
Journal of Flow Visualization & Image Processing, 31(1):1–22 (2024)

VISUALIZATION OF TURBULENT EVENTS
VIA VIRTUAL/AUGMENTED REALITY

David Paeres,1 Christian Lagares,1 Alan B. Craig,2 &
Guillermo Araya3,∗
1Department of Mechanical Engineering, University of Puerto Rico, Mayaguez,
PR 00681, USA

2University of Illinois, Urbana-Champaign, IL, USA
3Department of Mechanical Engineering, University of Texas at San Antonio,
San Antonio, TX 78249, USA

*Address all correspondence to: Guillermo Araya, Department of Mechanical
Engineering, University of Texas at San Antonio, San Antonio, TX 78249, USA,
E-mail: araya@mailaps.org

Original Manuscript Submitted: 1/21/2023; Final Draft Received: 4/10/2023

Mixed reality technology, i.e., virtual (VR) and augmented (AR) reality, has spread from research
laboratories to enter the homes of many. Further, the widespread adoption of these technologies has
caught the scientific community’s attention, which is constantly researching potential applications.
Backed by the continued enhancement of high-performance computing in hardware and software, we
are applying mixed reality technologies as a scientific visualization tool for fluid dynamics purposes.
In particular, we show a virtual wind tunnel (along with the simplified methodology to replicate it)
that enables the user to visualize complex and intricate turbulent flow patterns within an immersive
environment. Briefly, high spatial/temporal resolution numerical data over supersonic turbulent
boundary layers subject to concave and convex wall curvature has been creatively “pipelined” for
VR/AR visualization via several scripts, software, and apps, which are further explained and de-
scribed along the manuscript. The intention is to present a technique of how to visualize fluid flows
to be the most convenient for the user, especially if one is slightly unfamiliar with scientific visualiza-
tion. Whereas VR/AR applications are principally discussed here for flow visualization, the lessons
learned can be certainly extended to other disciplines involving three-dimensional time-dependent
databases.

KEY WORDS: VR, AR, flow visualization, CFD, DNS, Unity, ParaView, GLTF, USDZ

1. INTRODUCTION

Data visualization is the general and all-encompassing term for everything related to the graphic

portrayal of information and data. Information visualization denotes data in an organized visual

way to provide meaning (Friendly and Denis, 2006). According to Friendly and Denis (2006),

thematic cartography, statistical graphics, and data visualization histories are intertwined; their

article lists 278 milestones of the concept of information visualization, starting with the sup-

posed oldest known map, dated 6200 BC. Apart from the visuals created with purely artistic or

religious motivations, it is recognizable that the first creations were intended to aid navigation

1065–3090/24/$35.00 © 2024 by Begell House, Inc. www.begellhouse.com 1

2 Paeres et al.

and exploration. These used geometric diagrams and tables to track the positions of stars and

sky constellation elements. The birth of theories such as measurement errors, probability, and

analytical geometry provoked the scientific community’s mindset toward statistical theory and

the systematic collection of empirical data. Inevitably, information visualization extended into

new graphic forms, such as isolines, contours, and other techniques for thematic mapping of

physical quantities such as geological, economic, and medical data (Friendly and Denis, 2006).

Because of the technological development in the 20th century, data visualization received sig-

nificant attention, causing its permanent presence in the scientific field due to its effective way

of conveying information. Friendly and Denis (2006) define scientific visualization as the area

“primarily concerned with the visualization of 3D+ phenomena (architectural, meteorological,

medical, biological, etc.), where the emphasis is on realistic renderings of volumes, surfaces,

illumination sources, and so forth, perhaps with a dynamic (time) component.” In other words,

in scientific visualization, the visual representations cannot be designed solely from the artistic

inspiration of the creator but, by definition, must be based on scientific data identified as genuine

and authentic in order to have scientific and academic applications (e.g., records, research, anal-

yses, etc.). For Hansen and Johnson (2011), the visualization field focuses on creating images

that tell significant information about underlying data and processes. In their work, they devel-

oped a handbook presenting the basic concepts, providing a snapshot of current visualization

software systems, and examining research topics in the field. The objective of scientific visu-

alization is also to enhance the interpretation of complex and large data sets. Since it is highly

used in computing nowadays, it is considered a subset of computer graphics, making it part of

computer science. More suggested literature includes A Concise Introduction to Scientific Visu-

alization: Past, Present, and Future by Hollister and Pang (2022), while more specific articles

in the computational aspect are Nielson et al. (1997) and McCormick (1987). Regarding flow

visualization, a half-century ago, the only technique available to describe coherent structures in

turbulent flows was smoke and dye injection (Brown and Roshko, 1974; Winant and Browand,

1974). According to Hesselink (1988), flow visualization results from the interaction between

matter and light. The definition was based on the classical methods available in those years, such

as shadow photography and Schlieren photography. In the early 1980s, other techniques were

developed through numerical processing of flow visualization pictures for experimentally esti-

mating some of the principal physical variables of fluid flows. That classical visualization relied

on variations of the index of refraction or spatial derivatives of pressure, density, and tempera-

ture integrated along the light path through the fluid (Hesselink, 1988). With such technology, it

was already possible to study phenomena like unsteady twin-vortex flow and Kármán vortices,

as presented in Imaichi and Ohmi (1983). The Visualization Handbook [by Hansen and John-

son (2011)] describes flow visualization as a relevant topic of scientific visualization, intending

to provide more understanding of fluid flows, where typically, nowadays, the data is originated

from numerical simulations such as those of computational fluid dynamics (CFD).

Visualization techniques have substantially evolved along with the world’s technology, span-

ning all disciplines (Sherman et al., 1997). One of the most used approaches in the experimental

discipline of flow visualization is the incorporation of particle image velocimetry (PIV). As its

name suggests, PIV is based on capturing a series of images with a known frame rate to measure

the flow’s instantaneous velocity. Much progress has been made in the research of fluid dynam-

ics using PIV. For example, in recent studies, Mohd et al. (2022) has analyzed transient trailing

jets (TJ) behind a compressible vortex ring generated by a shock of Mach 1.5. They were able to

identify the dominant flow features of the present scenario by categorizing the development of

TJ into three stages. Furthermore, Jha et al. (2022) attempted to visualize and measure a laminar

Journal of Flow Visualization & Image Processing

Flow Visualization via VR/AR 3

natural convection boundary layer formed over a heated vertical flat plate. The experimental

results were compared with the analytical solutions, and they claimed broad agreement. Today

visualization leans greatly on computers and numerical approaches because, in 20 years, the

computing capacity has increased over three orders of magnitude (Paeres et al., 2021b).

The virtual wind tunnel (VWT) (Paeres et al., 2021b) is a virtual environment created with

the Unity game-engine platform to enhance user’s data visualization by immersively observing

and interacting with any three-dimensional (3D) virtual object (i.e., static or animated), currently

from direct numerical simulation (DNS) results, but expandable to other computer-aid designs

(CAD) and other scientific fields. We unified two software rarely related to each other (i.e., Unity

and ParaView), extending the applications offered by these software to create an immersive (i.e.,

virtual reality and augmented reality) scientific visualization methodology, more specifically for

CFD simulations. The methodology is simple to replicate and uses open-source software, while

the personal licenses are free. In the present article, we are expanding the capabilities of our

VWT to work with GLTF files (see Section 3.4), a widely used standard file format for 3D

scenes and models, especially for mixed reality, while maintaining the use of the HTC Vive

VR kit and Microsoft HoloLens 1st gen. hardware, which are devices that many mixed reality

(MR) enthusiasts have already acquired. Although not extensively tested, some preliminary find-

ings suggest that using the HTC Vive Pro 2 to replicate the present pipeline yields comparable

outcomes.

In MR, virtual objects can be invoked in the physical world with the ability of awareness and

interactions, as was done in Paeres et al. (2021a, 2020). However, these further steps to obtain the

virtual objects’ interaction with the real world are out of the scope of this paper. In the Section 2,

readers will be introduced to the concept, benefits, and applications of extended reality (XR).

2. VIRTUAL REALITY, AUGMENTED REALITY, AND MR

The concept of a VWT is not new, nor was it created in the 21st century. References to this

term can be dated back to Bryson and Levit (1991). In that article, Bryson and Levit defined

“virtual environment” as the approach to user interfaces in computer software, integrating var-

ious input and display devices, giving the illusion of being immersed in a computer-generated

scene. The VWT idea was refined and presented again in 1993 (Bryson, 1993); at this time, the

term “virtual reality” was also used. These early works were pioneering but held back by the

limited technology of the time. Nonetheless, in the late 1980s and early 1990s, a debate between

the “virtual reality” and “virtual environment” labels was known to be the “VR definition wars”

(Bryson, 2013). In 1998, Bryson recognized that “VR” supporters surpassed the defenders of

the term “VE” by sheer volume. Moreover, he proposed a modernized definition of “virtual re-

ality” backed by his detailed discussion and the comparisons between the dictionary definitions

of “virtual” and “reality,” in which the definition stood the test of time (Bryson, 2013): “Virtual

Reality is the use of computer technology to create the effect of an interactive three-dimensional

world in which the objects have a sense of spatial presence.”

Clarifying the difference between virtual reality (VR) and augmented reality (AR) requires

an a priori explanation of the concept “virtuality continuum,” introduced 29 years ago by Mil-

gram and Kishino (1994). They declared the continuum with four regions and argued that the

taxonomy should be based on three subconcepts, as follows: (i) “Extent of World Knowledge:

The amount of information bleeding from the real environment into a virtual environment;” (ii)

“Reproduction Fidelity: An attempt to quantify the image quality of the displays;” and (iii) “Ex-

tent of Presence Metaphor: A term to encapsulate the degree of immersion.” In other words,

Volume 31, Issue 1, 2024

4 Paeres et al.

Milgram and Kishino (1994) described a continuum between the real world, which they call

the “real environment,” and the “virtual environment,” which is a fully synthetic world in which

computer generated signals are provided to the senses of a person in full replacement of the nat-

ural signals their senses normally perceive. This is what we are referring to as “virtual reality.”

Between those two end points are various levels of mixing, the natural signals and the synthetic

signals. In short, the difference between virtual reality and augmented reality is how the real

world is treated. In virtual reality, the real (natural) world is hidden and the participant experi-

ences only computer generated stimuli to their senses, but in augmented reality, the participant

fully experiences the real world with the addition of computer generated signals to augment their

real-world experience. There are different ways to achieve this mixing; the primary distinction

is whether the real world is mediated through some type of video or if the real world is per-

ceived optically. Years later, Flavián et al. (2019) proposed a new taxonomy in five divisions,

as shown in Fig. 1. Following the present interpretation, this continuum represents the classifi-

cations of the different modes in which a user can perceive sensory experiences and have their

interactions.

From left to right in Fig. 1, the real environment is the physical world, where technology is

not needed for its existence and interactions. Second is AR, where virtuality overlays reality yet

does not interact with the whole physical world. AR usually requires a lens device so the user

can visualize the virtual objects overlying the physical world. In the midway, it is the pure mixed

reality, where virtuality and reality are fused, explained as the generation of virtual objects with

complete awareness of the real environment. The fourth is augmented virtuality (AV), where

reality overlaps with virtuality: for example, a computer-generated display crowded with digital

images but controlled by physical commands. The last taxonomy is the virtual environment,

where the complete environment is digital, and virtual reality is the medium used to access this

mode (Bryson, 2013). Any input from the real world has to be translated into a digital expression.

The junction from AR to AV is called MR. At the same time, extended reality (XR) covers from

AR to virtual environment, also commonly used as an unspecified reality mix.

Regarding XR’s benefits and applications, many studies conclude that XR enhances educa-

tion and research (Boyles, 2017; Lee et al., 2010; Saidin et al., 2015). For example, Radianti

et al. (2020) reviewed how to optimize VR applications for educational purposes. It was con-

cluded that students tend to retain better information after VR exercises, and their performance

was improved after applying what they learned in a more immersive experience. Consequently,

one could hope for more development until reaching a fully immersive feeling in the XR technol-

ogy. Since the beginning of the 21st century, limitations have been identified. Rosenblum (2000)

outlined key areas where this technology’s development should focus, from ultra-lightweight

haptic feedback sensors to realistic interfaces that make it hard to distinguish between realities.

Besides improving sensors for better virtual environment perspectives, the hardware and soft-

ware need to be fast and smooth enough without having data memory size constraints (Albert

et al., 2017; Elbamby et al., 2018).

Virtual reality applications fully immerse the user in a 3D virtual world (Craig et al., 2009).

VR and MR technologies attempt to blur the line between the physical world and the digital

Real Environment

Complete

physical world

Augmented Reality

Virtuality

overlaps reality

Pure Mixed Reality

Virtuality and

reality are coalesced

Augmented Virtuality

Reality

overlaps virtuality

Virtual Environment

Complete

digital world

← →
FIG. 1: Virtuality continuum, reproduced from Flavián et al. (2019)

Journal of Flow Visualization & Image Processing

Flow Visualization via VR/AR 5

environment, blossoming industries such as architecture, engineering, and construction (Delgado

et al., 2020; Purushottam et al., 2021; Ververidis et al., 2022). Furthermore, it provides options

in the research environment for difficult or costly experiments.

Video game engine platforms and VR technology merge well for scientific procedures. For

example, Brookes et al. (2020) researched the development of an experimental platform for

behavioral scientists with VR and the game engine software Unity 3D. Brookes et al. (2020) de-

signed and proposed the Unity Experiment Framework (UXF) app providing the “nuts and bolts

that work behind the scenes of an experiment developed within Unity ... that allow logical en-

coding of the common experimental features required by the behavioral scientist.” UXF gave an

optional graphical user interface (GUI), allowing the experimenter to design examinations eas-

ily, define dependent and independent variables, and edit the display interface, without requiring

high-level knowledge of coding languages. A helpful feature of UXF was also the cloud-based

platform; in experiments performed remotely from a laboratory, the software collected the data

and stored it in servers. To confirm the UXF reliability, the authors performed a study between

adults and children to examine their postural sway in response to an oscillating virtual room.

The validation experiment resulted in the children presenting less postural stability than adults,

as was expected from previous research done by others (Brookes et al., 2020), also endorsing

the integration of XR and game engines into scientific methodologies.

Regarding flow visualization, such XR technologies benefit visual representation. It enables

a researcher to perform scientific analysis and to gain a better insight into complex flows in

complicated geometries that are hard to perceive with the naked eye at a fraction of the effort

and cost required in a physical setup (Paeres et al., 2021b). For example, in the early 2000s,

Aoki and Yamamoto (2000) proposed the design system for a three-dimensional blade involving

VR in turbo-machinery. They showed how virtual reality could help a designer to visualize the

three-dimensional flow fields and modify the blade configuration to further calculate the results

in an iterative approach. In a different project, Eissele et al. (2008) presented a system able to

track position, orientation, and other additional aspects from a scenario used to influence the

visualization. They observed automatically seeded streamlines rendered with halos to enhance

the contrast to the underlying real-world image captured by a camera. Their work was focused

on flow visualization in AR. However, they claimed that their approach could also be applied to

other visualization tasks. In a more recent project, Walcutt et al. (2019) used virtual reality as

a scalable and cost-efficient visualization mechanism to interpret large volumes of ocean data.

They summarized ways where VR could be applied to the oceanography field and demonstrated

the utility of VR as a three-dimensional visualization tool for ocean scientists.

3. RESULTS AND DISCUSSION

In this section, we outline the required computational “pipeline” to perform virtual and aug-

mented reality visualizations of turbulent flows via high spatial/temporal resolution numerical

predictions. The major goal is to specifically describe the tasks, software, and conversion tools

used in our proposed method for XR scientific visualization. In all cases, DNS databases gener-

ated by our research group are employed. This section is organized as follows: Section 3.1 pro-

vides the motivation for turbulent flows and its boundary layers simulations while summarizing

the approach used in our DNS simulations, Section 3.2 gives details of the data post-processing

approach regarding flow solutions via our Aquila library, Section 3.3 discusses some software

and methods available to create and convert 3D models, Section 3.4 examines the data type se-

lections for XR 3D models, Section 3.5 is focused on the process of creating the GTLF files with

Volume 31, Issue 1, 2024

6 Paeres et al.

ParaView, Section 3.6 addresses the process to recreate the VWT, and finally Section 3.7 refers

to the process of creating the AR models with USDZ files.

3.1 Turbulent Flow Simulations

Boundary layer problems are challenging since the majority of transport phenomena (mass,

momentum, and heat) occurs inside this thin shear layer. The problem becomes harder if one

wants to model and simulate the effects of turbulence and compressibility, particularly at rel-

evant Reynolds numbers. In addition, three-dimensionality and unsteadiness are “the rule not

the exception,” making the problem more arduous and resource-consuming. The DNS is a nu-

merical tool that resolves all turbulence length and time scales; thus, it provides the highest

spatial/temporal resolution possible of the flow within a computational domain. Furthermore,

turbulent boundary layers that evolve along the flow direction are ubiquitous and show a nonho-

mogeneous condition along the streamwise direction due to turbulent entrainment (henceforth,

spatially developing turbulent boundary layers, SDTBL).

From a computational point of view, these types of boundary layers (i.e., spatially developing

boundary layers) involve enormous numerical challenges due to the need for precise and time-

dependent inflow turbulence information. Furthermore, accounting for strong-wall curvature ef-

fects adds significant complexity to the problem since the boundary layer is subject to critical

distortion due to the combined streamwise-streamline (adverse and favorable) pressure gradi-

ents. We are making use of the dynamic multi-scale approach (Araya et al., 2011), a method for

prescribing realistic turbulent velocity inflow boundary conditions, later extended to high-speed

turbulent boundary layers in Araya and Lagares (2022). It is based on the rescaling-recycling

method proposed by Lund et al. (1998). Briefly, the methodology of our modified rescaling-

recycling method is to prescribe time-dependent turbulent information at the “inlet” plane based

on the transformed flow solution downstream from a plane called “recycle” by using scaling

laws, as seen in Fig. 2. Furthermore, in our proposed new approach, there is no need to use an

empirical correlation [as in Lund et al. (1998)] in order to compute the inlet friction velocity;

such information is computed “on the fly” by involving an additional plane, the so-called test

plane located between the inlet and recycle stations. Here, the friction velocity is defined as uτ

=
√

τw/ρ, where τw is the wall shear stress and ρ is the fluid density. Turbulence precursors

are canonical flat-plate turbulent boundary layers, which are numerically resolved via DNS and

FIG. 2: The turbulence inflow generation methodology

Journal of Flow Visualization & Image Processing

Flow Visualization via VR/AR 7

the previously mentioned inflow generation technique. As part of the post-processing stage and

once a statistically steady flow is obtained, a cross-sectional plane from downstream of the recy-

cle plane is extracted and saved in a database in terms of the flow solution, i.e., the three velocity

components, pressure, and temperature. Those instantaneous fields are used as time-dependent

inlet boundary conditions on more complex domains.

We are employing a DNS database of supersonic concave-convex geometries for virtual/aug-

mented reality purposes in the present study. The boundary conditions were selected as follows.

At the wall, the classical no-slip condition is imposed for velocities. The lateral boundary con-

ditions are handled via periodicity. For supersonic cases, the flow velocity (three components),

temperature, and pressure are prescribed at the inlet based on precursor simulations at similar

conditions. Dimensions of the complex computational domain (Lx, Ly, and Lz) are 27δinlet,

17δinlet, and 3δinlet along the streamwise (x), wall-normal (y), and spanwise (z) directions,
respectively. The number of cells in the finite-element mesh is approximately 10 million. The

typical mesh resolution is ∆x+ = 8, ∆y+
min = 0.2, ∆y+

max = 10, and ∆z+ = 8, where su-

perscript + indicates wall units. The Courant-Friedrichs-Levy parameter is approximately 0.2

during the simulation, and the time step is fixed at ∆t+ ≈ 0.09. The reader is referred to Araya
et al. (2022) for more details and DNS validation. Figure 3 exhibits a flow visualization of DNS

over concave-convex geometries at a freestream Mach number of 2.86, low Reynolds numbers

(δ+ = 239−676), and wall Q-adiabatic conditions. In Fig. 3(a), iso-surfaces of instantaneous
spanwise velocity fluctuations and iso-contours of instantaneous density can be observed. There

is continuous flow turning and compression in the concave wall, which merge outside the tur-

bulent boundary layer in a shockwave, as seen in Fig. 3(b). Turbulent conditions were gener-

ated via an asynchronous flat-plate precursor [iso-contours of instantaneous density at the inlet

domain can be seen, according to a y − z plane view in Fig. 3(c)]. The close-up of the con-
cave wall in Fig. 3(d) shows a clear enhancement of spanwise velocity fluctuations at the tur-

bulent concave wall, which is caused by large-scale roll cells. These roll cells are generated

by unsteady “Taylor-Görtler-like” vortices via similar centrifugal instability mechanisms as in

laminar concave flows, as stated by Barlow and Johnston (1988). No spanwise inhomogeneity

has been observed in time-averaged flow statistics. The very strong favorable pressure gradient

(FPG) induced by the convex surface stabilizes and quasi-laminarizes the flow, which remains

FIG. 3: Flow visualization of DNS at δ+ = 239−676 (low Reynolds numbers). Wall Q-adiabatic condi-
tions with Tw/Tr = 1.04.

Volume 31, Issue 1, 2024

8 Paeres et al.

two-dimensional [see Fig. 3(e)]. Additionally, two extra wall thermal conditions were evaluated:

wall cooling (Tw/Tr = 0.4) and wall heating (Tw/Tr = 1.5). Here, Tw is the wall temperature,

and Tr is the recovery temperature.

3.2 DNS Post-Processing

Processing the large datasets generated via DNS requires careful attention to details, ensuring a

scalable and efficient solution. For this work, we leveraged previous work in the Aquila library

by Lagares et al. (2022, 2021b). Aquila is a modular library for post-processing large-scale

simulations. It enables large datasets by operating out-of-core and providing the illusion of an

in-memory dataset through asynchronous data pre-fetching. We currently target an MPI backend

(Message Passing Forum, 1994) for distributed memory communication and HDF5 (The HDF

Group, 2010) for our storage backend. However, storage backends can be swapped with ease by

implementing reading/writing functions. To provide context for the size of a DNS simulation, the

cases being presented in this work total 2.22 TBs†. Aquila serves as a computational platform and
is currently not intended as a visualization engine. To enable visualization of the post-processed

results, the library provides a modular interface into the VTK library (Schroeder et al., 2006),

which enables visualization in VisIt (VisIt, 2022) and ParaView (Henderson, 2007). This enables

a logical separation of concerns and also ensures a decoupled visualization and computation

platform. What’s more, Aquila supports writing to directly high-performance binary formats

through HDF5, facilitating data archival and sharing across tools such as TecPlot (Tecplot, 2022).

To attain a fluid rate of animation, computationally intensive post-processing quantities are

performed offline, leveraging all of the available computational resources. We have discussed

scalable, time-averaged CFD post-processing in Lagares et al. (2022, 2021b). However, instan-

taneous parameters require special attention. This is especially true for visualizations such as

Q-criterion. Visualizing the evolution of the Q-criterion (shown in Fig. 4) in time requires cal-
culating the following expression,

FIG. 4: Q-criterion for cold, adiabatic, and hot walls (left to right)

†1 TB = 1,099,511,627,776 bytes

Journal of Flow Visualization & Image Processing

Flow Visualization via VR/AR 9

Q =
1

2

(||Ω||22 − ||S||22
)

(1)

where Ω = (1/2)(∂ui/∂xj − ∂uj/∂xi) (the antisymmetric strain tensor) and S = (1/2)
(∂ui/∂xj + ∂uj/∂xi) (the symmetric strain tensor). Note that regions where Q > 0 indicate

parcels of fluid being dominated by vorticity or flow rotation, whereas negative Q values high-
light strain- (or viscous stress) dominated regions. The major drawback for the Q-criterion is its
lack of objectivity (due to the necessary and arbitrary threshold required for visualization); how-

ever, that criticism does not hinder its utility in visualizing vortical structures. The benefits are

directly appreciable in Figs. 5 and 6. Figure 5 highlights the enhancing effect of the adverse pres-

sure gradient (APG) induced by the concave wall for the incoming supersonic boundary layer.

Furthermore, the wall temperature effect is also clearly depicted, noting how the flow becomes

much more isotropic as the wall is heated (or anisotropic when cooled). On the other hand, Fig. 6

FIG. 5:Q-criterion for cold, adiabatic, and hot walls (left to right) focused on the concave wall, experienc-
ing a strong APG enhancing the turbulent nature of the flow

FIG. 6: Q-criterion for cold, adiabatic, and hot walls (left to right) focused on the supersonic expansion
experiencing a strong FPG, inducing a quasi-laminar state

Volume 31, Issue 1, 2024

10 Paeres et al.

showcases the effect of the strong FPG induced by the convex wall where a supersonic expansion

occurs. The acceleration is strong enough to force a laminarescent state. The effect is stronger

in the cooling wall, which could be directly related to the stronger anisotropic character of the

boundary layer along the streamwise direction for the cooling wall.

Our approach to high-performance calculations requiring instantaneous flow parameters is

an asynchronous dispatch engine that handles scheduling without input from the domain ex-

pert. Currently, we target threading building blocks (TBB) as our threading layer (shared across

kernel executions and higher-level kernel orchestration) (Malakhov et al., 2018; Pheatt, 2008).

TBB incorporates a noncentralized, highly scalable work-stealing scheduler amenable to unbal-

anced workloads. Our implementation also approaches issues such as conditional masking of

flow variables via Boolean algebra, which avoids excessive memory allocations in favor of addi-

tional integer calculations. Optimizing compilers are capable of generating machine instruction,

accounting for the wide backends in modern CPUs and concurrent floating point/integer units

in modern GPUs and taking advantage of the added integer computations. All in all, our post-

processing infrastructure is scalable from platforms with constrained performance to large-scale

supercomputers with thousands of CPU/GPU cores.

Although we currently conduct computationally expensive post-processing offline, there is

still work being done to enable near-real-time post-processing by tapping into large-scale re-

sources and streaming results as needed. This is analogous to work done so far by Atzori et al.

(2022) and Rasquin et al. (2011). Also, we currently employ lossless and physically accurate

techniques, whereas graphics workloads often tap visually lossless techniques and include nu-

merical tricks that preserve the visual characteristics of a visualization, while enabling real-

time computing in-tandem with graphics. This is the ever-standing issue of low latency vs. high

throughput. Currently, we tackle high-throughput post-processing, whereas a near-real-time pro-

cessing requires low-latency processing of individual flow fields. Enabling such techniques in

juncture with AR/VR and high-resolution DNS is beyond the scope of our work, but the knowl-

edge gap is very much worth highlighting.

3.3 CFD Data Post-Processing for XR Visualization

This subsection introduces software and methods to convert data and sampling to eventually cre-

ate 3D models. While Section 3.2 is more general, covering all aspects on data processing of the

flow solution (statistical analysis of turbulence), it is also responsible for generating .vtk or .vts

files readable in ParaView. In CFD, post-processing is a set of custom steps for a specific inves-

tigation performed after the simulations are completed. Generally, the results of CFD simulation

contain basic fields like velocity, pressure, and temperature in their solutions, and to properly

execute an assessment, the data needs to be post-processed. Trying to mention all the possible

steps for a fluid flow visualization, post-processing would be absurd; it is more convenient to

show examples directly involved in assessing the presented work. The most straightforward vi-

sualization is presenting the whole simulation’s domain with one primary field: for example, the

temperature, the velocity’s magnitude, or only one of its components. A slightly more advanced

step would be to extract an iso-surface or the entire colored domain using a custom colormap or

contour to the range of values of the displayed field. An iso-surface is a set of surfaces with a

constant value that has been specified, while an iso-contour would be a set of iso-surfaces having

several ranges of values, where these ranges can be differentiated by applying different colors to

each iso-surface. From the authors’ experience, a common and efficient approach to extracting

an iso-surface from 3D volumetric data is the marching cubes algorithm (Lorensen and Cline,

Journal of Flow Visualization & Image Processing

Flow Visualization via VR/AR 11

1987), since it can be applied on the same scripting platforms (e.g., MatLab and Python), where

one can read and manipulate the file data that contain the CFD solutions. 3D volumetric data

refers to a three-dimensional array structured in the form (x, y, z), where each element in this ar-
ray contains the value of the field of interest, and the array indices of the element are understood

as the reference to its spatial position in the CFD domain. It is worth mentioning that before

our methodology was developed, an attempt was made in Python to implement the marching

cubes Lewiner version (Lewiner et al., 2003) to export iso-surfaces in Wavefront OBJ (.obj) for-

mat. The option to explicitly implement the Marching Cubes Lewiner algorithm was discarded

because its most straightforward implementation was to extract iso-surface to rectangular 3D

volumes. For nonrectangular domains, more calibration and complex techniques were required

for the extraction of iso-surface for each specific CFD case. Because the goal is scientific visu-

alization, the virtual objects must have true shapes and constructions and not fictional designs.

Thus, the real appearance validation part occurs in CFD simulations, where the results are from

governing equations and models.

In the search for ways to visualize CFD results without many complications and for the

methodology to be capable of being automated, the option of the ParaView visualization toolkit

arose. ParaView is a free and open-source multiple-platform software for scientific visualiza-

tion developed by Kitware Inc., Sandia, and Los Alamos National Laboratories (Henderson,

2007). An alternative open-source tool is VisIt, originally developed by the Department of En-

ergy (DOE) Advanced Simulation and Computing Initiative (ASCI) to visualize and analyze the

results of terascale simulations (VisIt, 2022). Moreover, for 3D computational graphics (i.e., 3D-

printed models, animated films, visual effects, motion graphics, interactive 3D applications, vir-

tual reality, and more), there is Blender, another highly used open-source tool. However, Blender

moves away a bit from scientific visualization and leans more toward object modeling, color and

texture rendering, and animation, which is a whole other profession apart from what a CFD an-

alyst can be. It is more convenient to use ParaView since it has been expanding as a preference

for use in academia over the years, and the tools focus more on scientific visualization than

3D animation. We use an essential ParaView tool to automate the methodology presented here

and facilitate scripting in Python. From version 4.2 of ParaView, there is an option called Trace

tool that records every modification made in the ParaView user interface (UI) and generates a

Python script corresponding to all the actions in chronological order to facilitate and teach the

programming of commands in ParaView.

Regarding flow visualization and frames per second, it is important to differentiate the fol-

lowing terms: playback vs. recording. In slow motion, the playback frames per second (fps) is

much lower than the recording fps. Slow motion permits the user to better identify turbulent

events and coherent structures, particularly in turbulent boundary layer problems. The recording

frequency is directly proportional to the sampling frequency in the numerical database collec-

tion. The physical timestep in a typical DNS case is in the order of 1 × 10−4 sec. (or 10,000
Hz), which is prescribed much lower than the limiting Kolmogorov time scale. In this study, we

have collected enough volumetric frames at a sampling frequency (i.e., the recording frequency),

which was ten times smaller than the physical DNS frequency (i.e., 1000 Hz). In other words,

volumetric frames were saved every 10 timesteps. Unity game engine software permits the user

to adjust the playback frequency according to the visualization needs and the upper limitation.

In our case, this is given by a maximum of 1000 fps; however, the very small prescribed DNS

timestep would allow us to significantly increase it (up to 10,000 fps) if the sampling frequency

is increased in the collected database as well. Other important fps limitations are the device’s

display maximum fps and the mind’s ability to interpret the display.

Volume 31, Issue 1, 2024

12 Paeres et al.

3.4 Virtual/Augmented Reality in Flow Visualization

The procedure of flow visualization with extended reality starts with the information post-

processing of CFD results (generally ASCII or binary format). The data is transformed via pro-

gramming (i.e., Python or MatLab scripts) or visualization toolkit (i.e., ParaView) into a file type

of 3D models. During this data transformation, it is expected that the data might require manip-

ulation and filtering such as iso-contour for the desired parameter field. 3D models have wide

options of file formats, to name a few: Alembic (.abc), Autodesk FBX (.fbx), Graphics Library

Transmission Format (.gltf), Wavefront OBJ (.obj), and CAD (computer-aided design) software

extensions. The correct process depends on compatibility with the software and devices used

for the visualization. Unfortunately, the options for immersive visualization like VR and AR are

limited. The present study uses Graphics Library Transmission Format (GLTF) extension for VR

and USD (Universal Scene Description) for AR with iOS (iPhone Operating System) devices.

The USD type of file (i.e., .usdz) was developed by Apple and Pixar and launched in 2018.

While USDZ files were originally designed for AR applications, it is also possible to employ

them under VR environments. In terms of GLTF vs. USDZ, our lessons learned have dictated

the following “pros and cons”: (i) USDZ files have the perk of being a binary file format, mean-

ing a reduction in the file’s storage size (∼ 50%), and could be obtained by GLTF conversion;
(ii) GLTF format has its binary counterpart (i.e., GLB), which will be explored as future work

in the present study; (iii) USDZ files are naivety compatible with iOS devices, opening up the

possibility for AR applications on those devices; (iv) GLTF files can be generated directly from

ParaView, making the process much simpler; and (v) Unity game engine can read both USDZ

and GLTF files with add-on packages, but the compatibility process with GLTF files are far sim-

plified compared to USDZ files. Furthermore, the virtual environment for the present work was

developed with the Unity game engine.

Regarding the VWT, a workstation [see Fig. 7(a)] gathers the information of all input de-

vices. Fully immersed visualizations are performed on the HTC Vive VR kit from High Tech

(a) (b)

FIG. 7: (a) Workstation Dell tower 5810 and (b) HTC Vive VR toolkit

Journal of Flow Visualization & Image Processing

Flow Visualization via VR/AR 13

Computer corporation [see Fig. 7(b)]. Controllers, head-mounted display (HMD), and base sta-

tions sensors identify the user’s spatial movement and field of view (FOV), as seen in Fig. 8, and

render the virtual objects that belong inside the FOV. Images in the display must be rendered at

a speed of at least 30 frames per second (fps) to achieve an immersive impression of the virtual

environment. Once the frames are rendered, they are sent to the HMD, which outputs a stereo-

scopic image providing the user with the 3D illusion of depth. Furthermore, some researchers

have performed parametric analyses on VR/AR experiences on users (Louis et al., 2019; Watson

et al., 1997). According to Louis et al. (2019), the most influential aspects to establish pleasant

VR/AR practices were (i) avoiding a perceivable motion jitter and (ii) a loss in frames per sec-

ond. Watson et al. (1997) investigated the effects of frame time variation on VR tasks over 10

participants (a mixture of undergraduate and graduate students). At that time, it was concluded

that average frame times of 50 ms (or 20 fps) were deemed acceptable for many VR applications.

Obviously, the VR technology has substantially evolved in the last decades in terms of GPU ca-

pabilities, particularly for the “gaming” field. More recently, investigations have demonstrated

that in practice, any VR setup generating frame rates below 90 frames per second (fps) may

cause discomfort, upset stomach, disorientation, nausea, and other negative user effects (Anty-

cip, 2022; Zhang, 2020). Therefore, the lower the frame rate, the worse the effects. In addition,

a rate of 120 fps per eye seems adequate for delivering outstanding VR training (Linde, 2022).

Obtaining AR flow visualization starts with the same post-processing and data transforma-

tions as for VR. However, it differentiates depending on the final goal and interactive degree

with the virtual objects. Suppose the idea is only to invoke virtual objects in the real world via

iOS devices. In that case, the USDZ file extension is the best option because Apple devices have

built-in apps capable of reading the USDZ files, and Unity game engine is not required any-

more in our methodology. After converting the GLTF files to USDZ (see Section 3.7), the last

step is to share the files with the iOS device to use. However, if the device does not have iOS

(e.g., Android and HoloLens), a compatible app will be needed. Here, the Unity game engine

comes to the rescue. With Unity, one can have a single development effort, yet the application

(containing the virtual objects’ files) can be deployed to many different devices. The benefits

of designing the apps with Unity are extending the applicability to smartphones and XR devices

such as the Microsoft HoloLens (see Fig. 9) and giving opportunities to develop more interactive

manipulations such as image recognition and much more.

FIG. 8: User visualizing a flow in the VWT (iso-surface of instantaneous streamwise fluid velocity at 75%

of the incoming freestream velocity, flow from right to left)

Volume 31, Issue 1, 2024

14 Paeres et al.

FIG. 9: Image of Microsoft HoloLens 1st gen., used for AR applications

3.5 Creating the GLTF Files

ParaView has a wide variety of file formats it can read. During each version update, they tend

to include more compatible formats. The example presented here is based on ParaView 5.10.1.

In the CFD field, simulation results can usually be saved in .vts, .vtk, or other extensions of

the Visualization Toolkit data-type family. Operations and manipulations of the results often are

carried out before opening the data in ParaView. However, several post-processing calculations

can also be accomplished within ParaView. After developing the 3D visualization approach in

ParaView, the next step consists of exporting it. There is an option to export files in GLTF format;

it must be mentioned that this feature has been available since the ParaView 5.7 version. One

should select Export Scene, located in the File tab, and specify the file type *.GLTF Files (*.gltf).

As shown in Fig. 10, check all boxes in Export Options and Save it; this will export the whole

scenario that is displayed and rendered in ParaView as GLTF format.

It is also possible and highly convenient to perform the exporting procedure automatically

for multiple files (i.e., time step files) employing the Trace tool. The intention is to obtain a

Python script containing all the actions’ commands to automate the process, including reading

the multiple files and applying manipulations. This example uses eleven files, each representing a

different time step; these files correspond to the work of Lagares et al. (2021a), performing high-

fidelity numerical results of supersonic spatially developing turbulent boundary layers (SDTBL)

subject to strong concave and convex curvature at Mach = 2.86. The DNS time step was 1× 10−4
seconds, resulting in a DNS frequency of 10,000 Hz or fps. However, because the sampling was

every ten frames, the recording fps was 1000 Hz. It is only needed to export two files from the

whole file group in the Trace stage and then to edit the Python script for looping the export

command for all the desired files. For a detailed example guide of the GLTF files export process

with ParaView, the reader is referred to Paeres Castaño (2022). The 11 VTS example files used

in this subsection can be found in our web page (CTVLab, 2023).

3.6 Creation of the VWT

The VWT is a virtual environment created in the Unity platform to enhance CFD results’ vi-

sualization using immersive VR and interactions with any virtual object (i.e., static or ani-

mated). Currently, the VWT runs in Unity version 2021.3.11f1 and is configured to be used

with the HTC VIVE and a Windows-OS-based computer, as seen in Paeres et al. (2020, 2021b).

Journal of Flow Visualization & Image Processing

Flow Visualization via VR/AR 15

FIG. 10: How to export a scene as GLTF in ParaView 5.10.1. Note the “Export Scene...” option from the

File tab; also “Inline Data,” “Save Normal,” and “Save Batch id” options checked when exporting.

Unity installation recommends Visual Studio along with its Unity add-on. In this study, ver-

sion 2022 of Visual Studio is utilized. SteamVR is a beneficial tool for connectivity between

VR devices (e.g., HTC VIVE) and Unity. It can be installed from the Steam platform, where the

Steam software can be obtained from the official web page: http://store.steampowered.com/about/.

Furthermore, SteamVR has a plugin registered as a commercial asset in Unity. Sign in with the

Unity account on the following web page: http://assetstore.unity.com, and purchase (it is a free

asset) the SteamVR Plugin asset. To obtain the VWT by replication, the steps are creating a

Unity project with a 3D (core) template and further including more add-on packages, which will

be mentioned in this subsection. Given that the present methodology will cause a high com-

putational load with the file transfers and rendering, the project should be saved locally on the

computer for optimal hard drive and graphic board performance. Make sure Unity editor is using

Visual Studio as external script editor.

The virtual environment (where the user will be immersed) has to be previously created to

implement VR properly. The virtual environment could be a simple room with walls and a floor.

Many tutorials on the world wide web are on creating virtual buildings, facilities, etc. However,

we will import our virtual warehouse created in Unity for this methodology. It will not be shown

how the warehouse was built since it is out of the work’s scope. Download the virtual ware-

house asset from our Dropbox link: https://www.dropbox.com/scl/fo/h32mtibe5ow07vj6s3xzp/

h?dl=0\&rlkey=griuoopk7c68pasi3whq70j8s, and locate it with the name VWT for HTCvive.
unitypackage. The warehouse is imported as a custom Unity package. It includes the correct set-

tings for other Unity packages needed, such as SteamVR and High Definition Render Pipeline.

After importing the packages with all files and folders, reload the modified scene and accept

all SteamVR settings recommendations. From the Scenes directory, open the VWT scene, and

the virtual environment probably will be all colored in pink. To solve this, import the High

Definition Render Pipeline package located in Unity’s registry, which achieves a more realis-

tic environment. From the Window tab, open the Package Manager window and change the

Volume 31, Issue 1, 2024

16 Paeres et al.

list’s filter to Unity Registry and import the package named High Definition RP (version 12.1.7).

HDRP Wizard will prompt, click Fix All configurations, create HDRenderPipelineAsset (with

automatic assignation), and wait for the compiling compute variants, then restart Unity Editor.

It is crucial to open the VWT scene first before fixing the configurations with the HDRP Wizard.

If the steps were executed correctly, Unity should look similar as shown in Fig. 11.

To this point, the virtual environment is fully set up, including the teleport ability within the

warehouse. The goal is to transform the virtual warehouse into a VWT laboratory. The next step

is to enable the import automated process for the high number of GLTF files and develop a script

to animate the flow visualization using a stop-motion approach. To use GLTF files in Unity,

import another custom Unity asset named GLTFUtiliy, which can be obtained from Siccity’s

GitHub: https://github.com/Siccity/GLTFUtility (also included in our DropBox). After dragging

and dropping GLTFUtiliy-master directory into the Unity project, right-click on the Assets panel

to create a directory with the name Resources. Use the Resources directory to place the material

created using the correct color Base map image and all GLTF imported files in one directory

(e.g., GLTFs). Import the two scripts available in our Dropbox: FlowAnimator and Animation-

MeshesMap. In the Hierarchy panel, create an Empty gameObject and add the last two scripts

as components. Enter the GLTFs directory path and the material applied to the flow. The last

step, update gameObject’s Transform values (position, rotation, and scale). If the instructions

have been followed properly, the VWT should look similar, as shown in Fig. 12. For a video

demonstration of the VWT, the reader is referred to Paeres et al. (2022).

3.7 Augmented Reality with USDZ Files

The steps for AR flow visualization depend on the final goal and the interactive degree of virtual

objects in the real world. Suppose the idea is only to invoke virtual objects in the real world via

FIG. 11: How the virtual warehouse should look after properly rendering the materials

Journal of Flow Visualization & Image Processing

Flow Visualization via VR/AR 17

FIG. 12: Correct setup of GLTF files in Unity. Note that inside the Resources directory are the GLTFs files

directory, the material file using an image file as color Base map, and two scripts.

iOS devices; in that case, the USDZ file format is optimal because Apple devices have built-in

apps capable of reading the USDZ files. On the other hand, if the device to use is not iOS (e.g.,

Android and HoloLens), a compatible app will be needed to deploy the USDZ files. Regardless

of the final usage of the AR object, in this methodology, it is necessary to transform the GLTF

files to USDZ format. On Apple’s webpage, there are several tools available to convert files

from GLTF to USDZ: https://developer.apple.com/augmented-reality/tools/. This site mentions

four software as downloading options; however, this work will be only interested in Reality Con-

verter and USDZ Tools. Reality Converter is the most intuitive option to convert, edit, and view

customized USDZ. This software allows file importing in OBJ, GLTF, and FBX formats by just

dragging and dropping to convert them to USDZ. It must be mentioned that currently, ParaView

does not export GLTF files preserving the colors used in the visualization. Nonetheless, it does

conserve the gradient or distribution of the coloring applied. By default, the Base color in Real-

ity Converter is usually a yellowish gradient. Nevertheless, the desired color map can be added

with a simple drag and drop of the correct image (for example, see Fig. 13).

Reality Converter is very intuitive due to its GUI (graphical user interface), but for converting

many files it is not the most viable option. For multiple files, it is better to use USDZ Tools.

USDZ Tools or USD Python Tools is a Python-based pre-compilation with more tools than

Reality Converter for modifying USDZ files. It means converting multiple GLTF files to USDZ

can be automated with a single Python script. The software installation is simple but has a minor

issue since the pre-compilation was done with Python 3.7.9, requiring this specific version of

Python to be installed for compatibility in the libraries. To launch the tool, double-click the

file called USD.command; this file opens a new terminal window for command lines with the

proper environment. Checking if the USDZ Tools’ terminal window is running with Python

3.7.9 is recommended. Usually, bash or zsh profiles automatically load other versions of Python,

Volume 31, Issue 1, 2024

18 Paeres et al.

FIG. 13: Exporting USDZ using Reality Converter. Note the image used as color map is placed in the Base

Color slot.

and it may be necessary to temporarily remove these commands from the profiles while using

USDZ Tools. Also, it is worth noting the storage-size reduction by approximately 50%; this

is because the USDZ files are binary data files. The benefits of designing the apps with Unity

3D are extending the AR applicability to Android and AR goggles devices (e.g., HoloLens)

and increasing opportunities to develop interactive manipulations, such as image recognition, as

shown in Paeres et al. (2021a) (see Fig. 14). Furthermore, Fig. 15 shows the final result of an

AR object invoked and placed over a table; this visualization was done through an iOS device,

displaying iso-surfaces of thermal fluctuations of supersonic turbulent boundary layers subject

to strong concave-convex curvatures (positive values in red, i.e., hot fluid; and negative values

in blue, i.e., cold fluid). The AR object was created following the methodology explained in this

work.

FIG. 14: Image recognition from a poster display and Microsoft HoloLens 1

Journal of Flow Visualization & Image Processing

Flow Visualization via VR/AR 19

FIG. 15: AR object (iso-surfaces of thermal fluctuations) visualized through an iOS device

4. CONCLUSIONS

This work presents a state-of-the-art methodology for the immersive visualization of virtual ob-

jects with mixed reality (i.e., virtual and augmented reality). Whereas the specific application

has been focused on DNS of spatially developing turbulent boundary layers, extension of the

acquired knowledge to other disciplines is straightforward. This new methodology improves our

previous VWT, combining a video game engine platform with scientific visualization software

and utilizing one of the most common file formats for 3D scenes and models (i.e., GLTF). Unity

and ParaView allow the data conversion, model creation, and scene animation to be automated,

a big help for CFD simulations containing multiple files corresponding to each time step solu-

tion. The present work was executed with a workstation Dell Tower 5810, HTC Vive VR kit,

Microsoft HoloLens 1st gen. hardware, and an iPhone 12 Pro-Max with iOS 15. All utilized

software had a free version license or was open-source for public use. Along with the supplied

user guide, the algorithms, scripts, and codes developed in this research can be accessed at our

research group’s webpage (CTVLab, 2023) for future replications by the reader. XR technology

is amazingly growing in applications and methods, and the follow-up process represents a real

challenge. For example, using additional libraries, AR devices can recognize images designated

as triggers for the emergence of virtual objects from a database into the device’s eyesight. In

the author’s opinion, the evolution of these technologies is so accelerated that a pitfall has been

identified. The constant tools’ creations and updates are now frequently causing compatibility

issues, leading to the withdrawal of the development and support of potentially powerful tools.

As part of future work, we plan to explore the potential inclusion of the Varjo XR-3, which is

currently the most advanced XR headset available on the market, and the GLTF binary counter-

part format (GLB) in our ongoing research. Finally, interested readers are invited to check out

our VR/AR flow animation videos at Flow-Animation-Gallery (2023).

ACKNOWLEDGMENTS

This material is based upon work supported by the National Science Foundation (Grant

Nos. 2314303, 1847241, HRD-1906130, and DGE-2240397). GA acknowledges financial sup-

port from AFOSR #FA9550-23-1-0241.

Volume 31, Issue 1, 2024

20 Paeres et al.

REFERENCES

Albert, R., Patney, A., Luebke, D., and Kim, J., Latency Requirements for Foveated Rendering in Virtual

Reality, ACM Trans. Appl. Perception (TAP), vol. 14, no. 4, pp. 1–13, 2017.

Antycip, ST Engineering Antycip, accessed from https://steantycip.com/, 2022.

Aoki, H. and Yamamoto, M., Development of Three-Dimensional Blade Design System Using Virtual

Reality Technique, J. Flow Vis. Image Process., vol. 7, no. 1, 2000.

Araya, G., Castillo, L., Meneveau, C., and Jansen, K., A Dynamic Multi-Scale Approach for Turbulent

Inflow Boundary Conditions in Spatially Evolving Flows, J. Fluid Mech., vol. 670, pp. 518–605, 2011.

Araya, G. and Lagares, C., Implicit Subgrid-Scale Modeling of a Mach-2.5 Spatially-Developing Turbulent

Boundary Layer, Entropy, vol. 24, no. 4, p. 555, 2022.

Araya, G., Lagares, C., and Jansen, K., AFOSR 2022: Effects of Wall Curvature on Hypersonic Turbu-

lent Spatially-Developing Boundary Layers, 2022 AFOSR/ONR/HVSI Annual High-Speed Aerodynam-

ics Portfolio Review, p. 19, 2022.

Atzori, M., Köpp, W., Chien, S.W.D., Massaro, D., Mallor, F., Peplinski, A., Rezaei, M., Jansson, N.,

Markidis, S., Vinuesa, R., Laure, E., Schlatter, P., and Weinkauf, T., In Situ Visualization of Large-Scale

Turbulence Simulations in Nek5000 with ParaView Catalyst, J. Supercomput., vol. 78, no. 3, pp. 3605–

3620, 2022.

Barlow, R.S. and Johnston, J.P., Structure of a Turbulent Boundary Layer on a Concave Surface, J. Fluid

Mech., vol. 191, pp. 137–176, 1988.

Boyles, B., Virtual Reality and Augmented Reality in Education, Center for Teaching Excellence, United

States Military Academy, West Point, NY, 2017.

Brookes, J., Warburton, M., Alghadier, M., Mon-Williams, M., and Mushtaq, F., Studying Human Behavior

with Virtual Reality: The Unity Experiment Framework, Behav. Res. Methods, vol. 52, no. 2, pp. 455–

463, 2020.

Brown, G.L. and Roshko, A., On Density Effects and Large Structure in Turbulent Mixing Layers, J. Fluid

Mech., vol. 64, no. 4, pp. 775–816, 1974.

Bryson, S., The Virtual Windtunnel: Visualizing Modern CFD Datasets with a Virtual Environment, Proc.

of the 1993 Conf. on Intelligent Computer-Aided Training and Virtual Environment Technology, Hous-

ton, TX, 1993.

Bryson, S., Virtual Reality: A Definition History—A Personal Essay, Comput. Sci. Human-Comput. Inter.,

arXiv:1312.4322, 2013.

Bryson, S. and Levit, C., The Virtual Windtunnel: An Environment for the Exploration of Three-

Dimensional Unsteady Flows, Proc. Vis., vol. 91, pp. 17–24, 1991.

Craig, A.B., Sherman, W.R., and Will, J.D., Developing Virtual Reality Applications: Foundations of Ef-

fective Design, Burlington, MA: Morgan Kaufmann, 2009.

CTVLab, Computational Turbulence and Visualization Lab, accessed from https://ceid.utsa.edu/garaya/,

2023.

Delgado, J.M.D., Oyedele, L., Demian, P., and Beach, T., A Research Agenda for Augmented and Virtual

Reality in Architecture, Engineering and Construction, Adv. Eng. Inform., vol. 45, p. 101122, 2020.

Eissele, M., Kreiser, M., and Ertl, T., Context-Controlled Flow Visualization in Augmented Reality,Graph.

Interface, pp. 89–96, 2008.

Elbamby, M.S., Perfecto, C., Bennis, M., and Doppler, K., Toward Low-Latency and Ultra-Reliable Virtual

Reality, IEEE Network, vol. 32, no. 2, pp. 78–84, 2018.

Flavián, C., Ibáñez-Sánchez, S., and Orús, C., The Impact of Virtual, Augmented and Mixed Reality Tech-

nologies on the Customer Experience, J. Business Res., vol. 100, pp. 547–560, 2019.

Journal of Flow Visualization & Image Processing

Flow Visualization via VR/AR 21

Flow-Animation-Gallery, Computational Turbulence and Visualization Lab, accessed from

https://ceid.utsa.edu/garaya/research/, 2023.

Friendly, M. and Denis, D.J., Milestones in the History of Thematic Cartography, Statistical Graphics, and

Data Visualization, York University, Toronto, 2006.

Hansen, C.D. and Johnson, C.R., Visualization Handbook, Amsterdam: Elsevier, 2011.

Henderson, A., ParaView Guide, A Parallel Visualization Application, Kitware Inc., 2007.

Hesselink, L., Digital Image Processing in Flow Visualization, Ann. Rev. Fluid Mech., vol. 20, no. 1,

pp. 421–486, 1988.

Hollister, B.E. and Pang, A., A Concise Introduction to Scientific Visualization: Past, Present, and Future,

Berlin: Springer Nature, 2022.

Imaichi, K. and Ohmi, K., Numerical Processing of Flow-Visualization Pictures–Measurement of Two-

Dimensional Vortex Flow, J. Fluid Mech., vol. 129, pp. 283–311, 1983.

Jha, A.K., Shukla, P., Ghosh, P., Khisti, P., and Dubey, A., Ivsualization and Measurement of Natural

Convection Boundary Layer by Particle Image Velocimetry, J. Flow Vis. Image Process., vol. 30, no. 2,

2022.

Lagares, C., Rivera, W., and Araya, G., Scalable Post-Processing of Large-Scale Numerical Simulations of

Turbulent Fluid Flows, Symmetry, vol. 14, no. 4, p. 823, 2022.

Lagares, C.J., Paeres, D., and Araya, G., Wall Temperature Effect on Thermal Coherent Structures over

Supersonic Turbulent Boundary Layers Subject to Surface Curvature, Proc. of the 74th Annual Meeting

of the APS Division of Fluid Dynamics, Phoenix, AZ, 2021a.

Lagares, C.J., Rivera, W., and Araya, G., Aquila: A Distributed and Portable Post-Processing Library for

Large-Scale Computational Fluid Dynamics, AIAA SciTech, 2021b.

Lee, E.A.L., Wong, K.W., and Fung, C.C., How Does Desktop Virtual Reality Enhance Learning Out-

comes? A Structural Equation Modeling Approach, Comput. Ed., vol. 55, no. 4, pp. 1424–1442, 2010.

Lewiner, T., Lopes, H., Vieira, A.W., and Tavares, G., Efficient Implementation of Marching Cubes’ Cases

with Topological Guarantees, J. Graph. Tools, vol. 8, no. 2, pp. 1–15, 2003.

Linde, Linde Virtual Academy, accessed from https://vr.linde.com/, 2022.

Lorensen, W.E. and Cline, H.E., Marching Cubes: A High Resolution 3D Surface Construction Algorithm,

SIGGRAPH Comput. Graph., vol. 21, no. 4, pp. 163–169, 1987.

Louis, T., Troccaz, J., Rochet-Capellan, A., and Bérard, F., Is It Real? Measuring the Effect of Resolution,

Latency, Frame Rate and Jitter on the Presence of Virtual Entities, Proc. of the 2019 ACM Int. Conf. on

Interactive Surfaces and Spaces, New York, NY, USA, pp. 5–16, 2019.

Lund, T., Wu, X., and Squires, K., Generation of Turbulent Inflow Data for Spatially-Developing Boundary

Layer Simulations, J. Comput. Phys., vol. 140, no. 2, pp. 233–258, 1998.

Malakhov, A., Liu, D., Gorshkov, A., andWilmarth, T., Composable Multi-Threading andMulti-Processing

for Numeric Libraries, Proc. of the 17th Python in Science Conf., Austin, TX, pp. 18–24, 2018.

McCormick, B.H., Visualization in Scientific Computing, Comput. Graph., vol. 21, no. 6, 1987.

Message Passing Forum, A Message-Passing Interface Standard, Tech. Rep., USA, 1994.

Milgram, P. and Kishino, F., A Taxonomy ofMixed Reality Visual Displays, IEICE Trans. Inf. Syst., vol. 77,

no. 12, pp. 1321–1329, 1994.

Mohd, J., Murugan, T., and Das, D., Transient Characteristics of the Trailing Jet of a Compressible Vortex

Ring at Mach 1.5, J. Flow Vis. Image Process., vol. 29, no. 4, 2022.

Nielson, G., Hagen, H., and Müller, H., Scientific Visualization, Tech. Rep., Institute of Electrical & Elec-

tronics Engineers, 1997.

Volume 31, Issue 1, 2024

22 Paeres et al.

Paeres, D., Lagares, C.J., and Araya, G., The Use of Augmented Reality (AR) in Flow Visualization, Proc.

of the 74th Annual Meeting of the APS Division of Fluid Dynamics, Phoenix, AZ, 2021a.

Paeres, D., Lagares, C.J., and Araya, G., Dynamic Fully Immersive Virtual Reality of Supersonic Flows,

Proc. of the 75th Annual Meeting of the APS Division of Fluid Dynamics, Indiannapolis, IN, 2022.

Paeres, D., Lagares, C.J., Santiago, J., Craig, A.B., Jansen, K., and Araya, G., Turbulent Coherent Structures

via VR/AR, Proc. of the 73th Annual Meeting of the APS Division of Fluid Dynamics, Virtual, 2020.

Paeres, D., Santiago, J., Lagares, C.J., Rivera, W., Craig, A.B., and Araya, G., Design of a Virtual Wind

Tunnel for CFD Visualization, AIAA Scitech 2021 Forum, p. 1600, Virtual, 2021b.

Paeres Castaño, D., Assessment of Turbulent Boundary Layer Detachment Due to Wall-Curvature-Driven

Pressure Gradient, MSc, University of Puerto Rico-Mayaguez, 2022.

Pheatt, C., Intelr Threading Building Blocks, J. Comput. Sci. Coll., vol. 23, no. 4, p. 298, 2008.

Purushottam, K., Chandramouli, K., Sree Naga Chaitanya, J., and Gowreswari, B., A Review on Virtual

Reality and Augmented Reality in Architecture, Engineering and Construction Industry, Int. J. Modern

Trends Sci. Technol., vol. 7, pp. 28–33, 2021.

Radianti, J., Majchrzak, T.A., Fromm, J., and Wohlgenannt, I., A Systematic Review of Immersive Virtual

Reality Applications for Higher Education: Design Elements, Lessons Learned, and Research Agenda,

Comput. Ed., vol. 147, p. 103778, 2020.

Rasquin, M., Marion, P., Vishwanath, V., Matthews, B., Hereld, M., Jansen, K., Loy, R., Bauer, A.,

Zhou, M., Sahni, O., Fu, J., Liu, N., Carothers, C., Shephard, M., Papka, M., Kumaran, K., and

Geveci, B., Co-Visualization of Full Data and in Situ Data Extracts from Unstructured Grid CFD at

160k Cores, Proc. of the 2011 Companion on High Performance Computing Networking. Storage and

Analysis Companion, SC 11 Companion., Seattle, WA, pp. 103–104, 2011.

Rosenblum, L., Virtual and Augmented Reality 2020, IEEE Comput. Graph. Appl., vol. 20, no. 1, pp. 38–

39, 2000.

Saidin, N.F., Halim, N., and Yahaya, N., A Review of Research on Augmented Reality in Education: Ad-

vantages and Applications, Int. Ed. Studies, vol. 8, no. 13, pp. 1–8, 2015.

Schroeder, W., Martin, K., and Lorensen, B., The Visualization Toolkit, Clifron Park: Kitware, 2006.

Sherman, W.R., Craig, A.B., Baker, M.P., and Bushell, C., Scientific Visualization, The Computer Science

and Engineering Handbook, Chap. 35, A.B. Tucker Jr. (Ed.), Boca Raton, FL: CRC Press, 1997.

Tecplot 360, accessed February 12, 2022, from https://www.tecplot.com/products/tecplot-360/, 2022.

The HDF Group, Hierarchical Data Format Version 5, accessed from http://www.hdfgroup.org/HDF5,

2010.

Ververidis, D., Nikolopoulos, S., and Kompatsiaris, I., A Review of Collaborative Virtual Reality Systems

for the Architecture, Engineering, and Construction Industry, Architecture, vol. 2, no. 3, pp. 476–496,

2022.

VisIt, accessed December 24, 2022, from https://wci.llnl.gov/simulation/computer-codes/visit, 2022.

Walcutt, N.L., Knörlein, B., Sgouros, T., Cetinić, I., and Omand, M.M., Virtual Reality and Oceanography:

Overview, Applications, and Perspective, Front. Mar. Sci., vol. 6, p. 644, 2019.

Watson, B., Spaulding, V., Walker, N., and Ribarsky, W., Evaluation of the Effects of Frame Time Variation

on VR Task Performance, Proc. of IEEE 1997 Annual International Symposium on Virtual Reality,

Albuquerque, NM, pp. 38–44, 1997.

Winant, C.D. and Browand, F.K., Vortex Pairing: The Mechanism of Turbulent Mixing-Layer Growth at

Moderate Reynolds Number, J. Fluid Mech., vol. 63, no. 2, pp. 237–255, 1974.

Zhang, C., Investigation on Motion Sickness in Virtual Reality Environment from the Perspective of User

Experience, 2020 IEEE 3rd Int. Conf. on Information Systems and Computer Aided Education (ICIS-

CAE), pp. 393–396, 2020.

Journal of Flow Visualization & Image Processing

