
Multi-agent Cooperative Games Using Belief Map Assisted
Training

Chen Luoa,†, Qinwei Huanga,†, Alex B. Wub, Simon Khanc, Hai Lid and Qinru Qiua;*

aDepartment of Electrical Engineering & Computer Science, Syracuse University
bFayetteville-Manlius High School

cAir Force Research Laboratory
dDepartment of Electrical Engineering & Computer Science, Duke University

†Equal Contribution

Abstract. In a multi-agent system, agents share their local obser-
vations to gain global situational awareness for decision making and
collaboration using a message passing system. When to send a mes-
sage, how to encode a message, and how to leverage the received
messages directly affect the effectiveness of the collaboration among
agents. When training a multi-agent cooperative game using rein-
forcement learning (RL), the message passing system needs to be
optimized together with the agent policies. This consequently in-
creases the model’s complexity and poses significant challenges to
the convergence and performance of learning. To address this issue,
we propose the Belief-map Assisted Multi-agent System (BAMS),
which leverages a neuro-symbolic belief map to enhance training. The
belief map decodes the agent’s hidden state to provide a symbolic
representation of the agent’s understanding of the environment and
other agents’ status. The simplicity of symbolic representation allows
the gathering and comparison of the ground truth information with
the belief, which provides an additional channel of feedback for the
learning. Compared to the sporadic and delayed feedback coming
from the reward in RL, the feedback from the belief map is more con-
sistent and reliable. Agents using BAMS can learn a more effective
message passing network to better understand each other, resulting in
better performance in the game. We evaluate BAMS’s performance
in a cooperative predator and prey game with varying levels of map
complexity and compare it to previous multi-agent message passing
models. The simulation results showed that BAMS reduced training
epochs by 66%, and agents who apply the BAMS model completed
the game with 34.62% fewer steps on average.

1 Introduction

A multi-agent cooperative game involves multiple autonomous sys-
tems collaborating with each other to achieve a common goal and
maximize the overall utility of the system. These games can be used
to model various applications, such as rescue missions where multiple
robots are deployed to search for missing persons, military opera-
tions where multiple UAVs survey a large area, and scientific expe-
ditions where rovers explore unknown terrain together. However, as
the number of agents increases, centralized monitoring, controlling,
and optimization becomes infeasible due to the exponential growth

∗ Corresponding Author. Email: qiqiu@syr.edu.

in complexity [8][14]. It will also increase the vulnerability of the
system to single-point failures [15][17]. To overcome these issues,
distributed control and optimization are introduced, where each agent
makes its own decisions based on local information. However, this ap-
proach also has limitation, as agents only have partial observations of
their immediate surroundings, and may not be able to make globally
optimal decisions.

Message exchanges among agents can provide global information
and help the agents move out of local optima. However, excessive
communication can consume communication energy, bandwidth, and
processing power. Sending redundant messages in consecutive cycles,
or by agents close to each other, is likely to waste resources. Addition-
ally, frequently communicating every piece of observed information
can be wasteful and also undermine the receiver’s decision-making
ability. Furthermore, to save communication energy and improve se-
curity, the high-dimensional observation should be encoded into a
low-dimensional message that can only be decoded by the agents.
Therefore, when to communicate, what to communicate and how to
encode/decode the message are variables that need to be optimized.
Reinforcement learning (RL), such as the actor-critic model, is com-
monly used to optimize multi-agent games. Manually design message
passing system usually does not work well with the RL due to the
lack of prior knowledge of the features that are needed by the policy
network. A typical approach [3][23] is to train the message passing
network together with the policy network so that they can evolve
simultaneously.

Training a deep neural network using reinforcement learning is
time consuming because the only feedback for the training is delayed,
sparse, and indirect in the form of rewards. Training a multi-agent
reinforcement learning (MARL) model [1][25] is even more challeng-
ing due to the fact that agents’ decisions are not visible to one another.
This lack of visibility reduces the predictability of the environment
and makes it non-stationary. When a trainable message passing net-
work is used to connect agents, things become even more complicated.
The additional trainable variables in the message network signifi-
cantly increase the model’s complexity, prolong the training time, and
escalate the chance of overfitting.

In this work, we accelerate the MARL by introducing another feed-
back channel that helps to learn a more efficient message passing
network and a more effective representation of the environment. This
consequently leads to better policy and faster convergence. In our



belief-map assisted multi-agent system (BAMS)1, each agent is sup-
plemented with a map decoder, which transforms its hidden state
into a belief map, a neuro-symbolic representation of the agent’s
knowledge of the global environment. This symbolic representation
is simple, making it easy to obtain its corresponding ground-truth
value. By comparing the belief map with the ground-truth map, the
system receives an additional feedback that supervises the training
process. During execution, the belief map provides a way to interpret
the agent’s hidden state, which can further be used to explain the
agent’s behavior.

To improve coordination among the agents and increase the effi-
ciency of message retrieval, our message passing system incorporates
gating and attention mechanisms. The attention model enables agents
to differentiate important and irrelevant messages, while the gating
removes the redundancy and saves communication power and band-
width.

We assessed the performance of the BAMS model using a multi-
agent predator-prey game with and without obstacles. Centralized
training and distributed execution are adopted in the experiments. The
experimental results indicate that BAMS outperforms existing models,
proving to be more fitting for large-scale environments with complex
landscapes and providing more robust performance.

The key contributions of this paper are summarized as follows:

• We proposed a belief-map assisted training mechanism that com-
plements reinforcement learning with supervised information to
accelerate training convergence.

• We proposed a belief-map decoder to reconstruct a neuro-symbolic
map from the environment embedding to provide additional feed-
back during the training. The map transforms the hidden state of
agents into a human-readable format, which significantly improves
the interpretability of the agent’s decision-making process.

• Agents trained using BAMS model communicate more effectively,
catching the prey faster and being less susceptible to noises from
redundant messages as the number of agents increases.

• Simulation results show that agents with these enhancements can be
trained effectively for operation in large and complex environments,
reducing training time by an average of 66% and improving overall
performance by 34.62%.

The rest of the paper is organized as follows. Section 2 introduces
previous works related to communication in a multi-agent reinforce-
ment learning system. Section 3 gives the details of our proposed
method including the believe map decoder and attention model. The
experimental results are given in Section 4 followed by the conclu-
sions in Section 5.

2 Motivations and Previous Work

We consider a fully cooperative multi-agent game as a decentralized
partially observable Markov Decision Process(DEC-POMDP) [2].
DEC-POMDP is defined as a tuple ⟨N, S,P,R,O,A, Z,γ⟩, where
N denotes the number of agents; S is a finite state space; P (s′|s, a) :
S × A × S → [0, 1] stands for the state transition probabilities;
A = [A1. . .AN] is a finite set of actions, where Ai represents the
set of local actions ai that agent i can take; O = [O1. . .ON] is
a finite set of observations controlled by the observation function
Z : S × A → O; R : S × A → R is the reward function; and
γ ∈ [0, 1] is the discount factor.

1 The code is available at Github

According to the DEC-POMDP model, each agent i takes an action
ai based on its local observation oi. When all agents applied their
actions [a0, a1, . . . , aN ] to the environment, the environment moves
to a new state s′ and returns a joint reward r. The MARL trains
policies πi(ai|oi) : Oi → Ai, ∀i, that maximizes the expected
discounted reward E[

∑∞
t=0 γ

trt], where γ is the discount factor.
Sharing observation improves the performance and helps agents

learn a better action policy. Efficient communication allows agents to
obtain more information about the global environment and reduces
the negative impact of partial observations. Previous research models
a multi-agent communication system as a message passing graph
neural network [11][13], where each node in the graph represents an
agent and each edge models a communication pathway equipped with
message encoding and decoding. Different graph topologies have been
studied [21], and recent works focus on improving the efficiency and
reducing the cost of the communication using gated message passing
[16], attention [5], schedule communication [10] and event/memory
driven processing [7][19] [22].

The first study on learnable communication, known as RIAL and
DIAL [4], developed a message passing network that generates mes-
sage generation based on the agent’s local observation, action, and
received messages. The message encoder is a multi-layer perceptron
trained together with the policy network using reinforcement learning.
CommNet [24] includes a centralized communication channel into
the network, which enhances [4] by maintaining a local hidden state
in each agent using a recurrent neural network (RNN). The hidden
state is determined by the sequence of local observations and received
messages and is sent as the communication message to other agents.
When multiple messages are received, the agent consolidates them
using their average.

Message gating [9][23] has been proposed as a binary action to
dynamically block or unblock message transmission, thereby improv-
ing communication efficiency and conserving power and bandwidth.
IC3Net [23], an extension of CommNet [24], utilizes long short-term
memory (LSTM) [6] to generate hidden states. Gated-ACML [16]
performs message pruning before transmission. For both approaches,
communication gating is optimized by the policy network using rein-
forcement learning.

Other studies [9][12][18] have employed attention model to priori-
tize received messages so that agents can select useful features. ATOC
[9] applies attention to determine which agent to communicate with,
and dynamically changes network structure accordingly by generated
a directed graph. G2ANet [12] combines a hard attention and a soft
attention as two stage attention model to process different incoming
message from different agents. MAGIC [18] uses a multi-layout graph
attention network among agents. However, it performs centralized
communication and message processing. All messages are sent to a
communication hub where they are consolidated using the attention
model and then broadcasted to all agents.

TarMAC [3] utilizes both gating and attention to enhance the com-
munication efficiency. However, upon careful examination of its code,
we found that an implementation error in the SoftMax function leads
to unintended message leakage. If all agents gate their transmissions,
the receiver may still receive this message. In other words, an agent
i can only gate its message to another agent j if at least one other
agent k, 1 ≤ k ≤ N, k ̸= i or j, decided to send its message to j in
the same cycle. As a result, agents must synchronize with each other
regarding gating decisions during each cycle to determine whether to
transmit messages.

All the works mentioned above train the message passing network
with the policy network using the game rewards as the feedback.

https://github.com/qhuang18-97/BAMS.git


Figure 1: Architecture of BAMS model

This approach tends to have a slow convergence and the agents do
not understand each other well. In this work, we proposed a belief-
map assisted training method (BAMS) that significantly improves
the training speed and quality for large and complex games. The
agents trained using BAMS communicates more efficiently with fewer
messages and better attentions.

3 Proposed Method
In this section, we present the structure and training of belief-map
assisted multi-agent system (BAMS). Details of the BAMS are illus-
trated in Figure 1. For each agent i, the model comprises five major
components:

• Observation Encoder Ei(): The observation encoder extracts key
features from the agent’s local observation, which will later be
combined with received messages and be used to update the hidden
states.

• Message Attention Module Ai(): The attention module assigns
weights to different messages to select relevant information.

• Hidden State Generator lstmi(): The hidden state generator is a
Long Short-Term Memory (LSTM) that fuses the local observation
and received messages into a feature vector hi.

• Policy Network pi(): The policy network is an actor-critic model
that selects the best action for the local agent to maximize the
overall system utility. In BAMS, the action consists of two parts, a
discrete movement action ai, which decides how agent moves to
complete the game; and a binary communication action gi, which
decides whether the agent should broadcast its hidden state. The
outgoing message mmi is the product of gi and hi as shown in
Figure 1.

• Map Decoder Di(): The decoder reconstructs a neuro-symbolic
belief map of the environment based on the hidden state of the
local agent. The belief map represents agent’s knowledge of the
global environment. It will be compared with the ground truth to
provide additional feedback to assist the training.

3.1 Hidden State Generation and Policy Network

At each time step, every BAMS agent collects observations from its
local sensor. The local observation for agent i at time t is denoted
as oti . Typically, the representation of oti is designed manually and

tailored to the specific application. The agent then update its hidden
state, which is maintained by an LSTM, using both local observations
and the received messages as the following:

ht+1
i , st+1

i = lstmi(Ei(o
t
i), c

t
i, h

t
i, s

t
i), (1)

where ht
i and sti are hidden state and cell state at time t of agent i,

and cti is the aggregated feature extracted from the received messages
using the attention model. Ei(o

t
i) is the encoded observation.

Based on the hidden state, the agent chooses actions using a policy
network pi(). The policy network follows the actor-critic model and
comprises an actor network θi(h

t
i) and a critic network Vi(h

t
i). The

θi(h
t
i) is a one-layer fully connected network with an input of ht

i . Its
output has two components at

i and gti ,

at
i, g

t
i = θi(h

t
i). (2)

The vector at
i represents the probabilities of the game actions available

to the agent, i.e., the movement that the agent can make to complete
the game. The variable gti , which is either 1 or 0, represents the prob-
ability of the binary communication action, i.e., blocking or passing.
At each step, the action was sampled according to the probability
distribution.

3.2 Message Passing Model

Agents communicate their connected neighbors by sending messages.
Following the approach used in TarMAC and IC3Net, we employ
the hidden state as the communication message. The hidden state
contains all the information that an agent requires to make local
decisions. However, not all the information is useful to the agent’s
neighbors. Furthermore, some of the information may overlap with
previous messages from the same agent or messages sent by a nearby
agent. To improve the efficiency of the communication network, the
senders must reduce the number of redundant messages they send and
the receivers must be able to extract useful information relevant to
their own decision making.

We implement the message gating at the sender side. The outgoing
message mmt

j of agent j is calculated as the product of ht
j and the

binary gate action gtj .

mmt
j = ht

j × gtj . (3)



After receiving messages mmt
j(j ̸= i) from neighbor j, agent i

aggregates the messages using an attention model, which is trained
to maximize the reward from the game and minimize the loss of the
belief-map construction. Considering the communication delay, agent
i uses gated message mmt−1

j send by agent j in previous time step
as the input of the key and value networks to generate kt

j and vtj for
time t. The query qti of the attention model is generated based on the
agent’s local hidden state at current time step (ht

i).

kt
j = key(mmt−1

j ) (4)

vtj = value(mmt−1
j ) (5)

qti = query(ht
i) (6)

αt
i = softmax

[
(qt

T

i kt
1)√

(dk)
. . .

(qt
T

i kt
j)√

(dk)
. . .

(qt
T

i kt
1)√

(dk)

]
(7)

cti =
∑N

j=1
αt
iv

t
j (8)

where key(), value() and query() are networks with one fully con-
nected linear layer, dk is the dimensions of hidden state. cti is the
aggregated feature vector that will be used to update the hidden state
in Equation (1).

3.3 Map Decoder

Instead of relying solely on the reward from the environment, addi-
tional channels of feedback information could be added to expedite
the training process. In this work we assist the RL by using a decoded
belief map. As the aggregation of past observations and incoming
messages, an agent’s hidden state represents its knowledge of the envi-
ronment. The more accurate this knowledge is, the better decision an
agent can make. However, an agent’s hidden state is a feature vector
that is not interpretable. The basic idea of BAMS is to decode the
hidden state into a neuro-symbolic map that is human interpretable,
allowing for the construction of the ground truth version of the map.
By comparing the decoded map with ground truth map, we provide
additional feedback to assist the training of the entire system.

The map decoder Di(h
t
i) can be viewed as the inverse process of

the observation encoder Ei(o
t
i). The encoder Ei(o

t
i) uses a Convolu-

tional Neural Network (CNN) to extract the information. Therefore,
we selected transposed CNN to decode the map. Both the observations
and decoded maps are m×m gridded planes, where m is the size of
the environment. The status of each grid location is coded as a size M
vector, where M represents the number of possible states of the grid.
For example, in the predator-prey game, a grid can have 4 possible
states that indicate whether it has been observed, is currently occupied
by a predator, occupied by a prey, or occupied by an obstacle. These
4 states are not necessarily exclusive; hence each grid is encoded as a
multi-hot vector with a size of M . Overall, both maps have dimension
M×m×m. The observation map only contains information from the
local agent, while the belief map should incorporate the information
from all agents.

3.4 Loss Function

In this work, we apply centralized training and distributed execution.
All components in the BAMS are trained together.

The training loss for each agent comprises two components, the
Lmap and the LRL, Loss = αLmap+βLRL, where α and β are two
hyper parameters. The map loss comes from comparing the decoded

belief map (bti) and the ground truth map Gt
i . Mean Squared Error

(MSE) is used to calculate the loss, Lmap =
∑

t MSE(Gt
i − bti).

During training, the central controller tracks the movement and status
of all agents to generate ground truth map. The map loss is obtained
in every time step t. Minimizing the map loss can help all agents con-
verge to an effective communication protocol and efficient message
processing.

The RL loss is the error of the critic network,

LRL =
∑

t
∥(r(ht

i, a
t
i) + γV̂ (ht+1

i )− V̂ (ht
i)∥2 (9)

where r(ht
i, a

t
i) is the reward of the entire system, and V̂ () is the

value estimation of the critic model. The actor network is updated
using policy gradient:

∇θJ(θ) =
∑

t
∇θ log(pθ(a

t
i|ht

i)[r(h
t
i, a

t
i) + γV̂ (ht+1

i )− V̂ (ht
i)]

(10)
where pθ() is the prediction of the actor network. The BAMS model
is updated using the average gradient of all agents.

4 Experiments
For our experiments and evaluations, we utilized a classic grid-based
predator-prey game [13]. It involves N predators (agents) with limited
vision (v) to explore an environment of size m×m to capture either a
static prey or a moving prey. The value of N ranges from 3 to 10, and
m ranges from 7 to 20, representing games with varying complexity.
The environment is further divided into 2 categories, with obstacles
and without obstacles.

4.1 Experiment Setting

We trained our network using RMSprop [20] with a learning rate of
0.001 and smoothing constant 0.97. The entropy regularization is used
with coefficient 0.01. The hidden state size for LSTM is 64. For the
attention model, the key (kt

j) and query (qtj) have a dimension of 16
and the value (vtj) has a dimension of 64.

The agents have limited observation capabilities. Specifically, each
agent is only able to observe objects within a 3 × 3 or 5 × 5 area
centered around itself. At each time step, an agent can choose from 5
possible actions: up, down, left, right, and stay. Additionally, all agents
(predators) have a maximum step limitation, which varies according
to the size of the environment. Prior to reaching the prey, an agent
will receive a penalty rsearching = -0.05 during each time step. Once
an agent reaches the prey, it will remain there and receives no further
penalty. The game is considered as complete when all agents reach
the prey within the maximum number of steps. The number of steps
taken to complete the game serves as the performance metric.

We conducted a comparison of BAMS with 2 baseline models: Tar-
MAC and IC3Net. I3CNet employs message gating while TarMAC
employs both message gating and attention. To the best of our knowl-
edge, these models have state-of-the-art performance while employing
decentralized communication and decision-making. For TarMAC, re-
gardless of the gating action, the message will be sent, together with
the gating action. So we also implemented a variation of BAMS that
removes the belief map decoder and conducts the training without the
use of additional feedback. This reduced version of BAMS is referred
to as BAMS-R.

In addition to the aforementioned models, we implemented a heuris-
tic rule-based algorithm. The algorithm directs the agents to explore
the map from left to right, and top to bottom. after finishes exploring



Table 1: Avg Steps & Comm Rate for Simple Environments

N=3, m=7, Max Steps = 20 N=5 m=12, Max Steps = 40 N=10, m=20, Max Steps = 80
Avg steps Comm rate Avg steps Comm rate Avg steps Comm rate

Heuristic 14.56 - 33.24 - 68.90 -
IC3Net 12.48 0.60 32.90 0.39 73.82 0.60
TarMAC 8.79 0.99 22.59 0.91 60.72 0.76
BAMS-R 12.39 0.32 29.80 0.04 71.76 0.35
BAMS 8.17 1.00 21.64 0.27 56.46 0.05

Figure 2: Left figure shows the example of 4 trajectories exhibiting
keep the border within their observation range. Right figure shown
the heuristic trajectory.

a row/column, an agent will move to the next row/column beyond its
previous observation range. When it reaches the map’s edge, it will
turn around and explore in the opposite direction. Once an agent has
sighted the prey, it will transmit the prey’s location to all other agents,
who will then take the shortest path to capture the prey. An example
of the heuristic trajectory is shown as the right figure of Figure 2.

4.2 Experimental Results for Simple Environment

The first experiment is carried out on simple environment without any
obstacles. We discovered that agents developed significant levels of
intelligence and mutual understanding, allowing them to complete the
game with minimum communications. For example, all agents learned
to explore the map by moving in a counterclockwise circle. Instead of
exploring the entire map, agents circle a local region based on their
initial position. Additionally, the agents tend to keep the border within
their observation range while also staying as far from it as possible.
These behaviors allow the agents to observe the maximum area while
traveling the minimum distance. Figure 2 presents an example of 4
trajectories exhibiting such behavior.

Table 1 compares the BAMS with four reference algorithms for
games with different sizes when agents have 3×3 vision. The column
“comm rate” shows the average percentage of times an agent transmits
its hidden state. The results indicate that BAMS takes fewer steps on
average to complete the game than the other algorithms. Specifically,
compared to IC3Net and the heuristic algorithm, BAMS completes the
game with approximately 30% fewer steps on average. Compared to
TarMAC, BAMS completes the game with 6% fewer steps. However,
it should be noted that agents using TarMAC transmit their hidden
state much more frequently. Moreover, as mentioned in Section 3,
agents in TarMAC must synchronize with each other about their gating
decision at every time step, which incurs significant overhead. The
comparison between BAMS and BAMS-R demonstrates that the use
of belief-map assisted training leads to a 27% reduction in the number

Figure 3: The convergence curve of four methods’ average step taken
in random seeds under simple 12× 12 environment.

of steps required to complete the game. As the map size increases, the
communication rate of the BAMS agents reduces as the possibilities
of encountering new events, such as observing another agent, the map
edge, or the prey, decreases. In other words, the agents spend most of
the time moving straight ahead.

Figure 3 compares the convergence speed of BAMS with BAMS-R,
Tarmac and IC3Net. The results indicate that, IC3Net has the fastest
convergence due to its relatively simpler architecture that does not
employ an attention mechanism in message processing. However,
for the same reason, it also has the worst performance. On average,
BAMS improves the convergence by 66% compared BAMS-R. This
improvement can be attributed to the additional feedback from the
belief map, which provides a more consistent relationship among
hidden state, action, and reward, resulting in faster learning with
fewer iterations. Even TarMAC sends out messages every time step,
our BAMS still beat the convergence of Tarmac. It should be noted
that this feedback is only available during the training as no ground
truth map is available during the execution. Nevertheless, the decoded
belief map can provide a visualization of the agent’s hidden state and
hence can be used to interpretate the agent’s decision-making process.

Figure 4(b) and Figure 4(d) depict an example of the decoded
believe map for five agents at the beginning of the game and at time
step 3 of the game, respectively. The gridded map shows the location
of the agents and the prey, and the location where the agent sends
out a message. The 3 channels of the decoded map indicate the belief
of the agents’ location, the prey’s location and the explored area.
At the beginning of the game, all agents only have access of their
local information. Interestingly, we found that the agents learned



(a) Step 1 Ground Truth Map (b) Step 1 Decoded Map

(c) Step 3 Ground Truth Map (d) Step 3 Decoded Map

Figure 4: Visualization in Simple 12× 12 environment of Step 1 and Step 3. Left grid figures (a) (c) is ground truth map shows the trajectory of
agents. Square represents agent and star represents prey. Circle represents the starting location of agent, and the Wi-Fi icon represents that agent
sent out a message on that step. Right heatmap figures (b) (d) give the visualized belief map of agents. Brighter grids indicate higher possibility
that the grids are taken by agents, prey, or explored.

Table 2: Scalability Analysis of Model with Varying Numbers of Agents

2 5 7 10 15
Avg steps Comm rate Avg steps Comm rate Avg steps Comm rate Avg steps Comm rate Avg steps Comm rate

Heuristic 33.36 - 27.40 - 25.94 - 20.47 - 15.56 -
IC3Net 29.34 0.43 32.90 0.39 33.13 0.42 34.91 0.42 35.74 0.39
TarMAC 23.03 0.96 22.59 0.91 23.67 0.81 24.55 0.75 24.79 0.63
BAMS-R 28.53 0.04 29.80 0.04 32.55 0.04 33.77 0.05 34.82 0.06
BAMS 23.04 0.31 21.64 0.27 19.32 0.28 18.76 0.29 18.88 0.30

to be optimistic, as each agent believed that the prey was located
nearby. The Gray agent reached the prey in step 2 and both Gray
and Green agents sent out messages in steps 1 and 2. Therefore, at
step 3, all agents updated their belief map to reflect the messages
they received. In their prey location map, the areas around location
(5, 9) is highlighted, which reflects the correct prey location that they
learned from the Gray agent. In their explored area map, the right side
and center area of the map are highlighted, indicating the area that has
been explored by the Gray and Green agents. The Green and Orange
agents observed each other in step 3, resulting in the highlighting
of each other’s location in their location map. Interestingly, even

though the Blue and Yellow agents did not send out any messages,
the other agents still slightly highlighted the left and bottom sides of
their explored area maps, as if they anticipated someone exploring
this area. This suggests a type of mutual understanding without direct
communication.

To test the robustness of the policies, we train the BAMS, BAMS-R
and IC3Net model in an environment with 5 agents and test them in
different environments with agent numbers varying from 2 to 15. The
results are reported in Table 2, where we also listed the performance of
the heuristic algorithm as a reference. As we expected, for BAMS, the
average number of steps needed to complete the game reduces as the



number of agents increases. However, for IC3Net and BAMS-R, the
trend goes in the opposite direction. As the number of agents increases,
due to the increased number of messages, the agents have difficulty
extracting useful information, resulting in an increased number of
steps to complete the game. This experiment demonstrates that BAMS
helps to train an effective message passing framework, allowing agents
to perform better in the game.

4.3 Experimental Results for Complex Environment

In the second experiment, we tested our approach under a complex
environment with obstacles. Each grid in the environment is encoded
as multi-hot vector of size 4, which represents whether the grid is
occupied by a predator, a prey, or an obstacle, and whether it has
been observed. We fixed the environment size to be 12 × 12. In
each randomly generated training environment, there are 20 randomly
placed obstacles

(a) Simple 20× 20 (b) Complex 12× 12

Figure 5: Average Step Taken Comparison

Figure 5(b) compares the convergence speed of BAMS, Tarmac,
IC3Net and BAMS-R. We can see that BAMS once again has the
fastest convergence speed compared to the other models, completing
the game with 3 fewer steps than the other two models in average. In
comparison to Figure 5(a), the performance of IC3Net, which does
not employ attention to the received messages, deteriorates much
faster than Tarmac, BAMS-R and BAMS. This means effective mes-
sage passing network becomes increasingly important in a complex
environment.

We also observed that as the environment becomes more complex,
the performance of those models oscillates more significantly. This
can be seen in Figure 5(a) and Figure 5(b) when the environment size
is 20 or when obstacles are included. The reason for this is that in
randomly generated large and complex environments, the difficulty
level of the game can vary significantly. Factors such as the initial
location of the agents and distribution of obstacles can affect the
number of steps needed to complete the game.

We further tested the model using testing environments with 10, 20
and 30 obstacles. We found that even though the network is trained
with 20 obstacles, it was able to handle different environments. The
performance of the three deep learning models in a complex envi-
ronment is shown in Table 3. In average BAMS reduces the number
of steps by 23.6% and 16.5% compared to IC3Net and BAMS-R,
respectively.

4.4 Experimental Results for Moving Prey

We created a dynamic prey environment where the prey is able to
move in order to evade capture by the agents. The prey has the same
observation and action space as the agents. When one or more agents
are observed, the prey will move to the nearby grid that has the farthest
Euclidean distance from the observed predators. In the case of a tie,
the direction of movement is chosen randomly. The game ends when
at least one agent successfully captures the prey.

Table 3: Avg Steps & Comm Rate for Complex Environments

No. of obstacles 10 20 30
Avg steps Comm rate Avg steps Comm rate Avg steps Comm rate

IC3Net 45.39 0.53 48.56 0.54 49.37 0.57
BAMS-R 39.43 0.062 44.78 0.073 46.92 0.076
BAMS 31.80 0.056 36.51 0.065 41.42 0.054

Table 4: Avg Steps & Comm Rate for Moving Prey Environments

Vision Size 3× 3 5× 5
Avg steps Comm rate Avg steps Comm rate

BAMS 32.47 0.94 35.64 0.96
BAMS(pre-trained) 14.76 0.01 17.42 0.01

We further trained the BAMS model in a dynamic prey environment
with a map size of 12 and observation range of 3× 3 and 5× 5. Two
training strategies were tested. In the first approach, the BAMS model
was trained from scratch in a moving prey environment. And in the
2nd approach, we pre-trained the BAMS model in an environment
with fixed prey, and then fine-tuned it in a moving prey environment.
From Table 4 we can see that BAMS with pre-training outperforms
the one without pre-training, reducing the average steps by more
than 50%. We also observed that BAMS without pre-train had a
much higher communication rate. A possible explanation for the
performance discrepancy is that the game with moving prey has two
different goals: locating the prey and catching the prey. The former
has a relatively stable environment, while the latter has a constantly
changing environment as the prey is escaping. It is difficult to learn an
effective communication strategy and an environment representation
for both goals in one round.

5 Conclusion
This paper proposes a novel training approach called belief map
assisted training to improve the convergence and efficiency of multi-
agent cooperative games with distributed decision-making. To over-
come the issue of partial observation, attention-based inter-agent
communication is adopted. The agents are trained to learn when to
gate the message to save bandwidth and avoid interference with ir-
relevant information. We compared our approach with IC3Net and
TarMAC in both simple and complex predator-prey environments.
The experimental results show that our attention-based belief map can
help the agents learn a better representation of the environment’s hid-
den state and process messages effectively, leading to wiser decisions.
Additionally, the belief map assisted training improves convergence
speed and reduces the average number of steps needed to complete
the game.



Acknowledgements

This research is partially supported by the Air Force Office of Scien-
tific Research (AFOSR), under contract FA2386-20-1-4062 and NSF
under award CNS-2148253.

The paper was received and approved for public release by AFRL
on May 16th 2023, case number AFRL-2023-2374. Any Opinions,
findings, and conclusions or recommendations expressed in this mate-
rial are those of the authors and do not necessarily reflect the views of
AFRL or its contractors.

References
[1] Christopher Berner, Greg Brockman, Brooke Chan, Vicki Cheung, Prze-

mysław Dębiak, Christy Dennison, David Farhi, Quirin Fischer, Shariq
Hashme, Chris Hesse, et al., ‘Dota 2 with large scale deep reinforcement
learning’, arXiv preprint arXiv:1912.06680, (2019).

[2] Daniel S Bernstein, Robert Givan, Neil Immerman, and Shlomo Zil-
berstein, ‘The complexity of decentralized control of markov decision
processes’, Mathematics of operations research, 27(4), 819–840, (2002).

[3] Abhishek Das, Théophile Gervet, Joshua Romoff, Dhruv Batra, Devi
Parikh, Mike Rabbat, and Joelle Pineau, ‘Tarmac: Targeted multi-agent
communication’, in International Conference on Machine Learning, pp.
1538–1546. PMLR, (2019).

[4] Jakob Foerster, Ioannis Alexandros Assael, Nando De Freitas, and Shi-
mon Whiteson, ‘Learning to communicate with deep multi-agent rein-
forcement learning’, Advances in neural information processing systems,
29, (2016).

[5] Mingyang Geng, Kele Xu, Xing Zhou, Bo Ding, Huaimin Wang, and Lei
Zhang, ‘Learning to cooperate via an attention-based communication
neural network in decentralized multi-robot exploration’, Entropy, 21(3),
294, (2019).

[6] Sepp Hochreiter and Jürgen Schmidhuber, ‘Long short-term memory’,
Neural computation, 9(8), 1735–1780, (1997).

[7] Guangzheng Hu, Yuanheng Zhu, Dongbin Zhao, Mengchen Zhao, and
Jianye Hao, ‘Event-triggered communication network with limited-
bandwidth constraint for multi-agent reinforcement learning’, IEEE
Transactions on Neural Networks and Learning Systems, (2021).

[8] Ru Huang, Xiaoli Chu, Jie Zhang, and Yu Hen Hu, ‘Energy-efficient
monitoring in software defined wireless sensor networks using reinforce-
ment learning: A prototype’, International Journal of Distributed Sensor
Networks, 2015, (2015).

[9] Jiechuan Jiang and Zongqing Lu, ‘Learning attentional communication
for multi-agent cooperation’, Advances in neural information processing
systems, 31, (2018).

[10] Daewoo Kim, Sangwoo Moon, David Hostallero, Wan Ju Kang, Taey-
oung Lee, Kyunghwan Son, and Yung Yi, ‘Learning to schedule
communication in multi-agent reinforcement learning’, arXiv preprint
arXiv:1902.01554, (2019).

[11] Qingbiao Li, Fernando Gama, Alejandro Ribeiro, and Amanda Prorok,
‘Graph neural networks for decentralized multi-robot path planning’,
in 2020 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), pp. 11785–11792. IEEE, (2020).

[12] Yong Liu, Weixun Wang, Yujing Hu, Jianye Hao, Xingguo Chen, and
Yang Gao. Multi-agent game abstraction via graph attention neural
network, 2019.

[13] Yong Liu, Weixun Wang, Yujing Hu, Jianye Hao, Xingguo Chen, and
Yang Gao, ‘Multi-agent game abstraction via graph attention neural net-
work’, in Proceedings of the AAAI Conference on Artificial Intelligence,
volume 34, pp. 7211–7218, (2020).

[14] Ryan Lowe, Yi I Wu, Aviv Tamar, Jean Harb, OpenAI Pieter Abbeel,
and Igor Mordatch, ‘Multi-agent actor-critic for mixed cooperative-
competitive environments’, Advances in neural information processing
systems, 30, (2017).

[15] Gary S Lynch, Single point of failure: The 10 essential laws of supply
chain risk management, John Wiley and Sons, 2009.

[16] Hangyu Mao, Zhengchao Zhang, Zhen Xiao, Zhibo Gong, and Yan Ni,
‘Learning agent communication under limited bandwidth by message
pruning’, in Proceedings of the AAAI Conference on Artificial Intelli-
gence, volume 34, pp. 5142–5149, (2020).

[17] Milad Moradi, ‘A centralized reinforcement learning method for multi-
agent job scheduling in grid’, in 2016 6th International Conference on

Computer and Knowledge Engineering (ICCKE), pp. 171–176. IEEE,
(2016).

[18] Yaru Niu, Rohan R Paleja, and Matthew C Gombolay, ‘Multi-agent
graph-attention communication and teaming.’, in AAMAS, pp. 964–973,
(2021).

[19] Emanuele Pesce and Giovanni Montana, ‘Improving coordination in
small-scale multi-agent deep reinforcement learning through memory-
driven communication’, Machine Learning, 109(9), 1727–1747, (2020).

[20] Sebastian Ruder, ‘An overview of gradient descent optimization algo-
rithms’, arXiv preprint arXiv:1609.04747, (2016).

[21] Junjie Sheng, Xiangfeng Wang, Bo Jin, Junchi Yan, Wenhao Li, Tsung-
Hui Chang, Jun Wang, and Hongyuan Zha, ‘Learning structured com-
munication for multi-agent reinforcement learning’, Autonomous Agents
and Multi-Agent Systems, 36(2), 50, (2022).

[22] David Simões, Nuno Lau, and Luís Paulo Reis, ‘Multi agent deep learn-
ing with cooperative communication’, Journal of Artificial Intelligence
and Soft Computing Research, 10, (2020).

[23] Amanpreet Singh, Tushar Jain, and Sainbayar Sukhbaatar, ‘Learning
when to communicate at scale in multiagent cooperative and competitive
tasks’, arXiv preprint arXiv:1812.09755, (2018).

[24] Sainbayar Sukhbaatar, Rob Fergus, et al., ‘Learning multiagent com-
munication with backpropagation’, Advances in neural information
processing systems, 29, (2016).

[25] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Math-
ieu, Andrew Dudzik, Junyoung Chung, David H Choi, Richard Powell,
Timo Ewalds, Petko Georgiev, et al., ‘Grandmaster level in starcraft ii
using multi-agent reinforcement learning’, Nature, 575(7782), 350–354,
(2019).


	Introduction
	Motivations and Previous Work
	Proposed Method
	Hidden State Generation and Policy Network
	Message Passing Model
	Map Decoder
	Loss Function

	Experiments
	Experiment Setting
	Experimental Results for Simple Environment
	Experimental Results for Complex Environment
	Experimental Results for Moving Prey

	Conclusion

