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Abstract. We design and compute a class of optimal control problems for reaction-diffusion sys-
tems. They form mean field control problems related to multi-density reaction-diffusion systems.
To solve proposed optimal control problems numerically, we first apply high-order finite element
methods to discretize the space-time domain and then solve the optimal control problem using aug-
mented Lagrangian methods (ALG2). Numerical examples, including generalized optimal transport
and mean field control problems between Gaussian distributions and image densities, demonstrate
the effectiveness of the proposed modeling and computational methods for mean field control prob-
lems involving reaction-diffusion equations/systems.

1. Introduction

Reaction-diffusion systems are essential classes of modeling dynamics [37], which have applica-
tions in tumor growth modeling [9], propagation of pandemic spread [24, 25], evolutionary games
[19], etc. The reaction term reflects general nonlinear interacting behaviors of agents/particles in
complex systems. Patterns of population behaviors often arise in the solution of reaction-diffusion
equations, which model the collective behaviors of particles/agents.

In recent years, mean field control problems [20, 22] have been studied, which are optimal control
problems for mean-field limits of infinitely many identical particles/agents. The problem models the
complex behaviors of identical particles/agents interacting with each other. It is worth mentioning
that a special example of a mean-field control problem forms the dynamical optimal transport
problem [3]. It studies a particular optimal control problem in density space, which transfers an
initial density toward the terminal density function. The optimal transport problem also introduces
a functional distance, namely the Wasserstein distance. It helps study and compute a class of initial
value evolutionary dynamics, namely, Wasserstein gradient flows [21]. They are also valuable for
modeling interaction behaviors of particle dynamics.

Nowadays, optimal transport and mean field control problems have vast applications in modeling
and computations. Classical studies of optimal transport and mean field control problems are often
limited to a single-density function. The complex interaction between densities is a vital modeling
factor that has not been systemically studied.

In this paper, we generalize a class of mean field control of reaction-diffusion equations/systems
proposed in [27]. It forms an optimal control problem among multiple density functions interacting
with each other with a nonlinear reaction vector function. After change of variables, we reformulate
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the optimal control problem into an optimization problem with a Fisher information type potential
functional. We apply the high-order finite element method to discretize the spatial-time domain and
use the augmented Lagrangian method, ALG2 from [15], to compute the discretized optimization
problems. Numerical examples, including mean field control problems between Gaussian densities
and a system with 12 images, demonstrate the solution of the proposed generalized mean field
control problems.

Generalized optimal transport and mean field control problems have been widely investigated in
[6, 7, 14, 35]. For example, multi-population mean field games were discussed in [4], and generalized
optimal transport distances between vector densities were formulated in [11]. Meanwhile, unnor-
malized and unbalanced optimal transport were proposed in [12, 23, 32], which allows to control
densities with different total masses. In applications, one also applies mean field control problems
to model the propagation of pandemics [24, 25]. They are all important examples of optimal control
problems for reaction-diffusion systems. Modeling and computational mean-field control problems
for general convection-reaction-diffusion systems are new research directions [28, 29]. They have
potential applications in classical modeling dynamics based on reaction-diffusion equations and
systems. This paper proposes a class of mean field control of reaction-diffusion systems. Mean-
while, the optimal control problem of gradient flows in Wasserstein space is widely studied, namely
Schrödinger bridge problems [10, 13, 26, 31, 36]. In addition, the generalized gradient flows in
multiple-density spaces have been studied [17, 18, 34, 35]. Our formulation extends the optimal
control problem of gradient flows based on reaction-diffusion equations and systems. Thus, we
study the mean field control using formalisms of controlling gradient flows. In simulations, we ap-
ply high-order finite element schemes to simulate the proposed generalized optimal transport and
mean field control problems.

The paper is organized as follows. In section 2, we first review gradient flows and their induced
metric distances in generalized optimal transport spaces. We then formulate and derive optimality
conditions for generalized optimal transport and mean field control problems of reaction-diffusion
systems. In section 3, we approximate the proposed mean field control problems using high-order
finite element schemes and then use the ALG2 method to compute the discretized optimization
problems. Numerical results, including scalar reaction-diffusion equations and two-species, twelve-
species reaction-diffusion systems, are presented in section 4. Finally, we conclude with a discussion
in section 5.

2. Generalized optimal transport and mean field control of reaction-diffusion

systems

This section presents the main formulation of mean field control (MFC) problems for scalar
reaction-diffusion equations and systems.

2.1. Background: Reaction-diffusion induced metric distances. Before delving into the
mean field control problems that will be discussed in this manuscript, we first review the definitions
of two metric distances: one for scalars and one for systems, which are obtained from generalized
optimal transport type gradient flow problems. The material in this subsection follows closely our
previous work on variational time implicit schemes for reaction-diffusion systems in [17]. We only
give the definition of these metric distances without further elaboration, but refer to the references
[1, 26, 27, 34] for more details on optimal transport type gradient flows, distances, mean-field
control and related problems.

2.1.1. The metric distance: scalar case. The scalar metric distance is derived from the following
reaction-diffusion equation [27, 17]:

∂tρ = ∇ · (V1(ρ)∇
δ

δρ
E(ρ))− V2(ρ)

δ

δρ
E(ρ), on [0, T ]× Ω, (2.1)
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with homogeneous Neumann boundary conditions V1(ρ)∇ δ
δρ
E(ρ) · ν|∂Ω = 0, where ν is the unit

outward normal direction on the boundary ∂Ω. Here Ω ⊂ R
d is the spatial domain, ρ : [0, T ]×Ω → R

is a scalar non-negative density function satisfying

ρ(t, ·) ∈ M = {ρ ∈ H1(Ω) : ρ ≥ 0}, ∀t ≥ 0, (2.2)

E : M → R is an energy functional, V1, V2 : R+ → R+ are two positive mobility functions, and δ
δρ

is the first variation operator in L2 space.
A crucial property of the equation (2.1) is that it satisfies an energy-dissipation law:

d

dt
E(ρ) = −

∫

Ω

[

∥∇ δ
δρ
E(ρ)∥2V1(ρ) + | δ

δρ
E(ρ)|2V2(ρ)

]

dx ≤ 0, (2.3)

where we use the fact that functions V1, V2 are non-negative. In the literature, the above right
hand side (dissipation rate)

I(ρ) =
∫

Ω

[

∥∇ δ
δρ
E(ρ)∥2V1(ρ) + | δ

δρ
E(ρ)|2V2(ρ)

]

dx, (2.4)

is called the generalized Fisher information functional. This Fisher information functional induces
a metric in the space M, which further defines a distance between two densities ρ0, ρ1 ∈ M.

Definition 2.1 (Scalar distance functional). Define a distance functional

DistV1,V2 : M×M → R+

as below. Consider the following optimal control problem:

DistV1,V2(ρ
0, ρ1)2 := inf

ρ,v1,v2

∫ T

0

∫

Ω

[

∥v1∥2V1(ρ) + |v2|2V2(ρ)
]

dxdt, (2.5a)

where the infimum is taken among ρ(t, x) : [0, T ]×Ω → R+, v1(t, x) : [0, T ]×Ω → R
d, v2(t, x) : [0, T ]×

Ω → R, such that ρ satisfies a reaction-diffusion type equation with drift vector field v1, drift mobil-
ity V1, reaction rate v2, reaction mobility V2, connecting initial and terminal densities ρ0, ρ1 ∈ M:

{

∂tρ+∇ · (V1(ρ)v1) = V2(ρ)v2, on [0, T ]× Ω,

ρ(0, x) = ρ0(x), ρ(T, x) = ρ1(x),
(2.5b)

with no-flux boundary condition V1(ρ)v1 · ν|∂Ω = 0

Introducing the flux functionm(t, x) : [0, T ]×Ω → R
d and source function s(t, x) : [0, T ]×Ω → R,

such that

m(t, x) = V1(ρ(t, x))v1(t, x), s(t, x) = V2(ρ(t, x))v2(t, x),

the distance in Definition 2.1 is rewritten as the following optimization problem with a linear
constraint:

DistV1,V2(ρ
0, ρ1)2 := inf

ρ,m,s

∫ T

0

∫

Ω

[∥m∥2
V1(ρ)

+
|s|2
V2(ρ)

]

dxdt, (2.6a)

such that

∂tρ(t, x) +∇ ·m(t, x) = s(t, x), in [0, T ]× Ω,

m · ν = 0, on [0, T ]× ∂Ω,

ρ(0, x) = ρ0(x), ρ(T, x) = ρ1(x), in Ω.

(2.6b)

The optimization functional in (2.6a) is convex under the condition that both V1 and V2 are positive
concave functions.
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2.1.2. The metric distance: system case. The system metric distance is derived from the following
reaction-diffusion system with M species and R reactions [17, 34]:

∂tρi = ∇ ·
(

V1,i(ρi)∇
δ

δρ
Ei(ρi)

)

−
R
∑

p=1

V2,p(ρ)γi,p

M
∑

j=1

γj,p
δ

δρ
Ej(ρj), (2.7)

with homogeneous Neumann boundary conditions V1,i(ρi)∇ δ
δρ
Ei(ρi) ·ν|∂Ω = 0 for 1 ≤ i ≤M . Here

ρi is the density such that ρi(t, ·) ∈ M, Ei : M → R is the energy functional and V1,i : R+ → R+ is
the positive mobility function for i-th species, and V2,p : R

M
+ → R+ is the positive mobility function

for p-th reaction. The bolded density ρ = (ρ1, · · · , ρM ) is simply the collection of M densities.

Moreover, the coefficient matrix Γ = (γi,p) ∈ R
M×R satisfies

∑M
i=1 γi,p = 0 for all 1 ≤ p ≤ R, which

is related to the total mass conservation: d
dt

∫

Ω

∑M
i=1 ρi dx = 0.

The equation (2.7) satisfies the energy-dissipation law:

d

dt

M
∑

i=1

Ei(ρi) = −I(ρ) ≤ 0, (2.8)

where I(ρ) denotes the generalized Fisher information functional

I(ρ) :=

∫

Ω

[

M
∑

i=1

∥∇δEi
δρ

∥2V1,i(ρi) +
R
∑

p=1

∣

∣

∣

∣

∣

∣

M
∑

j=1

γj,p
δEj
δρ

∣

∣

∣

∣

∣

∣

2

V2,p(ρ)
]

dx. (2.9)

In the above, we use the fact that functions V1,i, V2,p, 1 ≤ i ≤ M , 1 ≤ p ≤ R, are non-negative.
The functional I, again, induces a metric function in space MM , which defines distances between
two system densities ρ0,ρ1 ∈ MM .

Definition 2.2 (System distance functional). Define a distance functional

DistV1,V2 : MM ×MM → R+

as below.

DistV1,V2(ρ
0,ρ1)2 := inf

ρ,m,s

{

∫ T

0

∫

Ω





M
∑

i=1

|mi|2
V1,i(ρi)

+
R
∑

p=1

|sp|2
V2,p(ρ)



 dxdt :

∂tρi +∇ ·mi =
∑R

p=1 γi,psp, ∀1 ≤ i ≤M ,

mi · ν|∂Ω = 0, ρ(0, ·) = ρ0, ρ(T, ·) = ρ1.
}

,

(2.10)

where m = (m1, · · · ,mM ) is the collection of fluxes, and s = (s1, · · · , sR) is the collection of
sources.

Again, the optimization functional in (2.10) is convex under the condition that V1,i and V2,p are
positive concave functions for all 1 ≤ i ≤M and 1 ≤ p ≤ R.

2.2. MFC for scalar reaction-diffusion. In this subsection, we introduce the following MFC
problem. This can be viewed as a generalization of the scalar distance (2.6).

Definition 2.3 (Scalar MFC problem). Suppose that there exist two positive mobility functions
V1, V2 : R+ → R+, a terminal time T > 0, a non-negative regularization parameter β ≥ 0, an energy
functional E : M → R, a potential functional F : M → R, and a terminal functional G : M → R.
Consider

inf
ρ,m̃,s̃

∫ T

0

[∫

Ω

( ∥m̃∥2
2V1(ρ)

+
|s̃|2

2V2(ρ)

)

dx−F(ρ)

]

dt+ G(ρ(T, ·)), (2.11a)
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where the infimum is among all densities ρ with ρ(t, ·) ∈ M for t ∈ [0, T ], flux m̃ : [0, T ]×Ω → R
d,

and source s̃ : [0, T ]× Ω → R, such that

∂tρ+∇ · m̃− s̃ = β

(

∇ · (V1(ρ)∇
δ

δρ
E(ρ))− V2(ρ)

δ

δρ
E(ρ)

)

, (2.11b)

with boundary condition
(

m̃− βV1(ρ)∇
δ

δρ
E(ρ)

)

· ν
∣

∣

∣

∣

∂Ω

= 0, (2.11c)

and fixed initial density ρ(0, ·) = ρ0 in Ω.

From the modeling perspective, the variational problem in Definition 2.3 models the movement of
the density from the initial density under the dynamical constraint of reaction-diffusion equations.
It aims to find the optimal choices of vector fields and reaction rate functions under general kinetic,
potential, and terminal energies.

We will construct numerical scheme for problem (2.3) based on the following change of variables.

Proposition 2.1 (Scalar MFC reformulation). Denotem : [0, T ]×Ω → R
d, and s : [0, T ]×Ω → R,

such that

m = m̃− βV1(ρ)∇
δ

δρ
E(ρ), s = s̃− βV2(ρ)

δ

δρ
E(ρ),

and denote

V3(ρ) =
1

V1(ρ)| δ2

δρ2
E(ρ)|2

, (2.12)

where δ2

δρ2
E(ρ) is the second variational derivative of the energy functional E(ρ). Then, the scalar

MFC problem (2.3) is equivalent to the following optimization problem: Consider

inf
ρ,m,s

∫ T

0

∫

Ω

[ ∥m∥2
2V1(ρ)

+
|s|2

2V2(ρ)
+ β2

|∇ρ|2
2V3(ρ)

+
β2

2
|δE
δρ

|2V2(ρ)
]

dxdt

−
∫ T

0
F(ρ) dt+ G(ρ(T, ·)) + β[E(ρ(T, ·))− E(ρ0)],

(2.13a)

where the infimum is among all densities ρ with ρ(t, ·) ∈ M, for t ∈ [0, T ], fluxm : [0, T ]×Ω → R
d,

and source s : [0, T ]× Ω → R, such that

∂tρ(t, x) +∇ ·m(t, x)− s(t, x) = 0, (2.13b)

with no-flux boundary condition m · ν|∂Ω = 0, and fixed initial density ρ(0, ·) = ρ0.

The proof of the above proposition follows from a similar argument in [8, Proposition 2]. We
present the detailed derivation in the Appendix. The main idea is to use integration by parts to
show that

∫ T

0

∫

Ω

[ ∥m̃∥2
2V1(ρ)

+
∥s̃∥2
2V2(ρ)

]

dxdt

=

∫ T

0

∫

Ω

[ ∥m∥2
2V1(ρ)

+
∥s∥2
2V2(ρ)

+ β2
|∇ρ|2
2V3(ρ)

+
β2

2
|δE
δρ

|2V2(ρ)
]

dxdt

+ β[E(ρ(T, ·))− E(ρ0)].
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For simplicity of discussions, we assume that there are two functions F : [0, T ] × Ω × R+ → R

and G : Ω× R+ → R, such that
∫

Ω
F (t, x, ρ)dx = F(ρ(t, ·))−

∫

Ω

β2

2
|δE
δρ

(ρ(t, x))|2V2(ρ(t, x))dx, ∀ t ≥ 0,

∫

Ω
G(x, ρ)dx = G(ρ) + βE(ρ).

Then the functional in (2.13a) simplifies to the following formula:
∫ T

0

∫

Ω

[ ∥m∥2
2V1(ρ)

+
|s|2

2V2(ρ)
+
β2|∇ρ|2
2V3(ρ)

− F (t, x, ρ)
]

dxdt+

∫

Ω
G(x, ρ(T, x))dx.

This is the form we use in our numerical scheme.
For completeness, we formulate the Karush–Kuhn–Tucker (KKT) condition, i.e., the critical

point system, for the optimization problem (2.13). The proof is presented in the Appendix; see
also [27, 30].

Proposition 2.2 (KKT system for (2.13)). Let (ρ,m, s) be the critical point of the optimization
problem (2.13). Then there exists a function ϕ : [0, T ]× Ω → R, such that

m(t, x)

V1(ρ(t, x))
= ∇ϕ(t, x), s(t, x)

V2(ρ(t, x))
= ϕ(t, x),

and






















∂tρ(t, x) +∇ · (V1(ρ(t, x))∇ϕ(t, x))− V2(ρ(t, x))ϕ(t, x) = 0,

∂tϕ(t, x) +
1

2
∥∇ϕ(t, x)∥2V ′

1(ρ(t, x)) +
1

2
|ϕ(t, x)|2V ′

2(ρ(t, x))

+
δ

δρ

[

F(ρ)− β2

2
I(ρ)

]

= 0,

(2.14)

where I(ρ) is the generalized Fisher information functional given in (2.4), with initial and terminal
time boundary conditions

ρ(0, x) = ρ0(x), ϕ(T, x) = − δ

δρ

(

G(ρ(T, ·)) + βE(ρ(T, ·))
)

. (2.15)

2.2.1. Examples. Different choices of the functions V1, V2, V3, F , G, along with the regularization
parameter β ≥ 0 and initial density ρ0, lead to various scalar MFC problems (2.13). We present
some examples of these functions in Table 1 below. Here V (t, x) for F (t, x, ρ) is a given drift

V1(ρ): α1ρ
γ1 with 0 ≤ γ1 ≤ 1. α1 > 0.

V2(ρ): α2ρ
γ2 with 0 ≤ γ2 ≤ 1, or α2

ρ−1
log(ρ) . α2 ≥ 0

V3(ρ): α3ρ
γ3 with 0 ≤ γ3 ≤ 1. α3 > 0.

F (t, x, ρ): −τρ(log(ρ) + V (t, x)), or −τ(ρm + ρV (t, x)). τ ≥ 0, m > 1.
G(x, ρ): γ(ρ− ρ1)2, or γρ log(ρ/ρ1). γ > 0.

Table 1. Example of various functions for scalar MFC (2.13).

coefficient, and ρ1 for G(x, ρ) is a given terminal density. Taking the energy

E(ρ) =







∫

Ω
1√
α1α3

ρ log(ρ) dx, if r1 = r3 = 1,
∫

Ω
4ρ2−(r1+r3)/2

(2−r1−r3)(4−r1−r3)
√
α1α3

dx, else,

ensures that the relation (2.12) holds. Since V1, V2, V3 in Table 1 are positive and concave, F is
concave, and G is convex, the objection functional in the MFC problem (2.13) is convex under a
linear constraint. Hence there exists a minimizer.
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Remark 2.4 (Comparison with existing models). When the terminal density ρ(T, ·) = ρ1 is pre-
scribed (or when γ → +∞ for the terminal function in Table 1), the problem (2.13) is called the
planning problem for MFC. This problem with β = 0 (no V3) was consider in the work [27].

Taking the regularization parameter β > 0 in MFC (2.13) forms a Schrödinger bridge type prob-
lem [10, 26]. A related planning problem with β > 0 and no potential F = 0 was considered recently
in [9], known as unbalanced regularized optimal mass transport (urOMT). It has applications in
cancer imaging. Therein, V1(ρ) = V3(ρ) = ρ, V2(ρ) = α(t, x)ρ for α ≥ 0, and the objective function

has an additional term
∫ T

0

∫

Ω βs log(ρ)dxdt compared with our formulation (2.13a) under the same
linear constraint (2.13b).

2.3. MFC for reaction-diffusion systems. In this subsection, we introduce a system of MFC
problem. It can be viewed as a generalization of the system distance (2.10).

Definition 2.5 (System MFC problem). Suppose there existM ∈ N+ species and R ∈ N+ reactions
with reaction coefficient matrix Γ = (γi,p) ∈ R

M×R. Let V1,i : R+ → R+ for 1 ≤ i ≤ M , and
V2,p : R

M
+ → R+ for 1 ≤ p ≤ R be positive mobility functions. Take terminal time T > 0, and non-

negative regularization parameter β ≥ 0. Choose energy functionals Ei : M → R for 1 ≤ i ≤M , an
potential functional F : MM → R, and a terminal functional G : MM → R. Consider

inf
ρ,m̃,s̃

∫ T

0





∫

Ω





M
∑

i=1

|m̃i|2
2V1,i(ρi)

+

R
∑

p=1

|s̃p|2
2V2,p(ρ)



 dx−F(ρ)



 dt+ G(ρ(T, ·)), (2.16a)

where the infimum is among all densities ρ = (ρ1, · · · , ρM ) with ρ(t, ·) ∈ MM , fluxes m̃ =
(m̃1, · · · , m̃M ) with m̃i : [0, T ] × Ω → R

d, and sources s̃ = (s̃1, · · · , s̃M ) : [0, T ] × Ω → R
M , such

that

∂tρi +∇ · m̃i −
R
∑

p=1

γi,ps̃p

= β



∇ · (V1,i(ρi)∇
δ

δρ
Ei(ρi))−

R
∑

p=1

γi,pV2,p(ρ)
M
∑

j=1

γj,p
δ

δρ
Ej(ρj)



 ,

(2.16b)

with boundary condition
(

m̃i − βV1,i(ρi)∇
δ

δρ
Ei(ρi)

)

· ν
∣

∣

∣

∣

∂Ω

= 0, (2.16c)

for all 1 ≤ i ≤M , and fixed initial density ρ(0, ·) = ρ0 ∈ MM .

Again, our numerical scheme is based on the following equivalent formulation after the change
of variables, whose proof is given in the Appendix.

Proposition 2.3 (System MFC reformulation). For 1 ≤ i ≤M and 1 ≤ p ≤ R, denotemi : [0, T ]×
Ω → R

d and sp : [0, T ]× Ω → R, such that

mi = m̃i − βV1i(ρi)∇
δ

δρ
Ei(ρi), sp = s̃p − βV2,p(ρ)

M
∑

j=1

γj,p
δ

δρ
Ej(ρj),

and denote

V3,i(ρi) =
1

V1,i(ρi)| δ2

δρ2
Ei(ρi)|2

. (2.17)
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Then, the system MFC problem (2.5) is equivalent to the following optimization problem: Consider

inf
ρ,m,s

∫ T

0

∫

Ω

M
∑

i=1

( |mi|2
2V1,i(ρi)

+ β2
|∇ρi|2
2V3,i(ρi)

)

dxdt

+

∫ T

0

∫

Ω

R
∑

p=1





|sp|2
2V2,p(ρ)

+
β2

2
|

M
∑

j=1

γj,p
δEj
δρ

(ρj)|2V2,p(ρ)



 dxdt

−
∫ T

0
F(ρ) dt+ G(ρ(T, ·)) + β

M
∑

i=1

[Ei(ρi(T, ·))− Ei(ρ0i )],

(2.18a)

subject to the constraints

∂tρi(t, x) +∇ ·mi(t, x)−
R
∑

p=1

γi,psp(t, x) = 0, (2.18b)

with no-flux boundary condition mi · ν|∂Ω = 0, for all 1 ≤ i ≤ M , and fixed initial density
ρ(0, ·) = ρ0 = (ρ01, · · · , ρ0M ) ∈ MM .

Note that when M = 1 and R = 1, the MFC problem (2.18) corresponds to the scalar case
considered in Definition (2.3).

Similar to the scalar case, we assume that there are two functions F : [0, T ]×Ω×R
M
+ → R and

G : Ω× R
M
+ → R, such that

∫

Ω
F (t, x,ρ)dx = F(ρ(t, ·))−

∫

Ω

R
∑

p=1

β2

2
|

M
∑

j=1

δEj
δρ

(ρj)|2V2,p(ρ)dx,

∫

Ω
G(x,ρ)dx = G(ρ) + β

M
∑

i=1

Ei(ρi).

This simplifies the functional in (2.18a) as follows:

∫ T

0

∫

Ω





M
∑

i=1

( |mi|2
2V1,i(ρi)

+ β2
|∇ρi|2
2V3,i(ρi)

)

+
R
∑

p=1

|sp|2
2V2,p(ρ)

− F (t, x,ρ)



 dxdt

+

∫

Ω
G(x,ρ(T, x))dx,

The KKT system for the optimization problem (2.18) is given below. Its proof is again presented
in the Appendix.

Proposition 2.4 (KKT system for (2.18)). Let (ρ,m, s) be the critical point of the optimization
problem (2.18). Then there exists a function φ = (ϕ1, · · · , ϕM ) : [0, T ]× Ω → R

M , such that

mi(t, x)

V1,i(ρi(t, x))
= ∇ϕi(t, x),

sp(t, x)

V2,p(ρ(t, x))
=

M
∑

j=1

γj,pϕj(t, x),



MFC WITH FEM 9

and














































∂tρi +∇ · (V1,i(ρi)∇ϕi)−
R
∑

p=1

V2,p(ρ)γi,p

M
∑

j=1

γj,pϕj = 0,

∂tϕi +
1

2
∥∇ϕi∥2V ′

1,i(ρi) +
1

2

R
∑

p=1

|
M
∑

j=1

γj,pϕj |2
∂

∂ρi
V2,p(ρ)

+
δ

δρi

[

F(ρ)− β2

2
I(ρ)

]

= 0,

(2.19)

where I(ρ) is the generalized Fisher information functional given in (2.9), with initial and terminal
time boundary conditions

ρi(0, x) = ρ0i (x), ϕi(T, x) = − δ

δρi

(

G(ρ(T, ·)) + βEi(ρi(T, ·))
)

. (2.20)

2.3.1. Examples. Let us consider examples with only pairwise interactions. This setting is similar to
the reversible Markov chains on discrete states (symmetric weighted graph) [19, 34, 33]. We assume
the mobility function V2,p only depends on two densities ρp0 and ρp1 for p0 ̸= p1 ∈ {1, · · · ,M} for
1 ≤ p ≤ R. We take the reaction coefficient Γ = (γi,p) ∈ R

M×R, such that

γi,p =











1 if i = p0,

−1 if i = p1,

0 else.

(2.21)

These reactions naturally lead to a graph withM vertices {X1, · · · , XM} and R edges {E1, · · · , ER}
with Ep = (Xp0 , Xp1) connecting vertices Xp0 and Xp1 , where each vertex represents a density
species, and each edge represents a reaction between two densities.

Different choices of the functions V1,i, V2,p, V3,i, F , G, along with the reaction coefficient matrix
Λ ∈ R

M×R in (2.21), regularization parameter β ≥ 0 and initial density ρ0, lead to various system
MFC problems (2.5). We present some examples of these functions in Table 2 below. Here we can

V1,i(ρi): α1ρ
γ1
i with 0 ≤ γ1 ≤ 1. α1 > 0.

V2,p(ρ): α2(ρp0 + ρp1)/2, or α2
√
ρp0ρp1 ,

or α2
ρp0ρp1
ρp0+ρp1

, or α2
ρp0−ρp1

log(ρp0 )−log(ρp1 )
. α2 ≥ 0

V3,i(ρi): α3ρ
γ3
i with 0 ≤ γ3 ≤ 1. α3 > 0.

F (t, x,ρ): −
∑M

i=1 τiρi(log(ρi) + Vi(t, x)),

or −
∑M

i=1 τi(ρ
m
i + ρiVi(t, x)). τi ≥ 0, m > 1.

G(x, ρ): γ
∑M

i=1(ρi − ρ1i )
2, or γ

∑M
i=1 ρi log(ρi/ρ

1
i ). γ > 0.

Table 2. Example of functions for system MFC (2.5).

again take the energies

Ei(ρi) =







∫

Ω
1√
α1α3

ρi log(ρi) dx, if r1 = r3 = 1,

∫

Ω
4ρ

2−(r1+r3)/2
i

(2−r1−r3)(4−r1−r3)
√
α1α3

dx, else ,

so that the relations (2.17) hold. Here, the four choices for V2,p correspond to arithmetic, geometric,
harmonic, and logarithmic averages of two densities; see [19, 34, 33]. Similar to the scalar case,
V1,i, V2,p, V3,i in Table 2 are positive and concave, F is concave, and G is convex. Hence the
objective functional in MFC problem (2.18) is convex under a linear constraint. A minimizer is
guaranteed.
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This formulation naturally allows general nonlinear reactions among more than two densities.
We leave the detailed modeling study of MFC for more general reaction-diffusion systems in future
work.

3. High order discretizations and optimization algorithms

In this section, we present the high-order spatial-time finite element formulations for the proposed
MFC problems (2.13) and (2.18).

3.1. Scalar case. In this subsection, we discretize the scalar model (2.13). By introducing a new
approximation variable n = β∇ρ, the optimization problem (2.13) is rewritten as follows. Consider

inf
ρ,m,s,n

∫ T

0

∫

Ω

[ ∥m∥2
2V1(ρ)

+
|s|2

2V2(ρ)
+

|n|2
2V3(ρ)

− F (ρ)
]

dxdt+

∫

Ω
G(ρ(T, x))dx, (3.1a)

where the infimum is taken over density ρ : [0, T ] × Ω → R+, flux m : [0, T ] × Ω → R
d, source

s : [0, T ]× Ω → R, and vector field n : [0, T ]× Ω → R
d, such that

∂tρ+∇ ·m− s = 0, (3.1b)

n− β∇ρ = 0, (3.1c)

on [0, T ]×Ω, with fixed initial density ρ(0, x) = ρ0(x) in Ω and no-flux boundary conditionm·ν = 0
on [0, T ]× ∂Ω. Here we suppress the coordinate dependence of functions F and G for simplicity of
presentation.

Following the high-order finite element scheme for MFC problems in [16], we discretize the
constraint optimization problem (3.1) using high-order finite element methods and apply the ALG2
optimization algorithm to solve the discrete saddle-point problem.

3.1.1. The continuous saddle-point formulation. We introduce a scalar Lagrange multiplier ϕ ∈
H1(ΩT ), where ΩT := [0, T ]×Ω is the space-time domain, for the constraint (3.1b), and a vectorial
Lagrange multiplier σ ∈ L2([0, T ])⊗H(div0; Ω) for the constraint (3.1c), where

H(div0; Ω) := {τ ∈ H(div; Ω) : τ · ν|∂Ω = 0},
in which the H(div)-conforming space

H(div; Ω) := {τ ∈ [L2(Ω)]d : ∇ · τ ∈ L2(Ω)}.
We reformulate the constrained optimization problem (3.1) into the following saddle-point system:
Find the critical point of the system

inf
ρ,m,s,n,ρT

sup
ϕ,σ

∫ T

0

∫

Ω

[ ∥m∥2
2V1(ρ)

+
|s|2

2V2(ρ)
+

|n|2
2V3(ρ)

− F (ρ)
]

dxdt

−
∫ T

0

∫

Ω

[

(ρ ∂tϕ+m · ∇ϕ+ sϕ) + (n · σ + βρ∇ · σ)
]

dxdt

+

∫

Ω

(

ρT ϕ(T, ·)− ρ0 ϕ(0, ·)
)

dx+

∫

Ω
G(ρT )dx,

(3.2)

where the variables m,n ∈ [L2(ΩT )]
d, ρ, s ∈ L2(ΩT ), ρT ∈ L2(Ω) with ρ, ρT ≥ 0 a.e., ϕ ∈ H1(ΩT ),

and σ ∈ L2([0, T ]) ⊗ H(div0; Ω). Notice that integration by parts is used to incorporate the
linear constraints (3.1b)–(3.1c) to the saddle point problem (3.2). Moreover, since no derivative
information is needed for the physical variables m,n, ρ and s, it is natural to approximate them
using L2-conforming spaces.

To simplify the notation, we collect the variables

u := (ρ,m, s,n), and Φ := (ϕ,σ), (3.3a)
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and define the differential operator D by

D(Φ) := (∂tϕ+ β∇ · σ,∇ϕ, ϕ,σ) ∈ [L2(ΩT )]
2d+2. (3.3b)

With this notation, the above saddle-point problem simplifies to the following: Find the critical
point of

inf
u,ρT

sup
Φ

∫ T

0

∫

Ω

[

H(u)− u · D(Φ)
]

dxdt

+

∫

Ω

[

G(ρT ) + ρT ϕ(T, ·)− ρ0 ϕ(0, ·)
]

dx,

(3.4)

where the variables u ∈ [L2(ΩT )]
2d+2, ρT ∈ L2(Ω) with ρ, ρT ≥ 0 a.e., and Φ ∈ H1(ΩT ) ×

(

L2([0, T ])⊗H(div0; Ω)
)

, the nonlinear functional H(u) is given by

H(u) :=
∥m∥2
2V1(ρ)

+
|s|2

2V2(ρ)
+

|n|2
2V3(ρ)

− F (ρ),

and the inner-product is defined by

u · D(Φ) := ρ(∂tϕ+ β∇ · σ) +m · ∇ϕ+ s ϕ+ n · σ.

3.1.2. The high-order finite element scheme and numerical integration. Following the work [16],
we approximate the physical variables m,n, s, ρ using (discontinuous) high-order integration rule
spaces, the variable ϕ using a high-order H1-conforming finite element space, and the variable σ

using a vectorial H1-conforming finite element space. Let Ωh = {Tℓ}NS
ℓ=1 be a conforming mesh

of the spatial domain Ω with NS elements, and Ih = {Ij}NT
j=1 be a uniform discretization of the

temporal domain [0, T ] with NT line segments. We denote the space-time mesh ΩT,h := Ih ⊗ Ωh.

For simplicity, we restrict ourselves to the case where the domain Ω = [0, 1]d is a unit hypercube
and its spatial mesh Ωh is a Cartesian mesh with uniform hypercubic elements. Given a polynomial
degree k ≥ 1, we denote the following H1 and L2 finite element spaces:

V k
h := {v ∈ H1(ΩT ) : v|Ij×Tℓ

∈ Qk(Ij)⊗Qk(Tℓ) ∀j, ℓ}, (3.5)

W k−1
h := {w ∈ L2(ΩT ) : w|Ij×Tℓ

∈ Qk−1(Ij)⊗Qk−1(Tℓ) ∀j, ℓ}, (3.6)

Mk−1
h := {µ ∈ L2(Ω) : µ|Tℓ

∈ Qk−1(Tℓ) ∀ℓ}, (3.7)

where Qk(S) is the tensor-product polynomial space of degree no greater than k in each coordinate
direction.

Using the above finite element spaces, we obtain the following discrete saddle point problem:
Find the critical point of the discrete system

inf
uh, ρT,h

sup
Φh

∫ T

0

∫

Ω

[

H(uh)− uh · D(Φh)
]

dxdt

+

∫

Ω

[

G(ρT,h) + ρT,h ϕh(T, ·)− ρ0 ϕh(0, ·)
]

dx,

(3.8)

where the variables uh := (ρh,mh, sh,nh) with mh,nh ∈ [W k−1
h ]d, ρ, s ∈ W k−1

h , ρ ≥ 0 a.e.,

ρT,h ∈Mk−1
h with ρT,h ≥ 0 a.e., and Φh := (ϕh,σh) with ϕh ∈ V k

h and σh ∈ [V k
h ]

d with σh ·ν|∂Ω = 0.

Remark 3.1 (On the choice of the finite element spaces). In the scheme (3.8), we use L2-conforming
spaces to approximate the physical variables uh and ρT,h, which is natural as no derivative infor-
mation is needed. Moreover, we use H1(ΩT )-conforming finite element spaces to approximate the
Lagrange multipliers Φh. The use of H1-conforming space to approximate the scalar variable ϕh
is natural as the formulation (3.8) requires space-time derivative information for ϕh. On the other
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hand, the use of H1(ΩT )-conforming space for the vectorial Lagrange multiplier σh is only for the
simplicity of implementation. A more natural finite element space for this variable is the following:

[W k
h ]

d ∩
(

L2([0, T ])⊗H(div0; Ω)
)

,

which is discontinuous in time and H(div)-conforming in space. We will implement this choice in
future work.

Here we use polynomial degree of one order lower to approximate the physical variables uh than
that for the Lagrange multipliers Φh. Our lowest order scheme is a staggered grid scheme where
the physical variables stay in cell centers and the Lagrange multipliers stay on mesh vertices.

In practice, the integrals in (3.8) are discretized using Gauss-Legendre quadrature rules with k
integration points per direction. The total number of integration points for the space-time integral
on [0, T ] × Ω is (kNT ) × (kdNS), and that for the spatial integral on Ω is kdNS , where NT is the
number of temporal cells and NT is the number of spatial cells. Denoting these spatial/temporal
Gauss-Legendre quadrature points as

{ξi}k
dNS

i=1 , and {ηj}kNT
j=1 (3.9a)

with their associated quadrature weights as

{ωi}k
dNS

i=1 , and {ζj}kNT
j=1 , (3.9b)

we write the discrete integrals as follows:

⟨⟨f(t, x)⟩⟩h :=

kNT
∑

j=1

kdNS
∑

i=1

f(ηj , ξi)ωiζj , (3.9c)

⟨f(x)⟩h :=

kdNS
∑

i=1

f(ξi)ωi. (3.9d)

Furthermore, we use the Gauss-Legendre basis for the L2-conforming spaces W k−1
h and Mk−1

h in

the implementation, i.e., a function wh ∈W k−1
h is expressed as

wh =

kNT
∑

j=1

kdNS
∑

i=1

wij ψj(t)φi(x),

with coefficient wij ∈ R. Here the tensor-product Gauss-Legendre basis function ψj(t)φi(x) ∈W k−1
h

satisfies the nodal interpolation property

ψj(ζj′) = δjj′ , and φi(ξi′) = δii′ ,

where δii′ = 1 if i = i′ and δii′ = 0 if i ̸= i′. A function vh ∈ Mk−1
h is expressed as vh =

∑kdNS
i=1 viφi(x) with coefficient vi ∈ R. Here wij = wh(ζj , ξi) is the value of wh on the space-time

integration point (ζj , ξi), and vi = vh(ξi) is the value of vh on the spatial integration point ξi.
Hence there holds

⟨⟨f(wh)⟩⟩h :=

kNT
∑

j=1

kdNS
∑

i=1

f(wij)ωiζj , ∀wh =

kNT
∑

j=1

kdNS
∑

i=1

wij ψj(t)φi(x) ∈W k−1
h ,

⟨f(vh)⟩h :=

kdNS
∑

i=1

f(vi)ωi, ∀vh =

kdNS
∑

i=1

viφi(x) ∈Mk−1
h .
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With these notation, the fully discrete scheme (3.8) with numerical integration is given as follows:
Find the critical point of the fully discrete system

inf
uh, ρT,h

sup
Φh

⟨⟨H(uh)− uh · D(Φh)⟩⟩h

+ ⟨G(ρT,h) + ρT,h ϕh(T, ·)− ρ0 ϕh(0, ·)⟩h.
(3.10)

Here the unknowns ρT,h =
∑kdNS

i=1 ρT,iφi(x) with non-negative coefficient ρT,i ∈ R+, uh := (ρh,mh, sh,nh)
with

ρh =

kNT
∑

j=1

kdNS
∑

i=1

ρij ψj(t)φi(x), mh =

kNT
∑

j=1

kdNS
∑

i=1

mijψj(t)φi(x),

sh =

kNT
∑

j=1

kdNS
∑

i=1

sijψj(t)φi(x), nh =

kNT
∑

j=1

kdNS
∑

i=1

nijψj(t)φi(x),

where coefficients ρij ∈ R+, mij ,nij ∈ R
d, and sij ∈ R, and Φh := (ϕh,σh) ∈ [V k

h ]
d+1 with

σh · ν|∂Ω = 0.
We further note that the use of Gauss-Legendre integral rule along with the (nodal) Gauss-

Legendre bases for the discontinuous spaces W k−1
h and Mk−1

h significantly simplifies the optimiza-
tion problem (3.10), as no explicit degrees of freedom coupling is introduced among the physical
variables uh and ρT,h. In particular, given a fixed Lagrange multiplier Φh, the nonlinear optimiza-
tion problem (3.10) for uh and ρT,h can be solved in a pointwise fashion per integration point.
Moreover, positivity of the (space-time) density ρh and the terminal density ρT,h is guaranteed on
all quadrature points by design as the admissible set requires their coefficients to be non-negative:
ρij , ρT,i ≥ 0. The scheme (3.10) does not prescribe the choice of basis functions for the H1-

conforming space V k
h . The results are independent of the specific choice of bases for V k

h . We use a
nodal Gauss-Lobatto base in our implementation.

The scheme (3.10) is our fully discrete high-order finite element discretization to the scalar
constraint optimization problem (3.1). Next, we present its optimization solver using the ALG2
algorithm [15], which is also referred to as the alternating direction method of multipliers (ADMM)
method [5].

3.1.3. Duality and augmented Lagrangian. We introduce the dual variables

u∗
h = (ρ∗h,m

∗
h, s

∗
h,n

∗
h) ∈ [W k−1

h ]2d+2, and ρ∗T,h =

kdNS
∑

i=1

ρ
∗
T,iφi(x) ∈Mk−1

h .

To further simplify the notation, we denote

uh =

kNT
∑

j=1

kdNS
∑

i=1

uij ψj(t)φi(x), and u
∗
h =

kNT
∑

j=1

kdNS
∑

i=1

u∗
ij ψj(t)φi(x),

where
uij := (ρij ,mij , sij ,nij) ∈ R

2d+2, with ρij ≥ 0,

and
u∗
ij := (ρ∗ij ,m

∗
ij , s

∗
ij ,n

∗
ij) ∈ R

2d+2.

Introducing the following Legendre transforms:

H∗(u∗
ij) := sup

uij∈R2d+2,ρij≥0

uij · u∗
ij −H(uij), (3.11a)

G∗(ρ∗T,i) := sup
ρT,i∈R+

ρT,i · ρ∗T,i −G(ρT,i), (3.11b)
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by duality, there holds

H(uij) := sup
u∗

ij∈R2d+2

uij · u∗
ij −H∗(u∗

ij), (3.11c)

G(ρT,i) := sup
ρ
∗

T,i∈R
ρT,i · ρ∗T,i −G∗(ρ∗T,i). (3.11d)

Plugging the relations (3.11c) and (3.11d) back to the scheme (3.10), we have the following dual
formulation of (3.10): Find the critical point of

sup
uh, ρT,h

inf
Φh,u

∗

h, ρ
∗

T,h

⟨⟨H∗(uh) + uh · (D(Φh)− u∗
h)⟩⟩h

+ ⟨G∗(ρ∗T,h)− ρT,h (ϕh(T, ·) + ρ∗T,h) + ρ0 ϕh(0, ·)⟩h.
(3.12)

It is clear that in the above formulation (3.12), the variable uh is the Lagrange multiplier for the
constraint D(Φh) − u∗

h = 0, while the variable ρT,h is the Lagrange multiplier for the terminal
constraint ϕh(T, x) + ρ∗T,h(x) = 0.

Hence, the critical point of the system (3.12) is equivalent to the following augmented Lagrangian
system

sup
uh, ρT,h

inf
Φh,u

∗

h, ρ
∗

T,h

⟨⟨H∗(u∗
h) + uh · (D(Φh)− u∗

h)⟩⟩h

+ ⟨G∗(ρ∗T,h)− ρT,h (ϕh(T, ·) + ρ∗T,h) + ρ0 ϕh(0, ·)⟩h
+
r

2
⟨⟨(D(Φh)− u∗

h) · (D(Φh)− u∗
h)⟩⟩h

+
r

2
⟨(ϕh(T, ·) + ρ∗T,h)

2⟩h,

(3.13)

where r > 0 is the augmented Lagrangian parameter.

3.1.4. The ALG2 algorithm and its efficient (modified) implementation. The ALG2 solves the op-
timization problem (3.13) in a splitting fashion. One update from iteration level ℓ− 1 to ℓ contains
three steps:

• Step A: Given data uℓ−1
h , ρℓ−1

T,h ,u
∗,ℓ−1
h , ρ∗,ℓ−1

T,h , compute Φℓ
h by optimizing the target functional

in (3.13) with respect to Φh.

• Step B: Given data uℓ−1
h , ρℓ−1

T,h ,Φ
ℓ
h, compute u∗,ℓ

h and ρ∗,ℓT,h by optimizing the target functional

in (3.13) with respect to u∗
h and ρ∗T,h.

• Step C: Update the Lagrange multipliers uℓ
h, ρ

ℓ
T,h by the following explicit expressions:

uℓ
h = uℓ−1

h + r(D(Φℓ
h)− u∗,ℓ

h ), (3.14a)

ρℓT,h = ρℓ−1
T,h − r(ϕℓh(T, ·) + ρ∗,ℓT,h). (3.14b)

Here Step A contains a global constant-coefficient linear system solver for the variables Φh =
(ϕh,σh), Step B is a pointwise nonlinear equation solved per quadrature point that involves the
dual functions H∗ and G∗, and Step C is a simple pointwise update. In practical implementation,
we apply two further simplifications to the above ALG2 algorithm: (1) apply splitting to solve ϕh
and σh sequentially; (2) use duality to solve pointwise nonlinear problems for uh and ρT,h, and
then apply a simple pointwise update for the dual variables u∗

h and ρ∗T,h. We note that the second
modification avoids the explicit computation of the dual functions, which has already been used
in our previous work on ALG2 for variational time implicit schemes for reaction-diffusion systems
[17]. One iteration of the modified ALG2 algorithm is documented in Algorithm 1 below. We skip
the detailed derivation of each step. Since the whole algorithm is very similar to Algorithm 2 in
[17] with simple modifications.
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Algorithm 1 One iteration of (modified) ALG2 for (3.13).

1: Step A1. Find ϕℓh ∈ V k
h such that, for all ψh ∈ V k

h ,

⟨⟨∂tϕℓh · ∂tψh +∇ϕℓh · ∇ψh + ϕℓh · ψh⟩⟩h + ⟨ϕℓh(T, ·)ψh(T, ·)⟩h

= ⟨⟨(ρ∗,ℓ−1
h − ρℓ−1

h

r
− β∇ · σℓ−1

h )∂tψh + (m∗,ℓ−1
h − mℓ−1

h

r
) · ∇ψh⟩⟩h

+ ⟨⟨(s∗,ℓ−1
h − sℓ−1

h

r
) · ψh⟩⟩h − ⟨(ρ∗,ℓ−1

T,h −
ρℓ−1
T,h

r
) · ψh(T, ·)⟩h − ⟨ρ

0

r
· ψh(0, ·)⟩h.

2: Step A2. Find σℓ
h ∈ [V k

h ]
d with σℓ

h · ν|∂Ω = 0 such that

⟨⟨β2(∇ · σℓ
h)(∇ · τh) + σℓ

h · τh⟩⟩h

= ⟨⟨β(ρ∗,ℓ−1
h − ρℓ−1

h

r
− ∂tϕ

ℓ
h)∇ · τh + (n∗,ℓ−1

h − nℓ−1
h

r
) · τh⟩⟩h

for all τh ∈ [V k
h ]

d with τh · ν|∂Ω = 0.

3: Step A3. Evaluate D(Φℓ
h) on each space-time quadrature point (ζj , ξi), and ϕℓh(T, ·) on each

spatial quadrature point ξi. Denote these values as

DΦℓ
ij := (dρℓij ,dm

ℓ
ij , ds

ℓ
ij ,dn

ℓ
ij), dρℓT,i = ϕℓh(T, ξi).

Set uℓ
ij = (ρℓij ,m

ℓ
ij , s

ℓ
ij ,n

ℓ
ij) := DΦℓ

ij + uℓ−1
ij /r, and ρ

ℓ
T,i := ρ

ℓ−1
T,i /r − dρℓT,i.

4: Step B1. For each quadrature point (ζj , ξi), find the nonnegative density coefficient ρ
ℓ
ij ∈ R+

such that it minimizes the function

Lij(ρ) :=
r2|mℓ

ij |2
r + V1(ρ)

+
r2|sℓij |2
r + V2(ρ)

+
r2|nℓ

ij |2
r + V3(ρ)

+
(ρ− rρℓij)

2

r
− 2F (ρ),

and find the nonnegative terminal density coefficient ρ
ℓ
T,i ∈ R+ such that it minimizes the

function LT,i(ρ) := 2G(ρ) + (ρ− rρℓT,i)
2/r.

5: Step B2. Update the following coefficients:

mℓ
ij =

rV1(ρ
ℓ
ij)

r + V1(ρℓij)
mℓ

ij , sℓij =
rV2(ρ

ℓ
ij)

r + V2(ρℓij)
sℓij , nℓ

ij =
rV3(ρ

ℓ
ij)

r + V3(ρℓij)
nℓ
ij .

6: Step C. update the dual variables according to the following:

u
∗,ℓ
ij = uℓ

ij − uℓ
ij/r, ρ

∗,ℓ
T,i = ρℓT,i − ρℓT,i/r.

Remark 3.2 (Computational complexity for Algorithm 1). Step A1 involves solving a symmetric
positive definite linear system for a constant-coefficient reaction-diffusion equation, for which we
use preconditioned conjugate gradient (PCG) method with a geometric multigrid preconditioner.
It achieves a linear computational complexity O(N) with N = dimV k

h being the total number
of degrees of freedom. Step A2 is an H(div)-elliptic linear system problem. This system is well-
conditioned for small parameter β ≪ 1, which is usually the case in our applications. We use the
PCG method with a Jacobi preconditioner, which achieves optimal linear computational complexity
O(dN). Step B and C involve pointwise updates, which again have a linear complexity of O(N).
Hence the overall computational complexity of applying one iteration of Algorithm 1 is linear. It
is also clear that Step B1 guarantees the positivity of density on all quadrature points.

Remark 3.3 (On unique solvability for Step B1). Unique solvability of the one-dimensional mini-
mization problem in Step B1 of Algorithm 1 can be guaranteed when the functions Lij and LT,i are
strongly convex. Strong convexity is ensured if the mobility functions V1, V2, and V3 are positive
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and concave functions, the potential function F (ρ) is concave, and the function G(ρ) is convex,
which are satisfied by the choices in Table 1.

3.2. System case. In this subsection, we discretize the model (2.18) with M species and R reac-
tions. We note that due to our formulation, there are no additional technical difficulties for the
system derivation compared with the scalar case. We still document details of the finite element
scheme and its splitting optimization solver for the completeness of this paper.

Again, we introduce the vectors ni := β∇ρi to avoid derivative evaluation of the densities for
the scheme. To simplify the notation, we denote the collection of densities ρ = (ρ1, · · · , ρM ), fluxes
m = (m1, · · · ,mM ), vectors n = (n1, · · · ,nM ), and sources s = (s1, · · · , sR). Then optimization
problem (2.18) is rewritten as follows:

inf
ρ,m,s,n

∫ T

0

∫

Ω





M
∑

i=1

( ∥mi∥2
2V1,i(ρi)

+
|ni|2

2V3,i(ρi)

)

+

R
∑

p=1

|sp|2
2V2,p(ρ)



 dxdt

−
∫ T

0

∫

Ω
F (ρ) dxdt+

∫

Ω
G(ρ(T, x))dx,

(3.15a)

subject to constraints

∂tρi +∇ ·mi −
R
∑

p=1

γi,psp = 0, (3.15b)

ni − β∇ρi = 0, (3.15c)

for all 1 ≤ i ≤ M on [0, T ] × Ω, with fixed initial densities ρi(0, x) = ρ0i (x) in Ω and no-flux
boundary conditions mi · ν = 0 on [0, T ]× ∂Ω.

Similar to the scalar case in (3.4), we reformulate the constrained optimization problem (3.1)
into the following saddle-point system: Find the critical point of

inf
u,ρT

sup
Φ

∫ T

0

∫

Ω

[

H(u)− u · D(Φ)
]

dxdt

+

∫

Ω

[

G(ρT ) + ρT · φ(T, ·)− ρ0 · φ(0, ·)
]

dx.

(3.16)

Here the variables

u := (ρ,m, s,n) ∈ [L2(ΩT )]
(2d+1)M+R, (3.17)

ρT := (ρ1,T , · · · , ρM,T ) ∈ [L2(Ω)]M , (3.18)

Φ := (φ,σ) ∈ [H1(ΩT )]
M ×

[

L2([0, T ])⊗H(div0; Ω)
]M

, (3.19)

with

φ = (ϕ1, · · · , ϕM ), and σ = (σ1, · · · ,σM ),

and initial data ρ0 := (ρ01, · · · , ρ0M ). Here the nonlinear function

H(u) :=

M
∑

i=1

( ∥mi∥2
2V1,i(ρi)

+
|ni|2

2V3,i(ρi)

)

+

R
∑

p=1

|sp|2
2V2,p(ρ)

− F (ρ),

and the operator

D(Φ) := (∂tφ+ β∇ · σ,∇φ,ΓTφ,σ),

where ∇ ·σ := (∇ ·σ1, · · · ,∇ ·σM ) is the component-wise divergence and ∇φ := (∇ϕ1, · · · ,∇ϕM )
is the component-wise gradient, and Γ = (γi,p) ∈ R

M×R is the reaction coefficient matrix. Note
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that the inner-product u · D(Φ) has the following component-wise form

u · D(Φ) =
M
∑

i=1

(ρi(∂tϕi + β∇ · σi) +mi · ∇ϕi + ni · σi) +
R
∑

p=1

M
∑

i=1

spγi,pϕi.

Replacing the function spaces with appropriate (high-order) finite element spaces and applying
numerical integration, we derive the following fully discrete scheme: Find the critical point of the
fully discrete system

inf
uh,ρT,h

sup
Φh

⟨⟨H(uh)− uh · D(Φh)⟩⟩h

+ ⟨G(ρT,h) + ρT,h · φh(T, ·)− ρ0 · φh(0, ·)⟩h.
(3.20)

Here the unknowns ρT,h =
∑kdNS

i=1 ρT,iφi(x) with non-negative coefficient ρT,i ∈ R
M
+ , uh :=

(ρh,mh, sh,nh) with

ρh =

kNT
∑

j=1

kdNS
∑

i=1

ρij ψj(t)φi(x), mh =

kNT
∑

j=1

kdNS
∑

i=1

mijψj(t)φi(x),

sh =

kNT
∑

j=1

kdNS
∑

i=1

sijψj(t)φi(x), nh =

kNT
∑

j=1

kdNS
∑

i=1

nijψj(t)φi(x),

where coefficients ρij ∈ R
M
+ , mij ,nij ∈ R

dM , and sij ∈ R
R, and Φh := (φh,σh) ∈ [V k

h ]
(d+1)M with

σh · ν|∂Ω = 0.
We introduce the dual variables

u∗
h = (ρ∗h,m

∗
h, s

∗
h,n

∗
h) ∈ [W k−1

h ](2d+1)M+R,

and ρ∗T,h =
∑kdNS

i=1 ρ
∗
T,iφi(x) ∈Mk−1

h , and denote

uh =

kNT
∑

j=1

kdNS
∑

i=1

uij ψj(t)φi(x), and u
∗
h =

kNT
∑

j=1

kdNS
∑

i=1

u∗
ij ψj(t)φi(x),

with coefficients

uij := (ρij ,mij , sij ,nij) ∈ R
(2d+1)M+R, with ρij ≥ 0,

and

u∗
ij := (ρ∗

ij ,m
∗
ij , s

∗
ij ,n

∗
ij) ∈ R

(2d+1)M+R.

Using these dual variables, we obtain the following augmented Lagrangian formulation of (3.20):

sup
uh,ρT,h

inf
Φh,u

∗

h,ρ
∗

T,h

⟨⟨H∗(u∗
h) + uh · (D(Φh)− u∗

h)⟩⟩h

+ ⟨G∗(ρ∗T,h)− ρT,h · (φh(T, ·) + ρ∗T,h)⟩h
+
r

2
⟨⟨(D(Φh)− u∗

h) · (D(Φh)− u∗
h)⟩⟩h

+
r

2
⟨|φh(T, ·) + ρ∗T,h|2⟩h + ⟨⟨ρ0 · φh(0, ·)⟩⟩h

(3.21)

Finally, we introduce a splitting algorithm (modified ALG2) for the saddle-point system (3.21),
where we sequentially compute each component of Φh in the linear elliptic update (Step A) and of
the densities ρh and ρT,h in the nonlinear update (Step B1); see also [17].
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The coupled global elliptic linear system for Φh = (φh,σh) in ALG2 takes the following form:

Find (φh,σh) ∈ [V k
h ]

(d+1)M with σh · ν|∂Ω = 0, such that, for all (ψh, τ h) ∈ [V k
h ]

(d+1)M with
τ h · ν|∂Ω = 0, there exists

M
∑

i=1

⟨⟨(∂tϕi,h + β∇ · σi,h)(∂tψi,h + β∇ · τi,h)⟩⟩h

+ ⟨⟨∇ϕi,h · ∇ψi,h + σi,h · τi,h⟩⟩h + ⟨ϕi,h(T, ·)ψi,h(T, ·)⟩h

+

R
∑

p=1

⟨⟨(
∑M

i=1 γi,pϕi,h)(
∑M

i=1 γi,pψi,h)⟩⟩h

=

M
∑

i=1

⟨⟨(ρ∗i,h −
ρi,h
r

)(∂tψi,h + β∇ · τi,h)⟩⟩h

+ ⟨⟨(m∗
i,h −

mi,h

r
) · ∇ψi,h + (n∗

i,h −
ni,h

r
) · τi,h⟩⟩h

− ⟨(ρ∗i,T,h −
ρi,T,h
r

)ψi,h(T, ·)⟩h + ⟨(ρ∗i,0 −
ρi,0
r

)ψi,h(0, ·)⟩h

+
R
∑

p=1

⟨⟨((s∗p,h −
sp,h
r

))(
∑M

i=1 γi,pψi,h)⟩⟩h.

(3.22)

This system is solved sequentially in practice to drive down the overall computational cost. The
i-th component scalar reaction-diffusion solver for ϕℓi,h at ℓ-th iteration reads as follows:

⟨⟨∂tϕℓi,h∂tψi,h +∇ϕℓi,h · ∇ψi,h⟩⟩h

+ ⟨ϕℓi,h(T, ·)ψi,h(T, ·)⟩h +
R
∑

p=1

⟨⟨γ2i,pϕℓi,hψi,h⟩⟩h

= ⟨⟨(ρ∗,ℓ−1
i,h −

ρℓ−1
i,h

r
− β∇ · σℓ−1

i,h )∂tψi,h⟩⟩h

+ ⟨⟨(m∗,ℓ−1
i,h −

mℓ−1
i,h

r
) · ∇ψi,h⟩⟩h

− ⟨(ρ∗,ℓ−1
i,T,h −

ρℓ−1
i,T,h

r
)ψi,h(T, ·)⟩h + ⟨(ρ∗i,0 −

ρi,0
r

)ψi,h(0, ·)⟩h

+
R
∑

p=1

⟨⟨(s∗p,h −
sp,h
r

−
∑i−1

j=1 γj,pϕ
ℓ
j,h −

∑M
j=i+1 γj,pϕ

ℓ−1
j,h )γi,pψi,h⟩⟩h.

(3.23)

The i-th component H(div)-elliptic solver for σℓ
i,h reads as follows

⟨⟨β2(∇ · σℓ
i,h)(∇ · τi,h) + σℓ

i,h · τi,h⟩⟩h

=
M
∑

i=1

⟨⟨(ρ∗,ℓ−1
i,h −

ρℓ−1
i,h

r
− ∂tϕ

ℓ
i,h)β∇ · τi,h + (n∗,ℓ−1

i,h −
nℓ−1
i,h

r
) · τi,h⟩⟩h.

(3.24)



MFC WITH FEM 19

Meanwhile, the nonlinear update on each quadrature point for the densities ρℓ
ij = (ρℓ1,ij , · · · , ρℓM,ij) ∈

R
M
+ takes the following form: find ρ

ℓ
ij ∈ R

M
+ that minimizes the function

Lij(ρ) :=
M
∑

m=1

r2|mℓ
m,ij |2

r + V1,m(ρm)
+

r2|nℓ
m,ij |2

r + V3,m(ρm)
+

(ρm − rρℓ
m,ij)

2

r

− 2F (ρ) +

R
∑

p=1

r2|sℓp,ij |2
r + V2,p(ρ)

.

(3.25)

And the nonlinear update for the terminal densities ρ
ℓ
T,i = (ρℓ1,T,i, · · · , ρℓM,T,i) ∈ R

M
+ takes the

following form: find ρ
ℓ
T,i ∈ R

M
+ that minimizes the function

LT,i(ρ) := 2G(ρ) + |ρ− rρℓ
T,i|2/r. (3.26)

Here the bar-values take the same form as in Step A3 of Algorithm 1, namely,

uℓ
ij := (ρℓ

ij ,m
ℓ
ij , s

ℓ
ij ,n

ℓ
ij) := DΦℓ

ij + uℓ
ij/r, ρ

ℓ
T,i := ρ

ℓ
T,i/r − φℓ

h(T, ξi). (3.27)

The pointwise optimization problems in (3.23) and (3.26) are M -dimensional problems. These
problems are usually loosely coupled among the density components. We further reduce the com-
putational cost by separately solving for each density component sequentially, which results in M
one-dimensional minimization problems per integration point. The positivity of the densities is
guaranteed in our algorithm at the quadrature points. After the densities ρ

ℓ
ij and ρ

ℓ
T,i have been

computed, we then update the other physical variables on the quadrature point as follows:

mℓ
m,ij =

rV1,m(ρ
ℓ
m,ij)

r + V1,m(ρℓm,ij)
mℓ

m,ij , nℓ
m,ij =

rV3,m(ρ
ℓ
m,ij)

r + V3,m(ρℓm,ij)
nℓ
m,ij , (3.28a)

m∗,ℓ
m,ij =

r

r + V1,m(ρℓm,ij)
mℓ

m,ij , n∗,ℓ
m,ij =

r

r + V3,m(ρℓm,ij)
nℓ
m,ij , (3.28b)

ρ
∗,ℓ
ij = ρ

ℓ
ij − ρ

ℓ
ij/r, ρ

∗,ℓ
T,i = ρ

ℓ
T,i − ρ

ℓ
T,i/r, (3.28c)

sℓp,ij =
rV2,p(ρ

ℓ
ij)

r + V2,p(ρℓ
ij)

sℓp,ij , s∗,ℓp,ij =
r

r + V2,p(ρℓ
ij)

sℓp,ij . (3.28d)

For completeness, we collect the above procedures into the following algorithm.

Algorithm 2 One iteration of (modified) ALG2 for (3.21).

1: Step A. For i = 1, · · · ,M , solve the linear system (3.23) for the unknown ϕℓi,h, and solve the

linear system (3.24) for the unknown σℓ
i,h. Interpolate the operator D(Φℓ

h) on quadrature

points, and compute the bar-values (on quadrature points) in (3.27).
2: Step B. For each quadrature point, sequentially compute the nonnegative density minimizers

to (3.25) and (3.26).
3: Step C. Update the other variables on quadrature points according to (3.28).

4. Numerical results

In this section, we present one- and two-dimensional numerical results for the scalar scheme
(3.13) and the system scheme (3.21) using the finite element software MFEM [2]. The spatial
domain Ω = [0, 1]d is taken to be either a unit line segment (d = 1) or a unit square (d = 2).
The terminal time is T = 1. Furthermore, we solve the mean field planning problem for all the
numerical simulations, where the initial and terminal densities are prescribed. In this case, the
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terminal density is no longer an unknown variable. Hence the scalar optimization problem (3.13)
simplifies as below

sup
uh

inf
Φh,u

∗

h

⟨⟨H∗(u∗
h) + uh · (D(Φh)− u∗

h)⟩⟩h

+ ⟨−ρ1 ϕh(T, ·) + ρ0 ϕh(0, ·)⟩h
+
r

2
⟨⟨(D(Φh)− u∗

h) · (D(Φh)− u∗
h)⟩⟩h,

(4.1)

and the system optimization problem (3.21) simplifies as below

sup
uh

inf
Φh,u

∗

h

⟨⟨H∗(u∗
h) + uh · (D(Φh)− u∗

h)⟩⟩h

+ ⟨−ρ1 · φh(T, ·) + ρ0 · φh(0, ·)⟩h
+
r

2
⟨⟨(D(Φh)− u∗

h) · (D(Φh)− u∗
h)⟩⟩h.

(4.2)

We take the augmented Lagrangian parameter r = 1 for all the simulations.

4.1. Scalar MFC for reaction-diffusion: β = 0. We first consider a planning problem for scalar
MFC (2.3) with regularization parameter β = 0 (no Fisher information functional). With β = 0,
we do not compute the nh,n

∗
h and σh variables in the optimization problem (4.1), since they are

always zero and are decoupled from the other variables.
We solve the problem (4.1) (with β = 0) on ΩT = [0, 1] × Ω with Ω = [0, 1]d for d = 1, 2. The

initial (resp. terminal) densities are chosen to be:

ρ0(x) = exp(−50|x− xA|2), ρ1(x) = exp(−50|x− xB|2), ∀x = (x1, · · · , xd) ∈ Ω.

Here xA = 0.25, xB = 0.75 for d = 1, and xA = (0.25, 0.25), xB = (0.75, 0.75) for d = 2. We fix
V1(ρ) = ρ and potential function

F (t, x, ρ) = −(0.01ρ log(ρ) + 0.4ρ cos(4πt)
d
∏

i=1

cos(4πxi)). (4.3)

Moreover, we take the following four choices of V2(ρ) to highlight different reaction effects of the
model:























Case 1 : V2(ρ) = 0

Case 2 : V2(ρ) = 20

Case 3 : V2(ρ) = 20ρ

Case 4 : V2(ρ) = 20 ρ−1
log(ρ) .

(4.4)

The 1D results are computed on a 64×64 uniform rectangular space-time mesh, and the 2D results
are computed on a 16× 64× 64 uniform cubic space-time mesh. We use polynomial degree k = 4,
and apply 400 ALG iterations for all the simulations. The density contours for the d = 1 on the
space-time 2D domain ΩT are shown in Figure 1. The snapshots of density contours on Ω = [0, 1]2

at different times for the d = 2 are shown in Figure 2. We find the dynamics with and without
reaction terms are completely different. The reaction function in Figure 1 (b) and (d) shows that
the reaction mobility function V2 dominates the path between ρ0 and ρ1. While the transport
mobility function V1 dominates the path between ρ0 and ρ1 in Figure 1 (a) and (c). In Figure 2,
we observe a different pattern formulation for various choices of general nonlinear reaction mobility
function V2. This behaves very differently from the classical optimal transport problem with V2 = 0.
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(a) V2(ρ) = 0. (b) V2(ρ) = 20. (c) V2(ρ) = 20ρ. (d) V2(ρ) = 20 ρ−1
log(ρ)

.

Figure 1. Example 4.1. Snapshots of density contour on the space-time domain
ΩT = [0, 1]2. The vertical axis represents time.
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(a) V2(ρ) = 0.

(b) V2(ρ) = 20.

(c) V2(ρ) = 20ρ.

(d) V2(ρ) = 20 ρ−1
log(ρ)

.

Figure 2. Example 4.1. Snapshots of density contour at t = 0.1,0.3,0.5, 0.7, 0.9
(left to right).

4.2. Scalar MFC for reaction-diffusion: effect of β. Here we use a similar setup as in Example
4.1, but study the effect of the regularization parameter β. We take take mobility functions V1(ρ) =
ρ, V2(ρ) = 20, and potential function

F (t, x, ρ) = −(0.005ρ log(ρ) + 0.4ρ cos(4πt)
d
∏

i=1

cos(4πxi)). (4.5)

We further take the mobility function V3(ρ) = ρ, and vary β, namely, β = 0, β = 0.005, and
β = 0.01. The same discretization as in Example 4.1 is used. The density contours for d = 1 on the
space-time domain ΩT are shown in Figure 3. The snapshots of density contours at different times
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for d = 2 are shown in Figure 4. In numerical examples, we show that increasing regularization β
leads to a more diffusive density evolution.

(a) β = 0 (b) β = 0.005 (c) β = 0.01

Figure 3. Example 4.2. Snapshots of density contour on ΩT = [0, 1]2.

(a) V2(ρ) = 20, β = 0. (no regularization)

(b) β = 0.005. (weak regularization)

(c) β = 0.01. (strong regularization)

Figure 4. Example 4.2. Snapshots of density contour at t = 0.1,0.3,0.5,0.7,0.9 (left
to right).

4.3. System MFC for reaction-diffusion (M = 2, R = 1). In this example, we consider a
system model (2.5) with M = 2 species and R = 1 reaction. The initial/terminal densities for each
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component are given as:

ρ1(0, x) = exp(−50|x− xA|2), ρ1(1, x) = exp(−50|x− xB|2),
ρ2(0, x) = exp(−50|x− xB|2), ρ2(1, x) = exp(−50|x− xA|2).

We take the mobilities V1,i(ρi) = V3,i(ρi) = ρi for i = 1, 2, and the mobility

V2,1(ρ1, ρ2) = 20
ρ1 − ρ2

log(ρ1)− log(ρ2)
.

The potential function is given as follows

F (t, x,ρ) = −
(

0.01ρ1 log(ρ1) + 0.4ρ1 cos(4πt)

d
∏

i=1

cos(4πxi)

+ 0.005ρ2 log(ρ2)
)

The potential function for the first component has a drift and an entropy term in ρ1, while that for
the second component only has a smaller entropy term in ρ2. We use the same discretization as in
the previous two examples. The density contours for the 1D results (d = 1) are shown in Figure 5
for β = 0, β = 0.005, and β = 0.01. The snapshots of density contours at different times for the
2D results (d = 2) are shown in Figure 6 for β = 0 and β = 0.01. Without reaction mobility V2,
the second component density path ρ2 will be similar to a Gaussian translation. It is clear that the
reaction mobility completely changes the density evolution. Moreover, increasing the regularization
parameter β leads to a diffusive density path, as expected.

(a) ρ1. Left: β = 0, middle: β = 0.005, right: β = 0.01.

(b) ρ2. Left: β = 0, middle: β = 0.005, right: β = 0.01.

Figure 5. Example 4.3. Snapshots of ρ1 (top) and ρ2 (bottom).
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(a) ρ1. β = 0.

(b) ρ1. β = 0.01.

(c) ρ2. β = 0.

(d) ρ2. β = 0.01.

Figure 6. Example 4.3. Snapshots of ρ1 and ρ2 at t = 0.1,0.3,0.5,0.7,0.9 (left to right).

4.4. 2D Scalar MFC for reaction-diffusion: image transfer. In this example, we consider
a 2D scalar mean field planning problem (2.3) with complex initial and terminal densities ρ0(x)
and ρ1(x), and a complex spatial coordinate dependent mobility V2(x, ρ) = 20ρ2(x)ρ and potential
F (x, ρ) = −0.001ρ3(x)ρ. Here the four non-negative functions ρ0(x), ρ1(x), ρ2(x), and ρ3(x) are
normalized mascot images as shown in Figure 7, which are logos from University of Notre Dame,
UCLA, Portland State university, and University of South Carolina, respectively. We further take
V1(ρ) = V3(ρ) = ρ, and vary the regularization parameter β = 0, β = 5× 10−4, and β = 10−3. We
apply the scheme (4.1) with polynomial degree k = 4 on a 16× 64× 64 uniform mesh, and perform
2000 ALG iterations. Snapshots of density contours at different times for different β are shown in
Figure 8. It is interesting to observe that the mobility coefficient ρ2(x) in V2 and the interaction
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(a) ρ0(x) (b) ρ1(x) (c) ρ2(x) (d) ρ3(x)

Figure 7. Example 4.4. The four functions ρ0(x), ρ1(x), ρ2(x), ρ3(x). Initial
density is ρ0, terminal density is ρ1, mobility V2(x, ρ) = 20ρ2(x)ρ and potential
F (x, ρ) = −0.001ρ3(x)ρ.

coefficient ρ3(x) in F are imprinted in the density evolution. We also observe a strong diffusion
effect when β = 10−3.

(a) β = 0

(b) β = 5× 10−4

(c) β = 10−3

Figure 8. Example 4.4. Snapshots of density contours at t = 0.2,0.4,0.6,0.8 (left
to right) for different β.
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4.5. 2D System MFC for reaction-diffusion (M = 2, R = 1): image transfer. In this
example, we consider a system model (2.5) with M = 2 species and R = 1 reaction. We take
the initial and terminal densities as the images in Figure 7. Specifically, the two initial densities
ρ01 = ρ0(x), ρ02 = ρ3(x), and the two terminal densities ρ11 = ρ1(x) and ρ12 = ρ2(x). We take
V1,i(ρ) = ρ,

V2,1(ρ) = 20
ρ1 + ρ2

2
,

no potential F (ρ) = 0, and no regularization β = 0. We use the same discretization as the previous
example, and apply 2000 ALG iterations. Snapshots of the density contour at different times are
shown in Figure 9. Here the reaction with mobility V2,1 makes the density evolution different from
a classical optimal transport path for each component.

(a) ρ1

(b) ρ2

Figure 9. Example 4.5. Snapshots of ρ1 (top) and ρ2 (bottom) at t = 0.2,0.4,0.6,0.8
(left to right).

4.6. 2D System MFC for reaction-diffusion (M = 12, R = 12). In the last example, we
consider a system model (2.5) with M = 12 species and R = 12 reaction. The initial densities
are the ancient Chinese calligraphy in seal script for the 12 Chinese zodiac animals, which are
downloaded from Richard Sears’ website https://hanziyuan.net/, while the terminal densities
are their associated (gray-scale) images, which are generated by Baidu’s text-to-image AI tool
WenXin YiGe https://yige.baidu.com/. We rescale the images so that the maximal value is 1
and minimial value is 0; see Figure 10–11 for the 12 initial (t = 0) and terminal (t = 1) density
approximations in gray scale.

Here we take V1,i(ρ) = ρ,

V2,p(ρ) = 20
ρp − ρp+1

log(ρp)− log(ρp+1)
, ∀1 ≤ p ≤ 12,

where the convention ρ13 = ρ1 is used. The reaction patterns for this system are cyclic. Again, we
set potential F (ρ) = 0, and regularization β = 0. We use the same discretization as the previous
example and apply 2000 ALG iterations. The results at time t = 0.0, 0.2, 0.5, 0.8, and 1.0 are shown
in Figure 10–11. The color range is gray-scale from 0 (black) to 1 (white). We observe interesting
and complex densities’ evolutions from these figures.
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For comparison purposes, we also plot the snapshots of densities at time t = 0.5 for optimal
transport without reaction (V2,p = 0) in Figure 12. It is observed that the results in the middle
row of Figure 10–11 for the reaction-diffusion system model are very different from the scalar
optimal transport results in Figure 12. These differences come from the nonlinear reaction mobility
functions.

Figure 10. Example 4.6. Snapshots of first 6 densities ρ1 to ρ6 (left to right) at
times t = 0.0, 0.2, 0.5, 0.8, 1.0 (top to bottom).
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Figure 11. Example 4.6. Snapshots of last 6 densities ρ7 to ρ12 (left to right) at
times t = 0.0, 0.2, 0.5, 0.8, 1.0 (top to bottom).
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Figure 12. Example 4.6. (No reaction V2,p = 0.) Snapshots of densities at t = 0.5.
From left to right, top to bottom: ρ1 to ρ12.

5. Discussions

In this paper, we model and compute a class of generalized optimal transport and mean field
control problems for reaction-diffusion equations and systems. The control problems are constructed
by general choices of transport and reaction mobility functions, such as V1, V2, and V3, derived
from entropy dissipation properties. We apply a high-order spatial-time finite element method
to discretize the spatial-time domain and use the ALG2 algorithm to compute mean field control
problems. Numerical examples in Section 4, including transporting two Gaussian distributions and
a system of 12 images, demonstrate the effectiveness of the proposed mean field control models and
computations.

In future work, we shall study general modeling, computation, and inverse mean field control
problems for reaction-diffusion systems. The generalized nonlinear reaction functions often rep-
resent complex behaviors between different populations, exhibiting patterns in social dynamical
systems. The mean field control problem over transportation and reactions provides new patterns
in population behaviors observed from our numerical examples. The analytical study of these new
patterns could be a future research direction. We also expect that the mean field control prob-
lem of reaction-diffusion systems has vast applications in pandemic control, computer vision, and
image processing problems. The other important direction is the parallel and high-order computa-
tion of generalized optimal transport and mean field control problems on three-dimensional spatial
domains.
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[1] L. Ambrosio, N. Gigli, and G. Savaré, Gradient Flows in Metric Spaces and in the Space of Probability

Measures, Lectures in Mathematics ETH Zürich, Birkhäuser, Basel, 2. ed ed., 2008.
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Appendix

This section gives detailed proofs of Propositions 2.1–2.4.

Proof of Proposition 2.1. Denote E(ρ) =
∫

ΩE(ρ(x))dx. Thus δ
δρ
E(ρ) = E′(ρ). By the change of

variable formula, we obtain

m = m̃− βV1(ρ)∇E′(ρ), s = s̃− βV2(ρ)E
′(ρ).

The constraint set (2.16b) satisfies

0 =∂tρ+∇ · (m̃− βV1(ρ)∇E′(ρ))− (s̃− βV2(ρ)E
′(ρ))

=∂tρ+∇ ·m− s.

Moreover, the terms in objective functional (2.11a) satisfy

∫ T

0

∫

Ω

[ ∥m̃(t, x)∥2
2V1(ρ(t, x))

+
|s̃(t, x)|2

2V2(ρ(t, x))

]

dxdt

=

∫ T

0

∫

Ω

[∥m+ βV1(ρ)∇E′(ρ)∥
2V1(ρ)

+
|s+ βV2(ρ)E

′(ρ)|2
2V2(ρ)

]

dxdt

=

∫ T

0

∫

Ω

[∥m∥2 + β2V1(ρ)
2∥∇E′(ρ)∥2

2V1(ρ)
+

|s|2 + β2V2(ρ)
2|E′(ρ)|2

2V2(ρ)

]

dxdt

+ β

∫ T

0

∫

Ω

[

m · ∇E′(ρ)− s · E′(ρ)
]

dxdt

=

∫ T

0

∫

Ω

[ ∥m∥2
2V1(ρ)

+
|s|2

2V2(ρ)
+
β2

2
∥∇E′(ρ)∥2V1(ρ) +

β2

2
|E′(ρ)|2V2(ρ)

]

dxdt

+ β

∫ T

0

∫

Ω
E′(ρ)

[

−∇ ·m+ s
]

dxdt

=

∫ T

0

∫

Ω

[ ∥m∥2
2V1(ρ)

+
|s|2

2V2(ρ)
+
β2

2
∥∇E′(ρ)∥2V1(ρ) +

β2

2
|E′(ρ)|2V2(ρ)

]

dxdt

+ β

∫ T

0

∫

Ω

[

E′(ρ)∂tρ
]

dxdt

=

∫ T

0

∫

Ω

[ ∥m∥2
2V1(ρ)

+
|s|2

2V2(ρ)
+
β2

2
∥∇E′(ρ)∥2V1(ρ) +

β2

2
|E′(ρ)|2V2(ρ)

]

dxdt

+ β

∫

Ω

[

E(ρ(T, ·))− E(ρ0)
]

dx,

where the last equality follows the fact that
∫ T

0 E′(ρ)∂tρdt =
∫ T

0 ∂tE(ρ)dt = E(ρ(T, ·)) − E(ρ0).
Thus we derive the variational problem (2.13) using the definition of V3 in (2.12). □

Proof of Proposition 2.2. Denote the Lagrange multiplier of problem (2.13) as ϕ : [0, T ] × Ω → R.
Consider the following saddle point problem:

inf
m,s,ρ,ρT

sup
ϕ

L(m, s, ρ, ρT , ϕ),
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where

L(m, s, ρ, ϕ) =

∫ T

0

∫

Ω

[ ∥m∥2
2V1(ρ)

+
|s|2

2V2(ρ)
+ ϕ

(

∂tρ+∇ ·m− s
)]

dxdt

+

∫ T

0

[β2

2
I(ρ)−F(ρ)

]

dt+ G(ρT ) + βE(ρT ).

Assume ρ > 0. By solving the saddle point problem of L, we obtain































































δ

δm
L = 0,

δ

δs
L = 0,

δ

δρ
L = 0,

δ

δϕ
L = 0,

δ

δρT
L = 0,

⇒



























































m

V1
= ∇ϕ,

s

V2
= ϕ,

− 1

2

∥m∥2
V 2
1

V ′
1 −

1

2

|s|2
V 2
2

V ′
2 +

δ

δρ

[β2

2
I(ρ)−F(ρ)

]

− ∂tϕ = 0,

∂tρ+∇ ·m− s = 0,

ϕT +
δ

δρT

(

G(ρT ) + βE(ρT )
)

= 0.

This finishes the proof. □

Proof of Proposition 2.3. The proof is similar to the scalar case. Denote Ei(ρi) =
∫

ΩEi(ρi(x))dx.

Thus δ
δρi

Ei(ρi) = E′
i(ρi). By the change of variable formula, we obtain

mi = m̃i − βV1,i(ρi)∇E′
i(ρi), sp = s̃p − βV2,p(ρ)

M
∑

j=1

γj,pE
′
j(ρj).

The constraint set (2.18b) satisfies

0 =∂tρi +∇ · (m̃i − βV1,i(ρi)∇E′
i(ρi))− (

R
∑

p=1

γi,ps̃p − β
R
∑

p=1

γi,pV2,p(ρ)
M
∑

j=1

γj,pE
′
j(ρj))

=∂tρi +∇ ·mi −
R
∑

p=1

γi,psp.

Moreover, the terms in objective functional (2.18a) satisfies

∫ T

0

∫

Ω

[

M
∑

i=1

∥m̃i(t, x)∥2
2V1,i(ρi(t, x))

+

R
∑

p=1

|s̃p(t, x)|2
2V2,p(ρ(t, x))

]

dxdt

=

∫ T

0

∫

Ω

[

M
∑

i=1

∥mi + βV1,i(ρi)∇E′
i(ρi)∥

2V1,i(ρi)
+

R
∑

p=1

|sp + β
∑M

j=1 γj,pV2,p(ρ)E
′
j(ρj)|2

2V2,p(ρ)

]

dxdt

=

∫ T

0

∫

Ω

[

M
∑

i=1

∥mi∥2 + β2V1,i(ρi)
2∥∇E′

i(ρi)∥2
2V1,i(ρi)

+
R
∑

p=1

|sp|2 + β2|
∑M

j=1 γj,pV2,p(ρ)E
′
j(ρj)|2

2V2,p(ρ)

]

dxdt

+ β

∫ T

0

∫

Ω

[

M
∑

i=1

mi · ∇E′
i(ρi)−

R
∑

p=1

sp ·
M
∑

j=1

γj,pV2,p(ρ)E
′
j(ρj)

]

dxdt.
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We only need to show that

∫ T

0

∫

Ω

[

M
∑

i=1

mi · ∇E′
i(ρi)−

R
∑

p=1

sp ·
M
∑

j=1

γj,pE
′
j(ρj)

]

dxdt =

∫

Ω

M
∑

i=1

[

Ei(ρi(T, ·))− Ei(ρ
0
i )
]

dx.

This is true from the following fact:

∫ T

0

∫

Ω

[

M
∑

i=1

mi · ∇E′
i(ρi)−

R
∑

p=1

sp ·
M
∑

j=1

γj,pE
′
j(ρj)

]

dxdt

=

∫ T

0

∫

Ω

M
∑

i=1

E′
i(ρi) ·

[

−∇ ·mi +
R
∑

p=1

γi,psp

]

dxdt

=

∫

Ω

∫ T

0

M
∑

i=1

E′
i(ρi) · ∂tρidtdx

=

∫

Ω

M
∑

i=1

[

Ei(ρi(T, ·))− Ei(ρ
0
i )
]

dx,

where the last equality uses the integration by parts in the time variable. This finishes the proof. □

Proof of Proposition 2.4. The proof is similar to the scalar case. We derive the minimizer system
for variational problem (2.18). Denote ϕi : [0, T ]× Ω → R as the Lagrange multiplier of constraint
(2.18a), for i = 1, 2, · · · ,M . Write ϕ = (ϕi)

M
i=1. Consider the following saddle point problem

inf
m,s,ρ,ρT

sup
ϕ

L1(m, s,ρ,ρT , ϕ),

where

L1(m, s,ρ,ρT , ϕ)

=

∫ T

0

∫

Ω

[1

2

M
∑

i=1

∥mi∥2
V1,i(ρi)

+
1

2

R
∑

p=1

|sp|2
V2,p(ρ)

+
β2

2
I(ρ)

]

dx−F(ρ(t, ·))dt

+ G(ρT ) + β
(

E(ρT )− E(ρ0)
)

+

M
∑

i=1

∫ T

0

∫

Ω
ϕi ·

{

∂tρi +∇ ·mi −
R
∑

p=1

γi,psp

}

dxdt.
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Assume ρi > 0, i = 1, 2, · · · ,M . By solving the saddle point problem of L1, we obtain



































































δ

δmi
L1 = 0,

δ

δsp
L1 = 0,

δ

δρi
L1 = 0,

δ

δϕi
L1 = 0,

δ

δρT
L1 = 0,

⇒



























































































































mi = V1,i(ρi)∇ϕi,

sp = V2,p(ρ)
M
∑

j=1

γj,pϕp,

− 1

2

M
∑

i=1

∥mi∥2
V1,i(ρi)2

V1,i(ρi)
′

− 1

2

R
∑

p=1

|sp|2
V2,p(ρ)2

∂

∂ρi
V2,p(ρ)

+
∂

∂ρi
[
β2

2
I(ρ)−F(ρ)]− ∂tϕi = 0,

∂tρi +∇ ·mi −
R
∑

p=1

γi,psp = 0,

ϕT +
δ

δρT
G(ρT ) + β

δ

δρT
E(ρT ) = 0.

This finishes the proof. □
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