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Abstract. In this study, we delve into the intricate relation between Lagrangian Coherent Structures (LCS), primarily represented by
the finite-time Lyapunov exponent (FTLE), and instantaneous temperature in turbulent wall-bounded flow scenarios. Turbulence,
despite its chaotic facade, houses coherent structures vital to understanding the dynamical behavior of fluid flows. Recognizing
this, we leverage high-fidelity Direct Numerical Simulation (DNS) to investigate compressible flows, focusing on the attracting
manifolds in FTLE and their correlation with instantaneous temperature. The consequent insights into the coupling between fluid
dynamics and thermodynamics reveal the profound influence of vortex stretching, shearing, and compression on local thermo-
dynamic characteristics. Notably, the interplay of instantaneous static temperature and fluid properties, along with the cascading
nature of energy in turbulent flows, underpins the observed correlation. Furthermore, we leveraged a high-performance, scalable
volumetric particle advection scheme for LCS determination in subsonic (M∞ = 0.8) and supersonic (M∞ = 1.6) turbulent boundary
layers over adiabatic flat plates.

INTRODUCTION
Turbulent fluid flows, despite appearing chaotic and random, often harbor coherent structures that underpin their dy-
namical behavior. The exploration and identification of these coherent structures (CS) are central to better understand-
ing turbulence, since CS are responsible for most of the momentum and thermal transport phenomena. Among the
various methodologies employed to decipher such structures, the concept of Lagrangian Coherent Structures (LCS)
has emerged as a powerful and objective tool. Initially introduced by [1], LCS are identified through trajectories of
mass-less particles, effectively organizing the flow into distinguishable regions. The backbone of LCS determination
is the finite-time Lyapunov exponent (FTLE), shedding light on the rate of divergence or convergence of nearby tra-
jectories in a flow field. High-speed turbulence, especially pertinent in aerospace contexts, requires meticulous study.
High-fidelity numerical simulations, like Direct Numerical Simulation (DNS), offer detailed insights. DNS, a turbu-
lence model-independent approach, may still be influenced by factors such as fluid type or molecular viscosity models
in compressible flows. Once the rich data from DNS becomes accessible, it provides a fertile ground for extracting
coherent structures. Notably, these structures can be studied either through an Eulerian or Lagrangian lens, each with
its distinct advantages and implications. LCS, as a Lagrangian method, has been extended and adapted to various do-
mains. From biological studies [2, 3], geophysical examinations [4], to ecological investigations [5], LCS’s ubiquity
underscores its significance. The inherent frame-independence and resolution insensitivity, as described by [1], render
LCS a preferred method for many scientific applications. However, their full potential, particularly in the context of
high-speed turbulence, remains to be tapped.
In this work, we embark on a novel exploration correlating attracting manifolds in FTLE with instantaneous static
temperature in turbulent scenarios subject to subsonic and supersonic flow regimes. Leveraging two DNS studies over
flat plates spanning incompressible to high-speed flow regimes [6, 7, 8], we aim to shed light on compressibility effects
and Reynolds number impacts on LCS.

PARTICLE ADVECTION SCHEME AND FTLE/FSLE COMPUTATION
The Lagrangian Coherent Structures (LCS), or manifolds formed by particle trajectories in a fluid flow, can be approx-
imated by finite-time Lyapunov exponent (FTLE) and finite-size Lyapunov exponent (FSLE) methods. Both measure



the deformation of a particle field differently. The FSLE assesses the time needed for a particle pair to achieve a partic-
ular distance, while FTLE integrates over a fixed period, irrespective of the distance between particles [9]. However,
with proper calibration, both methods can yield similar results [10]. In this study, we leverage previous work to build
a high-performance and scalable volumetric particle advection scheme applied to LCS [11]. The reader is referred to
[11] for a more comprehensive overview of the particle advection methodology. The particle’s trajectory, released at
a specific time t0 and location x0, is represented by the flow map and the velocity field. The FTLE is given by:
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captures the deformation of a continuous body, describing the changes in material line length within the body due to
deformation. Its eigenvalues represent the squared stretches along the principal material directions, while the eigen-
vectors denote the directions of these stretches. High FTLE values signify potential attracting or repelling manifolds.
Forward time-integrated particle trajectories indicate repelling manifolds, whereas backward time-integrated trajecto-
ries denote attracting barriers [12].

DNS DATABASE
We are dealing with spatially-developing turbulent boundary layers (SDTBL) over adiabatic flat plates (or zero-
pressure gradient flow) and different flow regimes (subsonic and supersonic). Readers are referred to [6, 7, 8] for
more details. The presently utilized DNS database were obtained via the inflow generation methodology proposed by
[13]. The Dynamic Multiscale Approach (DMA) was recently extended to compressible SDTBL in [8] and [7] for
DNS and LES approaches, respectively, which is a modified version of the rescaling-recycling technique by [14]. For
both cases (M∞ = 0.8 and 1.6), the friction Reynolds number (δ+) range was approximately 700-900 with adiabatic
wall thermal condition. The computational domain dimensions, in terms of the inlet boundary layer thickness δinl,
were 15×3×3, along the streamwise, wall-normal and spanwise domain length, respectively. Mesh resolution in wall
units: ∆x+ ≈11, ∆y+min ≈0.25, ∆y+max≈11, ∆z+≈10. In both cases, the total number of grid points was 52M. The present
DNS cases at high Reynolds numbers are run by using a highly accurate, very efficient, and highly scalable CFD solver
called PHASTA. The flow solver PHASTA is an open-source, parallel, hierarchic (2nd to 5th order accurate), adaptive,
stabilized (finite-element) transient analysis tool for the solution of compressible [15] or incompressible flows [16].
PHASTA has been extensively validated in a suite of DNS under different external conditions [17, 8, 7]. Figure 1 (left)
shows the mean streamwise velocity by means of the van Driest transformation. Overall, a very good agreement can
be observed with DNS by [18] at M∞ = 2 from the near wall region up to the log region end. Small discrepancies
are observed in the wake region that may be attributed to the different Mach number considered. Additionally, two
different logarithmic laws have been inserted. A better fit of our predicted DNS values of U+VD is observed with the
logarithmic function 1/0.41ln(y+) + 5 as proposed by White [19] than the log law proposed by [20] (with a κ value of
0.38 and an integration constant, C, of 4.1). Moreover, a very good comparison is exhibited in fig. 1 (right) of present
turbulence intensities and Reynolds shear stresses with DNS by [18], except in peaks of u′+rms.

MOST SIGNIFICANT RESULTS AND DISCUSSION
The Finite-Time Lyapunov Exponent (FTLE) serves as an invaluable diagnostic tool in discerning Lagrangian Co-
herent Structures (LCS) in complex fluid flows, and its interplay with instantaneous temperature in a compressible,
turbulent boundary layer reveals a nuanced interaction between fluid mechanics and thermodynamics. At the forefront
of this interrelation is the dynamic behavior of turbulence within the boundary layer. Such turbulence is characterized
by vortex stretching, compression, and pronounced shearing, all of which considerably modulate local thermodynamic
attributes. Consequentially, regions marked by high FTLE often mirror those of intense shearing and vortex stretching,
where the mechanical work expended translates into discernible alterations in internal energy and, hence, temperature
variations. This thermodynamic shift is not merely a passive response; it reciprocally influences the flow dynamics.
Temperature fluctuations in compressible flows intrinsically modify fluid properties such as density and viscosity. As
a result, zones exhibiting steep temperature gradients tend to also manifest amplified strain rates, further accentuating
FTLE values. Moreover, the cascading nature of energy in turbulent flows, from larger to minuscule scales, culminates



FIGURE 1: Van Driest transformation (left) and turbulence intensities and Reynolds shear stresses (right) in wall units
for M∞ = 1.6.

FIGURE 2: Contours of (a) FTLE, (b) static temperature, and (c) their cross-correlation at Mach 0.8

in kinetic energy dissipating as heat due to viscous actions, leading to localized temperature surges. This dissipation
aligns with regions of heightened FTLE, indicative of the presence of smaller flow scales. Furthermore, the transport
and advection mechanisms inherent in high FTLE regions can orchestrate the concurrent transportation of thermal
structures. This intricate bond between momentum and heat transport, interwoven with the mechanical and thermody-
namic changes within turbulent structures, offers a robust foundation for the observed correlation between FTLE and
temperature in a compressible turbulent boundary layer. Figures 2 and 3 show the corresponding countours of attract-
ing FTLE, instantaneous static temperature and their cross-correlation for the subsonic (M∞ = 0.8) and supersonic
case (M∞ = 1.6). While the supersonic case depicts a higher level of isotropy in turbulent structures; the observed
correlation between FTLE and static temperature is similarly high for both flow regimes: zones with large values of
FTLE (high shear) indicate large concentration of temperature, and viceversa.



FIGURE 3: Contours of (a) FTLE, (b) static temperature, and (c) their cross-correlation at Mach 1.6

CONCLUSIONS
A significant similarity between FTLE (high shear zones) and static temperature concentration has been detected in
subsonic and supersonic adiabatic flat plates via DNS. Future work implies the evaluation of lower Reynolds number
cases to assess its influence as well as the computation of time-averaged FTLE-temperature cross-correlation profiles
for better assessment of such quantities at different locations inside the boundary layer.

ACKNOWLEDGMENTS
This research was funded by the National Science Foundation under grants #2314303, #1847241, HRD-1906130,
DGE-2240397. This material is based on research sponsored by the Air Force Office of Scientific Research (AFOSR)
under agreement number FA9550-23-1-0241. This work was supported in part by a grant from the DoD High-
Performance Computing Modernization Program (HPCMP).

REFERENCES

[1] G. Haller and G. Yuan, Physica D 147, 352–370 (2000).
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