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Abstract

The number of people diagnosed with advanced stages of kidney disease have been rising every year. Early detection and 

constant monitoring are the only minimally invasive means to prevent severe kidney damage or kidney failure. We propose 

a cost-effective machine learning-based testing system that can facilitate inexpensive yet accurate kidney health checks. Our 

proposed framework, which was developed into an iPhone application, uses a camera-based bio-sensor and state-of-the-art 

classical machine learning and deep learning techniques for predicting the concentration of creatinine in the sample, based 

on colorimetric change in the test strip. The predicted creatinine concentration is then used to classify the severity of the 

kidney disease as healthy, intermediate, or critical. In this article, we focus on the effectiveness of machine learning models 

to translate the colorimetric reaction to kidney health prediction. In this setting, we thoroughly evaluated the effectiveness of 

our novel proposed models against state-of-the-art classical machine learning and deep learning approaches. Additionally, we 

executed a number of ablation studies to measure the performance of our model when trained using different meta-parameter 

choices. Our evaluation results indicate that our selective partitioned regression (SPR) model, using histogram of colors-based 

features and a histogram gradient boosted trees underlying estimator, exhibits much better overall prediction performance 

compared to state-of-the-art methods. Our initial study indicates that SPR can be an effective tool for detecting the severity 

of kidney disease using inexpensive lateral flow assay test strips and a smart phone-based application. Additional work is 

needed to verify the performance of the model in various settings.

Keywords Point-of-care testing · Estimated glomerular filtration rate · Serum creatinine concentration · Color space · 

Histogram of colors

Introduction

Chronic kidney disease (CKD) is a major cause of death 

globally [1]. In the US, it is estimated that 37 million people 

have CKD [2]. CKD progresses through several stages, each 

associated with a more severe loss of kidney function, caus-

ing the accumulation of toxic waste in the bloodstream. With 

early diagnosis and treatment, it is possible to slow or stop 

the progression of kidney disease [3]. However, because the 

early stages of CKD are generally asymptomatic, over 90% 

of CKD patients are not aware of their disease [4]. The lack 

of symptoms in the early stages of CKD leads to unaccept-

ably high rates of late diagnosis, which is associated with 

worse prognosis [5]. Preventative strategies to improve CKD 

prognosis require early detection, especially screening for 

high-risk subjects, and frequent monitoring of patients with 

kidney function impairment [3, 6]. The current diagnostic 

guidelines for CKD require the persistence of abnormal 
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markers of kidney dysfunction for at least 3 months [7]. 

These markers are low levels of the creatinine-based esti-

mated glomerular filtration rate (eGFR, which should be 

lower than 60 mL/min/1.73 m 2 ) and elevated albumin-to-

creatinine ratio (ACR, which should be at least 30 mg/g). 

Recently, cystatin C has been proposed as an additional 

marker to calculate eGFR [8–10]. The high cost of clinical 

lab testing for those markers affects the frequency of testing 

among the lower income populations, making early detec-

tion in high-risk individuals less likely. In addition, the lack 

of rapid, inexpensive tests for CKD screening and monitor-

ing hinders accurate assessment of CKD severity, progres-

sion and response to treatment, and for prompt adjustments 

of medication dose.

Creatinine is a waste product of muscle metabolism. Kid-

neys are tasked with filtering almost all the creatinine from 

the blood and releasing it into urine. When kidney function 

is impaired, creatinine levels in blood serum are abnormally 

high. Elevated creatinine levels in blood serum, or serum 

creatinine, is an established indicator of poor kidney per-

formance [11]. While there is some disagreement about the 

most suitable physiological markers and most accurate ana-

lytical techniques [12–14], in routine clinical tests serum 

creatinine concentration is generally measured via colori-

metric detection, and the result is plugged into an empiri-

cal equation to calculate the eGFR. The color change is 

produced by the chemical reaction of creatinine with either 

picric acid (Jaffe reaction) or an appropriate enzyme. The 

modification of diet in renal disease (MDRD) and chronic 

kidney disease epidemiology collaboration (CKD-EPI) are 

the two empirical equations commonly used clinically [15]. 

Reference ranges of eGFR values allow to diagnose CKD 

and classify disease severity.

Point-of-care testing (PoCT), usually performed by 

the patient at home, has been successful in the screening 

and management of acute and chronic conditions, such as 

COVID-19, hypertension and diabetes [16, 17]. The adop-

tion of robust and cost-effective solutions for CKD monitor-

ing, combining point-of-care testing devices and the recent 

advances in digital health, could dramatically improve clini-

cal outcomes. However, the few options available are either 

too expensive (i-STAT handheld device by Abbott) or inac-

curate (StatSensor Creatinine device by Nova Biomedical) 

[18, 19]. To date, no point-of-care testing device for CKD 

has been approved for home use [17].

The overarching goal of our research is to develop a novel 

platform for accurate and affordable point-of-care testing 

of serum creatinine. We propose that such platform can be 

achieved by combining an inexpensive test strip (such as lat-

eral flow assay, or LFA), a smartphone camera, and machine 

learning models. A single blood droplet, collected via finger-

prick sampling, is exposed to an appropriate reagent on the 

LFA device to produce a colorimetric response. An image 

of the reaction pad on the test strip, captured by the patient’s 

smartphone, is analyzed by a machine learning model to 

estimate GFR based on the color change.

Several approaches have been proposed for low-cost 

point-of-care testing, including for CKD [20, 21]. The use of 

smartphone cameras for measuring colorimetric responses 

is also not new [22–26], and neither is the use of machine 

learning techniques for image processing, from simple tasks 

such as object detection [27] to advanced algorithms used 

for traffic analytics [28]. However, only a handful of studies 

have combined low-cost testing devices with AI to increase 

accuracy. Thakur et al. [29] designed a PoCT system for 

CKD screening by measuring urine albuminuria and per-

formed classification on 10 discrete concentrations. They 

achieved an accuracy of 92% using the RF algorithm on 

samples taken in constant illumination. Solmaz et al. [30] 

developed a smartphone application called “ChemTrainer” 

that utilizes paper-based chemical assays for predicting 

hydrogen concentration using SVM and RF. “DeepLactate” 

[31] is yet another mobile application which measures lac-

tate levels in sweat using a wearable bio-sensor. The app 

utilizes a vast array of embedded deep learning models for 

feature extraction and prediction including MobileNet [32], 

Xception [33], and VGG [34], among others. Bio-moni-

toring devices such as wearable lateral flow assays (LFAs) 

[35] and dermal tattooing biosensors [36] still require a 

mobile device to capture and analyze colorimetric change. 

Unlike our proposed approach, colormetric analysis systems 

designed by Roda et al. [37] and Zangheri et al. [38] involve 

the use of external devices or phone attachments.

In this paper, we focus our efforts on the ability of 

machine learning models to automatically predict the sever-

ity of kidney disease simply by analyzing the color of the 

detection zone of a test strip. Towards that end, we present a 

novel machine learning model, named selective partitioned 

regression (SPR), which is used to predict the severity of 

kidney disease as healthy, intermediate, or critical, using 

data from a smartphone camera. An initial classifier is used 

to do a course-grained prediction of the sample’s creatinine 

range, which is then followed by using a regressor trained 

on samples in that specific range to predict a more precise 

creatinine concentration. The final classification is obtained 

by eGFR thresholding, as illustrated in Fig. 1b.

Materials and Methods

Our ultimate goal is creating a simple and inexpen-

sive kidney function screening system that can be used 

at home as a preliminary indicator of kidney health. 

Towards that end, we have designed a cell-phone based 

kidney health monitoring application, which we describe 

in the "The Kidney Health Monitor Application" section, 
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that automatically focuses on and scans a test strip we 

designed to react colorimetrically to the creatinine in 

the sample, and then uses machine learning models to 

predict the severity of kidney disease. In the "Test Strip 

Design" section through the "Test Conditions" section, we 

describe the design of the LFA test strip, the test fluid, 

image capture and test conditions. In the "Sample Aug-

mentation" section, we describe the sample augmentation 

strategies we considered and our choice to increase the 

size of our data set. Finally, the "Selective Partitioned 

Regression" section describes the machine learning mod-

els we have designed to translate the color of the test strip 

detection zone to the kidney health status.

The Kidney Health Monitor Application

To aid in the early detection of kidney health problems, we 

developed a kidney health monitor (KHM) application [39], 

which allows us to capture quality images of a sample test 

strip and immediately perform inference using a locally 

stored machine learning model to detect the severity of 

CKD. Our proposed solution aims at offering continuous 

monitoring as a PoCT service. Our goal is to be able to 

offer the KHM system to under-developed regions of the 

world that suffer from CKD but have no means of obtaining 

continuous testing.

Figure 2 showcases the full end-to-end pipeline used 

by our KHM application, including the architecture for 

our selective partitioned regression (SPR) model, which is 

detailed in the "Selective Partitioned Regression" section. 

Fig. 1  a An example kidney 

health monitor (KHM) applica-

tion that can be used to predict 

the severity of kidney disease 

by analyzing the image of a 

test strip. b The estimated 

glomerular filtration rate 

(eGFR) range boundaries used 

in classifying the progression 

of CKD. c An example lateral 

flow assay test strip design. d 

An example test strip from our 

initial experiments. The detec-

tion zone changes color from 

an initial cream to yellow (as in 

the example) or reddish orange 

depending on the amount of 

creatinine in the sample
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Fig. 2  The full end-to-end pipeline used by our KHM application, 

including the architecture for our selective partitioned regression 

(SPR) model. In the Localization stage, the application first identi-

fies the location of the detection zone of the test strip and extracts its 

pixels. Then, during Pre-Processing, the pixel values are transformed 

into a numeric feature vector given a chosen color space, augmenta-

tion, and feature type, based on SPR meta-parameter choices. The 

feature vector is first used to identify a bin, who’s associated trained 

regression model is then used to predict the amount of creatinine in 

the sample. Finally, taking in consideration the person’s age, sex, and 

ethnicity, the eGFR value is computed for the sample and the final 

kidney health prediction status is displayed.
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In the Localization stage, the application first identifies the 

location of the test stip detection zone and extracts its pix-

els. During Pre-Processing, the pixel values are transformed 

into a numeric feature vector given a chosen color space, 

augmentation, and feature type, based on SPR meta-param-

eter choices. The feature vector is then used to predict the 

amount of creatinine in the sample via a pre-trained SPR 

model. Finally, the eGFR value is computed taking in con-

sideration the person’s age, sex, and ethnicity. Additional 

details about the application can be found in Whelan et al. 

[39].

Test Strip Design

LFA test strips were assembled using cellulose fiber sample 

pads and glass fiber diagnostic pads. A pressure-sensitive 

adhesive layer holds all paper pads together. An opaque plas-

tic sheet covers part of the adhesive layer for user handling. 

A droplet of the test fluid is absorbed onto the sample pad 

and diffuses through the diagnostic pad. Preliminary tests 

focused on selecting appropriate dimensions for the sample 

pad (0.5 × 0.5 cm), diagnostic pad (0.3 × 1.0 cm) and pres-

sure-sensitive adhesive layer (0.5 × 6.4 cm). A 0.25 cm over-

lapping of the sample pad over the diagnostic pad proved to 

be effective for diffusion to the reaction area. The diagnostic 

pad is pre-treated with 5 μ l an alkaline solution of picric acid 

(1 part of 0.04 M picric acid, two parts of 2.0 M NaOH solu-

tion), which reacts with the creatinine in the test fluid and 

produces a colorimetric response (Jaffe reaction).

Test Fluid

Since the primary focus of this study is to evaluate the 

performance of our machine learning models, a simplified 

approach was chosen in this study to obtain a dataset of 

images with colorimetric responses at known creatinine 

concentrations S
Cr

 . Specifically, we used a synthetic cre-

atinine solution to create our dataset, rather than human or 

human-analog blood. Samples of test fluid at 65 different 

creatinine concentrations were prepared starting from 9 mg 

of creatinine powder dissolved in 15 ml of HCl solution 

(0.1 M), which yielded the highest creatinine concentration 

of 60 mg/dl, and then proceeding with serial dilutions all the 

way down to 0.1 mg/dl.

Image Capture

In this study, images were collected under controlled lighting 

conditions. The test strips were placed inside a 40 × 40 × 

40 cm lightbox equipped with LED light sources and lined 

with reflective materials to eliminate the environmental light 

variation and ensure uniform illumination. Images of the 

test strip against a black background were collected using a 

12 MP smartphone camera (Apple iPhone 8, Cupertino, CA) 

placed at a fixed distance of 8 cm from the strip. That focal 

distance was selected as the best tradeoff between autofo-

cus accuracy and image magnification. The smartphone was 

set on auto-brightness (with 0-ev exposure compensation) 

and output uncompressed images in PNG format, which 

preserved more color information than the more common 

compressed JPEG format. The resulting images are 3024 

× 4032 pixels and take up approximately 15 MB of stor-

age. The samples were manually cropped and annotated 

using BBox-Label-Tool [40] and OpenCV library functions 

[41]. The final annotated detection zone samples have a 2:1 

height-to-width aspect ratio and are each approximately 256 

× 128 pixels.

Test Conditions

Based on the MDRD equation, eGFR appears to be most 

sensitive to creatinine concentration in the range 0–4 mg/

dL. Thus, we designed our experiments to collect data in 

the ranges and steps detailed in Table 1, prioritizing sample 

collection on the low end of the distribution. We captured 

3 test strip image samples per concentration step, before 

adding the creatinine solution to the the detection zone, and 

then at intervals of 2, 12, and 22 min after adding the creati-

nine solution. That resulted in a total of 780 samples. Fig. 1 

and 2 in Section 1 of our Technical Appendix illustrate the 

change in color saturation and brightness of the samples as 

time passes.

Sample Augmentation

Due to the time and financial costs of chemical experi-

ments, our initial dataset is limited in size. Therefore, 

we performed data augmentation, which allowed us to 

increase the number of samples we could use to train our 

machine learning models. Figure 3 illustrates our pre-

processing pipeline utilized in obtaining quality samples. 

The first image shows the detection zone from a random 

sample. We begin by threshold masking the image using 

the HSV color space in order to remove the background 

and any abnormal pixel values that may have been intro-

duced during the data collection or chemical reaction 

Table 1  Distribution of samples according to bin ranges

Range (mg/dL) Steps (mg/dL) Concentra-

tions

# Samples

0.0 − 4.0 0.1 41 492

4.5 − 7.5 0.5 7 144

8.0 − 19.0 1.0 12 84

20.0 − 60.0 10.0 5 60
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phase, as these might be detrimental to our model’s pre-

dictive performance. The second image in Fig. 3 shows the 

detection zone after masking. Based on our earlier color 

change analysis depicted in Fig. 1 and 2 in the Technical 

Appendix, we noticed that the change observed in the Jaffe 

reaction belongs to a particular range of colors, namely 

yellow to orange, which we used to obtain our masking 

thresholds. Our chosen ranges were [20, 60] , [150, 255] , and 

[230, 255] for the hue, saturation, and value channel pixel 

values, respectively, in the HSV color space. Next, in order 

to avoid background pixels, we center-cropped the detec-

tion zone to a size of 128 × 64, as depicted in the third 

image in the figure. Finally, we partitioned the 128 × 64 

image into four equal-sized 64 × 32 tiles, which form the 

new samples we use in our experiments. After augmenta-

tion, our dataset size increased from 780 to 3120 samples.

The reason we chose to extract a 128 × 64 center crop of 

the detection zone as part of our processing pipeline is that 

some of our baseline models require input images to have 

a constant size and we wanted to ensure all models were 

trained and evaluated based on the same inputs, not only 

based on the same image samples. We also considered ran-

dom sampling for the third step in our pipeline, which would 

potentially allow us to create more than just 4 samples for 

each detection zone capture, but that technique would pro-

vide an advantage to some methods due to the pixel overlap 

in the samples that would undoubtedly occur. Another com-

mon augmentation technique from digital image processing 

is the application of smoothing filters, which alter pixels 

based on a non-linear function of their neighborhood pixel 

values. This technique is often used to smooth abnormal or 

extreme values that may be introduced due to artifacts or 

noise in the image. However, because we are dealing with 

interpreting very slight colorimetric changes, any form of 

color interpolation that affects the ground truth of the sample 

should be avoided.

Selective Partitioned Regression

We propose a novel machine learning model that we call the 

Selective Partitioned Regression (SPR) model. Our model 

architecture, which is illustrated in the right section of 

Fig. 2, is segmented into two phases and uses a composition 

of specialized state-of-the-art algorithms as sub-estimators 

that perform classification and regression. The first phase 

of our model is a classification task that involves selecting 

a particular localized regressor that is trained on a subset 

of partitioned samples. The second phase is a regression 

task where we use the predicted regressor to estimate the 

concentration of creatinine present in the sample. The final 

classification decision is made based on the estimated glo-

merular filtration rate (eGFR), which is computed using the 

MDRD equation [42] and defined as

where S
Cr

 is the creatinine concentration in the sample, 

measured in mg/dL. For a given patient, all metadata such 

as age, sex, and race in the formula are static, while the cre-

atinine concentration, which is the value we are predicting, 

may change over time. Using the boundary threshold values 

from Fig. 1b, we can classify an individual’s kidney disease 

severity as healthy, intermediate, or critical. This is consist-

ent to works done by Wei et al. [43], Ronco et al. [44], and 

Chawla et al. [45], among others.

The performance of our model is affected by several 

choices, including the color space that we represent our 

input images in, the type of features we extract from the 

images, the boundaries of the local regressor bins, and the 

sub-estimators we choose for the classification and regres-

sion tasks. In the remainder of this section, we describe each 

of these choices in detail.

Color Spaces

Images are traditionally represented in the red-green-blue 

(RGB) color space, which represents the amount of red, 

green, and blue that should be mixed to create the color of a 

pixel, each in the range from 0 to 255. A 64 × 32 pixel image 

is thus represented as a 64 × 32 × 3 tensor containing the red, 

green, and blue values for each of the image pixels, which is 

often reshaped into a vector by concatenating each channel 

of each row of pixels in the image. In the RGB representa-

tion, the channels hold both the chrominance and lumines-

cence information, making the extracted features susceptible 

to change given even small brightness variances. Several 

(1)
eGFR = 175 × S

−1.154
Cr

× age−0.203
× 0.742 if female

× 1.212 if African born,

Fig. 3  Pre-processing and sample augmentation pipeline. The Origi-

nal image contains all pixels of the identified detection zone of the 

test strip. The Masked image shows the image after removing pix-

els whose color is outside our expected ranges. The Crop Selection 

image shows a variety of cropping strategies we have used to ensure 

quality inputs for our machine learning pipeline. Ultimately, we chose 

to use a 128 × 64 center-crop strategy, exemplified by the green rec-

tangle. The final image, labeled 4x Tile, shows how the chosen 128 

× 64 center crop image is further sub-divided into 4 equal size tiles, 

which allows us to create 4 samples from each executed chemical 

experiment.
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color spaces, including LAB, HSV, and YC
r
C

b
 , treat lumi-

nescence as a separate channel, which we hypothesize can 

improve our model’s predictive ability when representing 

pixels in these color spaces vs. RGB.

The LAB color space was devised by Richard S. Hunter 

and formalized in the Photoelectric Color Difference Meter 

[46] article in the Journal of Optical Society of America 

in 1958. It is an almost perceptually uniform color space 

aimed at mimicking the human vision system. The L com-

ponent stands for lightness and ranges from [0, 1], or from 

the absence of light (black) to complete illumination (white). 

The a and b components, often abbreviated as a∗ and b∗ , 

range from [−127, 127] and represent opposing colors, e.g., 

(green → red) and (blue → yellow) , respectively. The a
∗ 

and b∗ axes are perpendicular to each other on the color 

wheel and there is a 180
◦ difference between their respec-

tive positive and negative ends. Sometimes the a∗ and b∗ 

opposing colors are represented as (green → magenta) or 

(cyan → yellow) , depending on how the axes are aligned 

with regards to their initial position.

The Hue-Saturation-Value (HSV) color space, also known 

as the HSB (hue, saturation, brightness), models how colors 

appear under light. The hue channel ranges from [0, 360] 

representing the angle from which the chroma is selected. 

Saturation and value both range from [0, 1], where 0 denotes 

complete saturation and the absence of illumination (black) 

for the value channel. The value 1 denotes maximum 

chroma, which maximizes the perception of the pixel hue.

Lastly, the Y in Y C
r
C

b
 stands for luma or luminance/illu-

mination, and C
r
 and C

b
 are complements of Y with red and 

blue, i.e., (red - Y) and (blue - Y). Y C
r
C

b
 is derived from 

RGB but was devised to be an approximation of a perceptu-

ally uniform color space. The advantage of using Y C
r
C

b
 

over the other color spaces is that it requires far less stor-

age to encode the same information as RGB, which makes 

it a perfect candidate for use in color processing pipelines 

used by digital systems that require high bandwidth and 

throughput.

Feature Extraction

We focused primarily on two methods for feature extraction, 

channel-wise histograms and raw pixel values. First, we can 

construct a histogram representation of an image by binning 

the pixel values from a selected range across the three pos-

sible channels and concatenating them together. We refer to 

this feature extraction method as channel-wise histogram of 

colors (HOC). The other method of extracting features is 

simply using the normalized channel-wise pixel values of 

the image remapped to be in the same range [0, 255] across 

all color spaces, which we refer to as the pixel values feature 

extraction method.

Most image processing libraries perform pixel normaliza-

tion and remapping implicitly but they are not always con-

sistent. For example, in the case of the LAB color space, 

some libraries will express the a∗ and b∗ in the range of 

[−127, 127] , while others remap the values to be in the range 

[0, 255] or [−1, 1] . The general formula used for remapping 

pixel values from S ↦ T  is given by

where S is the input pixel range, T is the output pixel range, 

T
k
 is the transformed pixel value in the output range, and S

i
 

is the pixel value in the input range.

Histograms A histogram of colors is the frequency of 

occurrence of pixel values in a given dataset or image. It 

may also be interpreted as an approximation to a probabil-

ity distribution function if we normalize the histogram by 

dividing by the total number of non-masked pixels in an 

image. To demonstrate the computation for the histogram of 

colors, we use the masking thresholds from the HSV color 

space we noted in the "Sample Augmentation" section to 

represent the hue (� ), saturation (� ), and value (� ) channels, 

for the sampling ranges (R) are defined as R
�
= [20, 60] , 

R� = [150, 255] , and R
�
= [230, 255] . A channel-wise 

histogram with K bins for each channel will record the 

number of pixels (excluding the masked pixels) whose � , 

� , and � values fall within that range giving us a total of 

K�,�,� = [40, 105, 25] maximum number of bins per channel. 

Figure 4 shows a comparison of the pixel distribution from 

the LAB (top) and HSV (bottom) color spaces represented 

as binned channel-wise histogram of colors (HOC) in our 

method, based on our experiment data.

Pixel Values and Convolutions The pixel values of an 

image can be considered features on their own. However, 

using the normalized channel-wise pixel values we can also 

perform convolutions on the image to extract rich feature 

maps in our deep learning models. Channel-wise convolu-

tion operations are generically defined as

where h(s, t) is the kernel for the convolution filter and I(x, y) 

is a single channel image. Each output pixel is the weighted 

sum of the input pixels with the kernel function.

A benefit of using histograms over pixel values is that 

the feature vector length is significantly smaller, which can 

reduce processing time and increase throughput, thus mak-

ing our system more scalable. For example, a single tiled 

64 × 32 sample in our data results in a 765-value feature 

vector using the HOC representation, but requires 6, 144 

features for its pixel-based representation.

(2)T
k
=

(

S
i
− S

min

)

⋅

(

T
max

− T
min

)

(

S
max

− S
min

) + T
min

,

(3)I(x, y) =

s2
∑

s=s1

(

t2
∑

t=t1

h(s, t) × I(x − s, y − t)

)

,
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Partitioning

The range of creatinine values that our regression model 

must predict is quite large and the values are not linearly 

spread out across the range. Moreover, since the regression 

predictions are used to classify the severity of kidney dis-

ease using Eq. 1, it is important that predictions around the 

decision boundaries between critical and intermediate and 

intermediate and healthy be as accurate as possible. How-

ever, the eGRF formula is also influenced by other factors, 

such as sex, age, and race. To showcase this, Fig. 5 shows 

eGFR values for a large number of tests in which the cre-

atinine concentration was uniformly randomly sampled and 

the “people” the concentration belonged to were randomly 

selected according to the 2019 US census population statis-

tics [47]. To simplify viewing, we only show the concentra-

tion and age values on the heatmap graph, and the eGFR 

value is denoted by the color of the dot. The sex and race of 

the person are however accounted for in the eGRF calcula-

tion. Note that a creatinine concentration of 5 mg/dL leads to 

a critical diagnosis for most people above 50 but only inter-

mediate for younger people. Also note the snow-like effect 

in the image denoted by the difference in outcome that age, 

sex, and race play in the eGRF computation. Several bands 

in the graph have mixed red and orange dots or green and 

yellow dots, denoting different people with very similar ages 

for which the kidney disease severity outcome is different.

Based on these analyses, we hypothesize that partitioning 

the samples into multiple bins and training separate regres-

sion models for each bin can lead to improved eGFR clas-

sification effectiveness. However, we do not know which bin 

a new sample belongs to. Therefore, as shown in the archi-

tecture design illustrated in Fig. 2, our SPR model consists 

of two stages, first a classification phase for predicting the 

bin the sample belongs to, followed by the regression stage 

where we use the selective regressor trained for that bin to 

predict the creatinine concentration S
Cr

 . The predicted S
Cr

 

is then combined with the sample’s metadata to compute the 

eGFR value according to Eq. 1 and the severity of the kidney 

disease is then predicted based on the pre-defined boundary 

thresholds as healthy, intermediate, or critical.

The questions that remain to be answered with respect 

to partitioning are how many partitions we should have and 

what should be the ranges of those partitions. Our model 

is parametric with respect to the number of partitions/

Fig. 4  Comparison of the pixel distribution from the LAB (top) and 

HSV  (bottom) color spaces represented as binned channel-wise his-

togram of colors (HOC). The components of each color space are 

shown in each figure along with the distribution of values in our col-

lected samples for each component. While the top band in each figure 

shows the full range of values across the entire color spectrum, our 

test strips contain a limited range of colors and the distributions are 

focused on the subset of values between the s and t marks on each 

band.

Fig. 5  Predicted eGFR values distribution for random samples in 

which the creatinine concentration was uniformly randomly sampled 

and “people” were randomly selected according to the 2019 US cen-

sus population statistics. The eGFR value is denoted by the color of 

the dot. The snow-like effect of mixed dots of different nearby colors 

shows that the sample contains different people with very similar ages 

for which the kidney disease severity outcome is different.
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regressors � and the granularity of the concentration ranges 

� and we discuss several choices for these parameters in the 

"Results" section.

Sub-Estimators

Our SPR model uses existing state-of-the-art predictors that 

were also found to be effective in similar colorimetric prob-

lems described in the "Discussion" section, namely Histo-

gram Gradient Boosting Decision Tree (HBT) [48], Extreme 

Gradient Boosting Tree (XGB) [49], Random forest (RF) 

[50], K-Nearest Neighbors (KNN) [51], Decision Tree (DT) 

[52] and support vector machines (SVM) [53]. We tested 

the classification and regression versions of each of these 

models for the two phases of our algorithm and report results 

in the "Results" section.

The Deep Neural Network Model

In addition to our SPR model, we also designed a deep neu-

ral network (DNN) model that is based on the VGG model 

[34] as the reference architecture. In order to reduce over-

fitting, we updated the model with regularization techniques 

absent in the original VGG architecture, such as learning 

rate decay [54], early stopping [55], batch normalization 

[56], and drop-out [57]. The model uses a 5-layer convolu-

tional neural network (CNN) architecture with incrementally 

increasing filter sizes, reduced by a factor of 2 compared 

with VGG, i.e., 32, 64, 128, 256, and 256, using LeakyReLU 

activations with � = 1e − 3 instead of ReLU. Additionally, 

our model performs batch normalization before max pool-

ing. The convolution network is then joined with two fully 

connected layers of size 4096 where drop-out regulariza-

tion is applied with a 25% probability before finally reach-

ing the linear activation function that returns the regression 

result predicting the creatinine concentration S
Cr

 . We used 

the Adamax [58] learning rate optimizer to train this model 

with an initial learning rate of � = 1e − 4 , a variation of the 

Adam algorithm that is more suitable for time-dependent 

processes such as ours. The loss function used to calculate 

parameter updates was mean squared logarithmic error and 

we trained the network for 500 epochs in batches of 128 

with a learning rate decay equivalent to � ⋅ e−5e−3 and early 

stopping with a patience of 128 epochs.

Results

In this section, we first describe the design of our experi-

ments, including baseline algorithms, performance meas-

ures, validation methodology, and the execution environment 

we used for executing our experiments. Then, we detail the 

results of our experiments, along several directions. First, in 

the "Optimal Time Sampling" section, we identify the opti-

mal time point for modeling kidney disease severity predic-

tion and identify the best parameters for our novel 2-phase 

Selective Partitioned Regression model. Then, in the "SPR 

Parameter Choices" section, we analyze the effect that dif-

ferent parameter choices in our processing pipeline have on 

the performance of SPR and the top-performing baselines, 

including the choice of color space and the type of features 

being extracted. We then provide evidence in the "Baseline 

Comparison" section that our SPR model using multiple 

regressors outperforms state-of-the-art baselines, providing 

both high classification accuracy and low regression error. 

Finally, in the "Ablation Studies" section, we analyze the 

robustness of SPR with regards to several of its parameters, 

including the number of regressors � and the granularity of 

the concentration ranges �.

Experimental Design

Baseline Methods

Our state-of-the-art baselines were designed based on the 

methods proposed by Wei et al. [43], Ogunleye and Wang 

[59] and Thakur et al. [29]. They use pixel-wise feature 

extraction combined with the same regression algorithms 

we also use for our SPR sub-estimators, namely Histogram 

Gradient Boosting Decision Tree (HBT), Extreme Gradient 

Boosting Tree (XGB), Random Forest (RF), K-Nearest 

Neighbors (KNN), Decision Tree (DT) and Support Vec-

tor Machines (SVM). Figures and tables will refer to these 

algorithms by their abbreviated notation. The final classi-

fication decision is made in the same way as our method, 

by applying Eq. 1 and identifying the class the eGFR value 

belongs to according to the boundary thresholds. Unlike 

their original papers that used a given color space (such as 

LAB) during feature extraction, we tested each method with 

all the color spaces we described in the "Color Spaces" sec-

tion and report results for each color space and compare 

our method against the best performing baselines across all 

color spaces.

Sample Assignments

In order to evaluate our model effectiveness, we assign 

each test strip sample an age, sex, and race consistent with 

Eq. (1). In this paper, we use the term sample referring to an 

image with a unique concentration, time point after applying 

the creatinine solution, and the accompanying metadata to 

be representative of a person. We used data from the 2019 

United States Census Bureau [47] to define the population 

distribution that we sampled from. Table 2 summarizes the 

population percentages segmented by age, sex, and race that 

we used in our experiments.
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Performance Metrics

Due to the time and monetary costs of chemical experiments, 

our dataset is limited in size, even after applying our tiling 

procedure. Cross-validation of our model performance there-

fore becomes vastly more significant in determining how well 

our models generalize to unseen data. We performed 5-fold 

cross validation on all models using stratified sampling based 

on the patient’s CKD status. Stratified sampling ensures that 

the predicted classes, healthy, intermediate, and critical, have 

a proportional distribution in the training, validation, and test 

sets as observed across the entire dataset. In addition, since 

each sample is associated with a randomly selected “person”, 

we were able to repeat the experiment multiple times by re-

sampling the population distribution and performing 5-fold 

cross-validation and test set inference during each experiment. 

We therefore report the mean performance across N = 10 

experiments with different populations drawn from the same 

distribution.

Model performance is based on F1-score for classification 

results and RMSE for regression results as the evaluation crite-

ria. RMSE is computed as the square root of the sum of square 

deviations of the predicted values from the true values being 

predicted, i.e.,

In our case, RMSE captures the deviation of the predicted 

Ŝ
Cr

 creatinine concentration from the ground truth creatinine 

S
Cr

 concentration over the n test samples. F1-score repre-

sents the harmonic mean between precision and recall, i.e.,

RMSE =

√

∑n

i=1

(

S
Cr

i
− Ŝ

Cr
i

)2

n
.

F1 = 2 ×
precision × recall

precision + recall
=

TP

TP +
1

2
(FP + FN)

,

where TP, FP, and FN are the number of true-positive 

(correctly identified, i.e., predicted class is the same as the 

ground truth class), false-positive (identified incorrectly), 

and false-negative (not identified) samples, respectively.

While classification accuracy is the ultimate goal in this 

work, regression performance is also an important indica-

tor that can tell how often a model may deviate from the 

correct class, especially for S
Cr

 values that are close to the 

class boundaries for the given person. Therefore, as a way 

to evaluate methods based on both their classification and 

regression performance, we combined these metrics using 

a decision function that is a parametric weighted sum of the 

F1-score and RMSE values, computed as

where � ∈ [0, 1] . While we separately analyze both regres-

sion and classification performance, we use our decision 

function with � = 0.75 as the main effectiveness measure 

when ranking all competing methods.

Execution Environment

All experiments were executed on a Linux workstation 

machine (Ubuntu 20.04 LST) with an an  Intel®  Core™ 

i9-10900X 10 core CPU running at 3.70 Ghz, two Nvidia 

RTX 3090 GPUs (only one used for experiments) and 128 

GB of memory. We designed our SPR model using the 

scikit-learn (ver. 1.2) custom estimator interface and our 

DNN model using the Keras (ver. 2.9) functional model 

interface.

Optimal Time Sampling

The reaction of the creatinine in each sample with the picric 

acid solution in the test strip takes some unknown amount 

of time. As a result, when we executed the chemical experi-

ments, we took pictures of each test strip at 2, 12, and 22 min 

after applying the creatinine solution. In a set of experiments 

we detail in Section 2 of our Technical Appendix, we com-

pared the performance of all baseline models when trained 

on data from each time point and found that the 22 min time 

point provided the best classification and regression perfor-

mance. In general, the worst results were achieved at 2 min, 

implying that 2 min is not enough time for the chemical 

reaction to give accurate results. Further experiments were 

then executed using only data from this time point. Moreo-

ver, we chose to eliminate the Support Vector Machines and 

Decision Tree algorithms from contention in further experi-

ments as their performance was inferior compared to the rest 

of the available methods.

(4)fdecision(�, F1, RMSE) = � ⋅ F1 +
1 − �

RMSE
,

Table 2  Age, sex, race sample 

distribution
Percent (%)

Age (years)

 Under 5 6.1

 5 to 24 25.6

 25 to 44 26.5

 45 to 64 25.4

 65 to 84 14.6

 Over 85 1.8

Sex

  Male 49.0

 Female 51.0

Race

 African 13.4

 Other 86.6
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SPR Parameter Choices

Our method is parametric with regards to the choice of color 

space, feature type, sub-estimators for regression and clas-

sification, the number of regressors, and the bin ranges for 

each local regressor. We tuned each of these parameters via 

cross-validation and chose the best performing combination 

based on our decision function denoted in Eq. 4. Figure 6 

shows a subset of our experiment results while searching for 

the best parameters. In the figure, sub-estimator and color 

space choices are listed in the top key and denoted by the 

bullet point shape and color, respectively, and the number 

of regressors � is denoted by the number at the end of the 

label in the Top 10 legend. Models had their bin ranges � 

tuned via cross-validation. Bullet point size is relative to 

the value of our decision function. Values in the upper-right 

corner are better.

Overall, the model using 4 regressors, histogram of 

colors-based features extracted from the LAB color space, 

and the Histogram Gradient Boosting Decision Tree (HBT) 

sub-estimator achieved the highest decision function score. 

The model’s CKD classification F1-score was 0.9422 and 

the S
Cr

 regression RMSE was 2.19. Going forward, we 

use this version of our model in future comparisons with 

baselines.

Figure 6 shows results for matched sub-estimators, where 

the same sub-estimator algorithm was used for both phase-1 

and phase-2 in our method. We also performed experi-

ments with unmatched sub-estimators, i.e., using a different 

algorithm for the bin choice classification than the one used 

for the S
Cr

 value regression, but did not find any significant 

improvement in the results.

The quality of our model is highly dependent on the effec-

tiveness of the phase-1 classification model that chooses 

which local regressor should be used for the test sample 

during inference. We measured the performance of this clas-

sifier and report F1-score values in Table 3 for different sub-

estimators and several different combinations of number of 

regressors and color spaces. Results show that our chosen 

best performing model also has the top bin classification 

performance across all tests.

Baseline Comparison

Finally, we compared our chosen SPR configuration against 

state-of-the-art baselines noted in the "Baseline Methods" 

section. Each model had its respective meta-parameters 

tuned via cross-validation, e.g., the number of neighbors 

for k-nearest neighbors or the number of trees and maximum 

depth of each tree in the RF algorithms. For each baseline, 

we chose the best performing color space and feature type 

and we measured both model performance (via our deci-

sion function) and efficiency (via training and inference run-

times). Figure 7 shows the comparison results, including the 

F1-score, RMSE, their respective errors across the 10 sepa-

rate experiments that were executed (as error bars), and deci-

sion scores for each method. Note that, to increase visibility 

of the method comparison, only the top portion of the bars 

Fig. 6  Evaluation of SPR 

model parameters using various 

sub-estimators (denoted by the 

bullet point shape), color spaces 

(denoted by color), and number 

of regressors � (denoted by the 

number at the end of the label). 

Each model had its respective 

bin ranges � tuned via cross-

validation. The size of the bullet 

point is relative to the value of 

our decision function in Eq. 4. 

Values in the upper-right corner 

are better.

Table 3  Bin classification 

performance

Bold value represents the highest performing subestimator, i.e., the model using 4 regression bins, LAB 

color space features, and the Histogram of Boosted Trees regressor

XGB HBT RF DT KNN SVM

Default (RGB) 0.9135 0.9240 0.9255 0.8755 0.8923 0.9062

3 Bin (HSV) 0.9327 0.9375 0.9303 0.9130 0.9193 0.9317

4 Bin (LAB) 0.9457 0.9505 0.9466 0.9034 0.9346 0.9375
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are shown and errors for most methods are actually quite 

small. The “Method” panel shows the best choice of color 

space and feature type for each method, while the right two 

panels report the training and inference times in seconds.

The results show a clear advantage of our SPR model. 

While achieving very similar RMSE (2.19 vs. 2.18 and 

2.23) as the next two alternatives, our SPR model is able 

to provide significantly better overall CKD classification 

performance, achieving an F1-score of 0.9422. The optimal 

performance does come at the cost of inference efficiency as 

SPR incurs some overhead when using multiple regressors, 

however it is still able to significantly outperform the second 

most effective model, DNN, in terms of efficiency.

Ablation Studies

In this section, we report the results of several ablation stud-

ies investigating the robustness of our method given different 

input meta-parameters. Due to lack of space, we summarize 

these results here and include an extended explanation and 

figures in our Technical Appendix.

Color Space Comparisons

As noted in the "Color Spaces" section, the chosen color 

space may play a big role in the performance of our model, 

as some color spaces separate luminescence from color 

representation while others do not. To see how the choice 

of color space in feature extraction affects model perfor-

mance, we tested our model and all baselines with HOC-

based features from each of the four color spaces described 

in the "Color Spaces" section, i.e, RGB, YC
r
C

b
 , HSV, and 

LAB. Overall results indicate that the LAB color space is 

beneficial for the classification task but the HSV color space 

is best for the regression task. It is interesting to note, how-

ever, that the color space performance of our SPR model 

was consistent between the classification and regression 

tasks (RGB is worst and LAB is best), while other methods 

saw almost complete inversions between the two tasks (e.g., 

RGB achieves the highest/best F1-score for DNN and also 

the highest/worst RMSE score).

Feature Type Comparison

Another choice in our method is pixel- vs. HOC-based fea-

ture extraction. We analyzed the performance of the best 

performing baselines and our SPR model using both types 

of features and results clearly indicate that HOC-based fea-

tures are superior for the majority of the models in both the 

classification and the regression tasks.

Partition Parameterization

Our model performance also depends on the number of 

local regressors � and the bin ranges � selected for each 

local regressor. We tested both 3-bin and 4-bin configura-

tions of our model with all color spaces and HOC-based 

features under a wide range of � parameter choices. Overall, 

we trained 1, 250 models each for the 3-bin and 4-bin evalu-

ations. Results show that, while the 4-bin LAB-based con-

figuration achieved the best CKD classification performance, 

the 3-bin HSV-based configuration achieved the best regres-

sion performance, leading to better overall performance 

according to our decision function. Overall, however, the 

differences between the 3-bin and 4-bin configurations were 

small (0.9316 vs. 0.9422 F1-score and 1.93 vs. 2.19 RMSE), 

indicating that our model is resilient to the number of local 

regressors, as long as enough data exists to find appropri-

ate bin boundaries and accurately train local regressors for 

each bin.

Discussion

In this study, we introduced and evaluated a Selective Par-

titioned Regression model for kidney health monitoring, 

which uses images that a patient could capture at home using 

an inexpensive test strip, a single-droplet blood sample, and 

Fig. 7  Comparison of the SPR model, using our decision function in Eq. 4, against the best performing baselines across all color spaces and fea-

ture types. Higher decision and F1 scores and lower RMSE scores are better. Lower training and inference times are better.
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a smartphone. Our results showed that our SPR model is 

both effective and efficient in predicting the severity of kid-

ney disease.

A crucial component of our testing platform is how the 

color map obtained from the reaction pad on the test strip is 

used to predict eGFR. To our knowledge, only few studies 

have attempted to associate color variations with a predic-

tion outcome. One closely related system that predicts con-

tinuous values for color change observed in reaction between 

urine and picric acid solution is the homemade-spectrometer 

by Debus et al. [60]. Despite being a low-cost system, that 

setup requires technical expertise and is time consuming. In 

another study, Paulraj et al. showed that a 5 hidden layer arti-

ficial neural network could predict the ripeness of bananas 

with an accuracy of 96% [61]. Similarly, Loti et al. [62] 

used a vast array of deep learning models, such as VGG 

[34], ResNet [63], InceptionNet [64], and DenseNet [65], for 

feature extraction and classical machine learning algorithms, 

such as Support Vector Machines [53] (SVM) and Random 

Forest [50] (RF), for classifying diseases and pests in chili 

leaves. Their composite modeling structure is able to achieve 

a 92% accuracy using InceptionNet for feature extraction and 

SVM for classification.

Some researchers found that classical machine learn-

ing models sometimes outperform deep learning ones in 

vision-based biomedical problems, while others found the 

opposite. Daghrir et al. [66] compared K-Nearest Neighbors 

(KNN), SVM, and Convolution Neural Networks (CNN) 

when classifying whether detected melanoma skin cancer 

was malignant or benign and obtained accuracy values of 

57.3%, 71.8%, and 85.5%, respectively. On the other hand, 

both Wei et al. [43] and Ogunleye and Wang [59] found 

XGBoost [49] to have superior predictive performance in 

CKD severity classification over other algorithms such as 

Logistic Regression (LR), SVM, and even Artificial Neu-

ral Networks (ANN). While these works also studied CKD 

severity classification, they used laboratory data as predic-

tive features, including urine albumin, pH, lactade, sodium, 

and potassium levels, among other clinical measurements. 

Similar to our proposed method, Thakur et al. [29] used 

computer vision-based features extracted from a urine-based 

test strip and compared LR, SVM, and RF models, and ulti-

mately found the RF model outperformed the alternatives. 

We designed our state-of-the-art baselines based on the 

methods proposed by Wei et al. [43], Ogunleye and Wang 

[59] and Thakur et al. [29].

Our SPR model achieved a F1-score of 0.9422, which 

is substantially better than the best state-of-the-art 

approached we tested, and even outperformed a convolu-

tional neural network-based model we designed. Moreo-

ver, we showed that SPR outperforms state-of-the-art 

baselines even when those baselines use the same color 

space as SPR rather than the original color space chosen 

by the authors. SPR uses a two-phase inference process, 

first selecting a local regressor best suited to predict the 

sample’s creatinine concentration, and then applying that 

regressor to make the prediction. The final kidney disease 

severity decision is made by thresholding on the estimated 

glomerular filtration rate (eGFR) value computed from 

the predicted concentration for the given sample. SPR is 

extremely versatile, allowing the use of any classifier or 

regressor as sub-estimators. Future novel classification and 

regression algorithms, as well as additional data collection 

will allow improving the effectiveness of the sub-estima-

tors even further, which will improve SPR’s overall accu-

racy. In a series of ablation studies, we also showed that 

SPR is robust to meta-parameter choices, performing well 

under a variety of parameter choices, as long as enough 

data exist to properly train the chosen local regressors.

This study has a number of limitations. Overall, the image 

dataset was relatively small, even after sample augmentation, 

which may affect the performance of our machine learning 

models. Images were captured in a lightbox under controlled 

illumination and focus conditions, which are not representa-

tive of real images that a patient may capture at home using 

their smartphone. Since the machine learning models were 

trained with a relatively small dataset, these choices were 

justified by the need to minimize the confounding factors 

(such as focus, light brightness and hue). Notably, in our 

experiments we used synthetic creatinine solutions instead 

of blood. This choice removed the potential issue of hemo-

globin interfering with the coloration of the detection pad, 

thus making it possible to use a simple LFA strip design. 

Moreover, using synthetic creatinine solutions allowed for 

full control over the creatinine concentration levels in the 

test samples.

The findings of this study are encouraging, and war-

rant further investigation. In the future, sample size can 

be increased by the implementation of a semi-automatic 

pipeline for data collection, currently under development 

in our laboratory. In addition, further refinement of the test 

strip, to include a stage for the separation of blood cells 

from serum, will enable tests with actual blood. We also 

plan to address potential inefficiencies in our model due to 

illumination inconsistencies in real-world image captures 

by integrating color constancy pre-processing in our image 

capturing pipeline.
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