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We investigate the performance of numerically implicit subgrid-scale modeling provided
by the well-known streamline upwind/Petrov-Galerkin (SUPG) stabilization for finite element
discretization of advection-diffusion problems in a Large Eddy Simulation (iLES) approach.
While its original purpose was to provide sufficient algorithmic dissipation for a stable and
convergent numerical method, more recently it has been utilized as subgrid-scale (SGS) model
to account for the effect of small scales, unresolvable by the discretization. These iLES modelling
efforts are evaluated at very high Reynolds numbers (𝑅𝑒𝛿2 ≈ 10, 800) based on the freestream
velocity, momentum thickness and wall viscosity or friction Reynolds number 𝛿+ ≈ 2, 500. The
freestream Mach number is 2.86. Direct comparison with a DNS database from our research
group as well as with experiments and other DNS from the literature of adiabatic supersonic
spatially-developing turbulent boundary layers (SDTBL) is performed. Focus is given to the
assessment of the resolved Reynolds stresses, turbulent heat fluxes, and higher order statistics.
The influence of coherent structures on the thermal transport phenomena is scrutinized via
two-point cross-correlations of 𝑢′𝑣′, 𝑣′𝑇 ′ and 𝑢′𝑇 ′. The employed numerical dissipation scheme,
i.e. SUPG, as SGS model has demonstrated a good performance in the skin friction prediction
as well as in high order statistics computation. Two-point cross-correlation of wall pressure
fluctuations to domain pressure fluctuations reveals the presence of a “quadrupole” in the
viscous sub-layer. In addition, two-point cross-correlation of velocity and thermal fluctuations
has reported more noticeable volumes with high correlation values downstream of the reference
point very close to the wall. On the other hand, those volumes with high velocity-thermal
correlations displace upstream of the reference point (resembling very long and wall-attached
tails) in the buffer and log regions. Furthermore, based on 𝑅𝑢′𝑇 ′ structures, the high level of
coherence observed between 𝑢′ and 𝑇 ′ implies that the Reynolds analogy still holds in supersonic
turbulent boundary layers at 𝛿+ ≈ 2,500.

I. Nomenclature

𝑅𝛿2 = Momentum thickness Reynolds number
𝑀∞ = Freestream Mach number
𝑈∞ = Freestream velocity
𝑈+
𝑉𝐷

= Van Driest transform velocity in wall units
𝑇∞ = Freestream temperature
𝑇𝑟 = Recovery temperature
𝑇𝑤 = Wall temperature
𝜈𝑤 = Wall kinematic viscosity
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𝑢𝜏 = Friction velocity
𝑃 = Mean Pressure
𝑇 = Mean Temperature
𝑘 = Thermal conductivity
𝑐𝑝 = Specific heat at constant pressure
𝑁𝑥 = Number of Nodes Along the Streamwise Direction
𝑁𝑦 = Number of Nodes Along the Wall Normal Direction
𝑁𝑧 = Number of Nodes Along the Spanwise Direction
𝜇 = Dynamic Molecular Viscosity
𝜌 = Fluid Density
𝛿 = Boundary layer thickness
𝜏 = Shear stress
Subscript =
𝑖𝑛𝑙 = inlet
𝑟𝑒𝑐 = recycle
𝑟𝑚𝑠 = Root-Mean Squared
′ = Superscript denotes fluctuating components
∞ = Subscript denotes freestream quantities

II. Introductory Remarks
The study of turbulent flows is of paramount importance as turbulence is prevalent in both scientific research and

engineering applications. Among the various computational fluid dynamics (CFD) numerical techniques for addressing
turbulence, Reynolds-Averaged Navier-Stokes (RANS), Large Eddy Simulation (LES), and Direct Numerical Simulation
(DNS) are the most widely recognized approaches [1]. DNS directly solves the Navier-Stokes equations governing
fluid flows without the need for any turbulence model. However, it requires substantial computational resources,
often necessitating exceptional code scalability and efficiency [2]. Consequently, the execution of DNS, particularly
when predicting spatially-developing turbulent boundary layers (SDTBL) requiring accurate time-dependent inflow
conditions, demands expertise in high-performance computing (HPC) and parallel programming, including during the
postprocessing stage [2].

Powerful supercomputers have facilitated the exploration of turbulent boundary layer simulations at higher Reynolds
numbers via DNS [3–5]. In contrast, LES employs a spatial filter to model the effects of Kolmogorov scales [6],
directly computing large-scale motions while only modeling small-scale motions. This results in reduced computational
resources compared to DNS. However, the extent of this reduction is highly dependent on the analyzed geometry and
flow complexity. In wall-bounded flows, even the inertial subrange scales situated in the near-wall region may be
exceptionally small, and the computational effort reduction when employing LES relative to DNS may be limited to
one order of magnitude in the spatial domain at most [7]. Nevertheless, LES allows for larger timesteps in unsteady
simulations and CFL constraints, introducing an additional source of effort reduction.

Thus, LES can be defined as a “DNS of large-scale motions” by filtering out and modeling the turbulent scales
below the inertial subrange. Although LES exhibits limitations in accurately reproducing peak values of flow fluctuations
and Reynolds stresses in the buffer layer (i.e., for 𝑦+ ≈ 15 − 20, where turbulence production is at its maximum), it
presents a promising alternative for computing the three-dimensional, time-dependent details of the largest turbulent
structures, which govern most of the transport phenomena, by employing a simplistic model for the smaller turbulent
scales. George and Tutkun [7] argue that the objectives of a closure solely dependent on grid-based filtering (or spectral
truncation) are contingent upon the assumption of a spectral gap ensuring scale invariance. Additionally, they contend
that attempting to utilize existing LES models at low Reynolds numbers or validating such models with current DNS
data may be futile [7]. Based on this argument, LES would only be meaningful at exceedingly high Reynolds numbers.
The landscape of LES modeling can be broadly categorized into two primary approaches [8, 9]:

• Explicit sub-grid scale (SGS) models: These models assume that the numerical method delivers an accurate
solution for the resolved-scale equation, such as eddy-viscosity, scale-similarity, and mixed approaches. As they
operate on the smallest represented scales, the models necessitate a minimal numerical truncation error, which
can be reduced through spatial filtering.

• Implicit LES (iLES): This approach is characterized as an “implicit SGS” model, embedded within the numerical
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discretization scheme. This integration is advantageous for addressing physically complex flows or intricate
geometries, as it combines the numerical discretization with the SGS model. The primary distinction between
iLES and traditional LES lies in the manner of SGS modeling [6]. Conventional LES incorporates a “physical”
SGS model into the fluid dynamics calculation to account for unresolved turbulence scales, informed by the
understanding of the structure and characteristics of turbulent flows. In contrast, iLES relies on the properties
of a numerical method that adheres to a set of physical principles to achieve the same objective as explicit LES
[6]. Empirical evidence has demonstrated the capacity of iLES to produce high-quality turbulence simulations
[10–12].

Recently, the iLES approach has garnered considerable attention in the study of highly challenging high Reynolds
number flows [6], where the employment of HPC tools is virtually obligatory. For example, the Monotone Integrated
LES (MILES) approach, initially proposed by Boris [13], incorporates the effects of SGS physics on resolved scales
via functional reconstruction of convective fluxes using locally monotonic finite volume schemes [14, 15]. The
MILES method implicitly models the subgrid-scale stresses and turbulent heat fluxes through the numerical algorithm,
integrating second-order or third-order accurate spatial schemes. Supersonic SDTBLs have been predicted through both
explicit and implicit LES [16, 17], employing Lund et al.’s rescaling-recycling technique for turbulent inflow generation
[18]. In [16], MILES and Smagorinsky models exhibited nearly identical results, suggesting that the Smagorinsky
model was superfluous for supersonic turbulent boundary layers.
While the majority of the aforementioned studies utilized finite difference (FD) or finite volume (FV) numerical
techniques, a growing body of research has explored turbulent boundary layers through continuous finite element
methods [19–23]. Furthermore, Discontinuous Galerkin (DG) methods, first introduced by Reed and Hill [24] in 1973,
have significantly advanced in recent decades, gaining prominence in computational fluid dynamics [25, 26]. Contrary
to finite volume methods, DG methods enable higher-order accuracy on unstructured meshes [27, 28], facilitating
efficient parallelization through hybridization [29, 30]. Additionally, DG methods demonstrate enhanced stability and
robustness relative to continuous finite element methods [25, 26]. Moreover, the variational multiscale (VMS) method
offers a finite element-specific, mathematically rigorous approach to LES [25, 31–33], with the availability of Sobolev
subspaces enabling the spatial filtering operation in LES to be defined as a projection operation [25]. Recently, Stoter et
al. [25] proposed a novel approach for incorporating discontinuous Galerkin methods into the variational multiscale
paradigm for fluid dynamics problems.

In summary, this study aims to examine the numerical performance of implicit subgrid-scale modeling, utilizing
the well-established streamline upwind/Petrov-Galerkin stabilization (SUPG) [19, 20] for finite element discretization
of advection-diffusion problems in supersonic SDTBL at a freestream Mach number, 𝑀∞, of 2.86. The investigation
focuses on both traditional coherent structures and non-conventional coherent structures, such as those derived from
two-point cross-correlations (TPCC) of 𝑢′𝑣′, 𝑣′𝑇 ′, and 𝑢′𝑇 ′, as well as two-point correlation of wall-pressure fluctuation
with 𝑣′ and 𝑝′ throughout a volume. The aim is to provide valuable insights into the efficacy of the iLES approach
in the context of high Reynolds number flows and further inform the development of advanced computational fluid
dynamics methodologies. To accomplish these objectives, we will leverage modern HPC resources, including large-scale
parallelism and advanced numerical algorithms, to conduct simulations with an unprecedented level of detail. We will
systematically compare the results of our iLES approach with those obtained from DNS (owned and external databases)
and wind tunnel facilities, providing a comprehensive assessment of the relative merits and limitations of each method.
This comparison will not only contribute to the validation of iLES as a practical tool for turbulent flow simulations but
also shed light on the fundamental physical mechanisms governing turbulence generation, dissipation, and transport
in supersonic SDTBL. By exploring the behavior of both traditional and non-conventional coherent structures in the
context of iLES, our study will advance the understanding of the complex interplay between these structures and their
role in the turbulence cascade. This knowledge will prove invaluable in the design of future turbulence models, as well
as the development of flow control strategies for real-world engineering applications. Ultimately, this research will
contribute to a broader scientific and engineering community’s efforts to harness the full potential of iLES as a viable
alternative to DNS and explicit LES for simulating turbulent flows in high Reynolds number regimes. By addressing the
pressing need for more efficient and accurate computational methods in this challenging domain, our work will help
pave the way for new discoveries and innovations in fluid dynamics, aerodynamics, and related fields.

III. Governing Equations and Inflow/Boundary Conditions
In this study, we investigate the behavior of compressible supersonic turbulent boundary layers (SDTBL) using the

compressible Navier-Stokes equations, assuming low Knudsen numbers and neglecting non-equilibrium effects [34]. The
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conservation of mass becomes non-trivial in compressible flows, especially when strong pressure gradients, compression,
and expansion waves are present, causing abrupt variations in density. We describe, for reader’s convenience, the
classical conservation equations for mass, momentum, and energy in Equations 1, 2, and 3, respectively.

𝜕𝜌

𝜕𝑡
+ 𝜕

𝜕𝑥 𝑗

(
𝜌𝑢 𝑗

)
= 0 (1)

𝜕𝜌𝑢𝑖

𝜕𝑡
+ 𝜕

𝜕𝑥 𝑗

(
𝜌𝑢𝑖𝑢 𝑗 + 𝑝𝛿𝑖 𝑗 − 𝜎𝑖 𝑗

)
= 0 (2)

𝜕𝜌𝑒

𝜕𝑡
+ 𝜕

𝜕𝑥 𝑗

(
(𝜌𝑒)𝑢 𝑗 − 𝑢𝑖𝜎𝑖 𝑗 + 𝑞 𝑗

)
= 0 (3)

where 𝜌 is the density; 𝑢𝑖 is the velocity in the 𝑖 direction; 𝑝 is the pressure; 𝜎𝑖 𝑗 is the stress tensor which we model as a
linear stress-strain relationship,

𝜎𝑖 𝑗 = 2𝜇𝑆𝑖 𝑗 −
2
3
𝜇𝛿𝑖 𝑗𝑆𝑘𝑘 (4)

where 𝑆𝑖 𝑗 =
1
2

(
𝜕𝑢𝑖
𝜕𝑥 𝑗

+ 𝜕𝑢 𝑗

𝜕𝑥𝑖

)
is the strain rate tensor, 𝜇 is the kinematic viscosity; and 𝑞𝑖 is the hear flux due to thermal

gradients in the 𝑖 direction and is modelled in the present work by Fourier’s law, 𝑞𝑖 = 𝜅 𝜕𝑇
𝜕𝑥𝑖

where 𝜅 is the thermal
conductivity; 𝑒 is total energy per unit mass which we assume to follow:

𝑒 = 𝑐𝑣𝑇 + 1
2
𝑢𝑖𝑢 𝑗 (5)

where 𝑐𝑣 is the specific heat at constant volume. Finally, we also assume the fluid viscosity to vary following a Power
Law (see Equation 6).

𝜇 = 𝜇∞

(
𝑇

𝑇∞

)0.76
(6)

The 0.76-power law variation of the dynamic fluid viscosity has shown an excellent performance in our iLES predictions,
with similar outcomes as for the well known Sutherland’s viscosity law (which, in fact, also contains a 3/2 power law
of the static temperature). However, equation 6 is more appropriate in the solution of the non-dimensional governing
equations of the flow.

The strong form of the equations is presented, while the weak form is employed in the finite element solver. This study
utilizes the PHASTA flow solver [35]. The finite element scheme is constructed on the basis of the streamline upwind
Petrov-Galerkin (SUPG) finite element discretization in space, offering second-order accuracy [19, 20]. This numerical
dissipation functions as an implicit subgrid scale (SGS) model. The non-linear system of equations is solved using an
iterative Krylov solver in space, while maintaining full implicitness in time (2𝑛𝑑 order accurate). For further information
on the finite element method used, readers are referred to [36, 37].

To effectively model the physics of SDTBL via iLES, several critical aspects must be considered: (i) the computational
domain should be sufficiently large to accommodate the largest scale motions (LSM) or “superstructures" [38, 39]; (ii)
accurate unsteady inflow turbulent fluctuations must be introduced [40, 41]; and (iii) the turbulent inflow fluctuations
should exhibit the appropriate power spectrum to minimize the “inlet developing section" (ideally, this section should
span 2-3 𝛿𝑖𝑛𝑙’s). Proper turbulent inlet conditions enable the simulation of even larger Reynolds numbers (i.e., large
scale systems), as resolving the laminar-transition stage is no longer necessary, thus optimizing the streamwise domain
length by reducing the “non-physical" developing section. In this article, the Dynamic Multiscale Approach (DMA) for
inlet generation, proposed by Araya et al. [40], is employed. This method has been extended to compressible SDTBL in
[41–43], and is a modified version of the rescaling-recycling technique by Lund et al. [18]. Moreover, the proposed
inflow condition generation method for compressible turbulent boundary layers has been recently demonstrated to be
highly robust, with a minimal development region [44] (at most 2.5𝛿𝑖𝑛𝑙𝑒𝑡 ) and an energy spectrum resembling that
of fully developed flow. Notably, the selection of outflow conditions was found to have a more significant impact
on the quality of the energy spectrum. Compressible boundary layer extensions have also been proposed by Urbin
& Knight [16], Stolz & Adams [17], and Xu & Martin [45]. The current inflow generation technique circumvents
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the use of empirical correlations linking the inlet friction velocity to the recycle friction velocity, which will be
further discussed in the manuscript. Figure 1 depicts an infographic representation of the DMA method, illustrating
iso-contours of instantaneous static temperature normalized by the freestream temperature. The fundamental concept
of the rescaling-recycling method involves extracting the flow solution (mean and fluctuating components of velocity,
thermal, and eventually, pressure fields for compressible flows) from a downstream plane (termed “recycle") and, after
applying scaling functions, reintroducing the transformed profiles at the inlet plane, as depicted in Figure 1. Indeed, it
has been reported that merely fixing the mean pressure at the inlet plane yielded more stable and accurate numerical
cases than incorporating pressure fluctuations. Our findings align with this conclusion. As stated in [46] and [16], “the
static pressure can be assumed constant at the inlet plane since the pressure fluctuations are small compared to the static
temperature fluctuations.” Instantaneous density profiles (mean plus fluctuations) are indirectly imposed due to the
equation of state for a perfect gas, which can be visually verified from Figure 1. The primary objective of implementing
scaling laws to the flow solution is to transform the streamwise in-homogeneity of the flow into quasi-homogeneous
conditions. This study focuses on employing the PHASTA flow solver and the SUPG finite element discretization for
the numerical simulation of compressible SDTBL. The iLES approach, combined with the DMA method for inlet
generation, ensures accurate representation of the turbulent flow properties. By considering the critical aspects of
computational domain size, unsteady inflow turbulent fluctuations, and proper power spectrum of the fluctuations,
a robust and reliable simulation of high Reynolds number flows can be achieved. The DMA method avoids using
empirical correlations and is capable of providing accurate and stable numerical results, even for compressible flows.
Future work may explore the impact of various outflow conditions on the quality of the energy spectra, as well as further
extensions and improvements to the compressible boundary layer modeling approaches. The Reynolds decomposition is
implemented for instantaneous parameters, i.e. a time-averaged plus a fluctuating component:

𝑢𝑖 (x, 𝑡) = 𝑈𝑖 (𝑥, 𝑦) + 𝑢′𝑖 (x, 𝑡) (7)

𝑡 (x, 𝑡) = 𝑇 (𝑥, 𝑦) + 𝑡′ (x, 𝑡) (8)

The SDTBL can be split into inner and outer zones, with distinct scaling laws applied in a multiscale manner [40].
A blending or weight function is utilized to generate composite instantaneous flow profiles, smoothly merging the
contributions from the inner and outer zones. The projection of flow parameters from the recycle plane to the inlet
is conducted along constant values of 𝑦+ (inner region) and 𝑦/𝛿 (outer region). Figure 1 additionally illustrates
the schematic of the computational domain in the supersonic regime at very high Reynolds numbers. During the
re-scaling process of the flow parameters [40], the ratio of the inlet friction velocity to the recycle friction velocity
(i.e., 𝜆 = 𝑢𝜏,𝑖𝑛𝑙/𝑢𝜏,𝑟𝑒𝑐) is required. The friction velocity is defined as 𝑢𝜏 =

√︁
𝜏𝑤/𝜌, where 𝜏𝑤 represents the wall shear

stress and 𝜌 denotes the fluid density.
Since the inlet boundary layer thickness must be prescribed according to the predicted inlet Reynolds number, prescribing
the inlet friction velocity becomes redundant. To address this issue, Lund et al. [18], Urbin & Knight [16], and Stolz
& Adams [17] utilized the well-established one-eighth power law connecting the friction velocity to the momentum
thickness in zero-pressure gradient flows, resulting in 𝑢𝜏,𝑖𝑛𝑙/𝑢𝜏,𝑟𝑒𝑐 = (𝛿2,𝑖𝑛𝑙/𝛿2,𝑟𝑒𝑐)−1/8. The empirical power (-1/8)
may be significantly influenced by the Reynolds number dependency and compressibility effects. Consequently, we
dynamically computed this power exponent, denoted as 𝛾𝛿2, “on the fly” by relating the mean flow solution from a new
plane (referred to as the “Test” plane, as depicted in Figure 1) to the solution from the recycle plane as follows:

𝛾𝛿2 =
𝑙𝑛(𝑢𝜏,𝑡𝑒𝑠𝑡/𝑢𝜏,𝑟𝑒𝑐)
𝑙𝑛(𝛿2,𝑡𝑒𝑠𝑡/𝛿2,𝑟𝑒𝑐)

. (9)
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Fig. 1 Boundary layer schematic for the supersonic turbulent boundary layer at high Reynolds numbers.
Contours of instantaneous static temperature.

Finally, in figure 1 it can be observed typical “bulges” and “valleys” as in incompressible turbulent boundary layers, with
outer irrotational flow penetrating further into the near wall region. It is worth highlighting the very “fine” structure of
turbulence at this high Reynolds number, where the flow becomes highly isotropic. This is consistent with findings by
[5] via DNS of supersonic SDTBL at a Mach number of 2.

A. The Flow Solver for HPC
To effectively conduct the proposed DNS at high Reynolds numbers, a CFD solver with exceptional accuracy,

efficiency, and scalability is necessary. PHASTA, an open-source, parallel, hierarchic (2𝑛𝑑 to 5𝑡ℎ order accurate),
adaptive, and stabilized (finite-element) transient analysis tool, has been developed for solving compressible [36] and
incompressible flows [19, 20]. By combining minimal dissipation numerics with adaptive [47–49] unstructured meshes,
PHASTA has been successfully applied to a wide range of flows, from DNS and LES benchmarks such as channel flow
and decay of isotropic turbulence [19, 22, 23, 50], to cases of practical interest encompassing incompressible [21, 51] and
compressible [41, 49, 52–54] boundary layer flow control, as well as hypersonic flows [42, 43]. Consequently, PHASTA
has established a robust record of supporting closely coordinated experimental-computational studies [49, 51–54].
PHASTA has been demonstrated [20] to be an effective tool for bridging a wide range of time and length scales in
various flows, including turbulent ones, using implicit techniques (based on URANS, DDES, LES, DNS). Moreover,
PHASTA has been meticulously designed for parallel performance [21, 55]. Figure 2 (a) presents isosurfaces of the Q
criterion for vortex core identification over a vertical airplane tail with active flow control. Figure 2 (b) illustrates the
scaling of PHASTA up to 786,432 cores (employing 1, 2, and 4 processes per core to leverage 4-way SMP, exceeding
3 million processes) in a 92 billion finite-element mesh. PHASTA has also been successfully ported and scaled on
GPU-based and XEON-phi based machines. This unprecedented portable scaling within the CFD community is crucial
for extending the proposed simulations to relevant Reynolds numbers.

6

D
ow

nl
oa

de
d 

by
 2

80
6:

10
7e

:f
:3

48
a:

2d
e1

:7
55

8:
7b

1f
:6

aa
5 

on
 J

an
ua

ry
 4

, 2
02

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
4-

00
69

 



(a) (b)

Fig. 2 (a) Flow visualization in the wake of a deflected flap of a realistic two component wing assembly with
active flow control (isosurfaces of instantaneous Q criterion colored by speed) and (b) scaling of PHASTA with 1,
2 and 4 MPI processes per core on the 92-billion element mesh. Adapted from Rasquin et al. [56].

IV. Postprocessing of Big Data
To cope with the growing demands of processing larger computational domains and gather valuable insight from

large scale simulations, we have developed a scalable, out-of-core post-processing library capable of scaling from
laptops to workstations to small clusters to large scale facilities equipped with both CPUs and GPUs. Aquila [57] is
currently in its second iteration with a third major revision currently being developed. Figure 3 highlights the software
structure for our post-processing solution which we call Aquila. The name comes from the latin for eagle and serves as a
constant reminder that domain experts should not be required to dabble with low level computational nuances to gather
scientific insight and should “fly” over these as high as possible while retaining excellent performance and scalability in
the same way that eagles avoid storms by flying over them.
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Fig. 3 High level schematic of the software components for Aquila.

In its current state, Aquila targets TensorFlow [58], the popular machine learning (ML), as its compute backend from
Python. This enables transparent targeting of CPUs and GPUs from multiple vendors with excellent performance.
Domain decomposition is done via MPI [59] as these implementations are often highly tuned in large scale computing
facilities. Figure 4 depicts Aquila’s strong scaling across both CPUs and GPUs. The user does not need to change
anything in its scripts to target either GPUs or CPUs as this is all handled by TensorFlow. Aquila’s scaling is assessed by
computing the meanflow and a collection of “Quantities of Interest” (QoI) that include: fluid velocity, pressure and
thermal fluctuations, boundary layer parameters (such as boundary layer thickness and its integral moments, friction
velocity, skin friction coefficient, turbulent kinetic energy, 30 cross-correlations, third & fourth order moments, 20 full
3D two-point correlations and 1,237,500 spanwise energy spectra. The input dataset consisted of 4̃000 flow fields which
totaled approximately 8.3 TBs of database. Thus, operating with this data in-memory is impractical at low node counts
or with typical node configurations. Aquila operates on this data on “cold” storage media and provides an illusion of
an in-memory implementation by pre-fetching data asynchronously. In summary, Aquila achieves an excellent strong
scaling performance with a parallel scaling efficiency above 80% and with the GPU runtime being 2 times faster. GPUs
tend to shine on throughput oriented tasks as clearly seen in fig. 4 where the meanflow performance is entirely IO bound
and the performance difference between the CPU and GPU is negligible whereas a significant difference is seen for
the core portion of the benchmark. The asynchronous prefetcher yields a 23-24% improvement in total runtime. The
combined speedup of using a pre-fetcher and an optimized GPU backend is approximately 2.48 times (considering a
CPU-only backend without prefetching).
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Fig. 4 Strong scaling behavior for Aquila (top-left); in CPU-only nodes, we fixed 2 processes per node and
threaded across the remaining CPU cores (top-right); GPU nodes had 2 GPUs, and we allocated one rank per
GPU ensuring a total of 2 MPI ranks (Workers) per node (bottom).

V. Mean flow and higher order statistics
Table 1 summarizes the characteristics of the analyzed iLES supersonic case. The number of flow fields employed in
statistics computation, freestream Mach number, wall thermal condition (adiabatic), Reynolds number range (momentum
and friction Reynolds numbers), computational domain dimensions in terms of the inlet boundary layer thickness 𝛿𝑖𝑛𝑙
(where 𝐿𝑥 , 𝐿𝑦 and 𝐿𝑧 represent the streamwise, wall-normal and spanwise domain length, respectively) and mesh
resolution in wall units (Δ𝑥+, Δ𝑦+

𝑚𝑖𝑛
/Δ𝑦+𝑚𝑎𝑥 , Δ𝑧+) are depicted by Table 1 The iLES case contains the following grid

point numbers: 990 × 250 × 210 (roughly a 52-million point mesh) along the streamwise, wall-normal and spanwise
direction, respectively. This cases were run in 1200 processors at the Onyx supercomputer (ERDC, DoD).

Table 1 Numerical details of iLES case.

Regime Flow fields 𝑀∞ 𝑇𝑤/𝑇∞ 𝑅𝑒𝛿2 𝛿+ 𝐿𝑥 × 𝐿𝑦 × 𝐿𝑧 Δ𝑥+,Δ𝑦+
𝑚𝑖𝑛

/Δ𝑦+𝑚𝑎𝑥 , Δ𝑧+

Supersonic 4001 2.86 2.74 9505-10835 2159-2510 15𝛿𝑖𝑛𝑙 × 3𝛿𝑖𝑛𝑙 × 3𝛿𝑖𝑛𝑙 32.8, 1.25/56, 31

A. Mean Flow
Figure 5 exhibits the streamwise development of the skin friction coefficient of present iLES supersonic data at a
freestream Mach number of 2.86. It is worth noting the excellent agreement of present 𝐶 𝑓 results of iLES with a
power-law curve fitting (i.e., 𝐶 𝑓 = 0.0185𝑅𝑒−0.29

𝛿2 ) based on experiments at similar Mach numbers from Stalmach [60].
In addition, 𝐶 𝑓 values at Mach 2.86 are included from DNS of Lagares & Araya (2022) [44] at much lower Reynolds
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Fig. 5 Skin friction coefficient, 𝐶 𝑓 , in the supersonic flow regime.

numbers (about 3X lower). Furthermore, experimental data from [61], [62], [63] are also included at supersonic
Mach numbers between 2 to 3, and at lower Reynolds numbers. For those low Reynolds number cases, the power-law
curve fitting displays a very good performance, with the exception of experimental data by [62] with an almost 10%
discrepancy. In fig. 6, the time-averaged streamwise velocity is plotted at a streamwise location where the local friction
Reynolds number, 𝛿+, is 2430. The agreement with hot-wire anemometry data at a supersonic blowdown wind tunnel by
Donovan et al. [64] is excellent, particularly in the outer region for 𝑦/𝛿 > 0.03 (or 𝑦+ > 250). In fig. 7, both log and
power laws have been evaluated via diagnostic functions, i.e. 𝐷𝐹𝑙𝑜𝑔 and 𝐷𝐹𝑝𝑜𝑤𝑒𝑟 . It is important to highlight that
constant values of those diagnostic functions inside the boundary layer indicate the local presence of either log or power
law behavior. Interestingly, a power law of 𝑈+

𝑉𝐷
occupies a slightly larger portion in the supersonic boundary layer,

approximately extending between 115 < 𝑦+ < 833 or about 717 wall units. A 0.2% deviation of the normalized wall
normal gradient of the diagnostic functions were considered in the log/power law assessment. Figure 8 shows second
order statistics. In fig. 8 (a) the streamwise component of the resolved Reynolds normal stresses as well as the resolved
Reynolds shear stresses are depicted at the middle of the computational domain. There is a clear over-prediction of
𝑢′𝑢′ peaks by iLES, and ongoing investigation is being carried out to implement a more efficient numerical dissipation
approach in the near wall region of the turbulent boundary layer. At such high Reynolds numbers, the constant shear
layer or “plateau” is quite evident and large on the 𝑢′𝑣′ profile. Interestingly, by looking at the turbulent heat fluxes from
fig. 8 (b) one can infer a high level of similarity between 𝑢′𝑢′ and 𝑢′𝑇 ′ profiles, meaning that the Reynolds analogy still
holds for those two correlations in supersonic turbulent boundary layers over adiabatic flat plates.
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Fig. 6 Time-averaged streamwise velocity in outer units.

Fig. 7 Diagnostic functions for Log and Power law in supersonic regime at very high Reynolds numbers in
iLES and 𝑀∞ = 2.86.
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(a) (b)

Fig. 8 (a) Streamwise component of the Reynolds normal stresses and Reynolds shear stresses, (b) streamwise
and wall-normal turbulent heat fluxes.

B. Higher-Order Statistics
Turbulence, a ubiquitous phenomenon characterized by its chaotic, random, and multi-scale nature, manifests several

intriguing statistical properties. Among these properties, skewness, flatness, and intermittency stand out as particularly
important for understanding the complexity and rich dynamics of turbulent flows [65]. Skewness and flatness, the third
and fourth statistical moments respectively, serve as measures of the asymmetry and peakedness of a distribution. In
the context of turbulence, a skewness value of zero would indicate a symmetric, likely Gaussian distribution of the
turbulent fluctuations. Non-zero skewness, on the other hand, highlights the asymmetry of the distribution, potentially
indicating the existence of dominant, one-sided fluctuations in the flow field [66]. Flatness, on the other hand, serves
as an indicator of the presence of extreme, high-amplitude events. In a Gaussian distribution, the flatness equals 3.
Higher flatness values in turbulence thus signify the occurrence of intense, sporadic events, leading to a distribution
with heavier tails compared to the Gaussian [66]. These sporadic, intense events in turbulent flows are a manifestation
of intermittency, an inherent property of turbulence. Intermittency refers to the localized, sporadic occurrence of
intense, high-amplitude events in turbulent flows, leading to deviations from the classical Kolmogorov 1941 self-similar,
scale-invariant energy distribution in the inertial subrange [65, 67]. Intermittency significantly influences the statistical
properties of turbulence, leading to non-Gaussian behavior of turbulent fluctuations. This is often captured through the
aforementioned higher order statistical moments. Furthermore, intermittency plays a crucial role in the energy cascade
process in turbulence, leading to a modification of the energy spectrum, particularly in the high wave number or small
scale regime. This phenomenon is often described by the concept of multifractality [65, 68]. Multifractality is a concept
that originates from the field of fractal mathematics and has found significant application in the study of turbulence,
including turbulent boundary layers. In general, a fractal is a geometric shape that is self-similar, meaning it appears
the same at any scale. If you zoom in or out on a fractal, you will see the same pattern repeating over and over again.
However, in many real-world systems, including turbulence, this self-similarity is not perfect. Instead, different parts of
the system exhibit self-similarity with different scaling laws. This is where the concept of multifractality comes in.
In the context of turbulence, multifractality refers to the idea that the statistical properties of turbulence (such as the
distribution of energy among different scales of motion) are not uniform across all scales, but instead vary in a way that
itself exhibits fractal behavior. This is particularly relevant in the study of turbulent boundary layers, where a wide range
of scales of motion are present, from the large-scale motions influenced by the overall flow down to the small-scale
motions near the wall where viscous effects become important. The concept of multifractality provides a framework for
understanding and quantifying this scale-dependent behavior. It suggests that the turbulence is composed of a multitude
of different "fractal dimensions", each associated with a different scale of motion. This multifractal nature of turbulence
has significant implications for the energy cascade process, the mechanism by which energy is transferred from large
scales of motion to smaller scales in a turbulent flow. It suggests that this process is not uniform, but instead varies
across different scales in a way that reflects the multifractal structure of the turbulence.
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Figure 9 showcases the intermittency throughout the boundary layer in outer units, i.e. as a function of 𝑦/𝛿.
According to [69], the intermittency factor 𝛾 is defined as 3/F(u), where F(u) is the flatness of the streamwise velocity
fluctuations. We have also included DNS data by Bernardini & Pirozzoli [5] at a freestream Mach number of 3 and 𝛿+ =

502, thus, at a much lower Reynolds number than present iLES. The Reynolds number dependency is pretty evident in
the very near wall region, with a 𝛾-peak value much closer to the wall for present iLES at larger Reynolds numbers
(our 𝛿+ is approximately four timer larger than that of [5]). In the outer region for 𝑦/𝛿 > 0.1, there is a very good
agreement between our iLES results and DNS from [5]. The empirical curve fitting (power law) based on experimental
data by [69] at significantly high Reynolds number is also included. We assess that the discrepancy in the outer region
of the boundary layer is likely attributable to the Reynolds number difference since a clear trend towards the empirical
correlation is seen as 𝑅𝑒 grows from the data reproduced from [5] to the present iLES data. Nonetheless, the general
trends are consistent across all three curves where a mostly Gaussian behavior can be seen (note almost unitary values
for 𝛾 in the region 0.1 < 𝑦/𝛿 < 0.6). This breaks down as the fluid approaches the edge of the boundary layer. To further
dissect the statistical nature of the boundary layer, the skewness and flatness are shown for pressure (fig. 10), streamwise
velocity (fig. 11), wall-normal velocity (fig. 12) and temperature (fig. 13) fluctuations. Looking into figure 11, we note
that although the flatness (inversely proportional but directly related to the intermittency) suggests a Gaussian trend, the
distribution is negatively skewed hence pointing to low speed streaks being common throughout the boundary layer
but especially so in the outer region. Now, accounting for the positive skewness of the wall-normal velocity in fig. 12
suggests that the flow has a high number of ejection events in the outer layer of the boundary layer. Although some
ejections might originate in the inner layer, they appear to be far less common that in the outer portion. The inner layer
of the boundary layer also resembles much more closely a Gaussian distribution which breaks down as the edge of the
boundary layer is reached. Furthermore, pressure fluctuations appear to be much more violent with its values spread over
a wider range as can be seen from figure 10b. On the other hand, the skewness suggests extreme low-pressure events are
common throughout the boundary layer but especially so in the outer region. This is consistent with the prevalence of
ejections since ejection events create a “void” to be filled by other fluid parcels (sweeps). The thermal fluctuations
tend to show a similar behavior in terms of the flatness of the distribution (fig. 13b). The thermal boundary layer does
exhibit strong “cooling” events near the vicinity of the wall and “heating” events as the flow approaches the edge of the
boundary layer. The notable similarity between F(u) and F(T) suggests a kind of Reynolds analogy for those variables in
supersonic turbulent boundary layers. On the other hand, there is a perfect asymmetry between S(u) and S(T).

Fig. 9 Streamwise velocity fluctuations intermittency factor 𝛾. Curve-fitting is based on experimental data by
[69] as reproduced by [70].
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Fig. 10 Skewness and Flatness for the pressure fluctuations.

Fig. 11 Skewness and Flatness for the streamwise velocity fluctuations.
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Fig. 12 Skewness and Flatness for the wall-normal velocity fluctuations.

Fig. 13 Skewness and Flatness for the temperature fluctuations.

VI. Two-Point Cross-Correlations
In this section, we delve into the application of non-traditional two-point cross-correlations (TPCCs) for the

identification and characterization of coherent structures in turbulent flows. Specifically, we focus on the two-point
correlations of 𝑢′𝑣′, 𝑣′𝑇 ′, and 𝑢′𝑇 ′, which offer unique insights into the relationships between velocity fluctuations,
temperature fluctuations, and their interactions. These non-traditional correlations can provide valuable information
regarding the momentum and heat transport processes, the dynamics of vortex stretching and compression, energy
cascade mechanisms, and the spatial distribution of coherent structures, which are crucial in understanding the behavior
of coherent structures and their impact on the flow dynamics. Additionally, we introduce the concept of two-point
correlation of wall-pressure fluctuation with 𝑣′ and 𝑝′ throughout a volume. This technique enables the investigation
of pressure-velocity interactions in the vicinity of the wall, which plays a significant role in the development and
maintenance of coherent structures near the boundary. Furthermore, the wall-pressure fluctuation correlation can
help to identify and understand the relationship between large-scale motions, pressure fluctuations, and the resulting
wall-pressure distribution, which has a significant influence on the surface heat transfer and skin friction. By employing
these advanced two-point correlation techniques, we can gain a deeper understanding of the underlying mechanisms
driving the formation, evolution, and interaction of coherent structures in turbulent flows. These non-conventional
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TPCCs provide a comprehensive perspective on the role of different flow variables in the dynamics of coherent structures,
as well as the interplay between turbulent transport processes and the energy exchange among various scales of motion.
In the following results, we will demonstrate the effectiveness of non-traditional TPCCs in capturing the complex
behavior of coherent structures across various flow scenarios. Through the analysis of these non-conventional TPCCs,
we aim to uncover key patterns, trends, and interactions among the velocity, temperature, and pressure fluctuations,
shedding light on the underlying physics driving the formation and evolution of unconventional coherent structures in
turbulent flows.
Experimentally gathering data inside the boundary layer for compressible, high-speed turbulent flows without perturbing
the fluid flow is a challenging endeavour. However, wall measurements are relatively straightforward and can be used as
a gateway to understanding the boundary layer behavior albeit indirectly. Figure 14 (a) depicts wall-pressure fluctuations
at the reference point correlated to fluid pressure fluctuations in the domain. Moreover, the iso-surface of pressure
correlations exhibits a concave curvature upstream of the reference point. The mushroom-like features bulge along the
wall-normal direction with a convex curvature character downstream. Furthermore, figure 14 (b) depicts wall-pressure
fluctuations at the reference point correlated to wall-normal velocity fluctuations. This cross-correlation exhibits very
interesting features: the incident structure (blue) is negatively correlated above 𝑦+ = 4. This structure is “reflected”
(the angle of the two structures with respect to the plane is identical and equal to 51 deg (measured from the structure
centerline). This angle is much more aggressive than the Mach angle for an isentropic expansion (20.5 deg) at 𝑀∞ =
2.86. One possibility is that the observed reflection angle is not solely due to the primary pressure waves generated by
the supersonic flow. It could also be influenced by secondary interactions between the wall, the turbulent structures, and
other wave phenomena present in the flow. Furthermore, local variations in the flow properties, such as changes in
the Mach number or pressure gradients, can also influence the wave propagation angles. The presence of local flow
features, such as vortices, could introduce complex wave interactions that lead to the observed aggressive reflection
angle. The negative correlations on the left leg of the “V” could indicate that there is an opposing relationship between
wall pressure fluctuations and wall-normal velocity fluctuations in that region. This behavior might be related to the
presence of coherent structures that are aligned in the streamwise direction, such as streamwise vortices, which can
induce alternating high and low-pressure regions along with corresponding wall-normal velocity fluctuations. On the
other hand, the positive correlations on the right leg of the “V” suggest that there is a more direct relationship between
the wall pressure fluctuations and wall-normal velocity fluctuations in that region. This behavior could be associated
with other types of flow structures, such as spanwise vortices or large-scale motions, which might create regions of high
and low pressure that are more directly linked to the wall-normal velocity fluctuations.
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(a) 𝑅𝑝′
𝑤 𝑝′

(b) 𝑅𝑝′
𝑤𝑣′ . Note: streamwise intersection location coincides with reference station.

Fig. 14 (a) Two-point cross-correlation between wall pressure fluctuation at the reference point with pressure
fluctuation in the domain. (b) Two-point cross-correlation between wall pressure fluctuation at the reference
point with wall-normal velocity fluctuation in the domain. Note: the yellow line highlights the streamwise location
for the TPCC and the white line provides a reference length in terms of the boundary layer thickness at the center
of the domain or reference point.

Upon closer inspection in fig. 15, we can identify a two-layer phenomenon in the near-wall region (𝑦+ ≤ 4) where
the 𝑝′𝑤𝑣

′ correlation experiences a sign reversal. A two-layer situation in the two-point cross-correlation (TPCC) of
wall pressure fluctuation and wall-normal fluctuation can arise due to the different dynamics governing the near-wall
and outer regions of the turbulent boundary layer. The behavior of the correlations experiencing a reversal at 𝑦+ = 4
may indicate a transition between these two regions, where different flow mechanisms dominate. In the near-wall
region, the dynamics are largely influenced by the viscous effects, and the flow is predominantly governed by the wall
shear stress. In the outer region, the influence of the wall diminishes, and the flow becomes more dominated by the
inertial effects and large-scale turbulent structures. The reversal of the sign of the correlation in the near-wall region
for the two-layer situation indicates that the relationship between wall pressure fluctuations and wall-normal velocity
fluctuations undergoes a change as the flow transitions from the near-wall region to the outer region. The viscous
sub-layer likely dampens the incoming waves resulting in a high-correlation in the vicinity of the wall between the wall
and the incoming wave. In the outer region, the negative correlations on the left leg of the “V” could indicate that there
is an opposing relationship between wall pressure fluctuations and wall-normal velocity fluctuations in that region. This
behavior might be related to the presence of coherent structures that are aligned in the streamwise direction, such as
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streamwise vortices, which can induce alternating high and low-pressure regions along with corresponding wall-normal
velocity fluctuations. On the other hand, the positive correlations on the right leg of the “V” suggest that there is a more
direct relationship between the wall pressure fluctuations and wall-normal velocity fluctuations in that region. This
behavior could be associated with other types of flow structures, such as spanwise vortices or large-scale motions, which
might create regions of high and low pressure that are more directly linked to the wall-normal velocity fluctuations. In
summary, this TPCC configuration of 𝑅𝑝′

𝑤 𝑝′ resembles a “quadrupole” with the streamwise axis located in the viscous
sublayer around 𝑦+ ≈ 4. This phenomenon is unreachable by any fluid dynamics experimental technique due to its
spatial resolution limitations, we have also observed a similar trend in our DNS case at 𝑀∞ = 2.86 and lower Reynolds
numbers.

Fig. 15 Close-up of the inner-layer seen in the 𝑅𝑝′
𝑤𝑣′ correlation

The two-point cross-correlation 𝑅𝑢′𝑣′ , which represents the correlation between the streamwise velocity fluctuations
(𝑢′) and the wall-normal velocity fluctuations (𝑣′), provides unique insights into the momentum transfer by turbulent
transport or mixing. In particular, it can help in identifying the key features such as ejections and sweeps, which are
the principal turbulent events responsible for generating Reynolds shear stresses and turbulence production. Figure
16 shows extracted iso-surfaces of 𝑅𝑢′𝑣′ for positive (red) and negative (blue) values at some strategic wall-normal
locations inside the boundary layer: at 𝑦+ = 5 (viscous sub-layer), 30 (peak location of 𝑢′𝑣′) and 150 (log region). In
all cases, TPCC threshold values for surface extraction range between 0.04 to 0.15 due to increased “noise” farther
away from the wall and iLES. The TPCC results were normalized with the corresponding value at the reference point.
First of all, the major turbulent 𝑢′𝑣′ structure is negatively correlated (different from auto-correlations 𝑅𝑢𝑢 or 𝑅𝑇𝑇 as
reported by [3]) due to the inherently anti-correlated behavior of 𝑢′ and 𝑣′ (Q2 events or ejections and Q4 events or
sweeps mostly contribute to the Reynolds shear stress formation). Furthermore, as observed in 3D-TPC (i.e., 𝑅𝑢𝑢 and
𝑅𝑇𝑇 ), the major structure is also flanked by two lateral sub-structures with opposite cross-correlation values (positive in
this case). The principal negative-correlated structure clearly exhibits a wall-normal growth from the viscous sub-layer
to the log region, also seen in the flanking structures. Furthermore, all 𝑢′𝑣′ structures show that most of the influence
zone in the near wall region is located downstream of the reference point, with their tails situated just upstream of the
above mentioned point. The “picture” changes as one moves farther from the wall: the “zone of influence” and thus the
structure “tails” move upstream. In addition, the Reynolds shear stress structures depict a more oblong silhouette in the
buffer region and below with streamwise dimensions in the order of 1.5 to 2 𝛿’s.
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(a) 𝑦+ = 150 (Log Region)

(b) 𝑦+ = 30 (Peak 𝑢′𝑣′ location at buffer region)

(c) 𝑦+ = 5 (Viscous sub-layer)

Fig. 16 𝑅𝑢′𝑣′ two-point cross-correlations. Note: the yellow line highlights the streamwise location for the
TPCC and the white line provides a reference length in terms of the boundary layer thickness at the center of the
domain.

The 𝑅𝑣′𝑇 ′ two-point cross-correlation, representing the correlation between the wall-normal velocity fluctuations (𝑣′)
and temperature fluctuations (𝑇 ′), offers a window into heat transfer mechanisms, mixing mechanics, thermal coherent
structures and the coupling of momentum and heat transfer. Similar descriptive aspects discussed for 𝑅𝑢′𝑣′ structures
are applicable to 𝑅𝑣′𝑇 ′ in terms of structure system configuration, zone of influence, and wall-normal growth. The
most obvious distinction is related to the cross-correlation sign: the principal 𝑅𝑣′𝑇 ′ structure is positive, and viceversa.
This is explained by the fact that the static temperature decreases towards the boundary layer edge, i.e. 𝑇𝑤 > 𝑇∞.
Additionally, some degree of similarity can be traced between 𝑅𝑢′𝑣′ and 𝑅𝑣′𝑇 ′ TPCC volumes, which indicates that
a Reynolds analogy can be defined for Reynolds shear stresses and wall-normal turbulent heat fluxes in supersonic
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turbulent boundary layers.

(a) 𝑦+ = 150 (Log region)

(b) 𝑦+ = 40 (Peak 𝑣′𝑇 ′ location at buffer region)

(c) 𝑦+ = 5 (Viscous sub-layer)

Fig. 17 𝑅𝑣′𝑇 ′ two-point cross-correlations. Note: the yellow line highlights the streamwise location for the
TPCC and the white line provides a reference length in terms of the boundary layer thickness at the center of the
domain.

Analogous to 𝑅𝑣′𝑇 ′ , the 𝑅𝑢′𝑇 ′ two-point cross-correlation, which represents the correlation between streamwise
velocity fluctuations (𝑢′) and temperature fluctuations (𝑇 ′), provides insights into the interactions between velocity
and temperature structures in turbulent flows. Similarly, the focal point of the correlation is the coupling of heat and
momentum transfer, which dictates the thermal energy transported or convected in the streamwise direction. Further,
the 𝑅𝑢′𝑇 ′ two-point correlation can be utilized to assess the validity of the Reynolds analogy, which posits a relationship
between momentum and heat transfer in turbulent flows. This analogy assumes that the turbulent transport of momentum
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and heat are proportional and similar, implying that the dimensionless skin friction coefficient and the dimensionless
heat transfer coefficient are related. By examining the 𝑅𝑢′𝑇 ′ correlation, we can gain insights into the relationship
between streamwise velocity fluctuations and temperature fluctuations, which directly impact momentum and heat
transfer processes. A strong correlation between 𝑢′ and 𝑇 ′ fluctuations would suggest that the Reynolds analogy holds
true, as it indicates that momentum and heat are being transferred in a similar manner within the flow. Conversely, if
the correlation is weak or exhibits a complex spatial distribution, this would imply that the Reynolds analogy might
not be applicable in certain flow conditions or regions, as the transport mechanisms for momentum and heat could be
significantly different. By carefully analyzing the 𝑅𝑢′𝑇 ′ two-point correlation and comparing it with the predictions
made by the Reynolds analogy, we can assess the extent to which the analogy is valid in describing the relationship
between momentum and heat transfer in turbulent flows. This can provide valuable guidance for the development of
turbulence models and the understanding of heat and momentum transport processes in complex flow scenarios. It
is worth highlighting the very oblong silhouette of 𝑅𝑢′𝑇 ′ in the buffer region and below, inside the boundary layer.
Streamwise dimensions of 𝑅𝑢′𝑇 ′ structures are in the order of 2.5 𝛿’s or larger, confirming the high level of correlation
between 𝑢′ and 𝑇 ′ (Reynolds analogy). Figure 19 shows the corresponding iso-surfaces of 𝑅𝑢′𝑢′ in the log region. The
similarity with 𝑅𝑢′𝑇 ′ at the same wall-normal location is astonishing (excepting, of course, the correlation sign). In
both cases, upstream tails reach the very near wall region (a turbulent eddy almost “attached” to the wall), although the
reference point is located in the log region.
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(a) 𝑦+ = 150 (Log region)

(b) 𝑦+ = 15 (Peak 𝑢′𝑇 ′ location at buffer region)

(c) 𝑦+ = 5 (Viscous sub-layer)

Fig. 18 𝑅𝑢′𝑇 ′ two-point cross-correlations. Note: the yellow line highlights the streamwise location for the
TPCC and the white line provides a reference length in terms of the boundary layer thickness at the center of the
domain.

22

D
ow

nl
oa

de
d 

by
 2

80
6:

10
7e

:f
:3

48
a:

2d
e1

:7
55

8:
7b

1f
:6

aa
5 

on
 J

an
ua

ry
 4

, 2
02

4 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

02
4-

00
69

 



Fig. 19 𝑅𝑢′𝑢′ two-point correlations at 𝑦+ = 150. Note: the yellow line highlights the streamwise location for the
TPC and the white line provides a reference length in terms of the boundary layer thickness at the center of the
domain.

VII. Conclusions
In this study, we have delved into the complex dynamics of supersonic turbulent boundary layers at a Mach number

of 2.86, focusing on the statistical properties and two-point cross-correlations. Our analysis of higher-order statistics,
namely skewness and flatness, has revealed significant deviations from Gaussian behavior, indicating the presence
of intense, sporadic events and highlighting the intermittent nature of the turbulence. This intermittent behavior
suggests a multifractal nature of the turbulence, implying a complex energy cascade process and scale-dependent
statistical properties. The application of non-traditional two-point cross-correlations (TPCCs) has provided valuable
insights into the relationships between velocity fluctuations, temperature fluctuations, and their interaction. These
non-traditional correlations have shed light on the momentum and heat transport processes, the dynamics of vortex
stretching and compression, energy cascade mechanisms, and the spatial distribution of coherent structures. Furthermore,
the two-point correlation of wall-pressure fluctuation with v’ and p’ throughout a volume has enabled the investigation
of pressure-velocity interactions in the vicinity of the wall, which plays a significant role in the development and
maintenance of coherent structures near the boundary. Major findings are summarized as follows:

• Predicted skin friction coefficient, 𝐶 𝑓 , by SUPG-iLES is in excellent agreement with power-law curve fitting
based on [60]’s experiments over supersonic adiabatic flat plates.

• The SUPG approach has demonstrated to be accurate not only in the near wall region for the mean streamwise
velocity (i.e., wall-normal velocity gradient or 𝐶 𝑓 ) but also in the entire turbulent boundary layer. Furthermore, the
van Driest transformed velocity (𝑈+

𝑉𝐷
) depicts a slightly longer power law behavior than its log-law counterpart

(717 vs. 668 in wall units).
• The employed numerical dissipation scheme, i.e. SUPG, as SGS model has demonstrated an acceptable

performance in high order statistics computation. The intermittency factor, which is inversely proportional to the
flatness of streamwise velocity fluctuations, as predicted by iLES exhibited a very good agreement with DNS of
[5] at Mach 3.

• Two-point cross-correlation of wall pressure fluctuations with domain pressure fluctuations has revealed the
presence of a “quadrupole” in the viscous sub-layer, around 𝑦+ = 4.

• Two-point cross-correlation of velocity and thermal fluctuations indicates more pronounced volume with high
correlation values downstream of the reference point in the viscous sub-layer. Whereas, those volumes with
high velocity-thermal correlations move upstream of the reference point (resembling very long and wall-attached
tails) in the buffer region and towards the boundary layer edge. Furthermore, based on 𝑅𝑢′𝑇 ′ structures, the
high coherence observed between 𝑢′ and 𝑇 ′ implies that the Reynolds analogy still holds in supersonic turbulent
boundary layers at 𝛿+ ≈ 2,500.

Despite the insights gained, our understanding of supersonic turbulent boundary layers remains incomplete. The
complexity of these flows, characterized by a wide range of scales of motion and the presence of shock waves, presents
significant challenges for both experimental and computational investigations. Future research should continue to
leverage advanced diagnostic tools, such as those employed in this study, to further unravel the complex dynamics of
these flows. In particular, the development of advanced turbulence models that can accurately capture the multifractal
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nature and intermittent behavior of the turbulence will be crucial. Furthermore, the exploration of the relationship
between large-scale motions, pressure fluctuations, and the resulting wall-pressure distribution holds significant potential
for improving our understanding of surface heat transfer and skin friction in these flows. In conclusion, this study
represents a step forward in our understanding of supersonic turbulent boundary layers. However, much work remains
to be done. As we continue to unravel the complex dynamics of these flows, we move closer to the ultimate goal of
predicting and controlling turbulence in supersonic flows, with significant implications for the design and operation of
high-speed vehicles.
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