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Understanding the complex patterns in space–time exhibited by active systems has been
the subject of much interest in recent times. Complementing this forward problem is
the inverse problem of controlling active matter. Here, we use optimal control theory
to pose the problem of transporting a slender drop of an active fluid and determine the
dynamical profile of the active stresses to move it with minimal viscous dissipation.
By parametrizing the position and size of the drop using a low-order description
based on lubrication theory, we uncover a natural “gather–move–spread” strategy that
leads to an optimal bound on the maximum achievable displacement of the drop
relative to its size. In the continuum setting, the competition between passive surface
tension and active controls generates richer behavior with futile oscillations and complex
drop morphologies that trade internal dissipation against the transport cost to select
optimal strategies. Our work combines active hydrodynamics and optimal control in a
tractable and interpretable framework and begins to pave the way for the spatiotemporal
manipulation of active matter.

optimal transport | optimal control | active matter | droplet motion

In recent years, active fluids composed of internally driven units have emerged as a
powerful platform to manipulate and morph matter far from equilibrium (1–3). Such
fluids have been assembled from a variety of biological and synthetic constituents,
including self-propelled colloids, driven biofilaments, and living cells (4–7).These systems
often exhibit complex spatiotemporal dynamics and pattern formation that have been the
focus of intense research efforts in the past two decades or so.

While a great deal is now understood about the emergent collective dynamics in active
fluids (8), much less is known about how we can control or harness such collective
phenomena to achieve functional goals. Recent experimental advances in microfabrication
and optogenetic techniques have allowed the development of novel bacterial and synthetic
reconstituted systems to begin addressing this question in different contexts, such as active
engines for efficient work extraction (9, 10), the dynamic control of reconfigurable density
patterns (11, 12), and the targeted creation and transport of localized structures such as
defects (13, 14). On a different scale, the collective control of migrating and proliferating
cellular monolayers through patterned substrates (15, 16) or external fields (17, 18) also
presents new possibilities for the control of active biological matter.

The capacity for spontaneous and autonomous motion in active fluids raises a natural
question: What are the optimal strategies to spatially transport active materials? The
general problem of optimal mass transport—i.e., finding the easiest or cheapest way
to move mass from one place to another—has been explored for over two centuries
(19, 20) with deep connections to economics, hydrodynamics, machine learning, etc.
(20–22). But much less is known about how to optimally transport physical materials,
such as active fluids, that obey complex spatiotemporal dynamics, leading us to ask: How
can we construct and understand optimal transport policies to move active matter?

Here, we pose this question in the simplest setting of transporting an active drop by
dynamically controlling its internal activity in space–time. By incorporating the dynamical
constraints of droplet motion using the lubrication approximation and expressing the cost
of transport in terms of the dissipation rate, we ask if we can determine the internal activity
to move the drop from one place to another while minimizing the total dissipation, thus
bringing it within the framework of optimal control theory.

By projecting the continuum description of droplet motion onto a finite-dimensional
slow manifold, we derive a reduced system of ordinary differential equations (ODEs)
for the position and size of the droplet. Interestingly, for a range of parameters, an
intuitive “gather–move–spread” style strategy emerges naturally as an optimum within
our framework. Numerical simulations of the continuum equations using an evolutionary
algorithm to determine the optimal activity profile confirm the qualitative nature of
the results obtained from the reduced order model. Together, these solutions provide a
comprehensive, yet interpretable, framework (Fig. 1) to understand the optimal solutions
obtained and highlights the resulting trade-offs between cost, transport precision, and
efficiency that can be tuned by the interplay of passive and active stresses in the system.

Significance
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Fig. 1. Optimal transport of an active drop. A schematic illustrating our framework to solve the problem of transporting an active drop byminimizing a specified
cost function, such as the mechanical work. The spatiotemporal profile of activity ζ(x, t) is the control variable, and the transport task involves moving the drop
from position X0 and size R0 to a final position XT and size RT in a finite time T . We employ two complementary approaches: 1) finite-dimensional optimal control
using Pontryagin’s maximum principle on an ODE-based reduced order model that captures parametrized features of the drop; and 2) constrained numerical
optimization of the nonlinear continuum PDE using a gradient-free evolutionary algorithm, such as CMA-ES (see PDE Controlmain text).

Mathematical Model for Optimal Droplet
Transport

Lubrication Dynamics of an Active Drop. We describe the dyna-
mics of a slender drop of an active suspension on a solid surface
in the asymptotic limit exemplified by viscous lubrication theory
(23, 24, 25). For simplicity, we consider a two-dimensional (2D)
drop moving in the x direction (see Fig. 2) and neglect grav-
ity by assuming the drop size to be smaller than the capil-
lary length. Fluid incompressibility requires that ∇ · u= ∂xu +
∂z v = 0, where u= (u(x , z , t), v(x , z , t)) is the local flow ve-
locity. Upon depth integrating the incompressibility equation,
and noting the free surface boundary condition v |z=h = ∂th +
u∂xh|z=h , where h(x , t) is the height profile of the drop, we
obtain the conservation law

∂th + ∂xq = 0. [1]

Here, the mass flux q = h〈u〉, with the average horizontal
velocity 〈u〉= (1/h)

∫ h

0
dz u . Assuming that there is no addition

Fig. 2. Model of an active drop moving on a substrate. The horizontal flow
velocity u(x, z, t) driven by active internal stresses (σa) and surface tension (γ)
adopts a Poiseuille-like profile in the drop interior, characteristic of lubrication
theory. The drop height h(x, t) obeys the continuity equation (Eq. 1) with a flux
q that encodes the constitutive relation (Eq. 3) for how activity drives fluid flow.
The spatial profile of activity (ζ(x, t)) is a simple linear ramp with a constant
offset, allowing for both drop translation and size change (Eq. 7).

or loss of mass of the drop, we can write this as a global
condition ∫

dx h(x , t) = 1, [2]

to fix our units of length.
In the low-Reynolds-number regime appropriate for small

viscous drops, we operate in the Stokesian limit, wherein force
balance implies ∇ · σ = 0, where the total stress σ =−pI+
η[∇u+ (∇u)T ] + σa is the sum of the pressure p, a viscous
stress (in a liquid with shear viscosity η), and an active stress.
We assume that the active stress σa = ζh(n̂n̂− I/2) (8, 26)
is proportional to the local density ∼ h , while depending on
the local orientation n̂ of anisotropic active agents.* The activity
ζ(x , t) depends on space and time and originates from the density
of force dipoles exerted by elongated active units, which can
be of either sign, with ζ > 0 for contractile systems and ζ < 0
for extensile systems. This form of the active stress is applicable
to drops of coherently swimming dense bacterial suspensions or
ordered collections of motor-protein-driven cytoskeletal filaments
present in synthetic drops or living cells (23, 24). For simplicity,
we shall assume strong ordering along the horizontal direction and
neglect any rapid orientational relaxation to set n̂� x̂ to lowest
order in gradients (|∂xh| � 1). The active forcing nonetheless
survives in this limit, as the active stress directly depends on the
local density of the drop (∼ h), unlike previous models (23, 24)
that rely on splay–bend deformations of orientational order.

In the lubrication limit corresponding to a slender drop,
|∂xh|2 � 1, so that we can neglect longitudinal flow gradients as
|∂2

xu| � |∂2
z u| and |∂xv | � |∂zu|. Then, the stress in the fluid is

dominated by the pressure, which is determined by the capillary
boundary condition on the drop surface σzz |z=h = γ∂2

xh , where
γ is the interfacial tension and yields p =−(ζ/2)h − γ∂2

xh .
Using this in the horizontal force-balance equation, along
with the no-slip (u|z=0 = 0) and free surface (∂zu|z=h = 0)
boundary conditions, yields the horizontal velocity profile
u = z ((2h − z ))∂xσ/2η, where σ = ζh + γ∂2

xh is the effective

*An isotropic active pressure that is constant across the thickness of the drop does not
change anything, as it can be absorbed into p.
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uniaxial stress. Averaging the velocity through the thickness of the
drop shows that the net flux is

q = h〈u〉= h3

3η
∂x (ζh + γ∂2

xh). [3]

Eqs. 1 and 3 complemented by boundary and initial conditions
on the height of the film and its derivatives completely describe
the macroscopic dynamics of an active drop on a substrate,
once the activity field ζ(x , t) is specified. For finite drops, in
the neighborhood of the contact line, the boundary conditions
associated with partial slip, prewetting films, and/or finite contact
angles have to be accounted for (27, 28) (SI Appendix). In our
formulation, the passive surface tension γ serves to regulate the
drop curvature, while the (controllable) activity ζ(x , t) enters as
an unknown spatiotemporally varying nonlinear diffusivity, but is
analogous to gravity (27).

Optimal Transport. The optimal transport of an active drop
requires finding an actuation protocol for the activity profile
ζ(x , t) that moves the drop at a minimal cost. We choose a
physically motivated cost C =W + T , which includes two terms,
an integrated bulk cost that tracks the total mechanical work (W)
done by the active and passive forces and a terminal cost (T )
that penalizes any discrepancy between the final and desired state
of the drop. Within the lubrication approximation, the viscous
dissipation in the drop ∼ η(∂zu)

2 is dominated by shear, so that
the total mechanical work is given by

W =

∫ T

0

dt

∫
dx

h3

3η
(∂xσ)

2. [4]

As expected, the total amount of energy expended and lost
via dissipation by the system is always nonnegative (W ≥ 0).
We note that this is equivalent to stating that the effective
mechanical energy in the drop E = (1/2)

∫
dx [γ(∂xh)

2 − ζh2]
satisfies the condition dE/dt =−

∫
dx (h3/3η)(∂xσ)

2 < 0 if
∂tζ = 0 and boundary fluxes are absent—i.e., the system is
dissipative. The work done by the active stress alone (Wa =∫ T

0
dt

∫
dx h〈u〉∂x (ζh)), on the other hand, is not guaranteed

to be a well-behaved cost function, as Wa can be of either
sign in general (though Wa =W ≥ 0 when γ = 0), reflecting
the possibility of both energy consumption and extraction from
the nonequilibrium system (29). Here, we have not included the
energy cost required to maintain the active machinery (30); in
the simplest setting, this is proportional to the total amount of
the active fluid, which, in our case, is a constant.

For simplicity, we have assumed that the total time duration T
is fixed, though other strategies, such as minimal time control, are
possible. However, we do account for a terminal cost to minimally
capture the intent of the task, which is to translate the drop by a
fixed distance and control its final spread as well. We incorporate
this in a simple quadratic term

T = μX

(
X (T )− XT

XT

)2

+ μR

(
R(T )− RT

RT

)2

, [5]

where XT and RT are the desired values for the drop center
of mass and the drop size at the end of the transport. The
corresponding penalties are μX and μR for the terminal position
and size terms. As mentioned previously, the drop has compact
support and finite size, which is denoted byR(t), and its position
is given by the center of mass, namely,

X (t) =

∫
dx xh(x , t), [6]

both of which can be evaluated at the final time t = T to compute
T (Eq. 5). We will always set the initial position of the drop to be
at the origin, X (0) = 0, without loss of generality.

It is worthwhile to pause here to compare our formulation of
optimal droplet transport with the classical Monge–Kantorovich
formulation of optimal transport (19–22). Unlike the conven-
tional formulation, where the sole constraint is global mass con-
servation (Eq. 2), here, we constrain the dynamics to account for
both local mass andmomentum conservation.The latter is a direct
consequence of the physics of fluid motion that dictates how the
material responds to local actuation of active stresses, as specified
by Eqs. 1 and 3. As a result, our transport plan does not simply
rely on a registration solution of a static Monge–Ampère equation
(20). A further salient feature worth emphasizing is the parabolic
(diffusive) nature of our dynamics, where the control (activity)
enters as a nonlinear diffusivity by virtue of the geometric reduc-
tion intrinsic to drops and thin films. This is distinct from the
hyperbolic (advective) setting present in Benamou–Brennier-style
formulations (22) that employ a hydrodynamic analogy between
optimal transport and inviscid fluid flow, where the velocity field
is the control variable.

Protocol for Optimal Droplet Transport

With this minimal physical framework in hand, how can we
compute the optimal transport policies? We choose two different
routes of solving the problem (Fig. 1). First, we project our nonlin-
ear partial differential equation (PDE) for the drop dynamics (Eqs.
1 and 3) onto a finite number of low order modes that correlate
with the location, size, and shape of the droplet. We propose a
strategy that minimizes or eliminates drift terms in the reduced
description by considering the active controlled dynamics within a
low-dimensional slow manifold that is approximately invariant to
the passive (noncontrolled) forces. The resulting ODEs can then
be handled using standard optimal control theory (31), which we
solve both analytically and numerically. We then compare this
reduced order description to the full PDE model, for which we
analyze the optimal control problem numerically. However, unlike
conventional forward problems that are solved with initial values
in time, the controlled dynamics requires the solution to a much
harder boundary-value problem in time. One way to solve this
problem is to stochastically search for different initializations using
a large number of forward runs to find an appropriate solution
satisfying the required boundary condition. We implement this
using a gradient-free covariance matrix adaptation evolution strat-
egy (CMA-ES) (32), as explained later and in SI Appendix.

ODE Control. For simplicity, we consider aminimal setting, where
the spatial variation of the activity is fixed, but its time variation is
arbitrary. As we are primarily interested in controlling the position
and size of the drop, the simplest spatial variation of activity that
can accomplish both is a linear profile,

ζ(x , t) = ζ0(t) + Δζ(t)

(
x − a(t)

R(t)
− 1

2

)
, [7]

where ζ0(t) is a time-varying mean activity and Δζ(t) is a time-
varying gradient in activity (Fig. 2). We choose this specific form,
which depends explicitly on the drop sizeR(t) and the position of
the left edge of the drop a(t), so that the (spatial) average activity
in the drop is (1/R(t))

∫
h>0

dx ζ(x , t) = ζ0(t). We note that
while ζ0 essentially controls the size of the drop, with ζ0 > 0

PNAS 2022 Vol. 119 No. 35 e2121985119 https://doi.org/10.1073/pnas.2121985119 3 of 8

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y 

47
.1

4.
98

.2
06

 o
n 

M
ay

 1
, 2

02
3 

fr
om

 IP
 a

dd
re

ss
 4

7.
14

.9
8.

20
6.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2121985119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2121985119/-/DCSupplemental
https://doi.org/10.1073/pnas.2121985119


leading to contraction and ζ0 < 0 leading to expansion, the linear
gradient in activityΔζ controls the drop translation, the direction
of which is determined by the sign ofΔζ. In contrast with recent
works that have explored bulk contractility driven crawling of cells
(25, 33) and shown how it optimizes the mechanical efficiency of
steady motion (30), here, we address the unsteady dynamics and
its control problem.

The relative importance of the active drive versus surface ten-
sion is quantified by a dimensionless active capillary number

Caζ =

〈
|Δζ(t)|R(t)2

γ

〉
T

, [8]

where the time average 〈A〉T = (1/T )
∫ T

0
dt A. As will be clear

later, Eq. 8 is akin to the conventional definition of a capillary
number (28), only now with the velocity scale set by the activity
gradient (Δζ), which is essential to drive drop motion.† For
large Caζ � 1, active forcing dominates surface tension, and we
can safely neglect boundary effects, while for Caζ ∼ 1−O(10),
active and passive forces compete, and the equations have to be
generalized to include the dynamics of the contact lines, as detailed
in SI Appendix.

We project the nonlinear PDE (Eqs. 1 and 3) onto a trun-
cated set of modes that we choose so that the resulting ODE
system is as drift-free as possible—i.e., the system lacks dynamics
in the absence of the controls (here, activity). This is achieved
by noting that the flux due to capillary forces vanishes when
∂3
xh(x , t) = 0, and the drop adopts a parabolic profile. This

permits a simple parametrization of the drop profile via twomodes
of deformation—a translation in the center of mass X (t) and a
change in the size R(t), which, along with Eq. 2, gives

h(x , t) =
6

R(t)3

[
R(t)2

4
− (x − X (t))

2

]
. [9]

Note that h(x , t) = 0 at the two ends of the drop, x = X (t)±
R(t)/2, and vanishes outside this region. While translation is a
genuine zero mode of capillarity, size change of the drop is only
an approximate zero mode that is violated near the boundaries
where wetting and contact-angle physics become important (28).
Nonetheless, by focusing on the bulk dynamics, we obtain a 2D
manifold spanned by X (t) and R(t) that remains approximately
invariant under the action of capillary forces.

Employing a Galerkin approximation (i.e., projecting onto a
local polynomial basis) allows us to compute spatial moments
of the flux q(x , t) and project the continuum equations onto
this manifold to obtain a pair of nonlinearly coupled ODEs
(SI Appendix)

Ẋ (t) =
18Δζ(t)

35ηR(t)4
, Ṙ(t) =− 24ζ0(t)

7ηR(t)4
. [10]

As expected, the mean (ζ0) and gradient (Δζ) components of
the active stress independently control the drop size and position,
respectively. By construction, surface tension γ is absent in Eq. 10,
and the equation is drift-free. The existence of optimal controls
is predicated on an important property of the dynamics, namely,
controllability (34, 35)—i.e., the existence of a path connecting
any two points in the state or configuration space, spanned here

†Similarly, we can define an active Bond number Boζ = 〈|ζ0(t)|R(t)2/γ〉T to characterize
the relative importance of the average activity (associated with size change) compared
to surface tension. Since Caζ is more directly relevant for transport and in most of our
results—for instance, in Fig. 4, both Boζ and Caζ are empirically correlated (not shown),
we do not consider the active Bond number any further.

by X and R (see SI Appendix for a more detailed explanation).
As the two controls (ζ0, Δζ) enter linearly and independently,
and the dynamics has no fixed points for nonvanishing controls,
one can easily confirm that Eq. 10 is controllable, allowing us to
guarantee the ability to steer the system from any state to any other
state within the space of drop configurations labeled by (X ,R).
The absence of any drift (control-independent) terms presents
a technical advantage, as the system permits a global, rather
than local, notion of controllability, even when the dynamics is
nonlinear (SI Appendix), thereby justifying our mode-reduction
strategy.

For simplicity, we consider the fixed end point problem where
the terminal conditions are imposed strictly (X (T ) = XT ,
R(T ) = RT ), in which case the total cost reduces to the net
dissipation (C =W). The drop parametrization (Eq. 9) allows us
to easily compute the dissipation rate to be

L=
1

ηR6

[
72

35
ζ20 +

54

77
Δζ2

]
, [11]

whose time integral gives the cost (W =
∫ T

0
dt L). As expected,

we obtain a simple sum of squares in terms of the two active
drives, along with a strong size dependence arising from the
geometry of the drop. To solve the optimal control problem, we
employ Pontryagin’s Maximum Principle that provides the nec-
essary conditions for optimality (36) (see SI Appendix for a brief
summary). Upon introducing the costates (Lagrange multipliers)
pX (t) and pR(t) to enforce the dynamical constraints in Eq. 10,
a necessary condition for optimality is the maximization of the
control Hamiltonian

H= pX
18Δζ

35ηR4
− pR

24ζ0
7ηR4

− L, [12]

with respect to the controls (SI Appendix). This gives ζ∗0 =

−5pRR
2/6 and Δζ∗ = 11pXR2/30, which, when substituted

back into Eq. 12, gives the conserved Hamiltonian H =
H(ζ∗0 , Δζ∗). The candidate extremals for the optimal control
problem satisfy Hamiltonian dynamics in terms of the state
variables (Ẋ = ∂pX

H , Ṙ = ∂pR
H ) and corresponding costates

(ṗX =−∂XH , ṗR =−∂RH ). For the state variables, this gives
back Eq. 10 driven now by the optimal controls (ζ∗0 , Δζ∗);
translational invariance enforces that ∂XH= 0; hence, pX is
conserved along the optimal trajectory.

These coupled dynamical equations along with the initial and
terminal conditions can be solved analytically to obtain the opti-
mal transport protocols (SI Appendix) to displace an active drop by
a distance XT and change its size from R0 to RT in a finite time
interval T . A representative solution is plotted in Fig. 3A and B
for XT = 0.8, R0 =

√
6 and RT = 3. The first-order necessary

conditions generally allow for nonuniqueness of the candidate
extrema, but we only show the global optimizer in Fig. 3. For the
chosen parameters, the optimal protocol leads to a nonmonotonic
change in drop size (Fig. 3B), first decreasing and later increasing
to reach the final size RT . This is reflected in the sign change of
the mean active stress ζ0 (Fig. 3A), which switches from being
contractile initially (ζ0 > 0) to extensile at later times (ζ0 < 0).
The drop translates smoothly with a maximal velocity precisely
when the drop size is the smallest, even though the drive (Δζ) is
minimal at this point (Fig. 3A). Hence, the drop executes a contin-
uous version of an intuitive gather–move–spread-like strategy that
naturally emerges as an optimal transport plan in our framework.
A simple concentration effect that enhances the active drive in
smaller drops underlies this phenomenon by allowing for faster
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A B C

Fig. 3. ODE optimal control. (A and B) Sample trajectories for the globally optimal mean (ζ0) and gradient (Δζ) activity are shown in A, and the associated
controlled dynamics for the drop position (X) and size (R) are shown in B. The parameters chosen are XT = 0.8, R0 =

√
6, RT = 3, T = 1, and η = 0.1. Note that

as η sets a time scale, only the ratio T/η is important. For these parameter values, we see that the size change is nonmonotonic, which is reflected in the sign
change in the mean activity ζ0(t). The initial contractile activity (ζ0 > 0) causes the drop to shrink and consequently accelerate its translation, and, later, the
activity switches over to become extensile (ζ0 < 0) to allow the drop to reach its larger final size RT . (C) The phase diagram here represents the feasibility region
for optimal transport of a parabolic active drop, as a function of the nondimensionalized drop displacement (XT/R0) and its size disparity (RT/R0). The black
curve is the maximum achievable displacement XT for a given relative change in size (RT/R0), beyond which no smooth optimal controls exist. Below the black
curve is the feasible region, with the shaded color representing the total work done [nondimensionalized as WT/(ηR40)] by the globally optimal policy, with
the cost increasing from blue to red. The blue curves in the shaded region demarcate the parameter space where the global optimizer has a monotonic or
nonmonotonic size dependence as a function of time. Nonmonotonic changes in size are favored in the region bordered by the blue and black curves and only
occur when RT > R0. For RT < R0, the optimal policies have a monotonic size dependence. The black dot corresponds to the solution shown in A and B.

transport at lower activity. Our solution reveals a further striking
result—for certain values of the target parameters (set by XT

and RT ) with strict terminal constraints, no continuous optimal
policies for the transport problem exist! This does not contradict
the fact that the dynamical system (Eq. 10) is controllable, but,
rather, highlights a subtlety. While controllability guarantees the
presence of a trajectory in configuration space that steers the
drop to its desired final state, and hence the existence of optimal
controls, it does not, in general, guarantee that this transport is
either continuous or achievable in finite time.

As shown by the colored region bounded by the black curve
in Fig. 3C, we have a feasible or reachable regime, where smooth
optimal solutions exist and the net dissipation is finite (shown in
the heat map, with the cost increasing from blue to red), while
in the infeasible region, no smooth solution satisfies the terminal
conditions. The blue curve in Fig. 3C further demarcates the pa-
rameter regime where the global optimum corresponds to polices
with a monotonic change in drop size, where the mean activity
(ζ0) maintains a fixed sign. These appear either for sufficiently
small displacements or when the final drop size is smaller than the
initial one (RT < R0). Nonsmooth protocols can be constructed
to access points in the infeasible region in Fig. 3C, but they lack
a natural parametrization. As a result, the search for an optimal
policy in this larger function space is analytically intractable, and
we focus only on smooth protocols for simplicity. The feasibility
curve can alternatively be viewed as solving a maximin problem,
where we maximize the minimum dissipation protocol over the
translation XT for a fixed change in drop size (RT/R0), the
solution for which roughly equipartitions the transport cost (black
curve in Fig. 3C ; see SI Appendix for further details).

Keeping surface tension γ = 0, we can extend this analysis to
include simple variations in drop shape via a spatial asymmetry
of the height profile and numerically solve the optimal control
problem using CasADi (37) and numerical continuation schemes
(see SI Appendix for details). Our results show that while small
variations in the drop asymmetry result in smooth optimal poli-
cies, similar to those in Fig. 3A, larger values of drop asymmetry
lead to short-wavelength numerical instabilities, as expected when
the surface tension vanishes. Thus, while the dynamics of drop
position and size are captured by the simple ODEmodel (Eq. 10),
the dynamics of drop shape requires us to account for the inclusion

of capillary effects for stability. To accomplish this, we switch to
solving the full PDE model.

PDE Control. As the PDE model permits complex shape change
of the drop, we lift the restriction of the controlled dynamics
on the slow manifold selected by capillarity and allow arbitrary
shape variations by tuning γ (conversely, Caζ ; Eq. 8). In order
to select smooth control policies, we generalize the cost function
C =W + T +R (SI Appendix) to include a regularizing term
R in addition to the total dissipation (W ; Eq. 4) and a finite
terminal cost (T with μX ,μR <∞; Eq. 5). The regularization
cost ∼

∫
dt

∫
dx (∂tζ)

2 penalizes large temporal variations in
activity (SI Appendix), and it implements a version of minimal
attention control (38). In the presence of a finite surface tension
γ, we must also correctly implement contact-line motion at the
boundary of the drop, which we do by simply introducing a
thin precursor film that coats the entire surface and a disjoining
potential (27) that sets both the film thickness and the equilibrium
contact angle of a sessile drop (see SI Appendix for details). These
additional terms are negligible in the bulk of the drop, but are
dominant near the contact lines, which will become important
when active and capillary forces are comparable (Caζ �O(10)),
similar to recently explored scenarios the context of steady migra-
tion of cells (25) in the absence of any dynamic control.

We numerically integrate the dynamical equations using a finite
element method implemented using the FEniCS open-source
package (39, 40) and perform constrained optimization using a
gradient-free CMA-ES (32) (see SI Appendix for details). Multiple
runs are sequentially minimized with independent initializations
for the activity profile, and we choose the lowest-cost solution as
an estimate for the optimum. As before, the drop is initially at
the origin (X0 = 0) with a size R0 =

√
6, which corresponds to

an equilibrium contact angle of φeq = π/4. The viscosity η = 0.1
and total time T = 1 are fixed in all the runs. To probe the
caliber of the optimal policies obtained across tasks of increasing
difficulty, we vary the imposed drop translation XT along with
the surface tension γ.

For small surface tension or strong active driving (large Caζ ),
the dynamics of the drop is dominated by bulk dissipation. A
typical trajectory of the drop profile (Movie S1) and the controls
is shown in Fig. 4A, for XT = 0.8 and Caζ ∼ 383. The drop

PNAS 2022 Vol. 119 No. 35 e2121985119 https://doi.org/10.1073/pnas.2121985119 5 of 8

D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//w

w
w

.p
na

s.o
rg

 b
y 

47
.1

4.
98

.2
06

 o
n 

M
ay

 1
, 2

02
3 

fr
om

 IP
 a

dd
re

ss
 4

7.
14

.9
8.

20
6.

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2121985119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2121985119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2121985119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2121985119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2121985119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2121985119/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.2121985119/-/DCSupplemental
https://doi.org/10.1073/pnas.2121985119


C

B

A

D E

Fig. 4. PDE optimal control. (A) The optimal activity controls (ζ0(t), Δζ(t); Left) and corresponding trajectories for the state variables (X(t), R(t); Center) and
the full drop profile (h(x, t); Right), obtained by numerical optimization for small surface tension or large active capillary number (γ = 0.15, Caζ = 383.66).
The drop adopts a strongly asymmetric shape, with an advancing peak and receding tail, like in ref. 25. (B) Similar plots with the optimal activity controls
(ζ0(t), Δζ(t); Left), and corresponding drop trajectory (X(t), R(t), Center; h(x, t), Right), now obtained for large surface tension or small active capillary number
(γ = 2, Caζ = 30.91). The transport plan fares poorly as the drops fails to reach the desired final position and size and wastes a significant amount of energy
in futile size oscillations (R(t); Center) that don’t aid in transport. Both A and B are computed by using XT = 0.8 and RT = 3 (X0 = 0 and R0 =

√
6 is kept fixed

throughout), though similar policies are obtained for other values of XT/RT as well. (C–E) The total cost (Copt; C), efficiency (εW [Eqs. 13 and 14]; D), and precision
(X(T)/R(T); E) of the numerically computed optimal transport protocol plotted against Caζ , for different tasks labeled by increasing XT/RT (blue to green).
Remarkably, the performance curves present an optimal trade-off in balancing active forces against passive ones to attain improved drop transport plans at
intermediate values of Caζ .

develops a prominent advancing peak and a thin receding tail
(Fig. 4 A, Right and Movie S1), similar to steadily translating
drop shapes recently obtained in ref. 25. The optimal controls
and the drop motion vary smoothly (Fig. 4 A, Left and Center)
and successfully accomplish the transport task. Although the
drop undergoes dramatic shape changes, the optimal controls are
qualitatively consistent with our ODE results (Fig. 3 A and B).
In particular, we note that the mean activity (ζ0) changes sign,
switching from contractile to extensile activity, as predicted by our
reduced order description (Fig. 3A). For further comparison, we
also simulate the continuum drop dynamics (Movie S2), using the
optimal activity profile supplied by the ODE solution (Fig. 3A)
for the same parameters. In the regime of applicability of the
reduced order model (corresponding to low values of the surface
tension or, equivalently, large Caζ ), the resulting drop trajectory
(Movie S2) is qualitatively consistent with the solution obtained
from the PDE optimization (Fig. 4A and Movie S1); larger values
of surface tension (smaller Caζ ) lead to a qualitatively different
scenario. As shown in Fig. 4B and Movie S3, for XT = 0.8
and Caζ ∼ 31, the drop remains nearly stationary for a finite
time period, after which it advances by a small amount. This
is reminiscent of “waiting-time” solutions (41) that are present

in nonlinear diffusion equations of the form we have here. The
drop performs rapid small-scale oscillations of its shape and size
(Fig. 4 B, Center and Right and Movie S3) that arise from a
competition between the active and passive (capillary) forces.
While the active controls drive droplet motion, surface tension
and substrate wetting resist variations in the drop shape and
the contact angle, thereby limiting the translation achieved by
the drop. The resulting “futile” oscillations wastefully dissipate
large amounts of energy, performing poorly in the transport task
(Fig. 4 B, Left and Center). We note that in all the examples
studied, only the final drop position (X (T )) and size (R(T ))
are constrained, but the final shape is not. Nonetheless, upon
cessation of the activity protocol, surface tension will cause the
drop to round up into a parabolic shape (just as it started out)
without any additional energy injection. This allows for a simple
way to recover the sessile drop shape at the end. Although this
passive relaxation will inevitably incur drop translation due to its
asymmetric shape, by extending the control protocol (and, hence,
expending additional energy), it should be possible to compensate
for this passive drop recoil.

The varied optimal strategies obtained upon tuning surface
tension suggests a potential trade-off between active and passive
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forces. While large Caζ allows for robust and efficient transport,
it also generates dramatic shape changes, which dissipate excessive
energy. Smaller Caζ restricts shape change, but consequently
dissipates energy into futile oscillations that fail to complete the
transport task. This suggests that an intermediate surface tension
or Caζ would serve as the best choice to tune the optimal transport
plan by balancing active and passive forces. To quantify this trade-
off, we employ three different performancemetrics as a function of
Caζ and the task difficulty characterized by increasing XT/RT .
The first is simply the total cost of the optimal solution (Copt),
plotted in Fig. 4C. Second, we use a simple measure of efficiency
(εW ) to quantify the excess dissipation in the optimal solution
(Fig. 4D). We note that, for any arbitrary drop trajectory starting
at the origin, there is a minimal amount of work that must neces-
sarily be expended, given by (see SI Appendix for a derivation)

Wmin =
3η

2T‖h‖2∞

[
X (T )2 +

(Δ(T )−Δ(0))2

4〈Δ〉T

]
, [13]

where ‖h‖∞ = supx ,t h(x , t) is the maximum value of the drop
height attained throughout its trajectory and Δ(t) =

∫
dx (x −

X (t))2h(x , t) is the variance in the drop height, which is related
to the size of the drop (Δ∝ R2). Note that Eq. 13 is independent
of the rheology and constitutive law for the fluid stress and simply
relies on the existence of a flux q(x , t) that directly determines
the dissipation (SI Appendix). As the work done in the optimal
solution is bounded below by construction (Wopt ≥Wmin), we
define the mechanical efficiency for the optimal solution

εW =
Wmin

Wopt
≤ 1, [14]

which quantifies the extent to which energy is dissipated in inter-
nal modes rather than transporting the drop (Fig. 4D). Finally, we
also use the coefficient of variation of the height—i.e., the ratio of
the final displacement to size achieved by the drop,X (T )/R(T ),
as a measure of transport precision (Fig. 4E, solid) and compare
it against the prescribed value XT/RT for a given transport
task (Fig. 4E, dashed). Interestingly, the optimal solutions for
XT/RT = 0.2, 0.27 achieve a higher precision (solid curves,
Fig. 4E) than required by the task (dashed lines, Fig. 4E) across
a large range of Caζ , but this enhanced performance degrades
for larger XT/RT = 0.33, 0.4. As anticipated, all three perfor-
mance metrics are nonmonotonic and display an optimal trade-
off at intermediate values of Caζ (Fig. 4 C–E), with both the
efficiency and the precision being maximized around Caζ ∼ 100
to 200, while the optimal cost is minimal at a slightly higher
Caζ ∼ 250 to 380. Qualitatively similar trends appear as we vary
the transport task via XT/RT (Fig. 4 C–E), though for larger
values of XT/RT = 0.33, 0.4 (in the infeasible region of the
symmetric ODE optimal transport; Fig. 3C ), the performance
curves exhibit more kinks, perhaps suggestive of a rougher cost
landscape with many nearly degenerate local minima when the
task difficulty increases.

Discussion

Complementing classical optimal transportation and its hydro-
dynamic analogies that use a very specific form of the cost (22),
we have formulated a framework to address questions of optimal
mass transport in physical continua obeying complex dynamical
constraints and illustrated its utility in a simple, yet rich, problem
of transporting a drop of an active suspension by dissipating
the least amount of energy. Our strategy combines a finite-
dimensional (ODE) description based on a physically motivated

mode-reduction scheme, along with the full infinite-dimensional
(PDE)model, both of whichwe couchwithin optimal control the-
ory to obtain a tractable and interpretable characterization of the
resulting optimal transport policies. An important outcome is the
prediction of intuitive gather–move–spread-style strategies and
simple trade-offs between active and passive forces that emerge
naturally within our formulation of optimal drop transport,
with implications for a wide range of synthetic and living active
matter.

In active physical systems, magnetically controlled ferrofluid
drops (42–44), digital microfluidic platforms (45), and bi-
component volatile liquids (46) might provide an immediate
platform to deploy our framework. As an example, for ferrofluid
droplets, the active stress would be replaced by a magnetic stress
given by σm ≈ μ0MsH , where μ0 = 4π × 10−7 N/A2 is the
vacuum permeability, Ms ∼ 104 A/m is the ferrofluid saturation
magnetization, and H ∼ 103 to 104 A/m is the magnetic field
strength. Dimensional considerations suggest that small drops
(size R ∼ 1 to 3 mm and height h ∼ 1 mm) with a typical
viscosity η ∼ 0.4 Pa · s and surface tension γ ∼ 10−2 N/m can
easily achieve rapid movement with speeds ∼ 0.1 to 1 mm/s
(42–44) and also change shape by varying the magnetic capillary
number Cam ∼ σmR2/γh ∼ 10 to 100.

In bio-hybrid contexts, our work is directly relevant to the
control of self-propelled drops composed of microtubule-kinesin
nematic gels (4), swimming bacteria (47), and isolated motile cells
(48, 49) that are often viewed as active drops (25, 33, 50, 51). Our
results could also be tested by using optogenetically controlled
living motile cells (52) or in reconstituted active drops (4, 53).
Since the cortical tension of individual cells varies in the range
of γ ∼ 0.1 to 1 mN/m (54) and the characteristic active stress
ζh ∼ 1 kPa (50), Caζ ∼ 102 to 103 for a R = 10 μm size cell
(assuming an average height h ∼ 1 μm), allowing for an explo-
ration of the transport cost versus internal dissipation trade-off
at intermediate Caζ ∼O(100) that we have uncovered here. This
suggests that contractility driven cellular motility may be optimal,
even beyond steady translation (30), by harnessing dynamic opti-
mal protocols and internally regulating differential contractility
against surface tension. Extensions of our framework can also
easily be used to address the control and patterning of localized
structures, such as defects in active fluids, which has been the focus
of much research in recent years (13, 14, 55, 56).

More broadly, beyond the control of active systems, our formu-
lation of optimal transport offers an alternative choice of transport
metrics that are physically motivated and potentially richer than
the conventional ones (like the L2-Wasserstein norm) used in
standard optimal transport (20), yet their mathematical properties
remain to be uncovered. A tantalizing possibility is to exploit
thermodynamic analogies connecting minimum dissipation pro-
tocols in stochastic systems to optimal transport (57). In this
regard, a generalization of our framework to include fluctuations
within stochastic optimal control (58) would be a promising
future direction.

Data,Materials, and Software Availability. All study data are included in the
article and/or supporting information.
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