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Abstract

The number of people diagnosed with advanced stages of kidney disease have been rising every year. Early detection and
constant monitoring are the only minimally invasive means to prevent severe kidney damage or kidney failure. We propose
a cost-effective machine learning-based testing system that can facilitate inexpensive yet accurate kidney health checks. Our
proposed framework, which was developed into an iPhone application, uses a camera-based bio-sensor and state-of-the-art
classical machine learning and deep learning techniques for predicting the concentration of creatinine in the sample, based
on colorimetric change in the test strip. The predicted creatinine concentration is then used to classify the severity of the
kidney disease as healthy, intermediate, or critical. In this article, we focus on the effectiveness of machine learning models
to translate the colorimetric reaction to kidney health prediction. In this setting, we thoroughly evaluated the effectiveness of
our novel proposed models against state-of-the-art classical machine learning and deep learning approaches. Additionally, we
executed a number of ablation studies to measure the performance of our model when trained using different meta-parameter
choices. Our evaluation results indicate that our selective partitioned regression (SPR) model, using histogram of colors-based
features and a histogram gradient boosted trees underlying estimator, exhibits much better overall prediction performance
compared to state-of-the-art methods. Our initial study indicates that SPR can be an effective tool for detecting the severity
of kidney disease using inexpensive lateral flow assay test strips and a smart phone-based application. Additional work is
needed to verify the performance of the model in various settings.

Keywords Point-of-care testing - Estimated glomerular filtration rate - Serum creatinine concentration - Color space -
Histogram of colors

Introduction

Chronic kidney disease (CKD) is a major cause of death
globally [1]. In the US, it is estimated that 37 million people
have CKD [2]. CKD progresses through several stages, each
associated with a more severe loss of kidney function, caus-
ing the accumulation of toxic waste in the bloodstream. With
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early diagnosis and treatment, it is possible to slow or stop
the progression of kidney disease [3]. However, because the
early stages of CKD are generally asymptomatic, over 90%
of CKD patients are not aware of their disease [4]. The lack
of symptoms in the early stages of CKD leads to unaccept-
ably high rates of late diagnosis, which is associated with
worse prognosis [5]. Preventative strategies to improve CKD
prognosis require early detection, especially screening for
high-risk subjects, and frequent monitoring of patients with
kidney function impairment [3, 6]. The current diagnostic
guidelines for CKD require the persistence of abnormal
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markers of kidney dysfunction for at least 3 months [7].
These markers are low levels of the creatinine-based esti-
mated glomerular filtration rate (¢eGFR, which should be
lower than 60 mL/min/1.73 m?) and elevated albumin-to-
creatinine ratio (ACR, which should be at least 30 mg/g).
Recently, cystatin C has been proposed as an additional
marker to calculate eGFR [8—10]. The high cost of clinical
lab testing for those markers affects the frequency of testing
among the lower income populations, making early detec-
tion in high-risk individuals less likely. In addition, the lack
of rapid, inexpensive tests for CKD screening and monitor-
ing hinders accurate assessment of CKD severity, progres-
sion and response to treatment, and for prompt adjustments
of medication dose.

Creatinine is a waste product of muscle metabolism. Kid-
neys are tasked with filtering almost all the creatinine from
the blood and releasing it into urine. When kidney function
is impaired, creatinine levels in blood serum are abnormally
high. Elevated creatinine levels in blood serum, or serum
creatinine, is an established indicator of poor kidney per-
formance [11]. While there is some disagreement about the
most suitable physiological markers and most accurate ana-
lytical techniques [12-14], in routine clinical tests serum
creatinine concentration is generally measured via colori-
metric detection, and the result is plugged into an empiri-
cal equation to calculate the eGFR. The color change is
produced by the chemical reaction of creatinine with either
picric acid (Jaffe reaction) or an appropriate enzyme. The
modification of diet in renal disease (MDRD) and chronic
kidney disease epidemiology collaboration (CKD-EPI) are
the two empirical equations commonly used clinically [15].
Reference ranges of eGFR values allow to diagnose CKD
and classify disease severity.

Point-of-care testing (PoCT), usually performed by
the patient at home, has been successful in the screening
and management of acute and chronic conditions, such as
COVID-19, hypertension and diabetes [16, 17]. The adop-
tion of robust and cost-effective solutions for CKD monitor-
ing, combining point-of-care testing devices and the recent
advances in digital health, could dramatically improve clini-
cal outcomes. However, the few options available are either
too expensive (i-STAT handheld device by Abbott) or inac-
curate (StatSensor Creatinine device by Nova Biomedical)
[18, 19]. To date, no point-of-care testing device for CKD
has been approved for home use [17].

The overarching goal of our research is to develop a novel
platform for accurate and affordable point-of-care testing
of serum creatinine. We propose that such platform can be
achieved by combining an inexpensive test strip (such as lat-
eral flow assay, or LFA), a smartphone camera, and machine
learning models. A single blood droplet, collected via finger-
prick sampling, is exposed to an appropriate reagent on the
LFA device to produce a colorimetric response. An image

of the reaction pad on the test strip, captured by the patient’s
smartphone, is analyzed by a machine learning model to
estimate GFR based on the color change.

Several approaches have been proposed for low-cost
point-of-care testing, including for CKD [20, 21]. The use of
smartphone cameras for measuring colorimetric responses
is also not new [22-26], and neither is the use of machine
learning techniques for image processing, from simple tasks
such as object detection [27] to advanced algorithms used
for traffic analytics [28]. However, only a handful of studies
have combined low-cost testing devices with Al to increase
accuracy. Thakur et al. [29] designed a PoCT system for
CKD screening by measuring urine albuminuria and per-
formed classification on 10 discrete concentrations. They
achieved an accuracy of 92% using the RF algorithm on
samples taken in constant illumination. Solmaz et al. [30]
developed a smartphone application called “ChemTrainer”
that utilizes paper-based chemical assays for predicting
hydrogen concentration using SVM and RF. “DeepLactate”
[31] is yet another mobile application which measures lac-
tate levels in sweat using a wearable bio-sensor. The app
utilizes a vast array of embedded deep learning models for
feature extraction and prediction including MobileNet [32],
Xception [33], and VGG [34], among others. Bio-moni-
toring devices such as wearable lateral flow assays (LFAs)
[35] and dermal tattooing biosensors [36] still require a
mobile device to capture and analyze colorimetric change.
Unlike our proposed approach, colormetric analysis systems
designed by Roda et al. [37] and Zangheri et al. [38] involve
the use of external devices or phone attachments.

In this paper, we focus our efforts on the ability of
machine learning models to automatically predict the sever-
ity of kidney disease simply by analyzing the color of the
detection zone of a test strip. Towards that end, we present a
novel machine learning model, named selective partitioned
regression (SPR), which is used to predict the severity of
kidney disease as healthy, intermediate, or critical, using
data from a smartphone camera. An initial classifier is used
to do a course-grained prediction of the sample’s creatinine
range, which is then followed by using a regressor trained
on samples in that specific range to predict a more precise
creatinine concentration. The final classification is obtained
by eGFR thresholding, as illustrated in Fig. 1b.

Materials and Methods

Our ultimate goal is creating a simple and inexpen-
sive kidney function screening system that can be used
at home as a preliminary indicator of kidney health.
Towards that end, we have designed a cell-phone based
kidney health monitoring application, which we describe
in the "The Kidney Health Monitor Application" section,
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Fig. 1 a An example kidney
health monitor (KHM) applica-
tion that can be used to predict
the severity of kidney disease
by analyzing the image of a
test strip. b The estimated
glomerular filtration rate
(eGFR) range boundaries used
in classifying the progression
of CKD. ¢ An example lateral
flow assay test strip design. d
An example test strip from our
initial experiments. The detec-
tion zone changes color from
an initial cream to yellow (as in
the example) or reddish orange
depending on the amount of
creatinine in the sample

(a)

that automatically focuses on and scans a test strip we
designed to react colorimetrically to the creatinine in
the sample, and then uses machine learning models to
predict the severity of kidney disease. In the "Test Strip
Design" section through the "Test Conditions" section, we
describe the design of the LFA test strip, the test fluid,
image capture and test conditions. In the "Sample Aug-
mentation" section, we describe the sample augmentation
strategies we considered and our choice to increase the
size of our data set. Finally, the "Selective Partitioned
Regression" section describes the machine learning mod-
els we have designed to translate the color of the test strip
detection zone to the kidney health status.
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The Kidney Health Monitor Application

To aid in the early detection of kidney health problems, we
developed a kidney health monitor (KHM) application [39],
which allows us to capture quality images of a sample test
strip and immediately perform inference using a locally
stored machine learning model to detect the severity of
CKD. Our proposed solution aims at offering continuous
monitoring as a PoCT service. Our goal is to be able to
offer the KHM system to under-developed regions of the
world that suffer from CKD but have no means of obtaining
continuous testing.

Figure 2 showcases the full end-to-end pipeline used
by our KHM application, including the architecture for
our selective partitioned regression (SPR) model, which is
detailed in the "Selective Partitioned Regression" section.
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Fig.2 The full end-to-end pipeline used by our KHM application,
including the architecture for our selective partitioned regression
(SPR) model. In the Localization stage, the application first identi-
fies the location of the detection zone of the test strip and extracts its
pixels. Then, during Pre-Processing, the pixel values are transformed
into a numeric feature vector given a chosen color space, augmenta-
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tion, and feature type, based on SPR meta-parameter choices. The
feature vector is first used to identify a bin, who’s associated trained
regression model is then used to predict the amount of creatinine in
the sample. Finally, taking in consideration the person’s age, sex, and
ethnicity, the eGFR value is computed for the sample and the final
kidney health prediction status is displayed.
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In the Localization stage, the application first identifies the
location of the test stip detection zone and extracts its pix-
els. During Pre-Processing, the pixel values are transformed
into a numeric feature vector given a chosen color space,
augmentation, and feature type, based on SPR meta-param-
eter choices. The feature vector is then used to predict the
amount of creatinine in the sample via a pre-trained SPR
model. Finally, the eGFR value is computed taking in con-
sideration the person’s age, sex, and ethnicity. Additional
details about the application can be found in Whelan et al.
[39].

Test Strip Design

LFA test strips were assembled using cellulose fiber sample
pads and glass fiber diagnostic pads. A pressure-sensitive
adhesive layer holds all paper pads together. An opaque plas-
tic sheet covers part of the adhesive layer for user handling.
A droplet of the test fluid is absorbed onto the sample pad
and diffuses through the diagnostic pad. Preliminary tests
focused on selecting appropriate dimensions for the sample
pad (0.5 X 0.5 cm), diagnostic pad (0.3 X 1.0 cm) and pres-
sure-sensitive adhesive layer (0.5 X 6.4 cm). A 0.25 cm over-
lapping of the sample pad over the diagnostic pad proved to
be effective for diffusion to the reaction area. The diagnostic
pad is pre-treated with 5 pl an alkaline solution of picric acid
(1 part of 0.04 M picric acid, two parts of 2.0 M NaOH solu-
tion), which reacts with the creatinine in the test fluid and
produces a colorimetric response (Jaffe reaction).

Test Fluid

Since the primary focus of this study is to evaluate the
performance of our machine learning models, a simplified
approach was chosen in this study to obtain a dataset of
images with colorimetric responses at known creatinine
concentrations S,. Specifically, we used a synthetic cre-
atinine solution to create our dataset, rather than human or
human-analog blood. Samples of test fluid at 65 different
creatinine concentrations were prepared starting from 9 mg
of creatinine powder dissolved in 15 ml of HCI solution
(0.1 M), which yielded the highest creatinine concentration
of 60 mg/dl, and then proceeding with serial dilutions all the
way down to 0.1 mg/dl.

Image Capture

In this study, images were collected under controlled lighting
conditions. The test strips were placed inside a 40 X 40 X
40 cm lightbox equipped with LED light sources and lined
with reflective materials to eliminate the environmental light
variation and ensure uniform illumination. Images of the
test strip against a black background were collected using a

12 MP smartphone camera (Apple iPhone 8, Cupertino, CA)
placed at a fixed distance of 8 cm from the strip. That focal
distance was selected as the best tradeoff between autofo-
cus accuracy and image magnification. The smartphone was
set on auto-brightness (with 0-ev exposure compensation)
and output uncompressed images in PNG format, which
preserved more color information than the more common
compressed JPEG format. The resulting images are 3024
X 4032 pixels and take up approximately 15 MB of stor-
age. The samples were manually cropped and annotated
using BBox-Label-Tool [40] and OpenCV library functions
[41]. The final annotated detection zone samples have a 2:1
height-to-width aspect ratio and are each approximately 256
X 128 pixels.

Test Conditions

Based on the MDRD equation, eGFR appears to be most
sensitive to creatinine concentration in the range 0—4 mg/
dL. Thus, we designed our experiments to collect data in
the ranges and steps detailed in Table 1, prioritizing sample
collection on the low end of the distribution. We captured
3 test strip image samples per concentration step, before
adding the creatinine solution to the the detection zone, and
then at intervals of 2, 12, and 22 min after adding the creati-
nine solution. That resulted in a total of 780 samples. Fig. 1
and 2 in Section 1 of our Technical Appendix illustrate the
change in color saturation and brightness of the samples as
time passes.

Sample Augmentation

Due to the time and financial costs of chemical experi-
ments, our initial dataset is limited in size. Therefore,
we performed data augmentation, which allowed us to
increase the number of samples we could use to train our
machine learning models. Figure 3 illustrates our pre-
processing pipeline utilized in obtaining quality samples.
The first image shows the detection zone from a random
sample. We begin by threshold masking the image using
the HSV color space in order to remove the background
and any abnormal pixel values that may have been intro-
duced during the data collection or chemical reaction

Table 1 Distribution of samples according to bin ranges

Range (mg/dL) Steps (mg/dL) Concentra-  # Samples
tions

0.0-4.0 0.1 41 492

45-15 0.5 7 144

8.0-19.0 1.0 12 84

20.0 - 60.0 10.0 5 60

@ Springer
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Fig.3 Pre-processing and sample augmentation pipeline. The Origi-
nal image contains all pixels of the identified detection zone of the
test strip. The Masked image shows the image after removing pix-
els whose color is outside our expected ranges. The Crop Selection
image shows a variety of cropping strategies we have used to ensure
quality inputs for our machine learning pipeline. Ultimately, we chose
to use a 128 X 64 center-crop strategy, exemplified by the green rec-
tangle. The final image, labeled 4x Tile, shows how the chosen 128
X 64 center crop image is further sub-divided into 4 equal size tiles,
which allows us to create 4 samples from each executed chemical
experiment.

phase, as these might be detrimental to our model’s pre-
dictive performance. The second image in Fig. 3 shows the
detection zone after masking. Based on our earlier color
change analysis depicted in Fig. 1 and 2 in the Technical
Appendix, we noticed that the change observed in the Jaffe
reaction belongs to a particular range of colors, namely
yellow to orange, which we used to obtain our masking
thresholds. Our chosen ranges were [20, 60],[150, 255], and
[230,255] for the hue, saturation, and value channel pixel
values, respectively, in the HSV color space. Next, in order
to avoid background pixels, we center-cropped the detec-
tion zone to a size of 128 X 64, as depicted in the third
image in the figure. Finally, we partitioned the 128 x 64
image into four equal-sized 64 X 32 tiles, which form the
new samples we use in our experiments. After augmenta-
tion, our dataset size increased from 780 to 3120 samples.

The reason we chose to extract a 128 X 64 center crop of
the detection zone as part of our processing pipeline is that
some of our baseline models require input images to have
a constant size and we wanted to ensure all models were
trained and evaluated based on the same inputs, not only
based on the same image samples. We also considered ran-
dom sampling for the third step in our pipeline, which would
potentially allow us to create more than just 4 samples for
each detection zone capture, but that technique would pro-
vide an advantage to some methods due to the pixel overlap
in the samples that would undoubtedly occur. Another com-
mon augmentation technique from digital image processing
is the application of smoothing filters, which alter pixels
based on a non-linear function of their neighborhood pixel
values. This technique is often used to smooth abnormal or
extreme values that may be introduced due to artifacts or
noise in the image. However, because we are dealing with
interpreting very slight colorimetric changes, any form of

@ Springer

color interpolation that affects the ground truth of the sample
should be avoided.

Selective Partitioned Regression

We propose a novel machine learning model that we call the
Selective Partitioned Regression (SPR) model. Our model
architecture, which is illustrated in the right section of
Fig. 2, is segmented into two phases and uses a composition
of specialized state-of-the-art algorithms as sub-estimators
that perform classification and regression. The first phase
of our model is a classification task that involves selecting
a particular localized regressor that is trained on a subset
of partitioned samples. The second phase is a regression
task where we use the predicted regressor to estimate the
concentration of creatinine present in the sample. The final
classification decision is made based on the estimated glo-
merular filtration rate (¢GFR), which is computed using the
MDRD equation [42] and defined as

eGFR = 175 x S7}1* x age™?” % 0.742 if female
x 1.212 if African born,

where S, is the creatinine concentration in the sample,
measured in mg/dL. For a given patient, all metadata such
as age, sex, and race in the formula are static, while the cre-
atinine concentration, which is the value we are predicting,
may change over time. Using the boundary threshold values
from Fig. 1b, we can classify an individual’s kidney disease
severity as healthy, intermediate, or critical. This is consist-
ent to works done by Wei et al. [43], Ronco et al. [44], and
Chawla et al. [45], among others.

The performance of our model is affected by several
choices, including the color space that we represent our
input images in, the type of features we extract from the
images, the boundaries of the local regressor bins, and the
sub-estimators we choose for the classification and regres-
sion tasks. In the remainder of this section, we describe each
of these choices in detail.

Color Spaces

Images are traditionally represented in the red-green-blue
(RGB) color space, which represents the amount of red,
green, and blue that should be mixed to create the color of a
pixel, each in the range from 0 to 255. A 64 X 32 pixel image
is thus represented as a 64 X 32 X 3 tensor containing the red,
green, and blue values for each of the image pixels, which is
often reshaped into a vector by concatenating each channel
of each row of pixels in the image. In the RGB representa-
tion, the channels hold both the chrominance and lumines-
cence information, making the extracted features susceptible
to change given even small brightness variances. Several
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color spaces, including LAB, HSV, and YC,C,, treat lumi-
nescence as a separate channel, which we hypothesize can
improve our model’s predictive ability when representing
pixels in these color spaces vs. RGB.

The LAB color space was devised by Richard S. Hunter
and formalized in the Photoelectric Color Difference Meter
[46] article in the Journal of Optical Society of America
in 1958. It is an almost perceptually uniform color space
aimed at mimicking the human vision system. The L com-
ponent stands for lightness and ranges from [0, 1], or from
the absence of light (black) to complete illumination (white).
The a and b components, often abbreviated as a* and b*,
range from [—127, 127] and represent opposing colors, e.g.,
(green — red) and (blue — yellow), respectively. The a*
and b* axes are perpendicular to each other on the color
wheel and there is a 180° difference between their respec-
tive positive and negative ends. Sometimes the a* and b*
opposing colors are represented as (green — magenta) or
(cyan — yellow), depending on how the axes are aligned
with regards to their initial position.

The Hue-Saturation-Value (HSV) color space, also known
as the HSB (hue, saturation, brightness), models how colors
appear under light. The hue channel ranges from [0, 360]
representing the angle from which the chroma is selected.
Saturation and value both range from [0, 1], where O denotes
complete saturation and the absence of illumination (black)
for the value channel. The value 1 denotes maximum
chroma, which maximizes the perception of the pixel hue.

Lastly, the Y in YC,C,, stands for luma or luminance/illu-
mination, and C, and C, are complements of Y with red and
blue, i.e., (red - Y) and (blue - Y). YC,C, is derived from
RGB but was devised to be an approximation of a perceptu-
ally uniform color space. The advantage of using YC,C,
over the other color spaces is that it requires far less stor-
age to encode the same information as RGB, which makes
it a perfect candidate for use in color processing pipelines
used by digital systems that require high bandwidth and
throughput.

Feature Extraction

We focused primarily on two methods for feature extraction,
channel-wise histograms and raw pixel values. First, we can
construct a histogram representation of an image by binning
the pixel values from a selected range across the three pos-
sible channels and concatenating them together. We refer to
this feature extraction method as channel-wise histogram of
colors (HOC). The other method of extracting features is
simply using the normalized channel-wise pixel values of
the image remapped to be in the same range [0, 255] across
all color spaces, which we refer to as the pixel values feature
extraction method.

Most image processing libraries perform pixel normaliza-
tion and remapping implicitly but they are not always con-
sistent. For example, in the case of the LAB color space,
some libraries will express the a* and »* in the range of
[—127, 127], while others remap the values to be in the range
[0, 255] or[—1, 1]. The general formula used for remapping
pixel values from S — T is given by

(Si - Smin) ) (Tmax - Tmin)
T, = +T, .,
¢ (Smax - Smin) " @

where S is the input pixel range, T is the output pixel range,
T, is the transformed pixel value in the output range, and S;
is the pixel value in the input range.

Histograms A histogram of colors is the frequency of
occurrence of pixel values in a given dataset or image. It
may also be interpreted as an approximation to a probabil-
ity distribution function if we normalize the histogram by
dividing by the total number of non-masked pixels in an
image. To demonstrate the computation for the histogram of
colors, we use the masking thresholds from the HSV color
space we noted in the "Sample Augmentation" section to
represent the hue («), saturation (f), and value (y) channels,
for the sampling ranges (R) are defined as R, = [20, 60],
R, = [150,255], and R, = [230,255]. A channel-wise
histogram with K bins for each channel will record the
number of pixels (excluding the masked pixels) whose a,
f, and y values fall within that range giving us a total of
Kyp, = [40, 105, 25] maximum number of bins per channel.
Figure 4 shows a comparison of the pixel distribution from
the LAB (top) and HSV (bottom) color spaces represented
as binned channel-wise histogram of colors (HOC) in our
method, based on our experiment data.

Pixel Values and Convolutions The pixel values of an
image can be considered features on their own. However,
using the normalized channel-wise pixel values we can also
perform convolutions on the image to extract rich feature
maps in our deep learning models. Channel-wise convolu-
tion operations are generically defined as

Iy =) (Z h(s, t)xI(x—s,y—t)), 3)

s=s; \ 1=t

where A(s, £) is the kernel for the convolution filter and I(x, y)
is a single channel image. Each output pixel is the weighted
sum of the input pixels with the kernel function.

A benefit of using histograms over pixel values is that
the feature vector length is significantly smaller, which can
reduce processing time and increase throughput, thus mak-
ing our system more scalable. For example, a single tiled
64 x 32 sample in our data results in a 765-value feature
vector using the HOC representation, but requires 6, 144
features for its pixel-based representation.
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Fig.4 Comparison of the pixel distribution from the LAB (top) and
HSV (bottom) color spaces represented as binned channel-wise his-
togram of colors (HOC). The components of each color space are
shown in each figure along with the distribution of values in our col-
lected samples for each component. While the top band in each figure
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Fig.5 Predicted eGFR values distribution for random samples in
which the creatinine concentration was uniformly randomly sampled
and “people” were randomly selected according to the 2019 US cen-
sus population statistics. The eGFR value is denoted by the color of
the dot. The snow-like effect of mixed dots of different nearby colors
shows that the sample contains different people with very similar ages
for which the kidney disease severity outcome is different.

Partitioning

The range of creatinine values that our regression model
must predict is quite large and the values are not linearly
spread out across the range. Moreover, since the regression
predictions are used to classify the severity of kidney dis-
ease using Eq. 1, it is important that predictions around the
decision boundaries between critical and intermediate and
intermediate and healthy be as accurate as possible. How-
ever, the eGRF formula is also influenced by other factors,
such as sex, age, and race. To showcase this, Fig. 5 shows
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shows the full range of values across the entire color spectrum, our
test strips contain a limited range of colors and the distributions are
focused on the subset of values between the s and ¢ marks on each
band.

eGFR values for a large number of tests in which the cre-
atinine concentration was uniformly randomly sampled and
the “people” the concentration belonged to were randomly
selected according to the 2019 US census population statis-
tics [47]. To simplify viewing, we only show the concentra-
tion and age values on the heatmap graph, and the eGFR
value is denoted by the color of the dot. The sex and race of
the person are however accounted for in the eGRF calcula-
tion. Note that a creatinine concentration of 5 mg/dL leads to
a critical diagnosis for most people above 50 but only infer-
mediate for younger people. Also note the snow-like effect
in the image denoted by the difference in outcome that age,
sex, and race play in the eGRF computation. Several bands
in the graph have mixed red and orange dots or green and
yellow dots, denoting different people with very similar ages
for which the kidney disease severity outcome is different.

Based on these analyses, we hypothesize that partitioning
the samples into multiple bins and training separate regres-
sion models for each bin can lead to improved eGFR clas-
sification effectiveness. However, we do not know which bin
a new sample belongs to. Therefore, as shown in the archi-
tecture design illustrated in Fig. 2, our SPR model consists
of two stages, first a classification phase for predicting the
bin the sample belongs to, followed by the regression stage
where we use the selective regressor trained for that bin to
predict the creatinine concentration S,. The predicted S,
is then combined with the sample’s metadata to compute the
eGFR value according to Eq. 1 and the severity of the kidney
disease is then predicted based on the pre-defined boundary
thresholds as healthy, intermediate, or critical.

The questions that remain to be answered with respect
to partitioning are how many partitions we should have and
what should be the ranges of those partitions. Our model
is parametric with respect to the number of partitions/
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regressors y and the granularity of the concentration ranges
6 and we discuss several choices for these parameters in the
"Results" section.

Sub-Estimators

Our SPR model uses existing state-of-the-art predictors that
were also found to be effective in similar colorimetric prob-
lems described in the "Discussion” section, namely Histo-
gram Gradient Boosting Decision Tree (HBT) [48], Extreme
Gradient Boosting Tree (XGB) [49], Random forest (RF)
[50], K-Nearest Neighbors (KNN) [51], Decision Tree (DT)
[52] and support vector machines (SVM) [53]. We tested
the classification and regression versions of each of these
models for the two phases of our algorithm and report results
in the "Results" section.

The Deep Neural Network Model

In addition to our SPR model, we also designed a deep neu-
ral network (DNN) model that is based on the VGG model
[34] as the reference architecture. In order to reduce over-
fitting, we updated the model with regularization techniques
absent in the original VGG architecture, such as learning
rate decay [54], early stopping [55], batch normalization
[56], and drop-out [57]. The model uses a 5-layer convolu-
tional neural network (CNN) architecture with incrementally
increasing filter sizes, reduced by a factor of 2 compared
with VGG, i.e., 32, 64, 128, 256, and 256, using LeakyReLLU
activations with @ = le — 3 instead of ReLU. Additionally,
our model performs batch normalization before max pool-
ing. The convolution network is then joined with two fully
connected layers of size 4096 where drop-out regulariza-
tion is applied with a 25% probability before finally reach-
ing the linear activation function that returns the regression
result predicting the creatinine concentration S.,. We used
the Adamax [58] learning rate optimizer to train this model
with an initial learning rate of A = le — 4, a variation of the
Adam algorithm that is more suitable for time-dependent
processes such as ours. The loss function used to calculate
parameter updates was mean squared logarithmic error and
we trained the network for 500 epochs in batches of 128
with a learning rate decay equivalent to A - e7¢73 and early
stopping with a patience of 128 epochs.

Results

In this section, we first describe the design of our experi-
ments, including baseline algorithms, performance meas-
ures, validation methodology, and the execution environment
we used for executing our experiments. Then, we detail the
results of our experiments, along several directions. First, in

the "Optimal Time Sampling" section, we identify the opti-
mal time point for modeling kidney disease severity predic-
tion and identify the best parameters for our novel 2-phase
Selective Partitioned Regression model. Then, in the "SPR
Parameter Choices" section, we analyze the effect that dif-
ferent parameter choices in our processing pipeline have on
the performance of SPR and the top-performing baselines,
including the choice of color space and the type of features
being extracted. We then provide evidence in the "Baseline
Comparison" section that our SPR model using multiple
regressors outperforms state-of-the-art baselines, providing
both high classification accuracy and low regression error.
Finally, in the "Ablation Studies" section, we analyze the
robustness of SPR with regards to several of its parameters,
including the number of regressors y and the granularity of
the concentration ranges 6.

Experimental Design
Baseline Methods

Our state-of-the-art baselines were designed based on the
methods proposed by Wei et al. [43], Ogunleye and Wang
[59] and Thakur et al. [29]. They use pixel-wise feature
extraction combined with the same regression algorithms
we also use for our SPR sub-estimators, namely Histogram
Gradient Boosting Decision Tree (HBT) , Extreme Gradient
Boosting Tree (XGB), Random Forest (RF), K-Nearest
Neighbors (KNN), Decision Tree (DT) and Support Vec-
tor Machines (SVM) . Figures and tables will refer to these
algorithms by their abbreviated notation. The final classi-
fication decision is made in the same way as our method,
by applying Eq. 1 and identifying the class the eGFR value
belongs to according to the boundary thresholds. Unlike
their original papers that used a given color space (such as
LAB) during feature extraction, we tested each method with
all the color spaces we described in the "Color Spaces" sec-
tion and report results for each color space and compare
our method against the best performing baselines across all
color spaces.

Sample Assignments

In order to evaluate our model effectiveness, we assign
each test strip sample an age, sex, and race consistent with
Eq. (1). In this paper, we use the term sample referring to an
image with a unique concentration, time point after applying
the creatinine solution, and the accompanying metadata to
be representative of a person. We used data from the 2019
United States Census Bureau [47] to define the population
distribution that we sampled from. Table 2 summarizes the
population percentages segmented by age, sex, and race that
we used in our experiments.
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Table2 Age, sex, race sample

distribution Percent (%)

Age (years)

Under 5 6.1
5to24 25.6
25to 44 26.5
45to 64 25.4
65 to 84 14.6
Over 85 1.8
Sex

Male 49.0
Female 51.0
Race

African 134
Other 86.6

Performance Metrics

Due to the time and monetary costs of chemical experiments,
our dataset is limited in size, even after applying our tiling
procedure. Cross-validation of our model performance there-
fore becomes vastly more significant in determining how well
our models generalize to unseen data. We performed 5-fold
cross validation on all models using stratified sampling based
on the patient’s CKD status. Stratified sampling ensures that
the predicted classes, healthy, intermediate, and critical, have
a proportional distribution in the training, validation, and test
sets as observed across the entire dataset. In addition, since
each sample is associated with a randomly selected “person”,
we were able to repeat the experiment multiple times by re-
sampling the population distribution and performing 5-fold
cross-validation and test set inference during each experiment.
We therefore report the mean performance across N = 10
experiments with different populations drawn from the same
distribution.

Model performance is based on F'/-score for classification
results and RMSE for regression results as the evaluation crite-
ria. RMSE is computed as the square root of the sum of square
deviations of the predicted values from the true values being
predicted, i.e.,

" A \2
Ties (Scr, = Scr)
" .

RMSE =

In our case, RMSE captures the deviation of the predicted
S¢, creatinine concentration from the ground truth creatinine
Sc, concentration over the n test samples. F/-score repre-

sents the harmonic mean between precision and recall, i.e.,

precision X recall TP

F1=2x — =
precision +recall  7p 4 L(pp 4 FNY
2
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where TP, FP, and FN are the number of true-positive
(correctly identified, i.e., predicted class is the same as the
ground truth class), false-positive (identified incorrectly),
and false-negative (not identified) samples, respectively.

While classification accuracy is the ultimate goal in this
work, regression performance is also an important indica-
tor that can tell how often a model may deviate from the
correct class, especially for S, values that are close to the
class boundaries for the given person. Therefore, as a way
to evaluate methods based on both their classification and
regression performance, we combined these metrics using
a decision function that is a parametric weighted sum of the
Fl-score and RMSE values, computed as

l—a

RMSE’ “)

fdeCision(a’ F], RMSE) =a-FIl+

where a € [0, 1]. While we separately analyze both regres-
sion and classification performance, we use our decision
function with @ = 0.75 as the main effectiveness measure
when ranking all competing methods.

Execution Environment

All experiments were executed on a Linux workstation
machine (Ubuntu 20.04 LST) with an an Intel® Core™
19-10900X 10 core CPU running at 3.70 Ghz, two Nvidia
RTX 3090 GPUs (only one used for experiments) and 128
GB of memory. We designed our SPR model using the
scikit-learn (ver. 1.2) custom estimator interface and our
DNN model using the Keras (ver. 2.9) functional model
interface.

Optimal Time Sampling

The reaction of the creatinine in each sample with the picric
acid solution in the test strip takes some unknown amount
of time. As a result, when we executed the chemical experi-
ments, we took pictures of each test strip at 2, 12, and 22 min
after applying the creatinine solution. In a set of experiments
we detail in Section 2 of our Technical Appendix, we com-
pared the performance of all baseline models when trained
on data from each time point and found that the 22 min time
point provided the best classification and regression perfor-
mance. In general, the worst results were achieved at 2 min,
implying that 2 min is not enough time for the chemical
reaction to give accurate results. Further experiments were
then executed using only data from this time point. Moreo-
ver, we chose to eliminate the Support Vector Machines and
Decision Tree algorithms from contention in further experi-
ments as their performance was inferior compared to the rest
of the available methods.
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SPR Parameter Choices

Our method is parametric with regards to the choice of color
space, feature type, sub-estimators for regression and clas-
sification, the number of regressors, and the bin ranges for
each local regressor. We tuned each of these parameters via
cross-validation and chose the best performing combination
based on our decision function denoted in Eq. 4. Figure 6
shows a subset of our experiment results while searching for
the best parameters. In the figure, sub-estimator and color
space choices are listed in the top key and denoted by the
bullet point shape and color, respectively, and the number
of regressors y is denoted by the number at the end of the
label in the Top 10 legend. Models had their bin ranges 6
tuned via cross-validation. Bullet point size is relative to
the value of our decision function. Values in the upper-right
corner are better.

Overall, the model using 4 regressors, histogram of
colors-based features extracted from the LAB color space,
and the Histogram Gradient Boosting Decision Tree (HBT)
sub-estimator achieved the highest decision function score.
The model’s CKD classification F1-score was 0.9422 and
the S, regression RMSE was 2.19. Going forward, we
use this version of our model in future comparisons with
baselines.

Figure 6 shows results for matched sub-estimators, where
the same sub-estimator algorithm was used for both phase-1
and phase-2 in our method. We also performed experi-
ments with unmatched sub-estimators, i.e., using a different

algorithm for the bin choice classification than the one used
for the S, value regression, but did not find any significant
improvement in the results.

The quality of our model is highly dependent on the effec-
tiveness of the phase-1 classification model that chooses
which local regressor should be used for the test sample
during inference. We measured the performance of this clas-
sifier and report F'/-score values in Table 3 for different sub-
estimators and several different combinations of number of
regressors and color spaces. Results show that our chosen
best performing model also has the top bin classification
performance across all tests.

Baseline Comparison

Finally, we compared our chosen SPR configuration against
state-of-the-art baselines noted in the "Baseline Methods"
section. Each model had its respective meta-parameters
tuned via cross-validation, e.g., the number of neighbors
for k-nearest neighbors or the number of trees and maximum
depth of each tree in the RF algorithms. For each baseline,
we chose the best performing color space and feature type
and we measured both model performance (via our deci-
sion function) and efficiency (via training and inference run-
times). Figure 7 shows the comparison results, including the
F1-score, RMSE, their respective errors across the 10 sepa-
rate experiments that were executed (as error bars), and deci-
sion scores for each method. Note that, to increase visibility
of the method comparison, only the top portion of the bars

Fig.6 Evaluation of SPR % XGB @ HBT A RF [JKNN ODT YesSvM [Miab [ hsy [ rgb YCrcb
model parameters using various 0.95
sub-estimators (denoted by the Top 10
bullet point shape), color spaces 0.94 op A+ #+ HBTlab-4
(denoted by color), and number * ¢ HBT-hsv-3
of regressors y (denoted by the 0.93 - A RF-lab-3
number at the end of the label). ) 2 * + A ED:' A RF-hsv-3
Each model had its respective g 0.92 1 * ‘ g é;[:j;] ‘ <>A & HBT-lab-3
bin ranges 6 tuned via cross- o 0 0  KNN-hsv-3
Val.lda.tlon. The size of the bullet 0.91 - 8 & & HBThsv-4
point is relative to the value of (@) RE-labd
our decision function in Eq. 4. 0001 % ® A RF-lab-
Values in the upper-right corner ' ¢ KNN-hsv-4
are better. 0.89 © A RF-hsv-4
' 3.75 3.50 3.25 3.00 2.75 2.50 2.25 2.00
RMSE

Table 3 Bin classification XGB HBT RE DT KNN SVM
performance

Default (RGB) 0.9135 0.9240 0.9255 0.8755 0.8923 0.9062

3 Bin (HSV) 0.9327 0.9375 0.9303 0.9130 0.9193 0.9317

4 Bin (LAB) 0.9457 0.9505 0.9466 0.9034 0.9346 0.9375

Bold value represents the highest performing subestimator, i.e., the model using 4 regression bins, LAB
color space features, and the Histogram of Boosted Trees regressor
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F1 RMSE Decision Score Method Train (sec) Inference (sec)
SPR{___ - B 1 lab-histogram 5.5863 0.4111
DNN{. o} S ] hsv-pixels 56.1946 0.5304
KNN hsv-histogram 0.0104 0.1202
RF L- r lab-histogram 1.1225 0.0504
HBT {0 — 3 | lab-histogram 1.2412 0.0189
XGB _—| ' lab-histogram 0.5243 0.0279
091 093 095 2.1 25 2.9 3.3 0.78 0.80 0.82

Fig.7 Comparison of the SPR model, using our decision function in Eq. 4, against the best performing baselines across all color spaces and fea-
ture types. Higher decision and F1I scores and lower RMSE scores are better. Lower training and inference times are better.

are shown and errors for most methods are actually quite
small. The “Method” panel shows the best choice of color
space and feature type for each method, while the right two
panels report the training and inference times in seconds.

The results show a clear advantage of our SPR model.
While achieving very similar RMSE (2.19 vs. 2.18 and
2.23) as the next two alternatives, our SPR model is able
to provide significantly better overall CKD classification
performance, achieving an F/-score of 0.9422. The optimal
performance does come at the cost of inference efficiency as
SPR incurs some overhead when using multiple regressors,
however it is still able to significantly outperform the second
most effective model, DNN, in terms of efficiency.

Ablation Studies

In this section, we report the results of several ablation stud-
ies investigating the robustness of our method given different
input meta-parameters. Due to lack of space, we summarize
these results here and include an extended explanation and
figures in our Technical Appendix.

Color Space Comparisons

As noted in the "Color Spaces" section, the chosen color
space may play a big role in the performance of our model,
as some color spaces separate luminescence from color
representation while others do not. To see how the choice
of color space in feature extraction affects model perfor-
mance, we tested our model and all baselines with HOC-
based features from each of the four color spaces described
in the "Color Spaces" section, i.e, RGB, YC,C,, HSV, and
LAB. Overall results indicate that the LAB color space is
beneficial for the classification task but the HSV color space
is best for the regression task. It is interesting to note, how-
ever, that the color space performance of our SPR model
was consistent between the classification and regression
tasks (RGB is worst and LAB is best), while other methods
saw almost complete inversions between the two tasks (e.g.,
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RGB achieves the highest/best F1-score for DNN and also
the highest/worst RMSE score).

Feature Type Comparison

Another choice in our method is pixel- vs. HOC-based fea-
ture extraction. We analyzed the performance of the best
performing baselines and our SPR model using both types
of features and results clearly indicate that HOC-based fea-
tures are superior for the majority of the models in both the
classification and the regression tasks.

Partition Parameterization

Our model performance also depends on the number of
local regressors y and the bin ranges 6 selected for each
local regressor. We tested both 3-bin and 4-bin configura-
tions of our model with all color spaces and HOC-based
features under a wide range of 6 parameter choices. Overall,
we trained 1, 250 models each for the 3-bin and 4-bin evalu-
ations. Results show that, while the 4-bin LAB-based con-
figuration achieved the best CKD classification performance,
the 3-bin HSV-based configuration achieved the best regres-
sion performance, leading to better overall performance
according to our decision function. Overall, however, the
differences between the 3-bin and 4-bin configurations were
small (0.9316 vs. 0.9422 F1-score and 1.93 vs. 2.19 RMSE),
indicating that our model is resilient to the number of local
regressors, as long as enough data exists to find appropri-
ate bin boundaries and accurately train local regressors for
each bin.

Discussion

In this study, we introduced and evaluated a Selective Par-
titioned Regression model for kidney health monitoring,
which uses images that a patient could capture at home using
an inexpensive test strip, a single-droplet blood sample, and
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a smartphone. Our results showed that our SPR model is
both effective and efficient in predicting the severity of kid-
ney disease.

A crucial component of our testing platform is how the
color map obtained from the reaction pad on the test strip is
used to predict eGFR. To our knowledge, only few studies
have attempted to associate color variations with a predic-
tion outcome. One closely related system that predicts con-
tinuous values for color change observed in reaction between
urine and picric acid solution is the homemade-spectrometer
by Debus et al. [60]. Despite being a low-cost system, that
setup requires technical expertise and is time consuming. In
another study, Paulraj et al. showed that a 5 hidden layer arti-
ficial neural network could predict the ripeness of bananas
with an accuracy of 96% [61]. Similarly, Loti et al. [62]
used a vast array of deep learning models, such as VGG
[34], ResNet [63], InceptionNet [64], and DenseNet [65], for
feature extraction and classical machine learning algorithms,
such as Support Vector Machines [53] (SVM) and Random
Forest [50] (RF), for classifying diseases and pests in chili
leaves. Their composite modeling structure is able to achieve
a92% accuracy using InceptionNet for feature extraction and
SVM for classification.

Some researchers found that classical machine learn-
ing models sometimes outperform deep learning ones in
vision-based biomedical problems, while others found the
opposite. Daghrir et al. [66] compared K-Nearest Neighbors
(KNN), SVM, and Convolution Neural Networks (CNN)
when classifying whether detected melanoma skin cancer
was malignant or benign and obtained accuracy values of
57.3%, 71.8%, and 85.5%, respectively. On the other hand,
both Wei et al. [43] and Ogunleye and Wang [59] found
XGBoost [49] to have superior predictive performance in
CKD severity classification over other algorithms such as
Logistic Regression (LR), SVM, and even Artificial Neu-
ral Networks (ANN). While these works also studied CKD
severity classification, they used laboratory data as predic-
tive features, including urine albumin, pH, lactade, sodium,
and potassium levels, among other clinical measurements.
Similar to our proposed method, Thakur et al. [29] used
computer vision-based features extracted from a urine-based
test strip and compared LR, SVM, and RF models, and ulti-
mately found the RF model outperformed the alternatives.
We designed our state-of-the-art baselines based on the
methods proposed by Wei et al. [43], Ogunleye and Wang
[59] and Thakur et al. [29].

Our SPR model achieved a F1-score of 0.9422, which
is substantially better than the best state-of-the-art
approached we tested, and even outperformed a convolu-
tional neural network-based model we designed. Moreo-
ver, we showed that SPR outperforms state-of-the-art
baselines even when those baselines use the same color
space as SPR rather than the original color space chosen

by the authors. SPR uses a two-phase inference process,
first selecting a local regressor best suited to predict the
sample’s creatinine concentration, and then applying that
regressor to make the prediction. The final kidney disease
severity decision is made by thresholding on the estimated
glomerular filtration rate (¢GFR) value computed from
the predicted concentration for the given sample. SPR is
extremely versatile, allowing the use of any classifier or
regressor as sub-estimators. Future novel classification and
regression algorithms, as well as additional data collection
will allow improving the effectiveness of the sub-estima-
tors even further, which will improve SPR’s overall accu-
racy. In a series of ablation studies, we also showed that
SPR is robust to meta-parameter choices, performing well
under a variety of parameter choices, as long as enough
data exist to properly train the chosen local regressors.

This study has a number of limitations. Overall, the image
dataset was relatively small, even after sample augmentation,
which may affect the performance of our machine learning
models. Images were captured in a lightbox under controlled
illumination and focus conditions, which are not representa-
tive of real images that a patient may capture at home using
their smartphone. Since the machine learning models were
trained with a relatively small dataset, these choices were
justified by the need to minimize the confounding factors
(such as focus, light brightness and hue). Notably, in our
experiments we used synthetic creatinine solutions instead
of blood. This choice removed the potential issue of hemo-
globin interfering with the coloration of the detection pad,
thus making it possible to use a simple LFA strip design.
Moreover, using synthetic creatinine solutions allowed for
full control over the creatinine concentration levels in the
test samples.

The findings of this study are encouraging, and war-
rant further investigation. In the future, sample size can
be increased by the implementation of a semi-automatic
pipeline for data collection, currently under development
in our laboratory. In addition, further refinement of the test
strip, to include a stage for the separation of blood cells
from serum, will enable tests with actual blood. We also
plan to address potential inefficiencies in our model due to
illumination inconsistencies in real-world image captures
by integrating color constancy pre-processing in our image
capturing pipeline.
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