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Abstract: This paper presents a discrete element model for simulations of the compaction process of hot mixed asphalt (HMA). The model is
anchored by the concept of a fine aggregate matrix (FAM), which consists of the binder and fine aggregates. In the simulation, the coarse
aggregates are explicitly modeled as composite particles. Meanwhile, the FAM is considered as the thick coating of the coarse aggregates with
complex constitutive laws. Interparticle interactions include influences of (1) particle properties via Hertz–Mindlin relations; and (2) FAM
properties via lubrication relationships. The lubrication relationships include a variable for viscosity for which we derive normal and tangential
rate-dependent forms using rheology theory of dense granular-fluid systems, verified reasonable for our systems with the discrete element
simulations and experiments with FAM. We assimilate these elements into gyratory compaction simulations of HMA of different aggregate
size distributions. We compare these with experiments and find that this model is capable of capturing the measured effects of grain size
distribution on the overall compaction behavior of HMA. We conclude by highlighting the advantages of this discrete element model for
HMA compaction problems. DOI: 10.1061/(ASCE)EM.1943-7889.0002033. © 2021 American Society of Civil Engineers.

Introduction

More than 90% of paved roads in the United States are made of
asphalt mixtures. There has been a sustained interest in improving
the resilience and durability of asphalt pavements. It is widely
accepted that the performance of asphalt pavements is strongly
influenced by the material porosity, which is governed by the com-
paction process. Undercompacted asphalt mixtures would exhibit a
high air void ratio and low material strength. On the other hand,
overcompacted asphalt mixtures would be susceptible to high-
temperature sensitivity (Ricardo-Archilla and Madanat 2001).
Therefore, understanding the compaction process of asphalt mix-
tures is a critical subject of research in asphalt pavements. However,
as compared to the extensive effort on modeling the mechanical
behavior of asphalt mixtures, studies have focused on physics-
based modeling of the compaction of hot mix asphalt (HMA).

The existing modeling efforts on compaction of asphalt
mixtures can be generally divided into two categories, i.e.,
continuum-based and discrete-based models. Guler et al. (2004)
proposed a modified porous elastoplastic model to simulate the de-
formation of HMA during the compaction process. In this model,
the evolution of deformation arises primarily from plasticity and

change of porosity while the viscous behavior of the asphalt binder
was not explicitly considered. In a recent study, a thermodynamics-
based visco-plastic constitutive model was developed, and the
viscous effect of asphalt binder was taken into account (Koneru
et al. 2008; Masad et al. 2016a, b). The model was calibrated using
the Superpave gyratory compaction tests and was then used to pre-
dict the field compaction of HMA. The macroscopic continuum
models offer an efficient numerical tool for large-scale simulations
of the overall deformation of HMA during the compaction process.
However, these models largely rely on phenomenological constit-
utive laws, which cannot explicitly capture the effect of individual
material constituents on the compaction behavior of HMA. There-
fore, continuum models are unable to predict the effect of particle-
scale features of the asphalt mixtures, such as the aggregate size
distribution, aggregate shape, and binder viscosity, on the overall
compaction process.

In contrast to continuum models, the discrete element model
(DEM) offers the unique advantage of its capability to explicitly
model individual aggregates and in so doing captures some essen-
tial particle-scale features that influence the overall compaction
process. In earlier attempts to use the DEM to model the asphalt
compaction, the asphalt mixtures were treated as an assembly of
dry particles and the interparticle interaction was described by
the Hertz–Mindlin contact law alone (Wang et al. 2007). In recent
DEM simulations of Superpave gyratory compaction and the vibra-
tory compaction (Chen et al. 2012, 2014), Chen et al. used the Bur-
ger contact law characterized by mechanical tests of asphalt mastic
to describe the forces between aggregates. In their study, when two
particles were in contact, the interactions between them were
calculated based on Burger’s model of asphalt mastic, which ignored
the elastic contact of solid aggregates themselves. The results
underpredicted the air void ratio for a given compaction effort.

One might gain a more theoretical perspective of the HMA com-
paction process by considering the HMA as a particle assembly
with a viscous interstitial fluid. Over the past decades, extensive
efforts have been directed toward investigating the compaction
behavior of particle assemblies under tapping excitation, vibration,
or cyclic shearing (Nicolas et al. 2000; Luding et al. 2000; Pouliquen
et al. 2003; Mehta et al. 2004). Previous research has focused on the
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particle-scale analysis of particle assemblies subjected to tapping
and vibration that suggested theoretical relationships between
collective particle-scale rearrangements and the compaction dyna-
mics (Mehta et al. 2004; Pouliquen et al. 2003). Some other research
investigated the compaction behavior under shearing excitation that
more closely resembles the gyratory compaction of asphalt mixtures
(Nicolas et al. 2000; Luding et al. 2000). Experimental investiga-
tions such as these have given rise to a physical intuition and under-
standing as well as theoretical expressions for the compaction
process. For example, Knight et al. (1995) proposed a logarithmic
relationship between the compaction cycles and the solid fraction of
the particle assemblies under tapping excitation. This empirical
expression was motivated by experimental data showing slow relax-
ation at early times followed by a near-steady state compaction level
at long times. Others demonstrated that the logarithmic compaction
relationship can be derived using a free volume model (Nowak et al.
1998) that assumes an exponential law for the rate evolution of the
material density or a one-dimensional discrete lattice model (Peng
and Ohta 1998). A subsequent study demonstrated that the logarith-
mic rate dependence of compaction also represents compaction
under simple shearing of particle assemblies (Hartley and Behringer
2003).

In the paper, we present a discrete element computational model
for the compaction of asphalt mixtures. For each mix, we consider
aggregates smaller than 2.36 mm as fine aggregates and the rest as
coarse aggregates. Inspired by recent research on two-scale DEM
simulation of fracture of asphalt mixtures (Le et al. 2018), we bal-
ance the efficiency and accuracy of the computation by formulating
our compaction DEMmodel at two scales. On the macroscopic level,
only coarse aggregates are modeled by nonspherical particles. The
interaction formulation between these aggregates uses two aspects:
(1) contact theory between solid particles; and (2) lubrication theory
to describe how the liquid-like mixture of asphalt binder and fine
aggregates, hereinafter called fine aggregate matrix (FAM), modifies
these interactions. As detailed shortly, we use small-scale simula-
tions to calibrate a previously proposed relationship for the rheology
of FAM for input parameters to the lubrication part of coarse particle
interactions. As we describe in detail in the next sections, we use our
model to simulate the gyratory compaction process of HMA of dif-
ferent aggregate size distributions.

Model Description

Introduction to an Efficient DEM Approach

The salient feature of the DEM is its ability to explicitly represent
the particle properties and particle-scale rearrangements in large
conglomerations of discrete elements. However, the computational
cost increases dramatically as the number of particles (Minneapolis,
Minnesota) increases (asN · lnðNÞ), which is particularly problem-
atic for systems of such wide grain size distributions with signifi-
cant contributions of small particles as is true of HMA. In fact,
for the number of particles present even for a relatively small
HMA laboratory test, the high computational cost makes such a
simulation essentially cost-prohibitive. To address this, Chen et al.
(2012, 2014) explicitly modeled macroscopic particles using DEM
while representing the finest particle and additives mixed with as-
phalt binder. They modeled the interparticle combined contact/
particle-suspension forces through Burger’s model. While it captured
certain details of the phenomenology, it did not allow for the direct
input of properties such as fluid viscosity or particle elasticity and
required experimental fitting for the model parameters. A recent
study on a similar system of hardened asphalt mixtures modeled

the solid-like system by prescribing a minimal aggregate size
to represent explicitly in the DEM. They proposed a two-scale
DEM for simulations of low-temperature fracture of asphalt mix-
tures (Le et al. 2018, 2020). In the model, the asphalt mixture was
represented by an assembly of coarse aggregates and the contact
between these aggregates represented the FAM. The constitutive
behavior of the interparticle contacts was determined by bending
beam experiments on FAM. The results indicate that the DEM
could predict the low-temperature fracture behavior of asphalt
mixtures (Le et al. 2018).

Motivated by this recent work, for HMA gyratory compaction,
we represent only the coarse aggregates in the DEM. Then, we
develop a model interparticle interaction to represent forces between
the coarse aggregates as it is mediated by the mixture of the smaller
particles and finer materials in the asphalt binder. In other words,
while the coarse particles may exert forces on one another through
direct contact in our model, they may additionally exert forces on
one another via the slurry-like mix of finer particles, bitumen, and
other parts of the mixture. We use the concept of FAM from the
literature (Caro et al. 2010; Graziani et al. 2020) to represent essen-
tially everything else in the mixture aside from some parts of the air
void. We envision this similarly to the fine aggregate (passing to the
2 mm sieve), filler, asphalt binder, and other filler materials.

In the model we describe herein, we represent the coarse aggre-
gates as composite particles (particles consisting of two spheres
linked with both normal and tangential springs). We determine
the size distribution of these simulated particles according to the
size distribution obtained from the sieve analysis of our physical
materials. We treat the rest of the material as a single-phase mix-
ture, i.e., we treat the FAM as an interstitial granular-fluid system.

Interaction Law between Particles

As is typical, we track all coarse aggregates at each time step in
our DEM simulation. Thus, the majority of modeling work is in
representing forces between these particles and how the presence of
the FAM coating affects this interaction. We do so by representing
the interaction between coarse aggregates with two types of forces:
(1) forces activated when particles are deformed and thus associated
with the particle materials themselves; and (2) forces associated with
viscous resistance to flow of the FAM associated with properties of
the slurry, binder, fine particles, and additives.

The force associated with deformation of contacting particles
(i and j) is calculated by using the Hertz–Mindlin contact model
as described by Tsuji et al. ( 1992) (Fig. 1), i.e.:

Fij;n
c ¼ −knδ1.5n − cnδ0.25n δ̇n ð1aÞ

Fij;t
c ¼ minð−ktδ0.5n δt − ctδ0.25n δ̇t;μpjFij;n

c jÞ ð1bÞ

Fig. 1. Contact kinematics of two particles.
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where Fij;n
c and Fij;t

c = normal and tangential contact forces exerted
on particle i by particle j, respectively. δn = model particle defor-
mation represented, as is typical by δn ¼ Ri þ Rj − j~ri − ~rjj;
where Ri and Rj = particle radii; and ~ri and ~rj = position vectors
of two particles; δt = model tangential deformation at the contact
point between two particles; and μp is the coefficient of friction. kn,
kt are the normal and tangential stiffnesses, respectively; and cn and
ct are the normal and tangential damping coefficients, respectively.
The stiffnesses and damping coefficients are calculated according
to the formulas in Table 1, in which αd is determined from the
coefficient of restitution (Tsuji et al. 1992; Hill and Tan 2014). Note
that the magnitude of tangential contact force is limited by
μpjFij;n

c j, at which the two particles start to slide over each other.
We represent the resistive viscous forces of the FAM that coat-

ing the particles using lubrication theory (Goldman et al. 1967;
Pitois et al. 2000; Liu et al. 2013; Marshall and Li 2014), i.e.:

Fij;n
b ¼ 6πηnR2

eff

δ̇g
δg

�
1 − 1

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ V̄=ðπReffδ2gÞ

q �
2

ð2aÞ

Fij;t
b ¼ 6πηsReffvrelt

�
8

15
lnðReff=δgÞ þ 0.9588

�
ð2bÞ

where Fij;n
b and Fij;t

b = interparticle lubrication forces in the normal
and tangential directions, respectively; δg = distance between the
closest points on the surfaces of two particles as shown in Fig. 2(a);
vrelt = tangential relative velocity between the adjacent particles;

ηn; ηs = rate-dependent viscosities in the normal and shear directions,
respectively, as we explain in Section 3. As an aside, typical deri-
vation of the lubrication theory (Tsuji et al. 1992; Hill and Tan
2014) as well as its application usually involves isotropic Newtonian
fluid coatings. Yet in this case, our coating—FAM—is a particle-
fluid slurry that is neither isotropic nor Newtonian, as we discuss
in Section 3. Before proceeding, we note that for high shear rates,
there may be other fluid forces involved (e.g., (Trulsson et al. 2012).
We suspect these to be minimal based on compaction gyration rates
and pressure. Thus, we save these considerations for a future
endeavor. To continue, in Eq. (2), δc is a representative average thick-
ness of the FAM coating on the aggregates (Fig. 2); V̄ is the effective
volume of the interstitial FAM that is considered to contribute to the
lubrication effect, which we estimate as V̄ ¼ 8δ3c, as shown appro-
priately in Ref. (Marshall and Li 2014).

We summarize the essential features of this framework as
follows. First, when two neighboring particles are not so close that
their FAM coatings overlap, i.e., δc < δg, the particles exert no force
on one another, either directly or indirectly via lubrication forces. If
0 < δg < δc, even though the particles are not directly touching,
they effectively exert forces on one another via the viscous proper-
ties of the FAM coating. As we noted, the effective viscosities, ηn
and ηs, are related to the mixture rheology of the FAM; and if
ηn ≠ ηs, the rheology of the FAM is anisotropic. As discussed
in the next section, we determine the value of ηn and ηs through
a rheology model for dense granular-fluid systems, which is
informed by fine-scale DEM simulations. Fig. 2(b) shows a schematic
of the relationship between the lubrication force and the interparticle
distance for a constant relative velocity.

The overall dynamic equilibrium of the particle assembly is
enforced by applying the Newton 2nd law to each particle. For
particle i, we have the following set of equations:

mi
d2~ri
dt2

¼
XNi

k¼1

�
~Fik;n
c þ ~Fik;t

c þ ~Fik;n
b þ ~Fik;t

b

	
ð3aÞ

Ji
d2~θi
dt2

¼
XNi

k¼1

h�
~Fik;t
c þ ~Fik;t

b

	
×
�
Ri~nik

	i
ð3bÞ

where ~ri = position vector of particle i; ~θi = angular vector of
rotation of particle i; Ri = radius of particle i; Ji = centroidal
moment of inertia of particle i; Ni = number of particles that

Fig. 2. Lubrication interaction between particles: (a) coated coarse aggregates surrounded by FAM; and (b) schematic plot of the relationship between
lubrication force and particle distance for a fixed relative velocity.

Table 1. Stiffness and damping parameters of the Hertz–Mindlin contact
model

Model parameters Expressions

kn ð4=3Þ ffiffiffiffiffiffiffiffi
Reff

p
Eeff

kt 8
ffiffiffiffiffiffiffiffi
Reff

p
Geff

cn αd
ffiffiffiffiffiffiffiffiffiffiffiffiffi
meffkn

p
(αd = constant)

ct αd
ffiffiffiffiffiffiffiffiffiffiffiffi
meffkt

p
(αd = constant)

Reff ð1=Ri þ 1=RjÞ−1
Eeff ½ð1 − ν2i Þ=Ei þ ð1 − ν2j Þ=Ej�−1
Geff ½2ð1þ νiÞð2 − νiÞ=Ei þ 2ð1þ νjÞð2 − νjÞ=Ej�−1
meff ð1=mi þ 1=mjÞ−1
Note: Ri;Ei; νi;mi = radius, elastic modulus, Poisson ratio, and mass of
particle i, respectively.

© ASCE 04021140-3 J. Eng. Mech.

 J. Eng. Mech., 2022, 148(2): 04021140 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

U
ni

ve
rs

ity
 o

f M
in

ne
so

ta
 - 

Tw
in

 C
iti

es
 o

n 
04

/1
1/

24
. C

op
yr

ig
ht

 A
SC

E.
 F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

rig
ht

s r
es

er
ve

d.



are adjacent to particle i; and ~nik = unit vector connecting the
centroids of particles i and k. The entire system of equations is
solved by using the 4th order Runge–Kutta method.

Particle Asphericity: Composite Particle Model

Typical aggregates are irregularly shaped, unlike the spherical par-
ticles that would be most readily modeled as described by the force
laws above. The most significant manner in which the particle
asphericity can affect compaction is by arresting relative movement
of neighboring particles through the interlocking of subparticle
features. This interlock mechanism could have a considerable
influence on compaction behavior. We represent this phenomeno-
logy by using a composite particle model. That is, we represent
each nonspherical coarse aggregate with two spherical particles
bonded together (Pöschel and Schwager 2005).

The bound particles have two different radii, one larger [particle
m in Fig. 3(a)] and one smaller [particle n in Fig. 3(a)]. We locate
the center of particle n on the surface of particle m. The nonspher-
icity S of a composite particle can be evaluated using the following
equation:

S ¼ 1 − L
2R

ð4Þ

where L ¼ maxf½1þ ðRn=RmÞ þ ð ffiffiffi
2

p
=2Þ�Rm; 2Rmg = minimal

side-length of an enveloping square; R ¼ ð1þ 0.5ðRn=RmÞÞRm =
minimal radius of an enveloping circle; and Rn, Rm = radii of par-
ticle m and n, respectively [Fig. 3(a)]. Fig. 3(b) shows the relation
between S and Rn=Rm. In this study, we choose Rn=Rm ¼ 0.5,
which corresponds to S ¼ 0.117 .

To combine the two spheres to form a single particle, we assign
both normal and tangential springs to connect the individual
spheres (Pöschel and Schwager 2005). We consider the connection
between particle m and n as an elastic beam with the cross section
as the intersection of two particles (where the normal and tangential
forces are calculated using the Hertz–Mindlin contact model except
the overlap is replaced with the displacement between two par-
ticles. The moment between two particles is calculated based on
Bernoulli beam theory with the beam cross section as a circle with
radius Rbeam ¼ Rn sin½cos−1ð0.5 · Rn=RmÞ�) and the same beam
length as the overlap between them (Lbeam ¼ Rn). While, when
subjected to appropriate forces, the spheres move slightly relative
to each other (normal displacement Δn, tangential displacement
Δt, and angular displacementΔθ) and we could calculate the forces
and moment

Fm;n
n ¼ knδ0.5n Δn ð5aÞ

Fm;n
t ¼ ktδ0.5n Δt ð5bÞ

Mm;n ¼ EIbeam
Lbeam

Δθ ð5cÞ

between them based on the connection beam we proposed so that
the two connected particles are not allowed to slip relative to one
another (Here, Kn and Kt are the normal and tangential stiffness
and the ratio between them is a constant, and Ibeam ¼ 0.25πR4

beam
is the moment of inertia of the beam cross section); and in this way,
the composite particle can move as a single elastic body. The main
advantage of the composite particle model is that the particle inter-
action can still be described by the aforementioned contact laws
formulated for spherical particles (Zhao et al. 2015).

Fine-Scale DEM Simulations of Rheology of Fine
Aggregate Matrix

As we discussed in Section 2, we calculate the lubrication forces
between coarse aggregates based on the normal and tangential
effective viscosities of the FAM, ηn, and ηs, though these are
effectively unknown. Our approach is somewhat similar to that
described in Chen et al. (2012, 2014), though in this previous work,
they represented the behavior of asphalt binder and fillers through a
Burger’s interaction model that did not allow for direct input for
constituent properties. Rather, their approach required experimental
data with model parameter fitting. We strove to develop a model
where we could directly input properties of our mixture constitu-
ents. To do this, we note that FAM is effectively a dense granular
material with interstitial viscous fluid. Consequently, the rheology
of FAM is fundamentally different from that of asphalt mastic. In
this section, we describe a rheology model for FAM, guided by
recent research on granular slurry rheology and informed by a
set of fine-scale DEM simulations.

Based on numerical simulations and recent developments in
particle-fluid flow behaviors, Trulsson et al. (2012) proposed that
the average shear stress can be expressed in terms of a linear
combination of theoretical collisional and viscous stresses:

τ ¼ fðϕsÞ½kρsðγ̇daÞ2 þ ηf γ̇� ð6Þ
where τ = local averaged stream-wise shear stress; ϕs = solid frac-
tion defined as the ratio between the volume of solid particles and
the total volume of the system; ρs = density of the particles; da =
average particle diameter; γ̇ = shear rate; ηf = viscosity of the
interstitial fluid; and k = fitting parameter.

We note that the relationship between μeff ¼ τ=σn, where σn is
the normal stress (or pressure) of the granular-fluid system, and γ̇ is
a characterization of the rheology of a granular system. If the sys-
tem contains only dry particles, dimensional analysis (MiDi 2004;
Forterre and Pouliquen 2008) suggests that μeff is dependent on the
inertia number (MiDi 2004; Jop et al. 2006; Pouliquen et al. 2006):

Ic ¼ γ̇da=
ffiffiffiffiffiffiffiffiffiffiffiffi
σn=ρs

p
ð7Þ

When the system contains interstitial fluid, recent analysis and
experiments suggest that the rheology may exhibit a viscous-
dominant behavior (Cassar et al. 2005; Trulsson et al. 2012). Boyer
et al. (2011) proposed that in the viscous regime, the rheology of
the granular system can be described by the viscous number

Iv ¼ ηfγ̇=σn ð8Þ

Fig. 3. Composite particle model: (a) nonspherical particle modeled by
two spherical particles; and (b) relationship between nonsphericity and
particle size ratio.
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Trulsson et al. (Trulsson et al. 2012) recently suggested that we
can describe the frictional rheology of a granular-fluid system by
combining Ic and Iv into a single parameter K

K ¼ Iv þ kI2c ð9Þ
K can be seen as a linear combination of Bagnold’s theoretical

collisional stress (τ c ∼ ρsðγ̇daÞ2) (Bagnold 1954) and viscous
stress (τv ∼ ηγ̇) normalized by the normal stress σn. Using 2D
computational experiments, Trulsson et al. (2012) found they could
express the effective frictional coefficient as

μeff ¼ μk1 þ
μk2 − μk1

1þ ffiffiffiffiffiffiffiffiffiffiffiffi
K0=K

p ð10Þ

where μk1, μk2, and K0 = fitting parameters.
To investigate the rheological properties of FAM, we perform a

series of 3D DEM simulations of FAM in a 3D Couette cell under
simple shear loading (Fig. 4). In the fine-scale DEM simulations,
the particles have sizes uniformly distributed from 0.8da to 1.2da,
where da ¼ 2.5 mm. We use the interparticle contact law described
in the previous section, i.e., Eqs. (1), (2a), and (2b), where the vis-
cosity of the interstitial fluid is directly used in the lubrication
model (ηn ¼ ηs). We set the interparticle frictional coefficient,
μp ¼ 0.1 (Foerster et al. 1994). As in the previous section, we limit

the lubrication effect to a maximum distance of 2δc, and a mini-
mum distance of 0.1da corresponding to a roughness effect.

To shear these particles, we initiate a cell of a dimension of
30 mm in the y− direction, 58.3 mm in the z− direction, and
the initial dimension in the x− direction is 51.5 mm. We release
particles in random configuration and begin to shear the cell as fol-
lows. We set periodic boundary conditions in the y− and z−
directions. We assign the left vertical wall (in Fig. 4), what we refer
to as the translational wall, a constant velocity Uw and restrain it
from moving in the x− and z− directions. The right vertical wall is
restrained in the y− and z− directions and assigned a constant pres-
sure in the x− direction. The right wall is allowed to only move in
the x− direction so that constant pressure can be maintained
throughout the simulation. To initiate the experiments, we release
particles in a random arrangement between the walls. To roughen
the walls, we affix particles whose centroid is less than a certain
distance (2.5 mm) to the walls. These particles move rigidly with
the walls. From one experiment to the next, we systematically vary
the velocity of the translational wall from 0.001 m=s to 10 m=s. We
systematically vary pressure from 100 Pa to 1 kPa the viscosity of
interstitial fluid from 0 to 2 × 105 cP.

During the simulation, the system experiences a simple shear
loading driven by the motion of the translational wall. As the sys-
tem reaches a steady state, which is manifested by a stabilized
boundary shear stress, we obtain a linear velocity profile in the
Couette cell shown in Fig. 4. The different sets of model parameters
in the simulation correspond to a wide range of the inertia and vis-
cous numbers: Ic ∈ ½10−3; 1� and Iv ∈ ½10−7; 1�, which cover the
relevant values of Ic and Iv for subsequent simulation of gyratory
compaction of HMA.

Fig. 5(a) shows the simulated relationship between the effective
frictional coefficient μeff and K, in which we choose k ¼ 0.03 so
that the data point could collapse onto one curve (Man 2019).
The optimum fitting of the simulation results by Eq. (10) results
in the following parameters: μk1 ¼ 0.265;μk2 ¼ 2.2; K0 ¼ 0.25.
We note that the value μk2 may be better determined if the simu-
lation includes larger values of K. However, for the results we
described here, this is inconsequential because our results cover
a sufficient range for the compaction simulations, as we detail
shortly.

Fig. 5(b) shows the simulated relationship between the solid
fraction and K. Similar to Fig. 5, the simulation data collapse onto
a single curve when we choose k ¼ 0.03. The shape of the simulated
ϕs − K curve can be approximated by the following equation (Man
2019):

Fig. 4. DEM simulation of simple shear test of granular assembly
in a Couette cell (the white line denotes a typical simulated velocity
profile).

Fig. 5. (a) Simulated relationship between dimensionless number, K ¼ Iv þ 0.03I2c, and effective frictional coefficient, μeff , and its optimum fit by
Eq. (10); and (b) relationship between K and solid fraction and its optimum fit by Eq. (11).
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ϕs ¼
ϕm

1þ βk

ffiffiffiffi
K

p ð11Þ

where ϕm; βk = constants. For an optimum fit of the ϕs − K curve
[Fig. 5(b)], we find ϕm ¼ 0.605 and βk ¼ 0.8.

Using Eq. (6), we plot a normalized shear stress τ=½αρðγ̇daÞ2 þ
ηf γ̇� versus the solid fraction ϕs in Fig. 6. By fitting this
relationship, we obtain function fðϕsÞ in Eq. (6), i.e.:

fðϕsÞ ¼
1

26
ðϕm − ϕsÞ−2.52 ð12Þ

By combining Eqs. (10)–(12) with the fitted parameters, we
can determine a rheology expressed as the effective viscosities ηn
and ηs

ηs ¼ τ=γ̇ ¼ 0.136ð0.03ρsγ̇d2a þ ηfÞ


1þ 1

0.8
ffiffiffiffi
K

p
�

2.52
ð13Þ

ηn ¼ ηs

�
0.265þ 1.935

1þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.25=K

p
�−1

ð14Þ

It is evident that the FAM exhibits a nonNewtonian behavior, in
which the effective viscosities depend strongly on the local shear
rate. Eqs. (13) and (14) are numerically implemented in an explicit
manner in the DEM simulation of the whole mixture. In this model,
after time step i, we have determined the particle positions, particle
velocities, and particle interaction forces. As we proceed to the cur-
rent time step, iþ 1, we first check the contact condition between
two particles. If two particles are not physically in contact, we need
to calculate only the lubrication forces. Otherwise, both the Hertz–
Mindlin contact and lubrication forces need to be calculated. Based
on Eqs. (1a) and (1b), the Hertz–Mindlin contact forces can be
determined based on the overlap and relative velocities of the particles
calculated from the previous time step. For the lubrication forces,
we can obtain K from Eq. (11) based on the solid fraction of FAM
and γ̇ from the coarse particle velocities and particle distances.
Through the present rheological model [Eqs. (13) and (14)], we
determine the normal and tangential effective viscosities of the
interstitial FAM and then obtain the new lubrication forces based
on Eqs. (2a) and (2b). With all the updated interaction forces, we
can solve the system of equilibrium equations to update the particle
positions, velocities, and accelerations.

Experimental Investigation

To validate the proposed model for HMA, we performed a set of
laboratory experiments and corresponding simulations. We used a
Superpave gyratory compactor [Fig. 7(a)] to compact different
asphalt mixtures. We used PG 64-22 asphalt binder and three sets
of aggregates of different size distributions with similar median
grain size (Table 2), as shown in Fig. 7(b). The median sizes of
fine aggregate differed by approximately 10%, and the main differ-
ence in the FAM from one mixture to the next was the mass ratio of
fine aggregates denoted by αf ¼ mf=mag. The binder viscosity we
found to be approximately 250 cP at compaction temperature
T ¼ 135°C. We label the three mix designs as N30, N50, and
N100, respectively, based on the results of the compaction test.
Table 2 presents some detailed information of the aggregates used
for these mixes.

Prior to our experiments, we placed the asphalt binders and
aggregates in the oven at 140°C for 2 h and then we mix them
in a lab mixer for 3 min. We placed the HMA in a Brovold Super-
pave gyratory compactor for the compaction experiment according
to ASTM D6925 (ASTM 2015). The gyratory compactor we used
consists of a cylindrical gyratory ring, loading plate, and gyratory
plate [Fig. 7(a)]. During the compaction process, the bottom plate
moves vertically under a constant pressure; for our experiments, we
set the pressure at 600 kPa. At the same time, we set the top plate to
gyrate horizontally with a gyratory speed of 30 rpm. Our cylindrical
container/ring was set with a gyratory angle of 1.25° which leads to
the gyratory motion of the cylindrical ring to produce the macro-
scopic average shear rate of approximately 0.07=s.

During the compaction test, we tracked the position of the
bottom plate at the rate of once per gyration. At the end of the com-
paction test, we measured the bulk specific gravity of the mix, Gmb,
according to ASTM D2726 (ASTM 2019). Meanwhile, we

Fig. 6. Simulated relationship between normalized shear stress,
τ=½αρðγ̇dÞ2 þ ηf γ̇� and solid fraction ϕs and its optimum fit by
Eq. (12).

Fig. 7. Gyratory compaction experiments: (a) configuration of
the Superpave gyratory compactor; and (b) grain size distribution of
aggregates.

Table 2. Mix design of the experiments, characteristic parameters of the
grain size distribution of aggregates

Test
Asphalt
binder

Binder
ratio

Binder
viscosity,
ηf (cP)

Median
aggregate

size,
d50 (mm) αf ¼ mf=mag da (mm)

N30 PG64-22 5.5% 250 3.20 0.437 0.530
N50 PG64-22 5.5% 250 3.65 0.381 0.550
N100 PG64-22 5.5% 250 3.61 0.330 0.586
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determined the theoretical maximum specific gravity, Gmm, based
on ASTMD2041 (ASTM 2011). We used the recorded time history
of the position of the bottom plate to calculate the time-dependent
height of the mixture, hmðiÞ, after an ith number of gyrations. By
using the measured values of Gmm and Gmb and the height of the
asphalt mixture, we calculated the time evolution of the volume
fraction of the mixture as

ϕvfðiÞ ¼
Gmb

Gmm

hfm
hmðiÞ

ð15Þ

where hfm = the height of the mixture measured at the end of the
compaction test.

We compacted all three mixtures to a target volume fraction of
95%. The experimental results are shown in Fig. 8. The three mixes
reached a 95% volume fraction at about 30, 50, 100 gyrations, and
accordingly, we labeled these mixes as N30, N50, and N100. The
result shows that ∼80% of the total compaction deformation is
achieved in the first 20 gyrations. The compaction rate gradually
decreases as the number of gyration increases.

For these mixtures experiments, since we made all the mixtures
using the same binder, we hypothesize that the difference in com-
paction behavior in our experiments was caused by the aggregate
size distribution. Based on the information presented in Table 2, we
hypothesize that the compaction efficiency improves with a
decreased median size of fine aggregates and an increased mass
portion of fine aggregates, αf. We expect this might be because
fine aggregates can fill the voids more easily than coarse aggregates
and with the help of a fines-rich FAM. We may also expect that a
larger portion of fine aggregates would allow a more effective com-
paction of the mixture, and the overall median size of aggregates
would also affect the compaction efficiency. However, this effect is
not studied here due to the availability of aggregates.

We compare our measured compaction curves with a semiem-
pirical compaction model developed for relatively monodisperse
granular assemblies under tapping excitations proposed by Knight
et al. (1995). The model takes the following form

ϕvfðtÞ ¼ ϕ∝ − ϕ∝ − ϕ0

1þ B lnð1þ t=τ0Þ
ð16Þ

where ϕ∞ =final volume fraction; and ϕ0 = initial volume fraction
of the mixture before the compaction test starts. Here we consider
ϕ∞ ¼ 1, and τ0 and B are obtained by optimum fitting of the mea-
sured compaction curves. Fig. 8 shows that Eq. (16) can fit the data
well, which we find interesting because the HMA is significantly

different in particle shape and grain size distribution than the
systems for which it was developed.

DEM Simulations of Gyratory Compaction

We now use our DEM to simulate the gyratory compaction experi-
ments. As mentioned earlier, we explicitly model the motion of the
coarse aggregates (d > 2.36 mm) based on the aggregate size dis-
tribution and represent the FAM using our granular-fluid rheology
described in Section 3. In our DEM simulations, we determine the
coating thickness of the coarse aggregates so that the total volume
of the coating is equal to the volume of FAM. The coating thickness
is used to determine δg in Eqs. (2a) and (2b).

Based on the aggregates we used in the experiments, we use the
following particle properties, in our model: particle density
ρs ¼ 2,650 kg=m3, elastic modulus of aggregates E ¼ 70 GPa,
and the Poisson’s ratio ν ¼ 0.20. We calculate the damping coef-
ficient for the Hertz–Mindlin contact forces based on α ¼ 0.9
(Table 1). According to (Foerster et al. 1994), we set the coefficient
of friction between particles, μp ¼ 0.10. The particle size distribu-
tion follows the degradation curve of the aggregates shown in
Fig. 7(b).

The lubrication interaction between particles is calculated based
on the rheology of FAM represented by Eqs. (13) and (14). Though
the range of particle size used in the simulation is considerably
smaller than that actual particle size distribution of FAM, the rheol-
ogy of granular mixture scales with the median grain size
(Yohannes and Hill 2010). In the present rheology model, the
median size of the fine aggregates is directly captured by the
dimensionless number, K. To initiate each simulation, we generate
approximately 1,000 particles with randomly assigned particles to
match the size distribution of the coarse aggregates in the HMA
mixture. We drop these particles into a tilted cylindrical chamber
with random initial velocities so we obtain a randomly arranged
initial state. The cylindrical chamber is tilted with an angle of
1.25°. We then add a top plate to the tilted chamber. We push
the bottom plate upward at a constant pressure of 600 kPa, while
we gyrate the top plate and the cylindrical ring in the same manner
as the Superpave gyratory compactor so that the gyratory speed is
30 rpm. We perform the simulation with a small-time increment on
the order of 10−8 seconds and at each time step calculate acceler-
ations, velocities, and displacements using the forces and integrat-
ing according to the fourth-order Runge–Kutta method. Fig. 9
presents the snapshots of different stages of the DEM simulations.

During the simulation, the movement of the bottom plate is
recorded, from which we can calculate the solid fraction of the
mixture as

Fig. 8. Measured compaction curves and optimum fits by Eq. (16).

Fig. 9. Snapshots of different stages of DEM simulation of gyratory
compaction of HMA.
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ϕvfðtÞ ¼
Vca þ VFAM

A0hðtÞ
ð17Þ

where ϕvfðtÞ = volume fraction of the asphalt mixture at time t; Vca =
volume of coarse aggregates; VFAM = volume of FAM; A0 = cross
sectional area of the cylindrical gyratory ring in the simulation; and
hðtÞ = distance between the top and bottom plates measured at time t.
We use Eq. (17) to obtain the relationship between ϕvf and
gyration number.

Fig. 10 compares the simulated and measured compaction
curves of all three mixtures. We can see that our simulations can
predict the overall compaction behavior reasonably well. The sim-
ulation predicts that the mixture is quickly compacted in the first
20 gyrations, and the compaction rate decreases significantly as
the solid fraction reaches 90%. More importantly, the present
model is able to predict the pronounced difference in compaction
efficiency for mix designs of different aggregate size distribu-
tions. This shows the main advantage of DEM, which can explic-
itly take into account the microstructural arrangements of the
particles and the effects of changing grain size distributions on
time-dependent compaction in response to arbitrary stresses.
By contrast, continuum-based models are not yet able to predict
the effect of aggregate size on the compaction behavior of asphalt
mixtures.

We consider the main differences in three sets of aggregates
used in the experiment (Table 2) are (1) the median size da of fine
aggregates, and (2) the portion of fine aggregates represented by αf.
We note that as the compaction rate increases from the N100 sys-
tem to the N50 system to the N30 system, da decreases monoton-
ically and αf increases monotonically. Through our smaller scale
shear cell experiments, the median size of fine aggregates da
directly affects the rheology of FAM [Eqs. (13) and (14)]. For
two systems of different grain size distributions and the same ηf
subjected to the same shear rate and normal stress, the one with
a smaller value of da would have a smaller Ic, effective frictional
coefficient [μeff , Eq. (10)], and effective shear viscosity [ηs,
Eq. (13)]. The resulting decrease in the lubrication forces allows
the coarse aggregates to move more easily and, subsequently,
allows for compaction to progress more quickly. Additionally, a
decrease in the effective frictional coefficient would make the
particles less frictional and therefore enhance the particle rearrange-
ment during compaction. This supports results from previous
studies (Song et al. 2008) indicating that reducing an effective
interparticle friction can give rise to better compaction and further
demonstrates the particular physics of this lowered friction is asso-
ciated with finer particles in the FAM (Srebro and Levine 2003).

An increase in the portion of fine aggregates, αf, indicates there
is a thicker coating of FAM on the surface of coarse aggregates.
A thinner coating allows aggregates to more equally come into

contact and to interlock with one another. A thicker coating limits
this interlocking and facilitates aggregate movement past one an-
other and, in response to applied stresses, faster compaction. To
determine which is responsible for an increased compaction rate, a
reduced da and/or an increased αf , requires more frequent output of
the data and associated interrogation of those data, a topic of fu-
ture work.

Scrutiny of Fig. 10 shows that even though the simulation can
capture well the overall behavior of the compaction process, the
simulation result deviates from the experiment, particularly during
the initial stage of the compaction. In every case, the model predicts
slower compaction than exhibited by the experiments for the first
several cycles. We suggest four things that future endeavors could
address to significantly advance our understanding of these
dynamics.

First, this deviation could be caused by the representation of
nonsphericity of the composite particles, which may result in a
different degree of particle interlocking than occurs in reality. If
so, this could impede compaction rate more than is physically real-
istic during these early times. We hypothesize that the modeling of
compaction during the first several cycles could be improved by
choosing a lower value of nonsphericity of the composite particles
or even a more detailed representation of the particles by using
multiple spheres to represent each.

Second, we model the fine particles in the FAM as spheres in a
relatively narrow distribution of sizes. These simplifications might
limit the effectiveness of our representation of the FAM behavior
and the derivation of its rheology for upscaling.

Third, our representation of the FAM-modified interparticle
contacts involves what we might call a viscocollisional model that
requires a few parameters to be fitted to experiments or 3-d sim-
ulations. To the authors’ knowledge, there are no such existing data
for the range of parameters we need for FAM, so we performed
simulations for which the binder was represented as a relatively
simple spherical shell coating and only lubrication forces were rep-
resented. A better representation could include a more complete
range of fluid forces that include effects like drag and added mass.
Along these lines, the theoretical viscocollisional model itself is a
steady state model. There is no analogous model that can capture
what is likely to be an evolving rheology of fluid out of equilibrium
with its forcing conditions.

Fourth and lastly, our rheological model for FAM is imple-
mented in the large-scale simulations through a coating framework
similar to our small-scale simulations of the FAM. As such, we do
not capture the inertial effects of the fluid itself like an added mass
term or drag forces. A consideration of different up-scaled repre-
sentations of this fluid may be more effective. Alternatively, one
might consider a viscoelastic framework for the FAM, such as a

Fig. 10. Comparison between the measured and simulated compaction curves.
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recently developed model, described in Ref. (Olsson et al. 2019).
In this case, they consider a viscoelastic material (compared with
our viscocollisional fluid) and model the interparticle FAM-mediated
interaction in the normal direction using the theoretical work (Lee
and Radok 1960) on the spherical indentation of a viscoelastic
material.

Summary and Conclusions

To summarize, in this study, we developed a two-scale DEM for
simulating gyratory compaction of HMA. The model explicitly rep-
resents the coarse aggregates by representing nonspherical particles
using assemblies of two different sized spheres. It further represents
the material properties of the particles and fluids using the Hertz–
Mindlin contact and the lubrication interaction forces between the
aggregates. To model the lubrication interaction, we show that it
suffices to consider the effects of the constituents of FAM as
viscoinertial fluids whose rheology captures the properties of the
viscous fluid (asphalt binder) and the fine particles (fine aggregates).
We demonstrated that the overall rheology of FAM can be captured
using a previously developed expression for particle slurries, which
we demonstrated by performing DEM simulations of simple shear
tests and incorporating the results into a larger scale simulation of
the compaction process itself.

The present computational model agrees well with the gyratory
compaction experiments on three different particle size distribu-
tions in HMA’s without any fitting parameters to represent the dif-
ference from one mixture to the next. This indicates a path for using
DEM to capture the influence of particle properties and size dis-
tributions on the compaction of the hot mixed asphalt. Our results
indicate that faster compaction behavior is highly correlated with a
smaller median particle size in the FAM and a higher ratio of fine to
coarse particle sizes.

The results of this study indicate that the DEM could provide a
viable means to capturing the effects of the properties of constitu-
ents of HMA, such as binder viscosity and aggregate size distribu-
tion, on its compaction efficiency. To make this more fully viable
requires a more detailed understanding of the specifics of aggregate
shape and the relative importance of the size of fine particles and
the quantity relative to coarse particles. Ultimately, these results
could lead to a simulation-based mix design of asphalt mixtures
for optimizing the compaction performance.
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