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Abstract. This paper is concerned with an optimal control problem for a mean-field linear
stochastic differential equation with a quadratic functional in the infinite time horizon. Under suitable
conditions, including the stabilizability, the (strong) exponential, integral, and mean-square turnpike
properties for the optimal pair are established. The keys are to correctly formulate the corresponding
static optimization problem and find the equations determining the correction processes. These
have revealed the main feature of the stochastic problems which are significantly different from the
deterministic version of the theory.
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1. Introduction. Let (£2,.%,P) be a complete probability space on which a
standard one-dimensional Brownian motion W = {W (¢); t > 0} is defined, and denote
by F = {#:}:>0 the usual augmentation of the natural filtration generated by W.
Consider the following controlled linear mean-field stochastic differential equation
(SDE):

dX (t)={AX(t) + AE[X (t)] + Bu(t) + BE[u(t)] + b}dt
(1.1) +{CX(t) + CE[X (t)] + Du(t) + DE[u(t)] + o0 }dW (t), t=>0,
X(0) =z,

and the quadratic cost functional

w22 [ 5) () Ci))==(0)- ()
w (85 e

where A, A,C,C,Q,Q € R”X”LB,BJD,D e R™m™ 8§ .8 e R™" and R, R € R™*™
are constant matrices with @, @, R, R being symmetric; the superscript T denotes the
transpose of matrices; (-, ) denotes the inner product of two vectors; b, o,q € R™ and

*Received by the editors September 23, 2022; accepted for publication (in revised form) September
13, 2023; published electronically February 16, 2024.
https://doi.org/10.1137/22M1524187
Funding: The first author was supported by NSFC grants 12271242 and 12322118, and by Shen-
zhen Fundamental Research General Program grant JCYJ20220530112814032. The second author
was supported by NSF grant DMS-2305475.
TDepartment of Mathematics and SUSTech International Center for Mathematics, Southern Uni-
versity of Science and Technology, Shenzhen, Guangdong, 518055, China (sunjr@sustech.edu.cn).
fDepartment of Mathematics, University of Central Florida, Orlando, FL 32816 USA (jiongmin.
yong@ucf.edu).

752

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/09/24 to 5.198.137.25 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

TURNPIKE PROPERTIES FOR MEAN-FIELD LQ PROBLEMS 753

r € R™ are constant vectors; « € R™ is called an initial state, and the process u(-),
called a control, is selected from the space

w0,T] = {u ([0, T] x 2 —>R™ | u is F-progressively measurable,

T
and IE/ |u(t)|2dt<oo}.
0

We introduce the following problem.
Problem (MFLQ),. For a given initial state € R™, find a control u(-) €
% 0,T] such that

(1.3) Jr(z;ur()) = u(A)éI”}Zf[O,T] Jr(z;u(s)) = Ve(x).

The above problem is referred to as a mean-field linear-quadratic (LQ) optimal
control problem over the finite time horizon [0, 7], whose homogenous version (i.e., the
case of b,0,q =0, r =0) was initially studied by Yong [22] (in which the coefficients of
the state equation and the weighting matrices of the cost functional are allowed to be
time-dependent) under the standard condition in LQ theory. The results of Yong [22]
were later generalized by Sun [18] to the case of uniformly convex cost functionals with
nonhomogenous terms and by Huang, Li, and Yong [11] to the infinite time horizon
case. Along this line, many researchers investigated the mean-field L.Q problem from
various points of view. For example, Basei and Pham [1] studied the mean-field LQ
problem using a weak martingale approach; Li, Li, and Yu [12] introduced the notion
of relax compensators to deal with indefinite problems; and Lii [13] considered a
mean-field LQ problem for stochastic evolution equations.

For a fixed time horizon, finite or infinite, Problem (MFLQ)r has been well studied
in recent years, whose optimal control usually admits a closed-loop representation via
the solutions of two related Riccati differential/algebra equations (see [19, Chapter
3]). However, the limiting behavior of the optimal pair as the time horizon tends to
infinity has not yet been fully discussed.

In the case that the diffusion term of the state equation (1.1) and the mean-
field terms E[X ()], E[u(t)] are absent, Problem (MFLQ), reduces to a deterministic
LQ problem, denoted by Problem (LQ);, for which Porretta and Zuazua [16] and
Trélat and Zuazua [21] obtained the following result: The optimal pair exponentially
converges in the transient time (as T'— o) to the minimum point of the corresponding
static optimization problem, under the controllability assumption on the state equation
and the observability assumption on the cost functional. More precisely, it was shown
in [16, 21] that there exist constants K, A > 0, independent of 7', such that the optimal
pair (XX(-),uk(-)) of Problem (LQ)r satisfies

(1.4) |XA() — o*| + Jui(t) — u*| <K [e_M +eMTD] v e o, 1],

where (z*,u*) is the solution to the following static optimization problem:

(L5) Minimize Fy(z,u) = (Qz, ) + 2(Sx,u) + (Ru,u) + 2(q, z) + 2(r,u),
' subject to Ax+ Bu+b=0.

Clearly, (1.4) implies that

(1.6) | X2 (t) — 2*| + |[uk(t) — u*| < 2Ke M1 Vit e 6T, (1 —6)T)
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for any 6 € (0,%). This means that in the major part of the time interval [0,7], the
optimal pair (X%(-),uk(-)) of Problem (LQ) stays close to the solution (z*,u*) of the
static optimization problem (1.5). Such a phenomenon is very similar to the turnpike
in the US highway system. This is the main reason of the name “turnpike property”
was made. Mathematically, we refer to (1.4) as the ezponential turnpike property of
the (deterministic) LQ optimal control problem.

The turnpike property was first realized by von Neumann [15] for infinite time
horizon deterministic optimal growth problems.! The name “turnpike” was first coined
by Dorfman, Samuelson, and Solow [7] in 1958. See [5] for an excellent survey. In
the past several decades, the turnpike properties have attracted attentions of many
researchers as such a property often gives people an essential picture of the optimal
pair without solving it analytically and leads to a significant simplification in numer-
ical methods for solving such a kind of optimal control problems. A large number
of papers have been published for finite- and infinite-dimensional problems in the
context of discrete-time and continuous-time deterministic systems; see, for example,
[5, 23, 6, 25, 9, 14, 24, 2, 10, 17, 8] and the references therein.

Other than considering deterministic optimal control problems, we now look at
the stochastic case. To begin with, we first assume that

L L O ST

A=C=0, B=D=0, (S 3 > =0,
i.e., the problem does not involve mean-field terms. We denote the corresponding
optimal control problem by Problem (SLQ),. For such a problem, to discuss the
turnpike properties of the optimal pair, the major difficulty is to correctly formulate
the corresponding static optimization problem. Note that intuitively mimicking the
situation of Problem (LQ), (the deterministic LQ problem) will lead to an incorrect
static optimization problem. Recently, Sun, Wang, and Yong [20] investigated the
turnpike properties for Problem (SLQ) ., and found that the correct static optimization
problem takes the following form:

(L) Minimize Fi(z,u) = Fy(z,u) + (P(Cx 4+ Du+0),Cx + Du+ o),
' subject to Ax+ Bu+b=0,
where P >0 is the solution to the following algebraic Riccati equation:

PA+A"P+CTPC+Q

1.8
(18) —~(PB+C"PD+S")(R+D"PD)"(B"P+D"C+S)=0,

whose solvability is guaranteed under some mild conditions. It was shown that the
expectation of the optimal pair exhibits similar turnpike properties as the deterministic
case, that is, for some positive constants K, A > 0 independent of T,

(1.9) (X () — %] + [E[us(t) —u']| < K [e*M + e*MT*t)] vte[0,T],

where (z*,u*) is the solution to the static optimization problem (1.7). It is worth not-
ing that (1.9) only tells us (E[X % (-)], E[uk(-)]) converges exponentially in the transient
time. In general, however, we could not expect the following;:

(1.10) E|X:(t) — o*| + Elut(t) — u*| < K [e**t + e*MT*t)} vt e [0, 7).

ILater, these problems have been formulated as infinite time horizon optimal control problems.
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But the behavior of the path ¢ — (X%(t), u%(t)) seems to be more important and it is
a crucial step to establishing general nonlinear theory.

In this paper, we shall investigate the turnpike properties for Problem (MFLQ) .
The main novelty and contributions of this paper can be briefly summarized as follows.

e We are concerned with stochastic mean-field LQ problems. By including the
expectations of the state and the control, our Problem (MFLQ), substantially extends
the ones studied previously. The significance is that we have successfully found the
correct formulation of the static optimization problem for the current case, merely
under the stabilizability of the state equation, which covers that for Problem (SLQ)r
(without mean-field terms) presented in [20].

e As (1.10) could not be expected in general, it needs to be corrected. We find
the proper replacement of (z*,u*). It turns out that there exist stochastic processes
X*(-) and v*(-) independent of T', which can be determined explicitly, such that the
optimal pair (X%(-),uk(+)) of Problem (MFLQ) satisfies the following strong turnpike

property:

(1.11)  E[X:A(t) — X*(0)])? + Elul(t) —u*(t)> < K[e*“ + e*MT*t)] vt e [0,T7,

for some constants K, A > 0 independent of T. The processes X *(-) and w*(-) have
time-invariant means x* and u*, respectively, and (z*,u*) is exactly the solution to
the corresponding static optimization problem.

e We point out that for deterministic LQ problems, the controllability is normally
assumed to establish the turnpike properties; see, for example, [16, 21, 14]. We find
that it suffices to assume the stabilizability condition for the state equation, which is
much weaker than the controllability condition. As a matter of fact, for controlled
stochastic linear SDEs (with or without mean-field terms), the former is much natural
and easy to check than the latter.

The rest of this paper is organized as follows. In section 2, we make some neces-
sary preliminaries by introducing some notation, assumptions, and a number of basic
results that will be needed later. In section 3, we introduce the static optimization
problem associated with Problem (MFLQ), and state the main results of this paper.
Section 4 is devoted to the stability of Riccati equations, which plays a central role in
studying the turnpike properties. In section 5, we give the proofs of the main results
stated in section 3.

2. Preliminaries. In this section, we introduce the basic notation and assump-
tions which will be used throughout this paper. We also collect a number of basic
results on stochastic LQ optimal control problems and prove a simple matrix inequal-
ity for later use.

For notational simplicity, we let

21 A=A+A, B=B+B, (C=C+C, D=D+D,
' Q=Q+Q, S§=S+5, R=R+R

Denote by S™ the space of symmetric n X n real matrices. For P, IT € S™, we let

QP)=PA+ATP+CTPC+Q, Q@PI)=IA+A'II+C"PC+Q,
(22) S(P)=BTP+DTPC+S, S(P,II)=B 1+ D"PC+38,
R(P)=R+D'"PD, R(P)=R+D'PD.
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For matrices M, N € S", we will write M > N (respectively, M > N) if M — N is
positive semidefinite (respectively, positive definite). The following basic assumptions
will be imposed throughout this paper.

(A1) The weighting matrices in (1.2) satisfy

RR>0, Q—-STR'S>0, Q-STR'S>0.
(A2) The controlled ordinary differential equation (ODE)
(2.3) X(t)=AX(t)+ Bu(t), t>0,

is stabilizable, i.e., there exists a O € Rmxn such that all the eigenvalues of
A+ BO have negative real parts. In this case, © is called a stabilizer of (2.3).
The controlled SDE

(24)  dX(t)=[AX(t) + Bu(t)]dt + [CX(t) + Du(t)dW (t), t>0,

is L2-stabilizable, i.e., there exists a @ € R™*" such that for every initial
state x, the solution X(-) of

dX(t)=(A+ BO)X(t)dt + (C + DO)X (t)dW (t), t=>0,
X(0)=x

satisfies E [ | X (t)|?dt < co. In this case, O is called a stabilizer of (2.4).
Let C([0,T];S™) be the space of S"-valued continuous functions on [0,7]. With
the notation (2.1) and (2.2), the differential Riccati equations associated with Problem
(MFLQ), can be, respectively, written as

23 Pr(t) + Q(Pr(t) — S(Pr(t)) TR(Pr(t) ' S(Pr(t) =0,
' P.(T)=0

and

26 T4 (8)+ Q(Pr (1), Iy ()~ S(Pr(t), 1 () TR(Pr (1)) " S(Pr (1), I (t)) = 0,
' I1,(T) =0.

We present the following result concerning the existence and uniqueness of solutions
to (2.5) and (2.6). For a proof, we refer to Yong [22, section 4].

LEMMA 2.1. Let (A1) hold. Then for any T > 0, the differential Riccati equations
(2.5) and (2.6) admit a unique solution pair (Pr(-),II:(-)) € C([0,T];S™)xC([0,T];S™)
satisfying Pr(t), I+ (t) =0 for all t €]0,T).

When considering mean-field LQ optimal control problems over an infinite time
horizon, we encounter algebraic Riccati equations (AREs) instead of differential ones.
The following result establishes the unique solvability of the associated AREs, whose
proof can be found in [11, Theorem 5.1]; see also [19, Chapter 3].

LEMMA 2.2. Let (A1)-(A2) hold. Then the AREs
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admit a unique solution pair (P,IT) satisfying P,II > 0. Moreover, the matriz
0L _R(P)"'S(P,I)
is a stabilizer of system (2.3), and the matriz
02 -R(P)"'S(P)
is a stabilizer of system (2.4).

Comparing (2.7) with (2.5), and (2.8) with (2.6), we may guess that there are
some connections between P and Pr(-), and between IT and II(-). The following
result, proved in [20, Theorem 4.1], establishes the connection between P and Py(-).
In section 4, we will establish the connection between IT and IT,(-).

LEMMA 2.3. Let (A1)—(A2) hold. Let Py(-) and P be the unique solutions of (2.5)
and (2.7), respectively. Then there exist constants K, A > 0, independent of T, such
that

|P.(t) — P| < Ke T~ vire(o,T).
We conclude this section with a simple matrix inequality that will be needed later.
LEMMA 2.4. Let M € R™*™ and K € S™. If K >0, then
M(K+M™M)"'MT<I.
Proof. Let L € R™*™ be an invertible matrix such that K = LTL. Then
MEK+M"M)*M" =ML IT+(ML YT (ML) Y (ML™Y)T.
Thus, without loss of generality we may assume K = I. Observe that
MI+M"MY*MT=MM"(I4+MM")™L
For any € >0, N. 2el + MM T >0 and hence
N(I+N) ' =N+

Letting € — 0 yields the desired result. ]

3. Main results. We present the main results of the paper in this section. The
rigorous proofs are deferred to the subsequent sections.

First, let us introduce the static optimization problem associated with Problem
(MFLQ)r. From the previous section we know (recall Lemma 2.2 and the notation
of (2.1) and (2.2)) that under (Al) and (A2), the ARE (2.7) has a unique positive
definite solution P. Let

(3.1) ”/é{(x,u)eR”me|A\x+§u+b:0},

and define a continuous function F: ¥ — R by

F(z,u) = (Qx,x) + (Ru,u) + 2(Sz,u) + 2(q, x) + 2(r, u)
+(P(Cx + Du+0),Cx + Du + o).

The static optimization problem associated with Problem (MFLQ), can be stated as
follows.
Problem (O). Find a pair (z*,u*) € ¥ such that

F(z*,u*)= min F(z,u)=V.
(", u") Juin (2,u)

For the solvability of Problem (O), we have the following result.

(3.2)
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PROPOSITION 3.1. Let (A1)—(A2) hold. Then Problem (O) has a unique solution.
Moreover, (x*,u*) is the solution of Problem (O) if and only if there exists a unique
A" €R”™ such that

Ax* + Bu* +b=0,
(3.3) AT+ Q2"+ CTP(Cx* + Du* +0)+ 8 u* + ¢=0,
BTX* + Ru* + BTP(G.T* + Du* + o)+ Sz* +r=0.
The proof of Proposition 3.1 is similar to the case without mean-field terms. We
omit it here and refer the reader to [20, Proposition 3.2] for details.

Let (z*,u*) be the solution of Problem (O), and let A* € R™ be the vector in
(3.3). Set

(3.4) o*=Cz*+ Du*+0, ©=-R(P)"'S(P),
where P is the solution to the ARE (2.7). Let X*(-) be the solution to the SDE

45 dX*(t)=(A+ BO)X*(t)dt + [(C + DO)X*(t) + o*|dW (t), t>0,
(35) X*(0) =0,

and define
(3.6) X ()2 X (t)+z*, u*(t)2OX*(t) +u*.

Clearly, E[X*(t)] =0. Hence, one has E[X *(¢)] = z* and E[u*(¢)] = u* for all ¢ > 0.

We now state the main result of this paper, which establishes the exponential
turnpike property of Problem (MFLQ);. Recall from Proposition 3.1, Theorem 5.2,
and Proposition 5.3 in [18] that under (Al), Problem (MFLQ), admits a unique
optimal pair for every initial state x.

THEOREM 3.2. Let (A1)-(A2) hold. Let (X}(-),uk(-)) be the optimal pair of Prob-
lem (MFLQ)r for the initial state x. Then there exist constants K, \ > 0, independent
of T, such that

(3.7) E|X;(t)fX*(t)|2+IE|u;(t)fu*(t)|2<Ke*’\t+e*’\(T*t)} vt € [0,7).

We call (3.7) the strong exponential turnpike property for the optimal pair (XZ2(-),
uX.(+)). The above result has several consequences. The first corollary establishes the
strong integral and the mean-square turnpike properties for Problem (MFLQ)r, whose

proof is direct.

COROLLARY 3.3. Let (A1)-(A2) hold. Then,

T
lim %/0 E[1X5(0) = X () + s (1) —w* ()] de =0,

T—o0

Consequently,

Jim %/O LX)~ 2 + [Efus (1))

2]dtzo.

The second corollary shows that for any initial state x, the value V.(z) of Problem
(MFLQ), converges to the minimum of Problem (O) in the time-average sense.
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COROLLARY 3.4. Let (A1)—(A2) hold. Then

lim %VT((E) =V VzeR".

T—o0

Let (X2%(-),ux(-)) be the optimal pair of Problem (MFLQ), for the initial state .
By the results of [3] and [4], the following mean-field backward SDE admits a unique
adapted solution (Y} (-), Z%(-)) (called the adjoint process of X2%(-)):
dY;(t) = = {ATY(t) + ATE[Y; (t)] + CT Z5(t) + CTE[Z; ()] + QX7 (t)
(3.8) + QE[X: ()] + ST ui(t) + STE[; ()] + g pdt + Z5(£)dW (1),
Y (T)=0.

The next corollary shows that a strong exponential turnpike property also holds
for the adjoint process.

COROLLARY 3.5. Let (A1)-(A2) hold. Let
(3.9) Y*(t) £ PX*(t)+ N\, Z*(t)2 P(C+DO)X*(t)+ Po*.
Then for some constants K, X\ >0 independent of T,
(3.10) E|Y;(t) - Y*()?+E|Z:(t) - Z* (1)< K [e_’\t +e MO e [0, T).

4. Stability of Riccati equations. As mentioned in section 2, there is a certain
connection between the solutions to the differential Riccati equation (2.6) and the
ARE (2.8). We now examine this connection. The main result of this section is as
follows, which plays a central role in the study of turnpike properties.

THEOREM 4.1. Let (A1)—(A2) hold. Let II(-) and II be the unique solutions of
(2.6) and (2.8), respectively. Then there exist positive constants K, \ >0 such that

(4.1) [T (t) — T < Ke T8 Y0<t<T < 0.

Before going further, let us point out that in order to prove Theorem 4.1, we can
assume without loss of generality that

(4.2) S=0, S=0.
Indeed, let
(4.3) A=A—-BR™'S, C=C—-DR™'S, Q=Q-S"R™'S,

and let P(-) be the positive semidefinite solution to the Riccati equation

P+PA+ATP+CTPC+Q
(4.4) ~(PB+C"PD)(R+D"PD)"Y(B"P+D'PC) =0,
P(T)=0.
We have
PA+ATP+CTPC+Q
=PA+A"P+C"PC+Q—(PB+C'"PD+S")R'S
(4.5) ~STR-YB"P+D"PC+S)+S"R"YR+D"PD)R7'S.
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On the other hand,
PB+C'PD=(PB+C'PD+S")~S"R"Y(R+D'"PD),
and hence
(PB+C"PD)(R+D"PD)" (B"P+ D"PC)
=(PB+C"PD+ST)R+D"PD)"Y(B"P+D"PC+5)
—(PB+C"PD+STR'S—STRY(B"P+D"PC +5)
(4.6) +STRY (R+D"PD)R™'S.
Substituting (4.5) and (4.6) into (4.4), we see that P(-) satisfies the same equation

as Pr(-), which implies P(-) = P;(-). By a similar argument, we can show that IT,(-)
satisfies

I+, A+ AT +C P.C+ O

(4.7) ~(II;B+CTP;D)(R+D"PD)" (B" I + DT P,C) =0,
HT(T) :07

where

(48) A=A-BR'S, ¢=C-DR'S, 0-Q-5 RS

Thus, by making transformations (4.3) and (4.8), we can assume without loss of
generality that (4.2) holds.
To prove Theorem 4.1, we need the following lemma.

LEMMA 4.2. Let (A1) hold. Then for any positive semidefinite matriz A >0,

CTAC+Q CTAD
e S >0,
DTAC  R(A)

or equivalently,
CTAC+Q - (CTAD)R(4)™(DTAC) 0.
Proof. Since B> 0 and A >0, we have
R(A)=R+DTAD>R>0.
Let M € R™ ™ be such that A= MT M. Then by Lemma 2.4,
1 (MD)R(a) (D™ ) =1~ (mD)[R+ (MD) (mD)] (mD) >o0.
Consequently,
CTAC+Q— (CTAD)R(A)"H(DTAC)
=Q+C7|A- (AD)R(4)" (DT 4)|€
=Q+(MC)" [1- (MD)R(4)™ (D" MT)|(MC) > 0.

The proof is now complete. ad
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In the following proof and in what follows, we shall denote by K and A two generic
positive constants, which do not depend on T and may vary from line to line.

Proof of Theorem 4.1. As mentioned previously, we may assume S =0 and S =0
to simplify the proof. Define for ¢ € [0, 00),

Y(t)EP(T—t), YTt)2H(T—1t) ift<T.

It is shown in [20, Proposition 4.1 and Theorem 4.1] that the definition of X(t) does
not depend on the choice of T' > ¢, and

(4.9) 0<X(s)<D(t), |2(t)—P|<Ke ™ Y0<s<t<oo

for some positive constants K, \ > 0. A similar argument shows that the definition
of 7(t) does not depend on the choice of T >t either, and 7'(-) satisfies the following
ODE:

T(t) = Q(X(1),1(1)) = S(£(1), T(1)) "TR(E(1)) ' S(X(1), 1'(1)),
(4.10) ) =0

Step 1. We first show that lim; o, 7'(¢) = I1.
Consider the deterministic LQ optimal control problem with state equation

X(t)=AX(t)+ Bu(t), tel0,T),
X T,

and cost functional

o [THCTP)C+Q CTP(t)DY (X()\ (X(t)
Hesu)= | << e wimm ) (i) (o))
Since Pr(t) >0,
(4.11) R(Py(t))=R~+DTP.(t)D > R>0,

and by Lemma 4.2,

CTP.t)C+Q CTP.(t)D
(112 <DTP<>0 (P <t>>>>°

Because of (4.11) and (4.12), the above deterministic LQ problem is uniquely solvable
with value function given by (I1-(0)z,z). Note that J,(z;u(-)) can be written as

. _[T/CTE@-)C+Q CTE(T 1D (X)) (X(t)
JT(“””’“(‘))_/O << DT(T - t)C ﬁ(z(Tt)))(u(t)>’(u(t)>>dt'
For T5, >T7 > 0, set

A(t)=2(Ty —t) — S(Ty —t), 0<t<Th.

Since X(-) is nondecreasing, A(t) > 0 and hence by Lemma 4.2,

CTAMC+Q CTAWMD -
R(A®)) )7

+
DTA®t)C (A(t)

Copyright (©) by SIAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/09/24 to 5.198.137.25 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

762 JINGRUI SUN AND JIONGMIN YONG
Thus, for any square-integrable u : [0, T3] — R™,

Ty (w5u(:)) = Ty (25u(:))

CTET-t)C+Q CTS(T—t)D) (X)) (X()
2/0 << DT -t)C  R( (g—t)>(u(t)> (ut)>>
B CTEMm-tC+Q CTy D\ (X (t Xt
/[ << e 0t R >> ) ut>)>dt
M CTARC+Q CTA®D X(t
- << bTANC R4 t)) )(u(t) "

> 0.
This implies that for 0 < T} < Ts,
(IIr, (0)z,z) < (5, (0)z,2) VzeR™

Since z is arbitrary, Y(t) = II;(0) is nondecreasing in t. On the other hand, take
O to be a stabilizer of the system (2.3). By (4.9), Pr(¢) < P and hence (recalling
Lemma 4.2)

THCTR()C+Q CTP.(t)D\ [ X() ) ( X(#)
<HT(O)$’5”></O << DTP.()C  R(P:(1)) (éX(t) (éxu) dt
T/(CTPC+Q CTPD\ [ X(t) X(t

</0 << DTPC ﬁ(P)) OX(t) (éX >dt

L5 G (4 (&))<=

Thus, 7(t) = I1:(0) is bounded above, which, together with the monotonicity of 7(t),
implies that

Too £ lim T(t)

exists and is finite. From (4.10) we have
1 N .
T(t+1)-T(t)= Q(X(s),T(s)) = 8(X(5),1(5)) "R(X(s)) "' S(2(5), T (s))ds.

t

Letting ¢t — oo yields

O(P, 1) — S(P, 1) "R(P)"'8(P, 1) = 0.
By uniqueness, T, = I1.
Step 2. Set A(t) £ T(t) — II and A(t) £ X(t) — P. We show that A(-) satisfies the
following ODE:

(4.13) Alt)= A@)A+ AT A(t) + f(A(L), A(t)) + g(A(t)),
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where

~

O with @2 _R(P)"'S(P,1I),

>
)
&)

A +

FIA@), A() 2 =S(A(t), A®) TR(Z(t) T S(A(t), A(t))

~ A~

—ﬁﬁ@ﬂn@ﬂwaxunﬂéTA@ﬂT
~ |(DO)TAMDR(Z (1) BT Aw)|.
g(A)2CTAW)C — (DO)T A()DR((t))~*S(P, IT)
—LQPJDTﬁQXOYJBTA@XﬂT
—LﬂpJnTﬁ@xwyﬂﬁiuwG}
To verify (4.13), we first observe that
At)=AWA+ATA®M)+CTAW)C
(4.14) - [ETT(t) + ETE(t)a] ' [E + BTE(t)ﬁ] B [ETT(t) + f)TE(t)G] ,
+[BTm+b7PO| [+ D7PD| (BT DT PE].
Noting that
BT+ DT s(t)C =[BT A®) + DTAWC| + [BT1+ DT PC|,

we have

[ETT(t) + ETE(t)a] ' [ﬁ + f)TZ(t)ﬁ] B [ETT(t) + f)TE(t)é]
:[ETA@y+ﬁTA@KﬂTP?+ETE@ﬂﬂ_T§TAGy+ﬁTAaﬁﬂ
+[BTm+b7Pe| [+ DT 5D [T+ DTPC]
+[BTaw+DTawe) [R+DTxwD| [BTm+ DT PO
+ [ETH + f)TPé] ! [E + ﬁTE(t)ﬁ] B [ETA(t) + BTA(t)é]
=0+@+@+@.
For (2) and (4), we note that

~ ~ 1—1 ~ ~ -1
[R + DTE(t)D] - [R + DTPD]
—1

- [ﬁmwﬁ}‘l ((R+D7PD) ~ (R+D"2®)D)|[R+ D" £()D

—[R+D"PD| DTAWD[R+D z)D| .
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Thus,
@)= [ETH + lA)TPCA’} ! {ﬁz + ﬁTPD} [BTH + DTPC}
~[B'm+b"PC| [R+D"PD| DT AWD[R+D"S®WD|  [B'm+D"PC]
- [ETH + BTpé} ! {fe + BTPD} [BTU + DTPC}
+(DO)TA()DR(X(t))"*S(P, IT)
and

~ ~ T~ ~ -1 ~

@:[BTH+DTPC] R+D"2t)D| DTAWC
N T -1

+[BTH+DTPC [R+DTE(t)D} BTA(®1)

~ ~ AaTr~ -~ ~7—1 ~ ~
- [BTH + DTPC] R+DTx®)D| DTAWC

+ [ETH + f)TPd ' [fz+ f)TPf): TBTAW
- [gnnffpaf[zfz+ffpﬁ}”ﬁu(tm[mﬁw@ﬁ}”émw
=8(P,I)TR(2(t)) " DT A(t)C—(BO)T A(t)+(DO) T A(t) DR(X(t)) ' BT A(t).
Substituting these into (4.14) and noting that 3)=(@", we obtain
At)=AW)A+ATA®M)+CTAW)C
- 'ETA(t)JrﬁTA(t)é} R+D'x ()D]_l[ﬁu(t)+ﬁu(t)6]
— (DO)TA(t) DR(2(t)) '8 (P, IT)
— [S(P,I)TR(2(t)) DT A@#)C — (BO)T At)

—

+ (ﬁé)T/l(t)ﬁﬁ(E(t))*1§TA(t)} '

—[S(P,I)TR(Z(t)) DT A@#)C — (BO)T At)
+ (_IA)@)TA(t)57€(E(t))’1§TA(t)}
— A(t) (2+ Eé) + (2+ E@)TA(t) +OTAWC
[BTA t)+ DT A(t )o] {1§+1A)T2(t)f)}71 [ETA(t) + ETA(t)é]
[(D@ )TA(t ﬁﬁ(z(t))—léu(t)f - [(ﬁé)TA(t)f)ﬁ(g(t))—léu(t)]
— (DO)TA(t)DR(2(t)) "' S(P, IT)
— [S(P.m)TR(2(t)) D At )c} ~ [S(P.m)TR(2() DT A1),

which is exactly (4.13).
Step 3. Next, we show that there exist positive constants K, A > 0 such that

(4.15) T(t) - <Ke ™ VOLt<T < o0,

which is equivalent to (4.1).
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By the variation of constants formula, for ¢ > s > 0,
At) = et 179 As) A=)

s /t oA (t=r) [f(A(r), A(?“))—f—g(/l(r))} A=) g

s

(4.16)

Clearly, there exists a constant p > 0 such that (noting that |A(¢)| is bounded so that
[A(t)[? < KIA(®)])

(4.17) FCA®, AW)] + 9(A®)| < p[|AE)E + A1)
By Lemma 2.2, A is stable, so
\e“&t| <aje Pt vi=0
for some constants aq, 7 > 0. Also, by Lemma 2.3,
|A(t)] =|2(t) — P| < aze 2t Vt>0
for some positive constants as, 52 > 0. Take a = a1 V ag and = 1 A B2 so that
(4.18) le| < ae Pt AL < ae P Vi 0.

From (4.16), (4.17), and (4.18) we get
|A()] < ae~280- {|A< )+ / 0014+ 1) ar |
o2e—28(t—s) HP QB(Tfs)[‘A(T,)F +ae3ﬁr:|d7,,}
ps ﬁt] +p/t 626(T8)|A(7")|2d7"}

t
2 72ﬁ(t s) |A ‘+p0&67268ﬂ +/~7/ ezﬁ(TS)lﬂ(T)Fd?”}.

S

o2 72ﬂ(t s){|A \+pae 2555 [,

For fixed s >0, set

h(t) = e CIA®)], k(s) = a?|A(s)| + pa’e B

Then
t
(O <h(s)+ pa [ eI b, o2,
Set
' 1
0(t) =k(s) + pa2/ e 28(r=s) [h(r)]er p(t) = %; t>s.
Then
! 2,—28(t—s) 2
p/(t) __ 0 (t) _ _pae [h(t)] > —pa26_26(t_8),

[0(2)]? [0(8)]?
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Since lim;_,o0 k(s) =0, for s large enough such that

1 1 pa’
=—<=—<21+—,
P50 k) 28
we have
t pa?
p(t) = p(s) — /)042/ e 2P dr = p(s) — 25 [1 - 626(5—”} =1
and hence
1
) <Ot)=—<1 Vt>s
(<o) =

It follows that
|A@)| =e PP p(t) < Ke ™™ vt>0

for some constants K, A > 0. ]

5. The turnpike property. In this section we prove the main results stated
in section 3. According to [18, Theorem 2.3], under the assumption (A1), Problem
(MFLQ), admits a unique optimal control for every initial state z. Moreover, a pair
(XZ(4),ux(+)) is optimal for « if and only if it satisfies the following optimality system:
dX 5 (t) = {AX}(t) + AE[X(t)] + Bul(t) + BE[up(t)] + b}dt

+{CX:(t) + CE[X.(t)] + Duj(t) + DE[u}(t)] + o }dW (t)
Yy (t)=—{ATY;(t) + ATEY; ()] + CT Z:(t) + CTE[Z:(¢)] + QX (1)
(5.1) +QE[X ()] + ST up(t) + STE[w ()] + g} dt + Z5(H)dW (1),
X:(0)=z, Y(T)=0,
B'Y}(t)+ B E[Y; () + D' Z:(t) + DTE[Z;(t)] + SX;(t) + SE[X(t)]
+ Rul.(t) + RE[ui(t)] +r=0.

Let (XZ%(-),u%(-)) be the optimal pair of Problem (MFLQ), for the initial state
x and (Y, () *(+)) the adapted solution to the corresponding adjoint equation in
,u*) be the unique solution of Problem (O) and A\* € R™ the vector in

5.2) Xe()=X7()—a*, () =up() —u", Yo()=Y7() ="

Subtracting (3.3) from (5.1) yields

dX,(t) = {AX,(t) + AE[X,(t)] + Biiy (t) + BE[a,(t)] }dt
+{CX(t) + CE[X(t)] + Diir(t) + DE[ir(t)] + o* }dW,
AV (t) = — {ATY,(t) + ATE[Y,(t)] + CT ZA(t) + CTE[ZA(t)] + QX1 (1)
(5.3) + QE[X,(t)] + S () + ST Elar(t)] — CT Po*}dt + Z2(t)dW,

]+
X, (0)=z—a* Yyu(T)=
BTY,(t) + BTE[YT(t)] + DTZ*( )+ DTE[ZE ()] + SXr(t) + SE[ X (1)]

+ Riir(t) + RE[iy(t)) — DT Po* =0,
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where o* = Ca* + Du* + . From (5.3) we see that (X (-),@r(-)) is an optimal pair
of the mean-field stochastic LQ problem with state equation

dX (t)={AX(t) + AE[X ()] + Bu(t) + BE[u(t)] }dt
(5.4) +{CX(t) + CE[X (t)] + Du(t) + DE[u(t)] + ¢* }dW (),
X(0)=a—z",

and cost functional

(8 ) ().
{58 () (55 ()
Thus, by [18, Theorem 5.2] we have the following result.

PROPOSITION 5.1. Let (A1)—(A2) hold. Let Pr(-) be the solution to (2.5), and let
I1.(-) be the solution to (2.6). Define

(5.5) O:(t) = —7§<PT<t))‘1§<PT<t>),
(5.6) Or(t) £ —R(Pr(t) "' S(Pr(t), I (1)),

and let ,(+) be the solution to

(5.7 { 5.() + [+ BOL(0] 32 (1) + O+ DO 1) [Py (1) — Plo.

or(T)=—=\".

Then the process tr () defined in (5.2) is given by

o~ ~ o~

(5.8) ir(t) = Op () { X1 (t) — B[ X1 (8)]} + On()E[X1(2)] + 0-(2),
where
(5.9) Or(t) = ~R(Pr(t) ' [BT3:(t) + DT (Po(t) — P)o”].

LEMMA 5.2. Let (A1)—(A2) hold. Then there exist positive constants K, \ > 0,
independent of T', such that

1B (8)] + 0 ()| < Ke 2T e e 0,T).
Proof. Proceeding similarly to the proof of [20, Lemma 5.1], we can show that
B2 (t)| < Ke»™=1 vte[0,7)

for some positive constants K, A > 0 independent of T'. The desired result then follows
from the fact that

R(Pr(t)) = R >0

and Lemma 2.3. 0
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If we substitute (5.8) into (5.4), we see that the process X,(-) defined in (5.2)
satisfies the closed-loop system
O, E[X,]+ B, }dt

dX.(t) = {(A+BO,)(X, —E[X o)+ +(A+B6,
+(C+DO,)E[X ]+ Dby +0* }dW,

(5.10) +{(C+D6,)(X, ~E[X,])

Xr(0)=z—2z".

B
(C+

We now provide an estimate for E[X,(t)].

PROPOSITION 5.3. Let (A1)—(A2) hold. Then there exist constants K,\ > 0,
independent of T', such that

(5.11) IE[X,(1)]| < K[e‘” +e M=) wre0,T].

Proof. The function t — E[X,(t)] satisfies the following ODE:

d v < fagay =~ A~
(5.12) B (0] = [A+ BO(O]E[X (1)) + B (2),
E[X,(0)]=2z—2*=%.
Using the notation
Ar(t)=A+BO,(t), 6=-R(P)"'S(P,1I), A=A+ B6,

we have by the variation of constants formula that

E[X,(t)] = ez + /O ) [(ﬁT(s) - /T)E[XT(S)} + §§T(s)}ds.

By Lemma 2.2, Ais stable, so
e < Ke ™ V>0
for some constants K, A > 0 independent of T'. Since
6-0.(t)=(R+ D P.()D) (BTI,(1)+ D P,(1)C + )
—(R+D7PD) (BT +DTPC+5)
= (E + BTPT(t)ﬁ) B (ET[HT(t) — )+ DT [Pu(t) — P]@)
+[(R+DTP, (tm)“ - (m DTPD) | (BT +DTPC+8)
<R+DTP ) (BT ]+DT[P()—P}@)
(R+D P (t)D ) ET[PT(t) — P|D8,
we have by Lemma 2.3 and Theorem 4.1

A (t) = Al < K8y (1) = O <K |[IT:(t) ~ 11| + | Pr(t) = P
(5.13) <Ke M= wielo,T].

/
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Also recalling Lemma 5.2, we obtain
t
E[X,(1)]| < Ke ™ + K / e~ At=3) g=A(T—s) [E[XT<S)] + 1} ds
0
t
< K[e*“ - e*MT*t)} + K / e MIH=2IR (X, (s)]ds
0
t
< K[e_M + e_)‘(T_t)} + K/ e MT=E[X . (s)]ds.
0

The desired result then follows from Gronwall’s inequality. O
Recall the SDE (3.5). We have the following result.

PROPOSITION 5.4. Let (A1)—(A2) hold. Then there exists a constant K >0 such
that the solution X*(-) to the SDE (3.5) satisfies

(5.14) B X*(t)*< K Vt>0.

Proof. Let P be the solution to the ARE (2.7), and let © = —R(P)~'S(P). By
1t6’s rule,

d * *
SE(PX(0),X"(1)

- ]E{Q(PX*(t), (A+ BO)X*(t))
+(P[(C + DO)X*(t) + o*],(C + DO)X*(t) + a*>}
- E{([P(A +BO)+ (A+ BO) P+ (C+DO)T P(C + DO X*(t), X*(t))
+2(P(C + DO)X*(t),0%) + <Pa*,a*>}
=E[ - (Q+0TRO+5T0+675)X" (1), X" (1)
+2(P(C + DO)X*(t),0") + (Po*, 0*>} .
Note that by (A1),
Q+O0"RO+S5T0+0"S=Q-S"R'S+(O+R'S)'TRO+R'S)>0.

Let u > 0 be the largest eigenvalue of P, and let v > 0 be the smallest eigenvalue of
Q+OTRO+STO+6TS. Then

SR(PX (1), X" (1)
<E[-V|X"(0) +2|X"(1)] - |(C + DO) T Po"| + (P, 0")]
<E {ng*@)F + 20+ Do) Po*? + <P"*"’*>]

<E|- o (PX"(0.X°(0) + 21(C + DO) Po" 4 (Po” o)

=~ B(PX().X" () + 2[(C + D) Po" [+ (Po",%).
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It follows from the Gronwall inequality that

E(PX*(t), X*(t)) < [i|(c + DO)T Po*|? + (Po*, a*>] /Ot exp [21;(5 - t)} ds

21 |2
< 7" L|(C+D@)TP0*|2 + (Po*,a*ﬁ :
This implies (5.14), since P > 0.

We now prove Theorem 3.2.

Proof of Theorem 3.2. Let O (t) and 6, (t) be as in (5.5) and (5.6), respectively,

and let
©=-R(P)"'S(P), O=-R(P)"'S(P,I).
For notational simplicity, we write

A=A+BO, C=C+DO, A(t)=A+BO.(t), Cu(t)=C+DOL(L),

A=A+BO, C=C+DO, A.(t)=A+BO.(t), Cr(t)=C+DO.(t).
Then the process
Hr(t) £ X (1) - E[X, ()] - X*(¢), te[0,T),

satisfies H,(0) =0 and

dH(t) = { Az (t)Hr (1) + [Ar(t) — AJX7(t) }dt

- {Co (O Ha (1) + (Ca(t) — CIX ™ (8) + Co(OE[T1(1)] + DB (8) }dW (1)
Let P > 0 be the solution to the ARE (2.7). Then It6’s rule implies that
BPH2(t), Hr(1) = [ 2P, A, + (A - A)X)
(5.15) + (PICrHy + (Cr = )X ™ 4 ), CoHy + (Cr = €)X + hir) fds,
where we have suppressed s in the integrand, and
ha(s) = Cr(s)E[X1(s)] + Dby (s).
Note that
E[X*(t)]=0, E[H.(t)]=0 Vtel[0,T)].

Thus,

E(P[Cr+Hy + (Cr — C)X* 4+ hy|,CrHyr + (Cr —C)X* + hy)
=E(P[C+Hy + (Cr —C)X™],CrHr + (Cr — C)X ™) 4+ (Phy, hy).

Substituting the above into (5.15) and expanding the integrand yields
t
E(PH,(t), H.(t)) :/ E{((PAT + A, P+C} PCy)H,, Hy)
0

+(C; PC,E[X,],E[X,])
(5.16) +2([P(Ar — A)+C] P(Cr — C)| X", Hy) +kT}ds,

Copyright (©) by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 04/09/24 to 5.198.137.25 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

TURNPIKE PROPERTIES FOR MEAN-FIELD LQ PROBLEMS 771

where

kr(s) = (P[Cr(s) — C]X*(s),[Cr(s) — CIX*(s))
+ (2PCr(s)E[X(5)] + PDO.(s), DO (s)).

Next, let IT > 0 be the solution to the ARE (2.8). Then integration by parts gives
(B[R, (1)), B[, (8)]) — (IT7,7)
(5.17) = /Ot {((HﬁT + AL IDE[X,],E[X,]) + 2([TE[X ], §§T>}d.s.
Adding (5.16) and (5.17), we obtain
E(PH,(t), Hy (1)) + (ITE[X, ()], E[X..(1)]) — (117, )
- /Ot]E{<(PAT + AL P +C] PCy)Hy, Hy)
+{((ITA, + ALIT +C} PC,)E[X,],E[X,])
+2([P(Ar = A) +C] P(Cr = C)|X*, ) + 6 }ds,
or equivalently,
{B(PH. (1), (1)) + (ITE[X (1), E[X, (1))}
:E{<(P.AT + AL P +CJ PC)Hy, Hy)

+(ULAr + AL I +C PCr)E[X] E[XA])
(5.18) +2([P(Ar = A) + C] P(Cr — O)IX" He) + 6 |,

4
dt

where
br(t) = ke (t) + 2(ITE[X 1 (t)], B (1)).
We observe the following facts:

PAL(5)+ Ar(s) TP+ Cyr(s) T PCr(s)
=PA+A"P+CTPC+ P[Ar(s) — Al + [Ar(s) — AT P
+[Cr(s) —C]TPC+Cr(s) T PlCr(s) - C],

PA+ATP+C"PC=—(Q+OTRO+STO+07S) <0,

A (s)+ Ap(s)TIT + Cr(s) T PCr(s)
— A+ A" +CTPC+ H[A.(s) — A+ [Ar(s) — A TTT
+[Cr(s) = C]TPC+Cr(s) T P[Cr(s) = C],

HA+ A I+C"PC=—(Q+6"RO+5T60+675)<0.
Also, observe that for some constant K >0,

| (8)] + Az (8)] + Cr ()] +[Cr(t)] S K VOSt<T < o0,
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and similar to (5.13), we have
|A-(t) — Al + [ Ap(t) — A| +|Cr(t) = C| + Co(t) = C| < Ke ™M= v0<t<T <00
for some constants K, A > 0. Then it follows that for some constant o > 0,

]E<[P~AT(3) +AT(S)TP+CT(S)TPCT(S)]HT(S)vHT(3)>
(5.19) <K [ — 2+ e_’\(T_S)]]E|HT(s)|2,

(T AL (s) + Ar(s) T 1T +Cr(s) T PCr(s)|E[ X ()], E[X1(5)])
(5.20) <K|—a+e T [EX ()]
Moreover, by the Cauchy—Schwarz inequality and (5.14),

2B([P(Ar(5) — A) +Cr(5) T P(Ca(s) — C)JX " (s), Ha(5))

(5.21) gK[aIE|HT(s)|2+e—*(T—5)},
and by Lemma 5.2 and Propositions 5.3 and 5.4,
(5.22) E|¢(s)] < Ke MNT=9),
Substituting of (5.19)—(5.22) into (5.18), we obtain

%{WPHT(@, H (1)) + (TE[X (0L B[, (0)]) }
<K|=a+ e T EIH ()2 + [ELX (0]} + Ke™ T

<K [— a+ e*MT*t)] {E(PHT(t), Hy(t)) + (ITE[X 1 (1)), E[S{T(tm} + Ke NT-1),
with possibly a different constant K. Then, by Gronwall’s inequality, we have
E(PH,(t), Hy(t)) + (ITE[X,(£)], E[X,(t)]) < K [e*” + e*MT*t)} vt e [0,T),
with possibly different constants K, \ > 0. Since P, II > 0, the above implies that
E|H, (1) + [E[X:(0)]] < K [efﬂ + e*MT*ﬂ vt e [0,T).
The desired (3.7) now follows from

X (t) = X7(1) (t) + E[X- ()]

= H,(t) +
up(t) —u(t) = O (XL (1) — X7(1)]
+ [O1(t) — On(H)|E[X 1 (£)] + 0. (1).

% -

The proof is complete. ad
Next, we prove Corollary 3.4.
Proof of Corollary 3.4. By Proposition 5.4,

E|X*()? +Elu*(t)*<K Vt=0
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for some constant K >0, and hence by Theorem 3.2,
EIX:t)?+Eui(t)P<K Y0<t<T <00

for some possibly different constant K > 0. The above, together with Corollary 3.3,
implies that

1 T
= lim T/o {E[<QX;(t>7X;(t)>+2<SX;(t)7u§(t)>+<Ru¥(t),uf;(t>>]
+(QE[XZ()] E[X7(1)]) + 2(SE[X;(t)], E[ur.(t)]) + (RE[uz.(t)], E[u}.(t)])
+2(q, EIX; (1)) + 2(r, B[z (0) }at
T
— lim l/o E[(QX*(t), X*(1)) + 2(SX* (), w* () + (Ru* (), u* (¢))]
+(QE[X™ (1), E[X ™ (t)]) + 2(SE[X ™ (1)}, E[u" (t)]) + (RE[u" (t)], E[u" (t)])
+2(g, E[X*(1)]) + 20 E[u* (1)) Jdt.
Noting that
E[X*(t)] =E[X*(t) + 2*] =a*, E[u*(t)] =E[OX*(t) +u*]=u",
we further have
T
lim %VT(J:): lim %/O {E[(QX*(t),X*(t)>+<Qx*,x*>
+2(SX* (1), 0X* () + 2(Sz*, u*)
+ (ROX*(t),0X*(t)) + (Ru*,u*)]
+(Qm*,x*)+2<§x*,u*>—|—<Ru*,u*>+2<q,x*)—|—2<7‘,u*>}dt
= lim :1F/TE<(Q+ST@+9Ts+@TR@)X*(t),X*(t)>dt
0
(5.23) +(Qx*, ") 4 2(Sa*,u*) + (Ru*,u*) + 2(q, ™) + 2(r,u*).

On the other hand, with P > 0 being the solution to the ARE (2.7) and noting that
E[X*(t)] =0, we have

E(PX™(T), X*(T))
T
_E / [2(PX* (1), (A+ BOYX" (1)
0
+ (P[(C + DO)X*(t) + 0],(C + DO)X*(t) + a*>}dt
_]E/T{<[P(A+B@)+(A+B@)TP
0
+(C + DO)T P(C + DO)X*(t), X* (1)) + (Pa*,o*)}dt
:]E/T [— (Q+STO+6"TS+OTRO)X*(t), X*(t)) + <Pa*,a*>}dt.
0

Since E|X*(T)|? is bounded in T (see Proposition 5.4), we obtain
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T
lim %/ E((Q+STO+0TS+60TRO)X*(t), X*(t))dt
0

T—o00
1 T
(5.24) = lim — |[—E(PX*(T),X*(T)) +/ (Po*,0")dt| = (Pc*,c").
T—oco T 0
Combining (5.23) and (5.24), we get the desired result. |

Finally, we prove Corollary 3.5.

Proof of Corollary 3.5. By a tedious but straightforward calculation we can ver-
ify that in (5.3), the adapted solution (Yz(-),Z5(-)) to the backward SDE has the
following relation with (X4(-), ar(+)):

Ve(t) = Pe(t){ Xo(t) — EIX ()] } + o (OELX: (8)] + 52 (0),
ZE(t) = Po(t) {cXT(t) + Diig(t) + CE[X ()] + DE[ar(t)] + o* }
Using the relation (5.8), we further obtain
Z;(t) = Pr(®){[C + DO ()] X (1) + [C — DOL($)|E[X, (1)) + DE[ir (1) + 0" }.

For E|Y;(t) — Y*(t)|?, we first observe that

V(1) =Y (1) = Yo (t) — PX"(t)
= Pr()Xr(t) = PX*(t) + [I(t) = Pr()IE[X(1)] + Br (1)
= Pr(t)[X7 () = X7 (8)] + [Pr(t) — PIX7 ()

+ [HT(t) - PT(t)]E[XT(t>] + @T(t)'

By Lemma 2.3 and Theorem 4.1, Pr(-) and I1;(-) are bounded uniformly in 7', and
by Proposition 5.4, E|X™*(-)| is also bounded. The above then implies that

EIY; (1) = Y* ()2 < K{EIX;(t) - X*(OF + |Pr(t) = PI* + [EIX (0] + 18(1) ]

for some constant K > 0. Recalling Lemma 2.3, Theorem 3.2, Lemma 5.2, and Propo-
sition 5.3, we obtain that for some constants K, A > 0 independent of T,

EJY; (6~ Y (O K [e™ +eXT0] wee[o,7],
In a similar manner, we can show that
E|Z;(t) - Z° (O] <K |[e ™ +e T vee[0,T].

The proof is complete. ]
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