 𝑋̄(𝑡) of the open-loop optimal process 𝑋̄(⋅),
one also needs the value (𝑌 (𝑡), 𝑍̄(𝑡)) of the adapted solution (𝑌 (⋅), 𝑍̄(⋅))
to the BSDE in (3.5), which depends on 𝑋̄(𝑇 ), a future value of 𝑋̄(⋅).
Hence, the above result has its mathematical value, while its practical
value is very little.

To remedy the above, let 𝛩[𝑠, 𝑇 ] denote the space of R𝑚×𝑛-
valued, Lebesgue square integrable functions on [𝑠, 𝑇 ], i.e., 𝛩[𝑠, 𝑇 ] =
𝐿2(𝑠, 𝑇 ;R𝑚×𝑛). We introduce the following definition.

Definition 3.5. Let 𝑠 ∈ [0, 𝑇 ) be given. Suppose that Problem (SLQ)𝑇 is
open-loop solvable at (𝑠, 𝜉) for all 𝜉 ∈ 𝐿2

𝑠
(𝛺;R𝑛) with 𝑢̄(⋅ ; 𝜉) (depending

on 𝜉) being the open-loop optimal control. We say that such an optimal
control 𝑢̄(⋅ ; 𝜉) has a closed-loop representation if there exists a pair
(𝛩(⋅), 𝑣(⋅)) ∈ 𝛩[𝑠, 𝑇 ] ×𝒰[𝑠, 𝑇 ], independent of 𝜉, such that

̄(𝑡; 𝜉) = 𝛩(𝑡)𝑋̄(𝑡) + 𝑣(𝑡), 𝑡 ∈ [𝑠, 𝑇 ],
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𝑌

where 𝑋̄(⋅) is the solution to the following closed-loop system:

⎧

⎪

⎨

⎪

⎩

𝑑𝑋̄(𝑡) =
{

[𝐴(𝑡) + 𝐵(𝑡)𝛩(𝑡)]𝑋̄(𝑡) + 𝐵(𝑡)𝑣(𝑡) + 𝑏(𝑡)
}

𝑑𝑡

+
{

[𝐶(𝑡) +𝐷(𝑡)𝛩(𝑡)]𝑋̄(𝑡) +𝐷(𝑡)𝑣(𝑡) + 𝜎(𝑡)
}

𝑑𝑊 (𝑡), 𝑡 ∈ [𝑠, 𝑇 ],

𝑋̄(𝑠) = 𝜉.

We now try an ansatz:

̄ (𝑡) = 𝑃 (𝑡)𝑋̄(𝑡) + 𝜂(𝑡), 𝑡 ∈ [𝑠, 𝑇 ], (3.8)

for some differentiable deterministic S𝑛-valued function 𝑃 (⋅) and an
F-adapted solution (𝜂(⋅), 𝜁(⋅)) to the BSDE

𝑑𝜂(𝑡) = 𝛾(𝑡)𝑑𝑡 + 𝜁 (𝑡)𝑑𝑊 (𝑡), 𝜂(𝑇 ) = 𝑔,

with 𝛾(⋅) undetermined. We hope that 𝑍̄(⋅) will also be written in
terms of 𝑋̄(⋅) non-anticipatingly. Consequently, one could determine
the value 𝑢̄(𝑡) of 𝑢̄(⋅) without using the future values of 𝑋̄(⋅) so that 𝑢̄(⋅)
can be, in principle, practically determined. Such an idea is called the
invariant imbedding (due to Bellman, Kalaba, and Wing 1960). This was
also used by Ma–Protter–Yong for decoupling general FBSDEs; see Ma,
Protter, and Yong (1994) and Ma and Yong (1999). We now make this
precise.

By Itô’s formula, we have (suppressing 𝑡)

−
(

𝐴⊤𝑌 + 𝐶⊤𝑍̄ +𝑄𝑋̄ + 𝑆⊤𝑢̄ + 𝑞
)

𝑑𝑡 + 𝑍̄𝑑𝑊 = 𝑑𝑌

=
[

𝑃̇ 𝑋̄ + 𝑃 (𝐴𝑋̄ + 𝐵𝑢̄ + 𝑏) + 𝛾
]

𝑑𝑡 +
[

𝑃 (𝐶𝑋̄ +𝐷𝑢̄ + 𝜎) + 𝜁
]

𝑑𝑊
(3.9)

Thus, by comparing the diffusion terms of the above, one has

𝑍̄ = 𝑃 (𝐶𝑋̄ +𝐷𝑢̄ + 𝜎) + 𝜁. (3.10)

On the other hand, the stationarity condition in (3.5) becomes

0 = 𝐵⊤𝑌 +𝐷⊤𝑍̄ + 𝑆𝑋̄ + 𝑅𝑢̄ + 𝑟

= 𝐵⊤(𝑃 𝑋̄ + 𝜂) +𝐷⊤[𝑃 (𝐶𝑋̄ +𝐷𝑢̄ + 𝜎) + 𝜁 ] + 𝑆𝑋̄ + 𝑅𝑢̄ + 𝑟

= (𝐵⊤𝑃 +𝐷⊤𝑃𝐶 + 𝑆)𝑋̄ + (𝑅 +𝐷⊤𝑃𝐷)𝑢̄ + 𝐵⊤𝜂 +𝐷⊤𝜁 +𝐷⊤𝑃𝜎 + 𝑟.

Suppose that our choice of 𝑃 (⋅) has the property that

𝑅(𝑡) +𝐷(𝑡)⊤𝑃 (𝑡)𝐷(𝑡) ⩾ 𝛿𝐼, a.e. 𝑡 ∈ [𝑠, 𝑇 ], (3.11)

for some constant 𝛿 > 0. Then,

𝑢̄ = −(𝑅+𝐷⊤𝑃𝐷)−1
[

(𝐵⊤𝑃+𝐷⊤𝑃𝐶+𝑆)𝑋̄+𝐵⊤𝜂+𝐷⊤𝜁+𝐷⊤𝑃𝜎+𝑟
]

. (3.12)

Next, by comparing the drift terms on both sides of (3.9) and noting
(3.8) and (3.10), one has

0 = 𝐴⊤𝑌 + 𝐶⊤𝑍̄ +𝑄𝑋̄ + 𝑆⊤𝑢̄ + 𝑞 + 𝑃̇ 𝑋̄ + 𝑃 (𝐴𝑋̄ + 𝐵𝑢̄ + 𝑏) + 𝛾

= (𝑃̇ + 𝑃𝐴 + 𝐴⊤𝑃 + 𝐶⊤𝑃𝐶 +𝑄)𝑋̄ + (𝑃𝐵 + 𝐶⊤𝑃𝐷 + 𝑆⊤)𝑢̄

+ 𝐴⊤𝜂 + 𝐶⊤𝜁 + 𝐶⊤𝑃𝜎 + 𝑃𝑏 + 𝑞 + 𝛾.

Substituting (3.12) into the above, we obtain

0 =
[

𝑃̇ +𝑃𝐴+𝐴⊤𝑃+𝐶⊤𝑃𝐶+𝑄

− (𝑃𝐵+𝐶⊤𝑃𝐷+𝑆⊤)(𝑅+𝐷⊤𝑃𝐷)−1(𝐵⊤𝑃 +𝐷⊤𝑃𝐶+𝑆)
]

𝑋̄

+ (𝐴 + 𝐵𝛩)⊤𝜂 + (𝐶 +𝐷𝛩)⊤𝜁 + (𝐶 +𝐷𝛩)⊤𝑃𝜎 + 𝛩⊤𝑟 + 𝑃𝑏 + 𝑞 + 𝛾,

where

𝛩 ≜ −(𝑅 +𝐷⊤𝑃𝐷)−1(𝐵⊤𝑃 +𝐷⊤𝑃𝐶 + 𝑆).

Clearly, we should let 𝑃 ∶ [𝑠, 𝑇 ] → S𝑛 be the solution to the following
5

differential Riccati equation:
⎧

⎪

⎨

⎪

⎩

𝑃̇ + 𝑃𝐴 + 𝐴⊤𝑃 + 𝐶⊤𝑃𝐶 +𝑄

− (𝑃𝐵 + 𝐶⊤𝑃𝐷 + 𝑆⊤)(𝑅 +𝐷⊤𝑃𝐷)−1(𝐵⊤𝑃 +𝐷⊤𝑃𝐶 + 𝑆) = 0,

𝑃 (𝑇 ) = 𝐺,

(3.13)

and let (𝜂(⋅), 𝜁(⋅)) be the adapted solution to the following BSDE:

⎧

⎪

⎨

⎪

⎩

𝑑𝜂(𝑡) = −
[

(𝐴 + 𝐵𝛩)⊤𝜂 + (𝐶 +𝐷𝛩)⊤𝜁 + (𝐶 +𝐷𝛩)⊤𝑃𝜎

+ 𝛩⊤𝑟 + 𝑃𝑏 + 𝑞
]

𝑑𝑡 + 𝜁𝑑𝑊 , 𝑡 ∈ [𝑠, 𝑇 ],

𝜂(𝑇 ) = 𝑔.

(3.14)

To summarize, we have the following result.

Proposition 3.6. Let (H2.1)–(H2.2) hold. Suppose that for a given 𝑠 ∈
[0, 𝑇 ), Problem (SLQ)𝑇 admits an open-loop optimal control 𝑢̄(⋅) at (𝑠, 𝜉)
for each 𝜉 ∈ 𝐿2

𝑠
(𝛺;R𝑛). Moreover, suppose that the differential Riccati

equation (3.13) admits a solution 𝑃 (⋅) such that (3.11) holds for some
constant 𝛿 > 0, and that the BSDE (3.14) has an adapted solution (𝜂(⋅), 𝜁(⋅)).
Then 𝑢̄(⋅) admits the closed-loop representation (3.12).

The above result suggests us to reconsider Problem (SLQ)𝑇 from a
different angle. We now present that.

Recall 𝛩[𝑠, 𝑇 ] = 𝐿2(𝑠, 𝑇 ;R𝑚×𝑛). For any initial pair (𝑠, 𝜉) ∈ 𝒟 and
(𝛩(⋅), 𝑣(⋅)) ∈ 𝛩[𝑠, 𝑇 ] ×𝒰[𝑠, 𝑇 ], called a closed-loop strategy, consider the
following SDE:

⎧

⎪

⎨

⎪

⎩

𝑑𝑋(𝑡) =
{

[𝐴(𝑡) + 𝐵(𝑡)𝛩(𝑡)]𝑋(𝑡) + 𝐵(𝑡)𝑣(𝑡) + 𝑏(𝑡)
}

𝑑𝑡

+
{

[𝐶(𝑡) +𝐷(𝑡)𝛩(𝑡)]𝑋(𝑡) +𝐷(𝑡)𝑣(𝑡) + 𝜎(𝑡)
}

𝑑𝑊 (𝑡),

𝑋(𝑠) = 𝜉.

This is called the closed-loop system under the closed-loop strategy
(𝛩(⋅), 𝑣(⋅)). Clearly, under (H2.1), the above admits a unique solution
𝑋𝛩,𝑣(⋅) ≡ 𝑋(⋅ ; 𝑠, 𝜉, 𝛩(⋅), 𝑣(⋅)). We define

𝑢(⋅) ≜ 𝛩(⋅)𝑋𝛩,𝑣(⋅) + 𝑣(⋅),

which is called the outcome of (𝛩(⋅), 𝑣(⋅)) associated with the initial pair
(𝑠, 𝜉). Correspondingly, the cost functional reads

𝐽𝑇 (𝑠, 𝜉;𝛩(⋅)𝑋𝛩,𝑣(⋅) + 𝑣(⋅))

= E
{

∫

𝑇

𝑠

[

⟨𝑄(𝑡)𝑋𝛩,𝑣(𝑡), 𝑋𝛩,𝑣(𝑡)⟩ + 2⟨𝑆(𝑡)𝑋𝛩,𝑣(𝑡), 𝛩(𝑡)𝑋𝛩,𝑣(𝑡) + 𝑣(𝑡)⟩

+ ⟨𝑅(𝑡)[𝛩(𝑡)𝑋𝛩,𝑣(𝑡) + 𝑣(𝑡)], 𝛩(𝑡)𝑋𝛩,𝑣(𝑡) + 𝑣(𝑡)⟩ + 2⟨𝑞(𝑡), 𝑋𝛩,𝑣(𝑡)⟩

+ 2⟨𝑟(𝑡), 𝛩(𝑡)𝑋𝛩,𝑣(𝑡) + 𝑣(𝑡)⟩
]

𝑑𝑡 + ⟨𝐺𝑋𝛩,𝑣(𝑇 ), 𝑋𝛩,𝑣(𝑇 )⟩

+ 2⟨𝑔,𝑋𝛩,𝑣(𝑇 )⟩
}

.

We now introduce the following definition.

Definition 3.7. A pair (𝛩̄(⋅), 𝑣̄(⋅)) ∈ 𝛩[𝑠, 𝑇 ] × 𝒰[𝑠, 𝑇 ] is called a
closed-loop optimal strategy of Problem (SLQ)𝑇 on [𝑠, 𝑇 ] if the following
holds:

𝐽𝑇 (𝑠, 𝜉; 𝛩̄(⋅)𝑋𝛩̄,𝑣̄(⋅) + 𝑣̄(⋅)) ⩽ 𝐽𝑇 (𝑠, 𝜉;𝛩(⋅)𝑋𝛩,𝑣(⋅) + 𝑣(⋅)),

∀(𝛩(⋅), 𝑣(⋅)) ∈ 𝛩[𝑠, 𝑇 ] ×𝒰[𝑠, 𝑇 ], ∀𝜉 ∈ 𝐿2
𝑠
(𝛺;R𝑛).

In this case, we say that Problem (SLQ)𝑇 is closed-loop solvable on [𝑠, 𝑇 ].
If (𝛩̄(⋅), 𝑣̄(⋅)) is unique, we say that the problem is uniquely closed-loop
solvable on [𝑠, 𝑇 ].

Remark 3.8. The closed-loop optimal strategy (𝛩̄(⋅), 𝑣̄(⋅)) is indepen-
dent of the initial state 𝜉.

Proposition 3.9. Let (H2.1)–(H2.2) hold and 𝑠 ∈ [0, 𝑇 ). Let (𝛩̄(⋅), 𝑣̄(⋅)) ∈
𝛩[𝑠, 𝑇 ] ×𝒰[𝑠, 𝑇 ]. Then the following are equivalent:

(i) (𝛩̄(⋅), 𝑣̄(⋅)) is a closed-loop optimal strategy of Problem (SLQ)𝑇 on
[𝑠, 𝑇 ].

(ii) For any 𝜉 ∈ 𝐿2
𝑠
(𝛺;R𝑛) and 𝑣(⋅) ∈ 𝒰[𝑠, 𝑇 ],

𝐽 (𝑠, 𝜉; 𝛩̄(⋅)𝑋𝛩̄,𝑣̄(⋅) + 𝑣̄(⋅)) ⩽ 𝐽 (𝑠, 𝜉; 𝛩̄(⋅)𝑋𝛩̄,𝑣(⋅) + 𝑣(⋅)).
𝑇 𝑇
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(iii) For any 𝜉 ∈ 𝐿2
𝑠
(𝛺;R𝑛) and 𝑢(⋅) ∈ 𝒰[𝑠, 𝑇 ],

𝐽𝑇 (𝑠, 𝜉; 𝛩̄(⋅)𝑋𝛩̄,𝑣̄(⋅) + 𝑣̄(⋅)) ⩽ 𝐽𝑇 (𝑠, 𝜉; 𝑢(⋅)).

From the above result, we see that for a closed-loop optimal strategy
(𝛩̄(⋅), 𝑣̄(⋅)) of Problem (SLQ)𝑇 on [𝑠, 𝑇 ], the following two conclusions
hold:

• 𝑣̄(⋅) is an open-loop optimal control of the stochastic LQ problem
with the state equation

⎧

⎪

⎨

⎪

⎩

𝑑𝑋(𝑡) =
[

𝐴𝛩̄(𝑡)𝑋(𝑡) + 𝐵(𝑡)𝑣(𝑡) + 𝑏(𝑡)
]

𝑑𝑡

+
[

𝐶 𝛩̄(𝑡)𝑋(𝑡) +𝐷(𝑡)𝑣(𝑡) + 𝜎(𝑡)
]

𝑑𝑊 (𝑡),

𝑋(𝑠) = 𝜉

(3.15)

and the cost functional

𝐽 𝛩̄𝑇 (𝑠, 𝜉; 𝑣(⋅)) ≜ E
{

∫

𝑇

𝑠

[

⟨𝑄𝛩̄(𝑡)𝑋(𝑡), 𝑋(𝑡)⟩ + 2⟨𝑆 𝛩̄(𝑡)𝑋(𝑡), 𝑣(𝑡)⟩

+ ⟨𝑅(𝑡)𝑣(𝑡), 𝑣(𝑡)⟩ + 2⟨𝑞𝛩̄(𝑡), 𝑋(𝑡)⟩ + 2⟨𝑟(𝑡), 𝑣(𝑡)⟩
]

𝑑𝑡 (3.16)

+ ⟨𝐺𝑋(𝑇 ), 𝑋(𝑇 )⟩ + 2⟨𝑔,𝑋(𝑇 )⟩
}

at (𝑠, 𝜉) for any 𝜉 ∈ 𝐿2
𝑠
(𝛺;R𝑛), where

⎧

⎪

⎨

⎪

⎩

𝐴𝛩̄(𝑡) ≜ 𝐴(𝑡) + 𝐵(𝑡)𝛩̄(𝑡), 𝐶 𝛩̄(𝑡) ≜ 𝐶(𝑡) +𝐷(𝑡)𝛩̄(𝑡),

𝑄𝛩̄(𝑡) ≜ 𝑄(𝑡) + 𝛩̄(𝑡)⊤𝑆(𝑡) + 𝑆(𝑡)⊤𝛩̄(𝑡) + 𝛩̄(𝑡)⊤𝑅(𝑡)𝛩̄(𝑡),

𝑆 𝛩̄(𝑡) ≜ 𝑆(𝑡) + 𝑅(𝑡)𝛩̄(𝑡), 𝑞𝛩̄(𝑡) ≜ 𝑞(𝑡) + 𝛩̄(𝑡)𝑟(𝑡).

(3.17)

• The outcome 𝑢̄(⋅) ≜ 𝛩̄(⋅)𝑋𝛩̄,𝑣̄(⋅) + 𝑣̄(⋅) is an open-loop optimal
control of Problem (SLQ)𝑇 at (𝑠, 𝜉).

Consequently, we have the following corollary.

Corollary 3.10. Let (H2.1)–(H2.2) hold. If Problem (SLQ)𝑇 is closed-
loop solvable on [𝑠, 𝑇 ], then it is open-loop solvable at (𝑠, 𝜉) for any 𝜉 ∈
𝐿2
𝑠
(𝛺;R𝑛).

The converse of the above is not true in general. Here is an example.

Example 3.11. Consider the following one-dimensional controlled
SDE:
{

𝑑𝑋(𝑡) = 𝑢1(𝑡)𝑑𝑡 + 𝑢2(𝑡)𝑑𝑊 (𝑡), 𝑡 ∈ [𝑠, 𝑇 ],

𝑋(𝑠) = 𝜉,

with the cost functional

𝐽𝑇 (𝑠, 𝜉; 𝑢1(⋅), 𝑢2(⋅)) ≜ E
[

∫

𝑇

𝑠
|𝑢2(𝑡)|

2𝑑𝑡 + |𝑋(𝑇 )|2
]

.

Here, (𝑢1(⋅), 𝑢2(⋅))⊤ is the control process, valued in R2. Then the cor-
responding LQ problem is open-loop solvable. As a matter of fact, for
any 𝜉 ∈ 𝐿2

𝑠
(𝛺;R) and any 0 < 𝛿 < 𝑇 − 𝑠, if we define

̄𝛿1(𝑡) = −
𝜉
𝛿
𝟏[𝑠,𝑠+𝛿](𝑡), 𝑢̄2(𝑡) = 0, 𝑡 ∈ [𝑠, 𝑇 ],

hen 𝑋(𝑇 ) = 0 and

𝑇 (𝑠, 𝜉; 𝑢̄𝛿1(⋅), 𝑢̄2(⋅)) = 0 = inf
(𝑢1(⋅),𝑢2(⋅))∈𝒰[𝑠,𝑇 ]

𝐽𝑇 (𝑠, 𝜉; .𝑢1(⋅), 𝑢2(⋅)).

hus, such a control is an open-loop optimal control. We claim that the
roblem is not closed-loop solvable. Otherwise, let (𝛩̄(⋅), 𝑣̄(⋅)) with

̄ (⋅) =
(

𝛩̄1(⋅)
𝛩̄2(⋅)

)

, 𝑣̄(⋅) =
(

𝑣̄1(⋅)
𝑣̄2(⋅)

)

e a closed-loop optimal strategy on [𝑠, 𝑇 ]. Then, the closed-loop system
eads (denoting 𝑋̄(⋅) = 𝑋𝛩̄,𝑣̄1 ,𝑣̄2 (⋅))

𝑑𝑋̄(𝑡) =
[

𝛩̄1(𝑡)𝑋̄(𝑡) + 𝑣̄1(𝑡)
]

𝑑𝑡 +
[

𝛩̄2(𝑡)𝑋̄(𝑡) + 𝑣̄2(𝑡)
]

𝑑𝑊 (𝑡),
̄

6

𝑋(𝑠) = 𝜉,
uch that the outcome

̄1(𝑡) ≜ 𝛩̄1(𝑡)𝑋̄(𝑡) + 𝑣̄1(𝑡), 𝑢̄2(𝑡) ≜ 𝛩̄2(𝑡)𝑋̄(𝑡) + 𝑣̄2(𝑡)

s an open-loop optimal control. Hence, we must have

̄ 2(𝑡)𝑋̄(𝑡) + 𝑣̄2(𝑡) = 0, 𝑋̄(𝑇 ) = 0.

hen

𝑋̄(𝑡) =
[

𝛩̄1(𝑡)𝑋̄(𝑡) + 𝑣̄1(𝑡)
]

𝑑𝑡, 𝑋̄(𝑠) = 𝜉, 𝑋̄(𝑇 ) = 0.

onsequently,

= 𝑋̄(𝑇 ) = 𝑒∫
𝑇
𝑠 𝛩̄(𝜏)𝑑𝜏𝜉 + ∫

𝑇

𝑠
𝑒∫

𝑇
𝜆 𝛩̄(𝜏)𝑑𝜏 𝑣̄1(𝜆)𝑑𝜆,

hich should be true for all 𝜉 ∈ 𝐿2
𝑇

(𝛺;R), by the definition of closed-
oop optimal strategy. But, this is impossible. Hence, the problem is not
losed-loop solvable on [𝑠, 𝑇 ].

Our next goal is to characterize the closed-loop optimal strategy. Let
𝛩̄(⋅), 𝑣̄(⋅)) be a closed-loop optimal strategy. By Proposition 3.9 (ii), we
know that 𝑣̄(⋅) is an open-loop optimal control of the LQ problem with
coefficients and weights modified by (3.17) (which is uniform in the
initial state 𝜉). Hence, by Theorem 3.3 (ii), one has (with 𝑋̄(⋅) = 𝑋𝛩̄,𝑣̄(⋅))

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑑𝑋̄(𝑡) =
[

𝐴𝛩̄(𝑡)𝑋̄(𝑡) + 𝐵(𝑡)𝑣̄(𝑡) + 𝑏(𝑡)
]

𝑑𝑡

+
[

𝐶 𝛩̄(𝑡)𝑋̄(𝑡) +𝐷(𝑡)𝑣̄(𝑡) + 𝜎(𝑡)
]

𝑑𝑊 (𝑡),

𝑑𝑌 (𝑡) = −
[

𝐴𝛩̄(𝑡)⊤𝑌 (𝑡) + 𝐶 𝛩̄(𝑡)⊤𝑍̄(𝑡) +𝑄𝛩̄(𝑡)𝑋̄(𝑡) + 𝑆 𝛩̄(𝑡)⊤𝑣̄(𝑡) + 𝑞𝛩̄(𝑡)
]

𝑑𝑡

+ 𝑍̄(𝑡)𝑑𝑊 (𝑡),

𝑋̄(𝑠) = 𝜉, 𝑌 (𝑇 ) = 𝐺𝑋̄(𝑇 ) + 𝑔,

𝐵(𝑡)⊤𝑌 (𝑡) +𝐷(𝑡)⊤𝑍̄(𝑡) + 𝑆 𝛩̄(𝑡)𝑋̄(𝑡) + 𝑅(𝑡)𝑣̄(𝑡) + 𝑟(𝑡) = 0.

To emphasize the dependence on the initial state 𝜉, let us denote by
(𝑋𝜉(⋅), 𝑌 𝜉(⋅), 𝑍𝜉(⋅)) the adapted solution to the above, where (𝛩̄(⋅), 𝑣̄(⋅))
stays the same. By setting

𝑋̂(⋅) ≜ 𝑋𝜉(⋅) −𝑋0(⋅), 𝑌 (⋅) ≜ 𝑌 𝜉(⋅) − 𝑌 0(⋅), 𝑍̂(⋅) ≜ 𝑍𝜉(⋅) −𝑍0(⋅),

we see that the following holds:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑𝑋̂(𝑡) = 𝐴𝛩̄(𝑡)𝑋̂(𝑡)𝑑𝑡 + 𝐶 𝛩̄(𝑡)𝑋̂(𝑡)𝑑𝑊 (𝑡),

𝑑𝑌 (𝑡) = −
[

𝐴𝛩̄(𝑡)⊤𝑌 (𝑡) + 𝐶 𝛩̄(𝑡)⊤𝑍̂(𝑡) +𝑄𝛩̄(𝑡)𝑋̂(𝑡)
]

𝑑𝑡 + 𝑍̂(𝑡)𝑑𝑊 (𝑡),

𝑋̂(𝑠) = 𝜉, 𝑌 (𝑇 ) = 𝐺𝑋̂(𝑇 ),

𝐵(𝑡)⊤𝑌 (𝑡) +𝐷(𝑡)⊤𝑍̂(𝑡) + 𝑆 𝛩̄(𝑡)𝑋̂(𝑡) = 0.

By letting 𝜉 run over R𝑛, we see that the following equation for
matrix-valued processes is well-posed:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑X(𝑡) = 𝐴𝛩̄(𝑡)X(𝑡)𝑑𝑡 + 𝐶 𝛩̄(𝑡)X(𝑡)𝑑𝑊 (𝑡),

𝑑Y(𝑡) = −
[

𝐴𝛩̄(𝑡)⊤Y(𝑡) + 𝐶 𝛩̄(𝑡)⊤Z(𝑡) +𝑄𝛩̄(𝑡)X(𝑡)
]

𝑑𝑡 + Z(𝑡)𝑑𝑊 (𝑡),

X(𝑠) = 𝐼, Y(𝑇 ) = 𝐺X(𝑇 ),

𝐵(𝑡)⊤Y(𝑡) +𝐷(𝑡)⊤Z(𝑡) + 𝑆 𝛩̄(𝑡)X(𝑡) = 0.

It is clear that X(𝑡) is invertible for each 𝑡 ∈ [𝑠, 𝑇 ] and X(⋅)−1 satisfies
the following SDE:
{

𝑑
[

X(𝑡)−1
]

= −X(𝑡)−1
[

𝐴𝛩̄(𝑡) − 𝐶 𝛩̄(𝑡)2
]

𝑑𝑡 − X(𝑡)−1𝐶 𝛩̄(𝑡)𝑑𝑊 (𝑡),

X(𝑠)−1 = 𝐼.

Define for 𝑡 ∈ [𝑠, 𝑇 ],

𝑃 (𝑡) ≜ Y(𝑡)X(𝑡)−1, 𝛤 (𝑡) ≜ Z(𝑡)X(𝑡)−1.

Then by Itô’s formula (suppressing 𝑡),

𝑑𝑃 =
{

−
[

(𝐴𝛩̄)⊤Y + (𝐶 𝛩̄)⊤Z +𝑄𝛩̄X
]

X−1

− YX−1[𝐴𝛩̄ − (𝐶 𝛩̄)2
]

− ZX−1𝐶 𝛩̄
}

𝑑𝑡

+
(

ZX−1 − YX−1𝐶 𝛩̄
)

𝑑𝑊

= −
{

(𝐴𝛩̄)⊤𝑃 + (𝐶 𝛩̄)⊤𝛤 +𝑄𝛩̄ + 𝑃
[

𝐴𝛩̄ − (𝐶 𝛩̄)2
]

+ 𝛤𝐶 𝛩̄
}

𝑑𝑡
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+
(

𝛤 − 𝑃𝐶 𝛩̄
)

𝑑𝑊 .

By setting 𝛬 = 𝛤 − 𝑃𝐶 𝛩̄, the above becomes

𝑑𝑃 = −
[

𝑃𝐴𝛩̄ + (𝐴𝛩̄)⊤𝑃 + (𝐶 𝛩̄)⊤𝑃𝐶 𝛩̄ + 𝛬𝐶 𝛩̄ + (𝐶 𝛩̄)⊤𝛬 +𝑄𝛩̄
]

𝑑𝑡 + 𝛬𝑑𝑊 .

The above, together with

𝑃 (𝑇 ) = 𝐺,

is a BSDE with deterministic coefficients and terminal state. Therefore,
one must have 𝛬(⋅) = 0. Hence, 𝑃 (⋅) is the solution to the following
ODE:
{

𝑃̇ + 𝑃𝐴𝛩̄ + (𝐴𝛩̄)⊤𝑃 + (𝐶 𝛩̄)⊤𝑃𝐶 𝛩̄ +𝑄𝛩̄ = 0,

𝑃 (𝑇 ) = 𝐺.

On other hand, the stationarity condition is equivalent to

0 = 𝐵⊤𝑃 +𝐷⊤𝛤 + 𝑆 𝛩̄ = 𝐵⊤𝑃 +𝐷⊤[𝛬 + 𝑃 (𝐶 +𝐷𝛩̄)] + 𝑆 + 𝑅𝛩̄

= 𝐵⊤𝑃 +𝐷⊤𝑃𝐶 + 𝑆 + (𝑅 +𝐷⊤𝑃𝐷)𝛩̄.

Let ℛ(𝑀) and 𝑀† denote the range and the generalized inverse of a
matrix 𝑀 , respectively. The above then implies that

ℛ
(

𝐵⊤𝑃 +𝐷⊤𝑃𝐶 + 𝑆
)

⊆ℛ(𝑅 +𝐷⊤𝑃𝐷),

and that

𝛩̄ = −(𝑅+𝐷⊤𝑃𝐷)†(𝐵⊤𝑃 +𝐷⊤𝑃𝐶+𝑆)+
[

𝐼−(𝑅+𝐷⊤𝑃𝐷)†(𝑅+𝐷⊤𝑃𝐷)
]

𝛱,

for some 𝛱(⋅) ∈ 𝛩[𝑠, 𝑇 ]. Consequently,

𝑃𝐴𝛩̄ + (𝐴𝛩̄)⊤𝑃 + (𝐶 𝛩̄)⊤𝑃𝐶 𝛩̄ +𝑄𝛩̄

= 𝑃 (𝐴 + 𝐵𝛩̄) + (𝐴 + 𝐵𝛩̄)⊤𝑃 + (𝐶 +𝐷𝛩̄)⊤𝑃 (𝐶 +𝐷𝛩̄)

+𝑄 + 𝑆⊤𝛩̄ + 𝛩̄⊤𝑆 + 𝛩̄⊤𝑅𝛩̄

= 𝑃𝐴 + 𝐴⊤𝑃 + 𝐶⊤𝑃𝐶 +𝑄 + (𝑃𝐵 + 𝐶⊤𝑃𝐷 + 𝑆⊤)𝛩̄

+ 𝛩̄⊤(𝐵⊤𝑃 +𝐷⊤𝑃𝐶 + 𝑆) + 𝛩̄⊤(𝑅 +𝐷⊤𝑃𝐷)𝛩̄

= 𝑃𝐴 + 𝐴⊤𝑃 + 𝐶⊤𝑃𝐶 +𝑄

− (𝑃𝐵 + 𝐶⊤𝑃𝐷 + 𝑆⊤)(𝑅 +𝐷⊤𝑃𝐷)†(𝐵⊤𝑃 +𝐷⊤𝑃𝐶 + 𝑆).

This gives a derivation of the following differential Riccati equation
(which generalizes (3.13)):

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑃̇ (𝑡) + 𝑃 (𝑡)𝐴(𝑡) + 𝐴(𝑡)⊤𝑃 (𝑡) + 𝐶(𝑡)⊤𝑃 (𝑡)𝐶(𝑡) +𝑄(𝑡)

− [𝑃 (𝑡)𝐵(𝑡) + 𝐶(𝑡)⊤𝑃 (𝑡)𝐷(𝑡) + 𝑆(𝑡)⊤][𝑅(𝑡) +𝐷(𝑡)⊤𝑃 (𝑡)𝐷(𝑡)]†

× [𝐵(𝑡)⊤𝑃 (𝑡) +𝐷(𝑡)⊤𝑃 (𝑡)𝐶(𝑡) + 𝑆(𝑡)] = 0,

𝑃 (𝑇 ) = 𝐺.

(3.18)

We introduce the following definition.

Definition 3.12. A function 𝑃 (⋅) ∈ 𝐶([𝑠, 𝑇 ]; S𝑛) is called a regular
solution of the differential Riccati equation (3.18) on [𝑠, 𝑇 ] if (3.18) is
satisfied and the following hold:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑅(𝑡) +𝐷(𝑡)⊤𝑃 (𝑡)𝐷(𝑡) ⩾ 0, a.e. 𝑡 ∈ [𝑠, 𝑇 ],

ℛ
(

𝐵(𝑡)⊤𝑃 (𝑡) +𝐷(𝑡)⊤𝑃 (𝑡)𝐶(𝑡) + 𝑆(𝑡)
)

⊆ℛ
(

𝑅(𝑡) +𝐷(𝑡)⊤𝑃 (𝑡)𝐷(𝑡)
)

, a.e. 𝑡 ∈ [𝑠, 𝑇 ],

[𝑅(⋅) +𝐷(⋅)⊤𝑃 (⋅)𝐷(⋅)]†[𝐵(⋅)⊤𝑃 (⋅) +𝐷(⋅)⊤𝑃 (⋅)𝐶(⋅) + 𝑆(⋅)] ∈ 𝛩[𝑠, 𝑇 ].

(3.19)

Now, we are ready to state the following result.

Theorem 3.13. Let (H2.1)–(H2.2) hold. Then Problem (SLQ)𝑇 is closed-
loop solvable on [𝑠, 𝑇 ] if and only if the following two conditions are
satisfied:

(i) The differential Riccati equation (3.18) admits a regular solution
𝑃 (⋅) ∈ 𝐶([𝑠, 𝑇 ]; S𝑛).
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(ii) The adapted solution (𝜂(⋅), 𝜁(⋅)) to the BSDE

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝑑𝜂(𝑡) = −
{

[𝐴(𝑡) + 𝐵(𝑡)𝛩(𝑡)]⊤𝜂(𝑡) + [𝐶(𝑡) +𝐷(𝑡)𝛩(𝑡)]⊤𝜁 (𝑡)

+ [𝐶(𝑡)+𝐷(𝑡)𝛩(𝑡)]⊤𝑃 (𝑡)𝜎(𝑡)+𝛩(𝑡)⊤𝑟(𝑡)+𝑃 (𝑡)𝑏(𝑡)+𝑞(𝑡)
}

𝑑𝑡

+ 𝜁 (𝑡)𝑑𝑊 (𝑡),

𝜂(𝑇 ) = 𝑔

(3.20)

satisfies

𝜅(𝑡) ≜ 𝐵(𝑡)⊤𝜂(𝑡) +𝐷(𝑡)⊤𝜁 (𝑡) +𝐷(𝑡)⊤𝑃 (𝑡)𝜎(𝑡) + 𝑟(𝑡)

∈ ℛ
(

𝑅(𝑡) +𝐷(𝑡)⊤𝑃 (𝑡)𝐷(𝑡)
)

,

𝜈(⋅) ≜ −[𝑅(⋅) +𝐷(⋅)⊤𝑃 (⋅)𝐷(⋅)]†𝜅(⋅) ∈ 𝒰[𝑠, 𝑇 ],

where in (3.20),

𝛩(𝑡) ≜ −[𝑅(𝑡) +𝐷(𝑡)⊤𝑃 (𝑡)𝐷(𝑡)]†[𝐵(𝑡)⊤𝑃 (𝑡) +𝐷(𝑡)⊤𝑃 (𝑡)𝐶(𝑡) + 𝑆(𝑡)].

In this case, the closed-loop optimal strategy (𝛩̄(⋅), 𝑣̄(⋅)) admits the following
representation:

𝛩̄(𝑡) = 𝛩(𝑡) +
{

𝐼 − [𝑅(𝑡) +𝐷(𝑡)⊤𝑃 (𝑡)𝐷(𝑡)]†[𝑅(𝑡) +𝐷(𝑡)⊤𝑃 (𝑡)𝐷(𝑡)]
}

𝛱(𝑡),

𝑣̄(𝑡) = 𝜈(𝑡) +
{

𝐼 − [𝑅(𝑡) +𝐷(𝑡)⊤𝑃 (𝑡)𝐷(𝑡)]†[𝑅(𝑡) +𝐷(𝑡)⊤𝑃 (𝑡)𝐷(𝑡)]
}

𝜋(𝑡),

with any (𝛱(⋅), 𝜋(⋅)) ∈ 𝛩[𝑠, 𝑇 ] ×𝒰[𝑠, 𝑇 ]. Furthermore, the vale function is
given by

𝑉𝑇 (𝑠, 𝜉) = E
[

⟨𝑃 (𝑠)𝜉, 𝜉⟩ + 2⟨𝜂(𝑠), 𝜉⟩ + ∫

𝑇

𝑠

(

⟨𝑃 (𝑡)𝜎(𝑡), 𝜎(𝑡)⟩ + 2⟨𝜂(𝑡), 𝑏(𝑡)⟩

+ 2⟨𝜁 (𝑡), 𝜎(𝑡)⟩ − ⟨[𝑅(𝑡) +𝐷(𝑡)⊤𝑃 (𝑡)𝐷(𝑡)]†𝜅(𝑡), 𝜅(𝑡)⟩
)

𝑑𝑡
]

.

In the above, the BSDE for (𝜂(⋅), 𝜁(⋅)) is the same as (3.14) and it can
be derived by defining

𝜂(𝑡) ≜ 𝑌 (𝑡) − 𝑃 (𝑡)𝑋̄(𝑡),

𝜁 (𝑡) ≜ 𝑍̄(𝑡) − 𝑃 (𝑡)
{

[𝐶(𝑡) +𝐷(𝑡)𝛩̄(𝑡)]𝑋̄(𝑡) +𝐷(𝑡)𝑣̄(𝑡) + 𝜎(𝑡)
}

,

and applying Itô’s formula to 𝜂(⋅). This basically gives the necessity of
the above result. The sufficiency can be proved by applying Itô’ formula
to ⟨𝑃 (⋅)𝑋(⋅), 𝑋(⋅)⟩ and completing the squares. We also note that the
first condition in (3.19) guarantees the convexity of the functional
𝑢(⋅) ↦ 𝐽𝑇 (𝑠, 𝜉; 𝑢(⋅)).

Note that Theorem 3.13 only gives an equivalence relation between
the closed-loop solvability of Problem (SLQ)𝑇 and the regular solvabil-
ity of the differential Riccati equation (3.18). There is no guarantee so
far that the stochastic LQ problem is closed-loop solvable. We now fill
this gap.

Theorem 3.14. Let (H2.1)–(H2.2) hold. Then the following are equiva-
lent:

(i) The functional 𝑢(⋅) ↦ 𝐽 0
𝑇 (𝑠, 0; 𝑢(⋅)) is uniformly convex, i.e., (3.6)

holds for some 𝛿 > 0.
(ii) The differential Riccati equation (3.18) admits a regular solution

𝑃 (⋅) on [𝑠, 𝑇 ] such that (3.7) holds for some constant 𝛿 > 0.
(iii) There exists an S𝑛-valued function 𝑃 (⋅) on [𝑠, 𝑇 ] such that (3.4)

and (3.7) hold for some constant 𝛿 > 0.

We come to the uniform convexity condition of functional 𝑢(⋅) ↦
𝐽 0
𝑇 (𝑠, 0; 𝑢(⋅)) again. Therefore, the following result is a nice conclusion
of this section.
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Proposition 3.15. Let the following standard condition hold:

⩾ 0, 𝑅(𝑡) ⩾ 𝛿𝐼, 𝑄(𝑡) − 𝑆(𝑡)⊤𝑅(𝑡)−1𝑆(𝑡) ⩾ 0, a.e. 𝑡 ∈ [𝑠, 𝑇 ] (3.21)

for some 𝛿 > 0. Then 𝑢(⋅) ↦ 𝐽 0
𝑇 (𝑠, 0; 𝑢(⋅)) is uniformly convex.

Hence, from the results presented earlier, we see that in the case
of (3.21), the stochastic LQ problem is closed-loop (and open-loop)
solvable.

Remark 3.16. In this section, we start with the open-loop solvability
of Problem (SLQ)𝑇 . After getting the characterization of that in terms
of the solvability of an FBSDE, we find that the representation of open-
loop optimal control is not practically feasible. Then we try to seek a
closed-loop representation, which is non-anticipating. This amounts to
decoupling the optimality system (an FBSDE). Such an idea serves as
a bridge leading us to the closed-loop solvability of Problem (SLQ)𝑇 .
Next, we obtain the characterization of the closed-loop solvability in
terms of the regular solvability of the differential Riccati equation. It
turns out that if the problem is closed-loop solvable, then the problem
is also open-loop solvable with each open-loop optimal control being
the outcome of some closed-loop optimal strategy. Finally, we discuss
the uniform convexity of the cost functional, which is sufficient for both
the open-loop and closed-loop solvability of the stochastic LQ problem.

4. Infinite time-horizon cases

In this section, we would like to look at the situation where the
time-horizon is infinite. For such a case, we only consider the following
controlled SDE:

⎧

⎪

⎨

⎪

⎩

𝑑𝑋(𝑡) = [𝐴𝑋(𝑡) + 𝐵𝑢(𝑡) + 𝑏(𝑡)]𝑑𝑡

+ [𝐶𝑋(𝑡) +𝐷𝑢(𝑡) + 𝜎(𝑡)]𝑑𝑊 (𝑡), 𝑡 ⩾ 0,

𝑋(0) = 𝑥.

(4.1)

Let 𝐿2
F(0,∞;R𝑛) be the space of R𝑛-valued, F-progressively measur-

able, and square integrable processes on [0,∞). For the coefficients
and the nonhomogeneous terms in (4.1), we introduce the following
hypothesis.

(H4.1) 𝐴,𝐶 ∈ R𝑛×𝑛, 𝐵,𝐷 ∈ R𝑛×𝑚, and 𝑏(⋅), 𝜎(⋅) ∈ 𝐿2
F(0,∞;R𝑛).

It is clear that under (H4.1), for any initial state 𝑥 ∈ R𝑛 and any
control 𝑢(⋅) ∈ 𝒰[0,∞), the state equation (4.1) admits a unique solution
𝑋(⋅) ≡ 𝑋(⋅ ; 𝑥, 𝑢(⋅)), which is locally square integrable but might not be
square integrable over the entire [0,∞). To measure the performance
of the control, we introduce the following cost functional:

𝐽∞(𝑥; 𝑢(⋅)) ≜ E∫

∞

0

[

⟨𝑄𝑋(𝑡), 𝑋(𝑡)⟩ + 2⟨𝑆𝑋(𝑡), 𝑢(𝑡)⟩ + ⟨𝑅𝑢(𝑡), 𝑢(𝑡)⟩

+ 2⟨𝑞(𝑡), 𝑋(𝑡)⟩ + 2⟨𝑟(𝑡), 𝑢(𝑡)⟩
]

𝑑𝑡.
(4.2)

For the above cost functional, we assume the following:
(H4.2) 𝑄 ∈ S𝑛, 𝑆 ∈ R𝑚×𝑛, 𝑅 ∈ S𝑚, 𝑞(⋅) ∈ 𝐿2

F(0,∞;R𝑛), and
𝑟(⋅) ∈ 𝒰[0,∞).

It is not hard to see that (H4.1)–(H4.2) are not enough for the cost
functional (4.2) to be well-defined, because the given integrand might
not be integrable over [0,∞). Therefore, for any 𝑥 ∈ R𝑛, we recall

𝒰𝑎𝑑 (𝑥) ≜
{

𝑢(⋅) ∈ 𝒰[0,∞) ||
|

E∫

∞

0
|𝑋(𝑡; 𝑥, 𝑢(⋅))|2𝑑𝑡 <∞

}

.

We want to find conditions under which the set 𝒰𝑎𝑑 (𝑥) is sufficiently
arge. In order to present a satisfactory theory, we first consider the
ollowing uncontrolled homogeneous SDE (i.e., set 𝑢(⋅) = 0 and 𝑏(⋅) =
(⋅) = 0 in (4.1)):

𝑋(𝑡) = 𝐴𝑋(𝑡)𝑑𝑡 + 𝐶𝑋(𝑡)𝑑𝑊 (𝑡), 𝑡 ⩾ 0.
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e denote the above by [𝐴,𝐶]. The following definition is useful.
Definition 4.1. System [𝐴,𝐶] is said to be 𝐿2-stable if for any initial
state 𝑥 ∈ R𝑛, the solution 𝑋(⋅) ≡ 𝑋(⋅ ; 𝑥) satisfies

E∫

∞

0
|𝑋(𝑡)|2𝑑𝑡 <∞.

The following result gives a nice characterization of the 𝐿2-stability
of [𝐴,𝐶].

Proposition 4.2. System [𝐴,𝐶] is 𝐿2-stable if and only if there exists a
𝑃 ∈ S𝑛+, the set of positive define matrices in S𝑛, such that the following
Lyapunov inequality holds:

𝑃𝐴 + 𝐴⊤𝑃 + 𝐶⊤𝑃𝐶 < 0.

In this case, for any 𝛬 ∈ S𝑛, the following Lyapunov equation

𝑃𝐴 + 𝐴⊤𝑃 + 𝐶⊤𝑃𝐶 + 𝛬 = 0

admits a unique solution 𝑃 ∈ S𝑛, which is given by

𝑃 = E∫

∞

0
𝛷(𝑡)⊤𝛬𝛷(𝑡)𝑑𝑡,

where 𝛷(⋅) is the solution to the matrix SDE
{

𝑑𝛷(𝑡) = 𝐴𝛷(𝑡)𝑑𝑡 + 𝐶𝛷(𝑡)𝑑𝑊 (𝑡), 𝑡 ⩾ 0,

𝛷(0) = 𝐼.

Furthermore, for the nonhomogeneous SDE
{

𝑑𝑋(𝑡) = [𝐴𝑋(𝑡) + 𝑓 (𝑡)]𝑑𝑡 + [𝐶𝑋(𝑡) + 𝑔(𝑡)]𝑑𝑊 (𝑡), 𝑡 ⩾ 0,

𝑋(0) = 𝑥,
(4.3)

and the following BSDE in the infinite time-horizon:

𝑑𝑌 (𝑡) = −
[

𝐴⊤𝑌 (𝑡) + 𝐶⊤𝑍(𝑡) + ℎ(𝑡)
]

𝑑𝑡 +𝑍(𝑡)𝑑𝑊 (𝑡), 𝑡 ∈ [0,∞), (4.4)

we have the following natural result.

Proposition 4.3. Let [𝐴,𝐶] be 𝐿2-stable. Then, for any 𝑓 (⋅), 𝑔(⋅), ℎ(⋅) ∈
𝐿2
F(0,∞;R𝑛), the SDE (4.3) has a unique solution 𝑋(⋅) ∈ 𝐿2

F(0,∞;R𝑛),
satisfying

E∫

∞

0
|𝑋(𝑡)|2𝑑𝑡 ⩽ 𝐾

{

|𝑥|2 + E∫

∞

0

[

|𝑓 (𝑡)|2 + |𝑔(𝑡)|2
]

𝑑𝑡
}

,

and the BSDE (4.4) has a unique 𝐿2-stable adapted solution (𝑌 (⋅), 𝑍(⋅))
satisfying

E
[

sup
0⩽𝑡<∞

|𝑌 (𝑡)|2 + ∫

∞

0
|𝑍(𝑡)|2𝑑𝑡

]

⩽ 𝐾E∫

∞

0
|ℎ(𝑡)|2𝑑𝑡,

where 𝐾 is a positive constant independent of 𝑥, 𝑓 (⋅), 𝑔(⋅), and ℎ(⋅).

We now consider the following controlled homogeneous SDE:

𝑑𝑋(𝑡) = [𝐴𝑋(𝑡) + 𝐵𝑢(𝑡)]𝑑𝑡 + [𝐶𝑋(𝑡) +𝐷𝑢(𝑡)]𝑑𝑊 (𝑡), 𝑡 ⩾ 0,

which is denoted by [𝐴,𝐶;𝐵,𝐷] for simplicity.

Definition 4.4. System [𝐴,𝐶;𝐵,𝐷] is said to be stabilizable if there
exists a matrix 𝛩 ∈ R𝑚×𝑛 such that the uncontrolled homogeneous SDE
[𝐴 + 𝐵𝛩,𝐶 + 𝐷𝛩] is 𝐿2-stable. In this case, 𝛩 is called a stabilizer of
[𝐴,𝐶;𝐵,𝐷]. We denote by 𝛩𝑠 the set of all stabilizers of [𝐴,𝐶;𝐵,𝐷].

Note that we should distinguish 𝛩𝑠 from 𝛩[𝑠, 𝑇 ]: the latter is the
space of deterministic matrix-valued functions that are square inte-
grable on [𝑠, 𝑇 ], whereas, the former is the class of constant matrices
that stabilize the system [𝐴,𝐶;𝐵,𝐷]. Any element in 𝛩𝑠 × 𝒰[0,∞) is
called a closed-loop strategy of Problem (SLQ)∞. We now introduce the
following crucial hypothesis.

(H4.3) System [𝐴,𝐶;𝐵,𝐷] is stabilizable, i.e., 𝛩𝑠 ≠ ∅.
We have the following proposition.

Proposition 4.5. Let (H4.1)–(H4.2) hold. Then the following are equiv-
alent:
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(i) 𝒰𝑎𝑑 (𝑥) ≠ ∅ for all 𝑥 ∈ R𝑛.
(ii) 𝛩𝑠 ≠ ∅.
(iii) The following ARE admits a solution 𝑃 ∈ S𝑛+:

𝑃𝐴+𝐴⊤𝑃 +𝐶⊤𝑃𝐶 + 𝐼 −(𝑃𝐵+𝐶⊤𝑃𝐷)(𝐼 +𝐷⊤𝑃𝐷)−1(𝐵⊤𝑃 +𝐷⊤𝑃𝐶) = 0.

In the above case,

−(𝐼 +𝐷⊤𝑃𝐷)−1(𝐵⊤𝑃 +𝐷⊤𝑃𝐶) ∈ 𝛩𝑠,

and for any 𝛩 ∈ 𝛩𝑠,

𝒰𝑎𝑑 (𝑥) =
{

𝛩𝑋𝛩,𝑣
𝑥 (⋅) + 𝑣(⋅) ||

|

𝑣(⋅) ∈ 𝒰[0,∞)
}

, ∀𝑥 ∈ R𝑛, (4.5)

where 𝑋𝛩,𝑣
𝑥 (⋅) is the solution to the following closed-loop system:

⎧

⎪

⎨

⎪

⎩

𝑑𝑋(𝑡) = [(𝐴 + 𝐵𝛩)𝑋(𝑡) + 𝐵𝑣(𝑡) + 𝑏(𝑡)]𝑑𝑡

+ [(𝐶 +𝐷𝛩)𝑋(𝑡) +𝐷𝑣(𝑡) + 𝜎(𝑡)]𝑑𝑊 (𝑡),

𝑋(0) = 𝑥.

When 𝒰𝑎𝑑 (𝑥) = ∅, the corresponding LQ problem is meaningless.
The above result tells the necessity of the condition (H4.3). Also, we
see that as long as 𝛩𝑠 ≠ ∅, by picking up any 𝛩 ∈ 𝛩𝑠, one has (4.5). In
this case,

𝛩𝑋𝛩,𝑣
𝑥 (⋅) + 𝑣(⋅) ∈ 𝒰[0,∞),

which leads to𝒰𝑎𝑑 (𝑥) ⊆ 𝒰[0,∞). However,𝒰𝑎𝑑 (𝑥) ≠ 𝒰[0,∞) in general.
This can be easily seen from the following simple fact: If [𝐴,𝐶] is not
𝐿2-stable, then 0 ∉ 𝒰𝑎𝑑 (𝑥) for some 𝑥 ∈ R𝑛.

Under (H4.1)–(H4.3), 𝐽∞(𝑥; 𝑢(⋅)) is defined over a very large non-
empty set 𝒰𝑎𝑑 (𝑥) of admissible controls, and 𝐽∞(𝑥;𝛩𝑋𝛩,𝑣

𝑥 (⋅) + 𝑣(⋅))
is finite for all (𝛩, 𝑣(⋅)) ∈ 𝛩𝑠 × 𝒰[0,∞). Thus, Problem (SLQ)∞ is
well-formulated (see Section 2). Next, mimicking Problem (SLQ)𝑇 , we
introduce the following definition.

Definition 4.6. (i) Problem (SLQ)∞ is said to be finite at 𝑥 ∈ R𝑛 if

𝑉∞(𝑥) ≜ inf
𝑢(⋅)∈𝒰𝑎𝑑 (𝑥)

𝐽∞(𝑥; 𝑢(⋅)) > −∞.

If the problem is finite at every 𝑥 ∈ R𝑛, we simply say that Problem
(SLQ)∞ is finite. The function 𝑉∞(⋅) is called the value function of
Problem (SLQ)∞.

(ii) Problem (SLQ)∞ is said to be open-loop solvable at 𝑥 ∈ R𝑛 if there
exists a 𝑢̄(⋅) ∈ 𝒰𝑎𝑑 (𝑥) such that

𝑉∞(𝑥) = 𝐽∞(𝑥; 𝑢̄(⋅)).

In this case, 𝑢̄(⋅) is called an open-loop optimal control for the initial
state 𝑥, and the corresponding 𝑋̄(⋅) ≡ 𝑋(⋅ ; 𝑥, 𝑢̄(⋅)) and (𝑋̄(⋅), 𝑢̄(⋅)) are
called an open-loop optimal process and an open-loop optimal pair for 𝑥,
respectively. If the problem is open-loop solvable at every 𝑥 ∈ R𝑛, we
simply say that Problem (SLQ)∞ is open-loop solvable. Correspondingly,
the cost functional and the value function for the (homogeneous)
Problem (SLQ)0∞ are denoted by 𝐽 0

∞(𝑥; 𝑢(⋅)) and 𝑉 0
∞(⋅), respectively.

(iii) Problem (SLQ)∞ is said to be closed-loop solvable if there exists
a (𝛩̄, 𝑣̄(⋅)) ∈ 𝛩𝑠 ×𝒰[0,∞) such that

𝐽∞(𝑥; 𝛩̄𝑋𝛩̄,𝑣̄
𝑥 (⋅)+ 𝑣̄(⋅)) ⩽ 𝐽∞(𝑥;𝛩𝑋𝛩,𝑣

𝑥 (⋅)+𝑣(⋅)), ∀(𝑥,𝛩, 𝑣(⋅)) ∈ R𝑛×𝛩𝑠×𝒰[0,∞).

In this case, (𝛩̄, 𝑣̄(⋅)) is called a closed-loop optimal strategy of Problem
(SLQ)∞.

From (4.5), we see that for any 𝛩1, 𝛩2 ∈ 𝛩𝑠,
{

𝛩1𝑋
𝛩1 ,𝑣
𝑥 (⋅) + 𝑣(⋅) ||

|

𝑣(⋅) ∈ 𝒰[0,∞)
}

=
{

𝛩2𝑋
𝛩2 ,𝑣
𝑥 (⋅) + 𝑣(⋅) || 𝑣(⋅) ∈ 𝒰[0,∞)

}

, ∀𝑥 ∈ R𝑛.
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|

Thus, if 𝛩𝑠 ≠ ∅, we need only to pick up one (convenient) 𝛩 ∈ 𝛩𝑠.
Now, let us state the main results of this section.

Theorem 4.7. Let (H4.1)–(H4.3) hold.
(i) Suppose that Problem (SLQ)∞ is finite. Then for some (or for all)

𝛩 ∈ 𝛩𝑠, the mapping 𝑣(⋅) ↦ 𝐽 0
∞(0;𝛩𝑋

𝛩,𝑣
0 (⋅)+𝑣(⋅)) is convex (or equivalently,

𝑣(⋅) ↦ 𝐽∞(𝑥;𝛩𝑋𝛩,𝑣
𝑥 (⋅) + 𝑣(⋅)) is convex for every initial state 𝑥). Moreover,

there exists a 𝑃 ∈ S𝑛 such that

𝑉 0
∞(𝑥) ≜ inf

𝑢(⋅)∈𝒰𝑎𝑑 (𝑥)
𝐽 0
∞(𝑥; 𝑢(⋅)) = ⟨𝑃𝑥, 𝑥⟩, ∀𝑥 ∈ R𝑛.

(ii) Let 𝑣(⋅) ↦ 𝐽 0
∞(0;𝛩𝑋

𝛩,𝑣
0 (⋅) + 𝑣(⋅)) be convex for some 𝛩 ∈ 𝛩𝑠. Then

an admissible control

𝑢̄(⋅) ≜ 𝛩𝑋̄(⋅) + 𝑣̄(⋅)

where 𝑣̄(⋅) ∈ 𝒰[0,∞) and 𝑋̄(⋅) ≜ 𝑋𝛩,𝑣̄
𝑥 (⋅), is open-loop optimal for the initial

state 𝑥 if and only if the following BSDE

𝑑𝑌 (𝑡) = −
[

𝐴⊤𝑌 (𝑡) + 𝐶⊤𝑍̄(𝑡) +𝑄𝑋̄(𝑡) + 𝑆⊤𝑢̄(𝑡) + 𝑞(𝑡)
]

𝑑𝑡 + 𝑍̄(𝑡)𝑑𝑊 (𝑡)

admits an 𝐿2-stable adapted solution (𝑌 (⋅), 𝑍̄(⋅)) such that

𝐵⊤𝑌 (⋅) +𝐷⊤𝑍̄(⋅) + 𝑆𝑋̄(⋅) + 𝑅𝑢̄(⋅) + 𝑟(⋅) = 0.

To state the next result, we need first introduce the following
definition.

Definition 4.8. A matrix 𝑃 ∈ S𝑛 is called a stabilizing solution to the
ARE
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑃𝐴 + 𝐴⊤𝑃 + 𝐶⊤𝑃𝐶 +𝑄

− (𝑃𝐵 + 𝐶⊤𝑃𝐷 + 𝑆⊤)(𝑅 +𝐷⊤𝑃𝐷)†(𝐵⊤𝑃 +𝐷⊤𝑃𝐶 + 𝑆) = 0,

ℛ(𝐵⊤𝑃 +𝐷⊤𝑃𝐶 + 𝑆⊤) ⊆ℛ(𝑅 +𝐷⊤𝑃𝐷),

𝑅 +𝐷⊤𝑃𝐷 ⩾ 0,

(4.6)

if 𝑃 satisfies the above and there exists a 𝛱 ∈ R𝑚×𝑛 such that

−(𝑅+𝐷⊤𝑃𝐷)†(𝐵⊤𝑃 +𝐷⊤𝑃𝐶+𝑆)+[𝐼−(𝑅+𝐷⊤𝑃𝐷)†(𝑅+𝐷⊤𝑃𝐷)]𝛱 ∈ 𝛩𝑠.

Theorem 4.9. Let (H4.1)–(H4.3) hold. Then the following statements are
equivalent:

(i) Problem (SLQ)∞ is open-loop solvable.
(ii) Problem (SLQ)∞ is closed-loop solvable.
(iii) The ARE (4.6) admits a stabilizing solution 𝑃 ∈ S𝑛, and the BSDE

𝑑𝜂(𝑡) = −
{

[𝐴 − 𝐵(𝑅 +𝐷⊤𝑃𝐷)†(𝐵⊤𝑃 +𝐷⊤𝑃𝐶 + 𝑆)]⊤𝜂(𝑡)

+ [𝐶 −𝐷(𝑅 +𝐷⊤𝑃𝐷)†(𝐵⊤𝑃 +𝐷⊤𝑃𝐶 + 𝑆)]⊤𝜁 (𝑡)

+ [𝐶 −𝐷(𝑅 +𝐷⊤𝑃𝐷)†(𝐵⊤𝑃 +𝐷⊤𝑃𝐶 + 𝑆)]⊤𝑃𝜎(𝑡)

− (𝐵⊤𝑃 +𝐷⊤𝑃𝐶 + 𝑆)⊤(𝑅 +𝐷⊤𝑃𝐷)†𝑟(𝑡) + 𝑃𝑏(𝑡) + 𝑞(𝑡)
}

𝑑𝑡

+ 𝜁 (𝑡)𝑑𝑊 (𝑡)

admits an 𝐿2-stable adapted solution (𝜂(⋅), 𝜁(⋅)) such that

𝜃(𝑡) ≜ 𝐵⊤𝜂(𝑡) +𝐷⊤𝜁 (𝑡) +𝐷⊤𝑃𝜎(𝑡) + 𝑟(𝑡) ∈ ℛ(𝑅 +𝐷⊤𝑃𝐷),

a.s. 𝑡 ∈ [0,∞), a.s.

Whenever (i), (ii), or (iii) is satisfied, all the closed-loop optimal strate-
gies (𝛩̄, 𝑣̄(⋅)) are given by

⎧

⎪

⎨

⎪

⎩

𝛩̄ = − (𝑅 +𝐷⊤𝑃𝐷)†(𝐵⊤𝑃 +𝐷⊤𝑃𝐶 + 𝑆)

+ [𝐼 − (𝑅 +𝐷⊤𝑃𝐷)†(𝑅 +𝐷⊤𝑃𝐷)]𝛱,

𝑣̄(𝑡) = − (𝑅 +𝐷⊤𝑃𝐷)†𝜃(𝑡) + [𝐼 − (𝑅 +𝐷⊤𝑃𝐷)†(𝑅 +𝐷⊤𝑃𝐷)]𝜋(𝑡),

where 𝛱 ∈ R𝑚×𝑛 is chosen so that 𝛩̄ ∈ 𝛩𝑠 and 𝜋(⋅) ∈ 𝒰[0,∞) is arbitrary.
Further, every open-loop optimal control 𝑢̄(⋅) for a given initial state 𝑥 is
given by

𝑢̄(𝑡) = 𝛩̄𝑋𝛩̄,𝑣̄(𝑡) + 𝑣̄(𝑡), 𝑡 ⩾ 0,
𝑥
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for some closed-loop optimal strategy (𝛩̄, 𝑣̄(⋅)). Moreover, the value function
s given by

∞(𝑥) = ⟨𝑃𝑥, 𝑥⟩ + 2⟨𝜂(0), 𝑥⟩ + E∫

∞

0

[

⟨𝑃𝜎(𝑡), 𝜎(𝑡)⟩ + 2⟨𝜂(𝑡), 𝑏(𝑡)⟩

+ 2⟨𝜁 (𝑡), 𝜎(𝑡)⟩ − ⟨(𝑅 +𝐷⊤𝑃𝐷)†𝜃(𝑡), 𝜃(𝑡)⟩
]

𝑑𝑡.

Similar to the finite time-horizon problems, the above only gives the
equivalence among the three statements but does not tell when Problem
(SLQ)∞ is open-loop and/or closed-loop solvable. Now, we introduce
the following condition.

(H4.4) For some 𝛩 ∈ 𝛩𝑠, the mapping 𝑣(⋅) ↦ 𝐽 0
∞(0;𝛩𝑋

𝛩,𝑣
0 (⋅) + 𝑣(⋅))

is uniformly convex, i.e.,

𝐽 0
∞(0;𝛩𝑋

𝛩,𝑣
0 (⋅) + 𝑣(⋅)) ⩾ 𝛿E∫

∞

0
|𝑣(𝑡)|2𝑑𝑡, ∀𝑣(⋅) ∈ 𝒰[0,∞).

It is natural to have the following result.

Proposition 4.10. Let (H4.1)–(H4.4) hold. Then Problem (SLQ)∞ is
open-loop solvable.

5. Conclusions

In this paper, we have surveyed some works mainly done by the
authors of the current paper for stochastic LQ optimal controls in the
past decay, see Sun, Li and Yong (2016), Sun and Yong (2018), as well
as Sun and Yong (2020a). There are a lots of more relevant results
obtained, in addition to the above. To save some space and the time
of the readers, we prefer to present only the most basic results and we
now mention some results with the similar main ideas.

For two-person (nonzero-sum) stochastic LQ differential games in
finite time-horizon, we have established the following results (see Sun
and Yong 2019, and also Sun and Yong 2020b):

∙ The existence of an open-loop Nash equilibrium is equivalent to
the solvability of a constrained system of FBSDEs, together with the
convexity of the cost functionals.

∙ The existence of a closed-loop Nash equilibrium is equivalent to
the regular solvability of a system of coupled symmetric differential
Riccati equations.

∙ The existence of a closed-loop Nash equilibrium does not imply
the existence of an open-loop Nash equilibrium, and vice-versa.

∙ The closed-loop representation of an open-loop Nash equilibrium
does not have to be the outcome of an closed-loop Nash strategy.

For the two-person zero-sum stochastic LQ differential games, the
above results remains true with Nash equilibrium replaced by saddle
point, except the last item, which should be stated as follows:

∙ Suppose that the problem admits both open-loop and closed-
loop saddle points. If the open-loop saddle point admits a closed-loop
representation, then this representation must be the outcome of a
closed-loop saddle point; see Sun and Yong (2014).

∙ If the performance functional satisfies a uniform convexity-
concavity condition, then the associated differential Riccati equation
has a unique strongly regular solution, in terms of which a closed-loop
representation can be obtained for the open-loop saddle point; see Sun
(2021).

For differential games in infinite time-horizon, we have pretty much
similar results as those in finite time-horizon, with the following fea-
tures (see Sun, Yong and Zhang 2016):

∙ Unlike the optimal control problem in the infinite time-horizon, we
do not claim that the existence of closed-loop Nash equilibria (saddle
points) implies that of the open-loop Nash equilibria (saddle points), or
the other way around, or equivalent. The exact statement is open.

∙ Even for zero-sum differential games (in infinite time-horizon),
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there are several strange features which were shown by some examples:
(i) The algebraic Riccati equation might only have non-stabilizing solu-
tions so that the saddle point does not exist; (ii) The game might have
uncountably many saddle points; (iii) There might be some stabilizing
solutions to the algebraic Riccati equation, which are not relevant to
the saddle points.

One may further consider the case that both the state equation
and the cost functional involve the expectation of the state and/or the
control. Such kind of problems are referred to as LQ problems with
mean-field, or mean-field LQ problems. One may pose optimal control
problems and/or differential games, both in finite and infinite times-
horizons. Then, open-loop and closed-loop optimal controls, saddle
points, Nash equilibria can be introduced. By our main ideas above,
some systematic theory can be (and actually have been) established
(see Huang, Li, & Yong, 2015; Li, Shi, & Yong, 2021; Li, Sun, & Yong,
2016; Sun, 2017; Sun & Yong, 2020b; Tang, 2003, 2015; Wei, Yong, &
Yu, 2019; Yong, 2013).

One might note that all in the above, the coefficients in the state
equation and the quadratic weights in the cost functional are de-
terministic functions. If we let them to be random, the problems
will become much harder, because the associated differential Riccati
equation becomes a BSDE with quadratic growth:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑑𝑃 (𝑡) = −
[

𝑃𝐴 + 𝐴⊤𝑃 + 𝐶⊤𝑃𝐶 + 𝛬𝐶 + 𝐶⊤𝛬 +𝑄

− (𝑃𝐵 + 𝐶⊤𝑃𝐷 + 𝛬𝐷 + 𝑆⊤)(𝑅 +𝐷⊤𝑃𝐷)−1

× (𝐵⊤𝑃 +𝐷⊤𝑃𝐶 +𝐷⊤𝛬 + 𝑆)
]

𝑑𝑡 + 𝛬𝑑𝑊 (𝑡),

𝑃 (𝑇 ) = 𝐺.

(5.1)

t was shown in Sun, Xiong, and Yong (2021) that if the cost functional
s uniformly convex in the control process, then the above stochastic
iccati equation is uniquely solvable and the open-loop optimal control
dmits a closed-loop representation. However, unlike the deterministic
oefficient case, it is not clear whether the solvability of (5.1) implies
the uniform convexity of the cost functional or not. There are also some
other relevant results published (see Lü, Wang, and Zhang 2017, Tang
2015, and also Li, Wu, and Yu 2018). But it is far from complete.

One might also note that the stochastic LQ problems studied in the
paper are finite-dimensional. For the infinite-dimensional case, we refer
the reader to the nice works (Hafizoglu, Lasiecka, Levajković, Mena, &
Tuffaha, 2017; Lü, 2019; Lü & Wang, 2023; Lü & Zhang, 2021), as well
as the references cited therein, for some recent developments.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability

No data was used for the research described in the article.

Acknowledgments

The author would like to thank the anonymous referees and the
associate editor for their suggestive comments, which lead to this
improved version of the paper.

References

Anderson, B. D. O., & Moore, J. B. (1971). Linear optimal control. New Jersey:
Prentice-Hall Englewood Cliffs.

Bellman, R., Glicksberg, I., & Gross, O. (1958). Some aspects of the mathematical theory
of control processes. Santa Monica, California: Rand Corporation.

Bellman, R., Kalaba, R., & Wing, G. M. (1960). Invariant imbedding and the reduction
of two-point boundary value problems to initial value problems. Proceedings of the
National Academy of Sciences of the United States of America, 46, 1646–1649.

Bensoussan, A. (1981). Lecture Notes in Math.: 972, Lecture on stochastic control. Berlin:

Springer-Verlag.

http://refhub.elsevier.com/S1367-5788(23)00063-9/sb1
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb1
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb1
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb2
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb2
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb2
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb3
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb3
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb3
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb3
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb3
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb4
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb4
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb4


Annual Reviews in Control 56 (2023) 100899J. Sun and J. Yong

W

W

W

W

Y

Y

Chen, S., Li, X., & Zhou, X. Y. (1998). Stochastic linear quadratic regulators with
indefinite control weight costs. SIAM Journal on Control and Optimization, 36,
1685–1702.

Davis, M. H. A. (1977). Linear estimation and stochastic control. London: Chapman and
Hall.

Hafizoglu, C., Lasiecka, I., Levajković, T., Mena, H., & Tuffaha, A. (2017). The stochastic
linear quadratic control problem with singular estimates. SIAM Journal on Control
and Optimization, 55, 595–626.

Huang, J., Li, X., & Yong, J. (2015). A linear-quadratic optimal control problem for
mean-field stochastic differential equations in infinite horizon. Mathematical Control
and Related Fields, 5, 97–139.

Kalman, R. E. (1960). Contributions to the theory of optimal control. Boletín Sociedad
Matemática Mexicana, 5, 102–119.

Kushner, H. J. (1962). Optimal stochastic control. IRE Transactions on Automatic Control,
7, 120–122.

Lee, E. B., & Markus, L. (1967). Foundations of optimal control theory. New York: John
Wiley.

Letov, A. M. (1961). The analytical design of control systems. Automation and Remote
Control, 22, 363–372.

Li, X., Shi, J., & Yong, J. (2021). Mean-field linear-quadratic stochastic differential
games in an infinite horizon. ESAIM: Control, Optimisation and Calculus of Variations,
27, 81.

Li, X., Sun, J., & Yong, J. (2016). Mean-field stochastic linear quadratic optimal control
problems: closed-loop solvability. Probability, Uncertainty and Quantitative Risk, 1(2).

Li, N., Wu, Z., & Yu, Z. (2018). Indefinite stochastic linear-quadratic optimal control
problems with random jumps and related stochastic riccati equations. Science China
Mathematics, 61, 563–576.

Lü, Q. (2019). Well-posedness stochastic Riccati equations and closed-loop solvability
for stochastic linear quadratic optimal control problems. The Journal of Differential
Equations, 267, 180–227.

Lü, Q., & Wang, T. (2023). Optimal feedback controls of stochastic linear quadratic
control problems in infinite dimensions with random coefficients. Journal de
Mathématiques Pures et Appliquées, 173, 195–242.

Lü, Q., Wang, T., & Zhang, X. (2017). Characterization of optimal feedback for
stochastic linear quadratic control problems. Probability, Uncertainty and Quantitative
Risk, 2(11).

Lü, Q., & Zhang, X. (2021). Mathematical control theory for stochastic partial
differential equations. In Probab. theory stoch. model, vol. 101. Switzerland AG:
Springer.

Ma, J., Protter, P., & Yong, J. (1994). Solving forward–backward stochastic differential
equations explicitly — a four-step scheme. Probability Theory & Related Fields, 98,
339–359.

Ma, J., & Yong, J. (1999). Lecture Notes in Mathematics: 1702, Forward-backward
stochastic differential equations and their applications. Berlin: Springer-Verlag.

Markowitz, H. M. (1952). Portfolio selection. Journal of Finance, 7, 77–91.
Mou, L., & Yong, J. (2006). Two-person zero-sum linear quadratic stochastic differential

games by a Hilbert space method. Journal of Industrial and Management Optimization,
2, 95–117.
11
Sun, J. (2017). Mean-field stochastic linear quadratic optimal control problems: Open-
loop solvabilities. ESAIM: Control, Optimisation and Calculus of Variations, 23,
1099–1127.

Sun, J. (2021). Two-person zero-sum stochastic linear-quadratic differential games.
SIAM Journal on Control and Optimization, 59, 1804–1829.

Sun, J., Li, X., & Yong, J. (2016). Open-loop and closed-loop solvabilities for
stochastic linear quadratic optimal control problems. SIAM Journal on Control and
Optimization, 54, 2274–2308.

Sun, J., Xiong, J., & Yong, J. (2021). Indefinite stochastic linear-quadratic optimal
control problems with random coefficients: Closed-loop representation of open-loop
optimal controls. Ann. Appl. Probab., 31, 460–499.

Sun, J., & Yong, J. (2014). Linear quadratic stochastic differential games: Open-loop and
closed-loop saddle points. SIAM Journal on Control and Optimization, 52, 4082–4121.

Sun, J., & Yong, J. (2018). Stochastic linear quadratic optimal control problems in
infinite horizon. The Applied Mathematics and Optimization, 78, 145–183.

Sun, J., & Yong, J. (2019). Linear-quadratic stochastic two-person nonzero-sum differ-
ential games: Open-loop and closed-loop Nash equilibria. Stochastic Processes and
Their Applications, 129, 381–418.

Sun, J., & Yong, J. (2020a). SpringerBriefs in Mathematics, Stochastic linear-quadratic
optimal control theory: open-loop and closed-loop solutions. Cham: Springer.

Sun, J., & Yong, J. (2020b). SpringerBriefs in Mathematics, Stochastic linear-quadratic
optimal control theory: differential games and mean-field problems. Cham: Springer.

Sun, J., Yong, J., & Zhang, S. (2016). Linear quadratic stochastic two-person zero-sum
differential games in an infinite horizon. ESAIM: Control, Optimisation and Calculus
of Variations, 22, 743–769.

Tang, S. (2003). General linear quadratic optimal stochastic control problems with
random coefficients: linear stochastic hamilton systems and backward stochastic
riccati equations. SIAM Journal on Control and Optimization, 42, 53–75.

Tang, S. (2015). Dynamic programming for general linear quadratic optimal stochas-
tic control problems with random coefficients. SIAM Journal on Control and
Optimization, 53, 1082–1106.

ei, Q., Yong, J., & Yu, Z. (2019). Linear quadratic stochastic optimal control problems
with operator coefficients: open-loop solutions. ESAIM: Control, Optimisation and
Calculus of Variations, 25, 17.

illems, J. C. (1971). Least squares stationary optimal control and the algebraic riccati
equation. IEEE Transactions on Automatic Control, 16, 621–634.

onham, W. M. (1968). On a matrix riccati equation of stochastic control. SIAM Journal
on Control and Optimization, 6, 681–697.

onham, W. M. (1979). Linear multivariable control: a geometric approach (2nd ed.).
New York: Springer-Verlag.

ong, J. (2013). Linear-quadratic optimal control problems for mean-field stochastic
differential equations. SIAM Journal on Control and Optimization, 51, 2809–2838.

ong, J., & Zhou, X. Y. (1999). Stochastic controls: Hamiltonian systems and HJB
equations. New York: Springer-Verlag.

http://refhub.elsevier.com/S1367-5788(23)00063-9/sb5
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb5
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb5
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb5
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb5
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb6
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb6
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb6
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb7
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb7
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb7
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb7
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb7
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb8
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb8
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb8
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb8
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb8
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb9
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb9
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb9
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb10
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb10
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb10
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb11
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb11
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb11
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb12
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb12
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb12
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb13
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb13
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb13
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb13
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb13
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb14
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb14
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb14
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb15
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb15
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb15
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb15
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb15
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb16
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb16
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb16
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb16
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb16
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb17
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb17
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb17
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb17
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb17
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb18
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb18
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb18
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb18
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb18
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb19
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb19
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb19
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb19
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb19
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb20
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb20
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb20
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb20
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb20
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb21
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb21
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb21
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb22
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb23
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb23
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb23
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb23
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb23
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb24
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb24
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb24
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb24
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb24
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb25
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb25
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb25
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb26
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb26
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb26
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb26
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb26
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb27
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb27
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb27
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb27
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb27
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb28
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb28
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb28
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb29
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb29
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb29
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb30
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb30
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb30
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb30
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb30
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb31
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb31
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb31
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb32
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb32
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb32
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb33
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb33
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb33
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb33
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb33
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb34
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb34
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb34
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb34
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb34
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb35
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb35
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb35
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb35
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb35
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb36
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb36
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb36
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb36
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb36
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb37
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb37
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb37
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb38
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb38
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb38
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb39
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb39
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb39
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb40
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb40
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb40
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb41
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb41
http://refhub.elsevier.com/S1367-5788(23)00063-9/sb41

	Stochastic linear-quadratic optimal control problems — Recent developments
	Introduction
	Stochastic LQ Problems
	Open-Loop and Closed-Loop Solvability — Finite Time-Horizon
	Infinite Time-Horizon Cases
	Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgments
	References


