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Abstract. This paper focuses on the laminar boundary layer startup process (momentum and thermal) in incompressible flows.
The unsteady boundary layer equations can be solved via similarity analysis by normalizing the stream-wise (x), wall-normal (y)
and time (f) coordinates by a variable r and 7, respectively. The resulting ODEs are solved by a finite difference explicit algorithm.
This can be done for two cases: flat plate flow where the change in pressure are zero (Blasius solution) and wedge or Falkner-Skan
flow where the changes in pressure can be favorable (FPG) or adverse (APG). In addition, transient passive scalar transport is
examined by setting several Prandtl numbers in the governing equation at two different wall thermal conditions: isothermal and
isoflux. Numerical solutions for the transient evolution of the momentum and thermal boundary layer profiles are compared with
analytical approximations for both small times (unsteady flow) and large (steady-state flow) times.

BACKGROUND

The Navier-Stokes (NS) equations are the basis of the fluid mechanics theory. This set of partial differential equations
(PDE) consists of a continuity and momentum equations which study the mass transport and the flow dynamics,
respectively. An additional transport equation can be solved in incompressible flows, to describe the temporal/spatial
evolution of thermal energy. If the temperature difference in the thermal boundary layer can be assumed sufficiently
small, buoyancy forces and temperature dependence of fluid properties are negligible. Therefore, the temperature may
be treated as a passive scalar, and the momentum and the heat transfer equations are uncoupled [1]. According to the
Clay Mathematics Institute [2], there is not yet an analytical solution to the Navier-Stokes equations; however, there
are several solutions to this equation based on some assumptions to reduce its complexity. The Prandtl or boundary
layer theory is the solution of external flow for the Navier-Stokes equation. This approximated solution is achieved by
applying the following assumptions to NS [3]: (i) wall-normal gradients are much larger than srtreamwise gradients,
and (ii) pressure gradients may vary, or not, in the direction parallel to the wall (streamwise) but always remain
approximately constant in the direction perpendicular to the wall. Once these assumptions are applied to the NS
equations, the Prandtl boundary layer equations are obtained. In the present scenario, it is assumed an unsteady
problem where the effects of time are taken into account. The energy equation for external flow is obtained in a
similar manner to the external flow momentum equations by assuming that the variation of temperature in the direction
perpendicular to the wall (gradient) is higher than the variation parallel to the wall [4]. As previously described, flow
buoyancy is neglected due to the fact that the variation of the flow properties as the pressure and temperature changes
is very small and remains quasi-constant, so, the energy equation can be decoupled form the momentum equation.
This turns the temperature in the energy equation in to a passive scalar that does not affect the flow dynamics in
the momentum equation [5]. According to Schlichting [6], unsteady boundary layers can be start-up or shutdown
processes (flow that start from rest or that die away in time) and periodic processes. The boundary layers assumptions
previously stated are also applied to unsteady flow with the addition of the dimensionless time reference quantity, 7,
used in the small time solution different from the large time, where the flow approaches the steady state solution. In
the case of start up processes the fluid surrounding the body starts at rest in the form of an irrotational potential flow.
As time progresses, the boundary layer evolves and start to increase its thickness, eventually, a very strong APG may
induce boundary layer detachment and the boundary layer equations can no longer be applied. In this manuscript,
the Prandtl boundary layer equations are solved numerically (or semi-analytically) by applying finite difference. A



similarity analysis is applied by normalizing the stream-wise (x), wall-normal (y) and time () coordinates by new
variable 17 and 7, respectively. The family of the Falkner-Skan [7] flows is considered where it is assumed that the
freestream velocity varies as a power law of the streamwise coordinate, i.e. U, ~ x™. Consequently, flow acceleration
or FPG is related to positive values of m, while flow deceleration or APG is connected to negative values of m. As a
particular case for m = 0 or ZPG, the Blasius solution arises. The resulting unsteady third order differential equation
is solved by an explicit finite difference scheme, second order accurate.

Unsteady Boundary Layer Governing Equations
The unsteady laminar boundary layer equation for incompressible flows with a passive scalar are:
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According to Harris et al. [8, 9], a similarity analysis can be applied to reduce the momentum equation 2 to a third

der ODE:
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where m is the power law parameter related to the pressure gradient, f(1, 7) is associated with the stream function,
f'(n,7) is associated with the streamwise velocity and f”’(1, 7) is associated with the shear stress. The corresponding 7
(: x"T y) and 1 (: xnl t) terms are related to space and time, respectively. Similarly, the transformed energy equations
for isothermal and isoflux wall conditions read, respectively:
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here, Pr is the molecular Prandtl number and g(n,7) (= (T — T,,)/(Ts — T},)) is the dimensionless temperature. The
boundary conditions for 7 > 0 are: f(0,7) = 0, 9 (0 7) = 0, 9t (oo 7) = 1, 98 (O 7) = —1 (constant heat flux),
f(0,7) = 0 (constant wall temperature), g(co, 7) = 0. The followmg initial condltlons (t < 0) are considered: f =g =
0 for all . Harris et al. [8, 9] stated that for small time solution where 7 << 1 or all impulsive changes in temperature
or heat flux, there is a short period in which the effects are confined to a thin boundary layer adjacent to the surface.
Therefore, for small time solution the diffusion scale can be set to /7 with the following dimensionless variables: For
the momentum conservation eq.: f = 2v7F({,7) and £ = %ﬁ

For the energy conservation eq. with wall constant temperature: g = G({, 7).

For the energy conservation eq. with wall constant heat flux: g = 2 \/?%G(( ,T).

Applying the above non-dimensional variables, the following unsteady transformed equations are obtained,
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for momentum (7), constant wall temperature (8) and constant heat flux (9) transient equations. It is also known that
for small time, the solution of eq. 7 have the form F({,7) = Fo({) + F1({)T + ...; and, G({, T) = Go({) + G1(OT + ...
for eqns. 8 and 9, respectively. Applying the proposed solutions to eqns. 7, 8 and 9, the new set of ODE’s is solved
by applying a Finite Difference algorithm with the corresponding boundary conditions. In addition, the skin friction

coefficient, C, can be computed as C; VRe, = ZZTJ;(O, 7). Whereas, the analytical expression for C; is as follows:
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FIGURE 1. Grid independence test of the FD algorithm employed vs. analytical solution at 8 = 0.5: (a) Skin friction coefficient,
(b) Nusselt number for a constant wall temperature condition.
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FIGURE 2. (a) Normalized streamwise velocity, f’, and (b) temperature (constant wall temperature condition) for 8 =-0.18, 0,
0.3333 and 0.5 at 7= 1.
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ngilarly, the Nusselt number, N,, for a constant wall temperature condition is defined as can be obtained as N—‘j =

—557'(0, 7). The corresponding analytical expression is: Re}
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Figures 1 exhibits a grid independence test for the unsteady and normalized skin friction (C VRe,) and Nusselt num-
ber (Nu/ VRe,) in a favorable pressure gradient flow (8 =0.5 and m = 1/3). Here, 3 is a constant defining the wedge
angle (n8) and m = /(2 — ) is the acceleration or deceleration exponent in Falkner-Skan flows. Furthermore, the
agreement with the corresponding analytical approximations (10 and 11) is excellent. Fig. 2(a) shows the normalized
streamwise velocity, f’, at different streamwise pressure gradients, from very strong APG (8 = -0.18) to very strong
FPG (8 = 0.5) at a dimensionless time of 7 = 1. It can be observed that as the flow decelerates (i.e., 8 = -0.18), the
transient boundary layer thickness grows. The -0.18 profile does not depict the typical “S” shape (inflexion point) as
in the steady solution, indicating that the flow is far from the detachment stage at this 7 value. On the contrary, the
streamwise pressure gradient seems not to significantly affect the thermal field at Pr = 1, as seen in fig. 2(b).



CONCLUSIONS

A transient study is performed in momentum and thermal laminar boundary layers subject to streamwise pressure
gradients. An efficent FD scheme is employed in the solution of the unsteady ODE of Falkner-Skan flows with passive
scalar transport. A sharp decrease of Cy and N, is seen within the initial unitary dimensionless time (7 =1), in the order
of 6X, with values very close to the steady state solution. However, the streamwise velocity (f”) inside the boundary
layer is far from being developed at T = 1. Clearly, the laminar flow exhibits a development time scale much smaller
in the near wall region. Future study will involve the analysis of molecular Prandtl number effect on the transient
evolution of thermal boundary layers subject to isothermal and isoflux wall conditions.
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