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Abstract

We introduce Aquila-LCS, GPU and CPU optimized object-oriented, in-
house codes for volumetric particle advection and 3D Finite-Time Lyapunov
Exponent (FTLE) and Finite-Size Lyapunov Exponent (FSLE) computa-
tions. The purpose is to analyze 3D Lagrangian Coherent Structures (LCS)
in large Direct Numerical Simulation (DNS) data. Our technique uses ad-
vanced search strategies for quick cell identification and efficient storage tech-
niques. This solver scales effectively on both GPUs (up to 62 Nvidia V100
GPUs) and multi-core CPUs (up to 32,768 CPU cores), tracking up to 8-
billion particles. We apply our approach to four turbulent boundary layers
at different flow regimes and Reynolds numbers.
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1. Motivation and significance

The quest to find order in seemingly chaotic velocity domains of fluid dynam-
ics has long captivated a diverse group of researchers and professionals. This
very essence defines the realm of turbulence research. While high-speed tur-
bulence is vital in numerous applications, spanning both civilian and defense
sectors, it introduces specific challenges across experimental and numerical
domains. Yet, with advancing computational power, executing high-fidelity
simulations within complex domains is now possible. When we have access
to top-tier data, the next challenge is leveraging the right tools to distill
wisdom from these massive datasets, which hinge on the simulation methods
chosen for fluid flow analysis.

Software tools are undeniably pivotal in this domain. When diving into
Computational Fluid Dynamics (CFD), we can broadly classify it into three
primary segments: Reynolds-averaged Navier-Stokes (RANS), Large-Eddy
Simulations (LES), and Direct Numerical Simulation (DNS). Of these, DNS
stands out as it does not necessitate turbulence models, although one might
still incorporate models such as fluid type or molecular viscosity models in
compressible flows. With DNS data at hand, one can explore the coherent
structure dynamics either through an Eulerian or a Lagrangian lens, each
offering distinct and valuable perspectives.
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Eulerian techniques present computational efficiencies, largely due to their
predictable memory access and consistent patterns, as underscored by [I]
and [2]. In contrast, Lagrangian methodologies demand a profound com-
prehension of hardware specifics to attain satisfactory performance metrics.
Crucially, optimal memory buffer utilization is paramount, as is the preven-
tion of codebase fragmentation even as one harnesses algorithmic strengths.
Recognizing the objectivity and widespread applicability of LCS ([3, 4, B,
a plethora of implementation strategies can be found in scholarly articles
([6, ).

A significant portion of these strategies is inclined toward 2D LCS [8, [7]. As
an illustration, [9] unveiled a tool within the widely-adopted Matlab frame-
work, aptly christened “LCS Tool.” This tool has garnered acknowledgment
in various studies as a ready-to-use solution, as exemplified by [10]. Be-
ing rooted in Matlab, LCS Tool’s capabilities are confined to singular node
operations, heavily leaning on Matlab’s inherent parallel functions, which
come with significant memory overheads. Concurrently, alternative strate-
gies grounded in the finite-element method emerged, including the innova-
tive work of [I1], where they leveraged a discontinuous Galerkin approach to
compute the FTLE. Given the advantages of Finite Element Method (FEM)
with its adaptive mesh refinement capabilities, [12] proposed a method for
adeptly refining intricate meshes for LCS evaluations. [13] introduced a GPU-
centric approach to compute LCS for smooth-particle hydrodynamics (SPH)
datasets. Although laudable in its efficiency, it remained restricted to sin-
gular node operations and did not present an optimized CPU-based coun-
terpart. Their findings showcased GPU implementation speedups ranging
from 33x to 67x. The hardware as described in [I3] suggests that an opti-
mized CPU version could have reduced this discrepancy, pointing toward the
potential for further enhancement in hybridized computational strategies.

1.1. Numerical Methods

Numerical delineation of LCS, representing the manifolds created by parti-
cle pathways in fluidic movement, can be proficiently done using techniques
such as the FTLE or its alternative, the FSLE. Even though their opera-
tional frameworks vary, both techniques assess the distortion of a particulate
field regarding its initial state. Specifically, FSLE measures the duration re-
quired for two particles to achieve a defined finite separation, whereas FTLE
conducts integration across a consistent, finite duration, independent of the
spacing of adjacent particles [14] [15]. Within the scope of this research, we
evolve the 2D FTLE technique delineated in [I0] into a more comprehensive
3D format, considering computational intricacies as flagged by [5]. The tra-
jectory of a particle, originating at a time ¢ty and position zg, across a set



interval can be articulated through the flow map, considering the velocity
domain. The FTLE can be expressed as:

1

FTLE.(x,t) = m log ( )\max(Cfo(x))) (1)
T

Here, A4 symbolizes the dominant eigenvalue and Cfo (x) is the right Cauchy-

Green (CG) deformation tensor at a particular spatial vector x after particle

integration to t = t,+7. This right CG tensor, characterizing the deformation

t t
dynamics of a continuum, is defined as C; ; = %%. Elevated FTLE met-
rics spotlight potential attracting or repelling manifold points. A forward-in-
time trajectory integration of the particle indicates a repelling structure. In
contrast, tracing the pathway backwards in time reveals attracting bound-
aries [4]. This computational methodology delivers a resilient and adaptable

blueprint for dissecting intricate fluid motion patterns and identifying high

N
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shear zones. Similarly, the FSLE is described as |—i—| log [% E : (5f, )] _where
i=1 \ 0

do, 1s the original distance between the i-th particle and a reference particle;
whereas, dy; is the final distance between the i-th particle and a reference
particle.

2. Software description

In the present manuscript, our contribution is a highly scalable software for
dynamic 3D FTLE/FSLE calculations suitable for extensive DNS datasets
[16] in structured meshes (nonetheless, other unsteady three-dimensional
datasets can be employed such as those from LES), detailing unique speci-
fications for both GPU and CPU environments. We emphasize the shared
efficiencies and highlight performance-driven deviations. A core feature we
introduce is an innovative cell locator mechanism optimized for constant-time
cell searches.

2.1. Software architecture

The selected implementation language for Aquila-LCS is Python, as an object-
oriented and high-level implementation language. With the purpose of achiev-
ing efficiency, good scalibility and targeting multi-core CPUs and GPUs in
plain Python; additional libraries are employed. NumPy ([I7]) supplies a
multi-dimensional array and additional functionality aiming near-native per-
formance by targeting pre-compiled loops at the array level. We are also
utilizing Numba JIT compiler [I§]. Numba enables compiling Python to
machine code using LLVM and achieve speeds typically only attainable by
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lower-level, compiled languages such as C, C4++ or FORTRAN. LLVM was
proposed by [19] as a high-performance compiler and front-end, presenting
both CPU and GPU programming capabilities. Furthermore, Numba’s par-
allel CPU backend also provides a higher level of abstraction over multiple
threading backends. In particular, it allows for specific selection between
OpenMP ([20]) and TBB ([21]). Due to dissimilarity in transient Lagrangian
workloads, TBB’s ability to dynamically balance workloads, while account-
ing for locality and affinity, enhances the code performance in our particular
case. The implementation can just be changed by setting a command line
argument at program launch. More importantly, in designs with exotic archi-
tectures featuring hybrid core or in certain unbalanced execution resources;
TBB mitigates two limiting scaling issues in heterogeneous systems, as fol-
lows: (i) since TBB does not have a central queue thus removing that bot-
tleneck, and (ii) TBB enables workers to steal work from the back of other
workers’ queue.

Both the CPU and GPU implementations are self-contained to a single script
each. Whereas this limits modularity to some extent, it greatly simplifies
usage and deployment since a single file is required to execute any given
portion of the functionality. Both implementations (code and software meta-
data), documentation, DNS dataset as well as an example bash script for
executing it are provided at the Metada section. The overall design can
be seen in figure [} Addressing efficiently particle advection’s numerical com-
plexities is achieved by breaking it into five core components: Data 1/0,
flow field interpolation, cell locator, velocity derivation, and particle dynam-
ics. Different computational components have varied platform sensitivities.
For example, I/O is network-centric, while velocity derivation demands both
memory and computational capacity. The cell locator has posed challenges
historically, prompting our innovative method influenced by numerical lin-
ear algebra and tree-traversal techniques. Our method, termed Queue-Less,
Multi-Level, Best-First Search (QL-MLBFS), leverages coarser meshes for
efficient particle location determination. Our enhanced cell search mecha-
nism transitions from a O(N,N2) complexity to a scalable O(N, logg (N.)),
enabling linear scaling with particle count. Particle velocity is deduced us-
ing a trilinear interpolation based on its owning cell’s natural coordinates.
More details about the QL-MLBFS methodology and spatial interpolation
scheme can be found in section 2.1.2 at [22]. This process varies in arith-
metic intensity (0.78-3.67 FLOPs per Byte) depending on flow dynamics and
particle distribution. For precision, cells are projected to a uniform coordi-
nate system with stability maintained by velocity bounds. Our interpolation
approach ensures stability even in highly chaotic flow situations.

To optimize memory use, our algorithm integrates right Cauchy-Green (CG)
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tensor calculation with the FTLE eigenvalue phase. This design necessitates
minimal memory per execution thread, accommodating numerous threads on
GPUs and modern CPUs. Interestingly, a V100 GPU would need a fraction
of memory compared to large datasets. Following CG tensor derivation, the
algorithm computes the maximum eigenvalue of the tensor. Here, our CPU
and GPU strategies differ. For the GPU version, we employ a power iteration
method, tailored for symmetric positive definite matrices, ensuring conver-
gence to a single dominant eigenvalue. On the CPU, we call an optimized
LAPACK routine. For the temporal interpolation step, we have implemented
a GPU technique analogous to game development’s “triple buffering”. This
method involves pointer swapping to limit memory copies, ensuring only one
read per time step overwrites the oldest buffer with the newest content. The
interested reader is referred to section 2.1.3 [22] for detailed description of
eigenvalue calculation. While our present methodology serves our computa-
tional constraints, we recognize the potential of advanced techniques like the
QR algorithm for future exploration.
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Figure 1: Aquila-LCS flow chart. Note that green segments are related to the particle
advection workflow and blue segments are related to the FTLE/FSLE calculations and

output file generation.
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2.2. Software functionalities

Our specialized Python software has been designed to handle large CFD
data, specifically on rectilinear grids. These grids maintain a consistent node
count across each dimension throughout the entire domain. One of the key
features of our software is its ability to compute both FTLEs and FSLEs,
which represent an effective methodology to analyze time-varying analogs of
invariant manifolds (attracting and repelling) in unsteady fluid flows.
Aquila-LCS has demonstrated almost ideal linear scaling. It can manage
particle advection data efficiently, accommodating billions of particles (=
8) without sacrificing speed or accuracy. This is made possible through its
optimized architecture that can leverage the parallel processing capabilities
of multi-core Central Processing Units (CPUs) as well as the raw power of
Nvidia Graphics Processing Units (GPUs). In terms of data handling and vi-
sualization, the software produces VTS files, which are instrumental for high-
quality visualization of the computed data, aiding in the analytical process
and providing visual context to complex fluid behaviors. The code also stores
all processed data in HDF5 files (volumetric and temporal FTLEs/FSLEs),
ensuring a streamlined storage solution that is both compact and easy to
access for further analysis or sharing.

3. Illustrative examples

Onyx, a Cray XC40/50 machine, employs Intel Broadwell and Knights Land-
ing CPUs, and Nvidia P100 GPUs. It features dual socket compute nodes
with 22 cores each, simultaneous multithreading, and 128 GB of accessi-
ble RAM. Narwhal, an HPE Cray EX, can process up to 12.8 petaflops.
Each node contains two AMD EPYC 7H12 CPUs with 128 cores and 256
threads, 256 GB of DDR4 memory, and some nodes include V100 GPUs.
The nodes are interconnected using an HPE Slingshot 200 Gbit/s network.
Anvil, a Dell EMC PowerEdge C6420-based supercomputer at Purdue Uni-
versity, uses second-generation Intel Xeon Scalable processors. It has 1,008
compute nodes, each with 48 cores and 192 GB of memory, and is equipped
with 56 Nvidia V100 GPUs. Chameleon’s A100 node, which we also tested,
features 2 Intel Xeon Platinum 8380 CPUs with a total of 80 cores and 160
threads, and 4 A100 GPUs with 80 GBs of HBM 2e memory. The node
also has 512 GBs of DDR4 memory and 1.92 TBs of local NVMe storage.
In comparing CPUs and GPUs, it is important to consider architectural dif-
ferences (see Table 2 in [22]). CPUs prioritize low latency of an individual
operation thread, while GPUs favor high-throughput by processing a larger
number of work items. Despite similar memory bandwidth when accounting
for vector widths, modern GPUs have the advantage of zero-overhead context
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switching between multiple threads, contributing to their resilience to high
latency memory operations and often resulting in simpler, yet faster, code.
Figure [2] depicts the Aquila-LCS’s strong scaling performance, which was
tested up to 32,768 CPU cores and up to 62 Nvidia V100 GPUs (4960 GPU
SM cores or an equivalent 317,440 CUDA cores). Therefore, the total num-
ber of CPU threads evaluated was roughly 32K, whereas the peak number of
GPU threads reached roughly 10M (GPU) threads (2048 threads per Volta
SM core arranged in blocks of 64 threads for a total of 32 thread blocks per
SM), or 310x more threads on a GPU (GPU threads are lightweight threads
compared to the heavier OS-managed threads on CPUs). The horizontal axis
represents nodes in the computing system. It is observed an almost “ideal
linear scaling” up to 30 nodes in some systems. Additionally, for larger num-
bers of nodes some inefficiencies in the software stack or hardware resources
below the application can deteriorate the code performance with deviation
from the ideal scaling, which is very obvious in Onyx (Broadwell processors)
and Narwhal (Rome processors). Here, integration time is the time of the
particle advection loop only; whereas, the system time is the total running
time, including MPI overhead, Python runtime and writing files. In addi-
tion, in figure 3] the number of nodes was fixed (16 compute nodes), while
increasing the number of particles (from 50M to over 8B particles). The most
relevant aspect to describe is the dominance of network latency in large-scale
parallel file systems (PFS): note how a powerful GPU is essentially idle when
waiting for data from the PFS, particularly for both the P100 and V100
results up to 1-2 x10® particles, with a following linear trend. Readers are
referred to pages 16-20 in [22] for an in-depth scaling performance discussion
and computational architecture assessment.

2
10
10° 10! 10

Figure 2: Strong scaling evaluation for the proposed particle advection scheme.
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Figure 3: Particle scaling evaluation for the proposed particle advection scheme.

Aquila-LCS has been recently tested and validated (by varying the num-
ber of advecting particles and temporal frequency sampling) in [22] via four
DNS scenarios over spatially-developing turbulent boundary layers (SDTBL)
conducted on adiabatic/isothermal flat surfaces across several flow regimes
[23] 24, 25| 16], to draw insights on flow compressibility and Reynolds num-
ber interplaying on LCS. Major outcomes in [22] were three-fold, namely: (i)
isotropy enhancement of attracting and repelling manifolds at higher Mach
numbers, (ii) similarly, observed increasing isotropy and FTLE disorganiza-
tion at larger Reynolds numbers, and (iii) attracting FTLE manifolds de-
scribing inclined quasi-streamwise vortices or hairpin legs with heads of the
spanwise vortex tube located in the outer region of the boundary layer. While
a comprehensive dissection of the underlying physics is outside the purview
of this paper, a more detailed exploration focusing on Lagrangian coherent
structures in SDTBL is earmarked for an upcoming publication.

Figure [4 displays attracting FTLE contours in incompressible SDTBL at
low Reynolds numbers. Note that FTLE manifolds represent inclined quasi-
streamwise vortices or hairpin legs indicating the presence of high shear.

4. Impact

The implementation introduced in this article sets a new benchmark in the
domain of GPU-optimized particle movement computations, particularly in
the context of Finite-Time and Finite-Size Lyapunov Exponents. By melding
advanced search strategies with computational efficiency, our approach en-
ables the nuanced analysis of LCS within expansive numerical datasets. Its
scalability, spanning both GPU and CPU architectures, promises to democ-
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Figure 4: Attracting material lines (FTLE contours) in low-Reynolds number boundary
layers (flow from left to right).

ratize access to such tools across diverse computational platforms. Moreover,
the technique’s application to turbulent boundary layer studies not only of-
fers deeper insights into coherent patterns but also demonstrates remarkable
storage efficiencies. As a pivot, this work will undeniably shape future en-
deavors in visualizing and understanding LCS, catalyzing advancements in
fluid dynamics research.

It is worth noting that [5] stated that calculations required for FTLE could
be prohibitive in three-dimensions. Nonetheless, we have demonstrated the
feasibility and scalability of our approach for large-scale 3D cases.

5. Conclusions

This research introduces an optimized methodology to analyze volumetric
particle motion and compute FTLEs and FSLESs, focusing on software de-
sign for examining Lagrangian Coherent Structures (LCS) within expansive
Direct Numerical Simulation (DNS) datasets. Aquila-LCS is programmed
under CPU and GPU architectures, showing strong scaling up to 32,768
CPU cores and up to 62 Nvidia V100 GPUs with almost linear scaling even
when tracking 8B particles. By integrating traditional search techniques and
contemporary multi-tier strategies, we have developed a unique cell-locating
system that ensures swift and efficient cell identification across varied com-
putational architectures. Our methodology has been effectively applied to
examine turbulent boundary layer scenarios, unveiling significant patterns
in coherent structures. The innovative cell locator mechanism, combined
with our approach to efficient particle advection, offers a breakthrough in
the domain of fluid dynamics, facilitating in-depth analyses of complex flow
patterns with robust scalability. As we have touched upon the application
of LCS in this study, a deeper exploration into the intricate physics and
compressibility factors in potential LCS scenarios is reserved for subsequent
research. In essence, our contribution lies in providing an advanced tool for
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FTLE/FSLE calculations, underpinning the pivotal role of software in turbu-
lence research and coherent structure investigations. The software’s versatil-
ity and efficiency make it an indispensable resource for future fluid dynamics
studies, especially when harnessing the capabilities of modern computational
infrastructures.
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