2023 Annual Conference & Exposition RUELECHEAETEENLE
Baltimore Convention Center, MD | June 25 - 28, 2023 Education for 130 Years

Paper ID #38671

Numerical Problem Solving across the Curriculum with Python and MAT-
LAB

Using Interactive Coding Templates: A Workshop for Chemical Engineering
Faculty

Austin N. Johns, The State University of New York, Buffalo

Austin N. Johns is an active-duty captain and developmental engineer in the United States Air Force. In
2017, he earned a B.S. in Chemical Engineering from Oklahoma State University. In 2023, he earned a
M.S. in Chemical Engineering from the University at Buffalo, The State University of New York. His
graduate research focused on developing computational educational resources for use in the chemical
engineering curriculum. The views expressed in this paper are those of the author and do not reflect the
official policy or position of the United States Air Force, Department of Defense, or the U.S. Government.

Dr. Robert P. Hesketh, Rowan University

Robert Hesketh is a Professor of Chemical Engineering at Rowan University. He received his B.S. in 1982
from the University of Illinois and his Ph.D. from the University of Delaware in 1987. After his Ph.D. he
conducted research at the University of Cam

Prof. Matthew D. Stuber, University of Connecticut

Dr. Matt Stuber is an Assistant Professor with the Dept. of Chemical & Biomolecular Engineering and
the Institute for Advanced Systems Engineering at the University of Connecticut. He received his PhD
from the Massachusetts Institute of Technology (MIT) and his BS from the University of Minnesota —
Twin cities, both in chemical engineering. In his post-doctoral work, he cofounded a water-tech start-up
company focusing on developing flexible high-efficiency solar-driven desalination technologies for di-
verse applications where membrane technologies prove inadequate. At UConn, his core research focus is
on optimization theory, methods, and software for modeling and simulation, robust simulation and design,
and controls and operations. His application interests lie in addressing challenging and timely applications
from a spectrum of industries including food, energy, water and natural resources, chemicals, finance, and
healthcare. The systems-level thinking combined with quantitative rigor enables the development of novel
solutions to emerging and intractable problems across these diverse areas.

Dr. Ashlee N. Ford Versypt, The State University of New York, Buffalo

Dr. Ashlee N. Ford Versypt is an Associate Professor in the Department of Chemical and Biological
Engineering at the University at Buffalo (UB), The State University of New York. She is also an Affili-
ated Faculty in the Department of Engineering Education and the Institute for Artificial Intelligence and
Data Science. She received her B.S. from the University of Oklahoma and her M.S. and Ph.D. from the
University of Illinois. She did a postdoc at the Massachusetts Institute of Technology before starting her
academic career at Oklahoma State University (OSU), where she was an assistant professor 2014-2020
and then a tenured associate professor until January 2021 before moving to UB. Dr. Ford Versypt leads
the Systems Biomedicine and Pharmaceutics Laboratory. She was the 2020-2021 Chair for the ASEE
Chemical Engineering Division (CHED). Dr. Ford Versypt has been recognized with the NSF CAREER
Award, ASEE CHED Ray W. Fahien Award and Joseph J. Martin Award, and AIChE CAST Division
David Himmelblau Award for Innovations in Computer-Based Chemical Engineering Education. She is
an Academic Trustee of Computer Aids for Chemical Engineering Corporation.

©American Society for Engineering Education, 2023

Numerical Problem Solving across the Curriculum with Python
and MATLAB Using Interactive Coding Templates:
A Workshop for Chemical Engineering Faculty

Abstract

With the fourth industrial revolution well underway, the proportion of occupations requiring
“high” or “medium” digital skills has never been greater. Among those most in demand are
engineers skilled in computing and advanced problem solving to support the ongoing
digitalization, networking, and automation. A numerical analysis course in the core
undergraduate engineering curriculum is a natural place for students to learn numerical methods
for advanced problem solving across engineering applications. The use of computing across the
entire chemical engineering curriculum also offers opportunities to hone students’ abilities as
computational thinkers and effective problem solvers to meet the current and future needs of an
increasingly complex and digital industry and society. While the current chemical engineering
curriculum includes computational training, there is a need to efficiently increase the exposure of
students to computing within mathematical problem-solving contexts and develop their
proficiency in computer programming, all while balancing demands to reduce credit hours. Some
chemical engineering faculty interested in enhancing the computational nature of their courses
face a barrier to doing so due to unfamiliarity with some modern computational educational
resources that may not have been covered in their training or may not be used in their research
areas. The authors developed a workshop to teach chemical engineering faculty to use and
develop interactive coding templates (MATLAB Live Scripts and Jupyter Notebooks) and to
equip faculty to incorporate these techniques across the undergraduate curriculum. The workshop
was presented at the 2022 ASEE/AIChE Summer School for Engineering Faculty. The purpose
of this paper is to disseminate the workshop resources, providing educators with a suite of
interactive templates focused on chemical engineering-related case studies and with training to
create and adapt their own related materials. The paper details the interactive coding templates
provided during the workshop along with the relevant pedagogical background and some lessons
learned for future related workshops. Educators who did not attend the workshop are also a target
audience of this paper as it provides tips and access to the relevant materials for implementing
computational thinking through interactive coding templates into their classroom practices.

Introduction

We developed a workshop for the 2022 ASEE/AIChE Summer School for Engineering Faculty
to address the need for training chemical engineering faculty in modern computational
techniques, with the goal of equipping faculty to incorporate these techniques into the
undergraduate chemical engineering curriculum. This paper is about both the workshop and the
resources we created [1] and curated (Table 1). We have made these resources available for
others to reproduce the workshop and for educators to learn from the materials and the expanded
descriptions of them in this paper even if they did not have the opportunity to attend the
workshop. The workshop was titled: “Numerical Problem Solving across the Curriculum with
Python and MATLAB Using Interactive Coding Templates”.

A recent survey of chemical engineers in industry and academia indicated that MATLAB and
Python are the most commonly taught programming languages in chemical engineering
curriculums and the most commonly used programming languages in industry [2]. The report on
the survey results indicated a gap in students’ ability to use computer software and programming
to solve engineering problems [2]. Additionally, these comments suggested that one of the
primary reasons that faculty forgo the use of computer aids s a lack of training and time to learn
how to use these tools [2]. The growing shift towards open source software over proprietary
licensed software is also driving many chemical engineering departments and educators to
consider shifting historical use of MATLAB in education to emerging high-level programming
languages such as Python that are open source [2, 3]. These findings and software use trends
provided the impetus for creating this workshop.

We provided workshop materials for MATLAB and Python, partly due to the survey results [2],
our own familiarity with the software for engineering problem solving, and informal discussions
with other engineering educators. MATLAB and Python both support creation of interactive
documents (via MATLAB Live Scripts and Jupyter Notebooks, respectively) that combine code
and explanatory text, formatted equations, images, and code outputs into single files. We refer to
the MATLAB Live Scripts and Jupyter Notebooks that we created for the workshop as
“interactive coding templates.”

Our rationale for using interactive coding templates over traditional scripts (i.e., MATLAB .m
and Python .py files) is based on their demonstrated pedagogical value in teaching science and
engineering students in an engaging and organized manner that promotes learning [4-21]. A key
element of the interactive coding templates is the use of literate programming. Literate
programming was coined by Donald Knuth, an American computer scientist and developer of the
TeX document formatting language, as a programming methodology that elevates the
documentation of programs to the level of literature [22]. A literate program explains in human-
readable language what it is asking a computer to do rather than simply instructing the computer
to do it, which ideally results in a program with documentation superior to one using traditional
commenting [22]. This is typically accomplished by interweaving blocks of formatted text and
blocks of code that execute the functions of the program [23]. MATLAB Live Scripts and
Jupyter Notebooks both follow this paradigm and allow users to create code blocks using
MATLAB and Python, respectively, and to incorporate text, equations, and visuals using
formatting menu options or a markup language (a human-readable set of computer markings to
define parts of a document or formatting of the text, e.g., see Figure 1). Our interactive coding
templates were designed to merge elements of traditional teaching aids (e.g., a slide-based
lecture, document-based assignment, or textbook content) with codes that can be run by users to
interact with the educational materials and visualize the results, all in the same file. MATLAB
Live Scripts run MATLAB code through MathWorks software. Jupyter Notebooks support
running Python code and several other programming languages (including recently MATLAB
[24]) through open source software. Because of literate programming, the interactive coding
templates facilitate use of computers for problem solving or exploration of parameter impacts on
models without extensive programming skills [25] on the part of the students or educators who
reuse the materials we curated for the workshop. The templates can be adapted for purposes
where programming is an explicit learning objective, and the text, visual elements, and/or codes
in the templates can be edited and customized by other educators or students.

i Problem Statement
The following gas-phase reactions occur in a nonisothermal PFR:

k
iReaction :A—B —riq =kuCy

L] o
Reaction2:2A — B —ryy = ks C3
Pure A is fed at a rate of 100 mol/s, a temperature of 150°C, and a concentration of 0.1
mol/dm?. Determine the temperature and molar flow rate profiles down the reactor.

Figure 1: Jupyter Notebook text formatting example (in Google Colab environment).
Left: formatting menu options appear across the top, and markup language and LaTeX equation
editing syntax are combined with plain text. Right: the output formatted text.

Computational thinking is the pedagogical basis of our workshop. Computational thinking refers
to the cognitive processes involved in using computers to solve problems, including but not
limited to problem reformulation, recursion/algorithmic thinking, problem decomposition,
abstraction, pattern recognition, data visualization and analysis, selection of tools, systematic
testing/debugging, automation, and computational modeling [26-29]. These cognitive processes
are useful for learning programming, and they can also be used for improving problem solving
more generally with or without a computer. Computational thinking is being widely emphasized
across PreK-12 and higher education to prepare all students for the digital skills demands of
future jobs across all disciplines and society more broadly [29-34]. Our emphasis in this paper is
on providing materials to foster computational thinking in the chemical engineering
undergraduate curriculum; others have developed computational thinking assessments [35-39]
that may also be of interest to readers who adopt our materials in their classrooms. Three
“computational practices” apply computational thinking for problem solving [34]: (1) automating
procedures and processes, (2) using models to understand systems, and (3) collecting, analyzing,
and communicating data. These are all relevant practices for chemical engineering
undergraduates to learn and apply. Our interactive coding templates exemplify the first two of

these computational practices. Other data science educational tools provide nice lessons related
to the third [40-42].

Workshop materials

We developednine interactive coding templates for the workshop. Seven templates are available
as both MATLAB Live Scripts and Jupyter Notebooks to accommodate the software preference
of the workshop participants; the other two are available as MATLAB Live Scripts only. No
prior experience with MATLAB, Python, or Jupyter Notebooks is required to open and run the
templates. Customization of the code blocks in the templates requires some familiarity with
MATLAB or Python coding. The interactive coding templates include examples from material
and energy balances, fluid mechanics, heat transfer, separations, thermodynamics, and reaction
engineering. These examples showcase several educational use cases including lecture notes with
in-class activities, pre-class readings with embedded activities, worked case studies, and
homework problems. These examples also feature a diverse array of computational techniques
including solving algebraic systems of equations, ordinary differential equations, and parameter
estimation. We provided tutorials on how to create interactive coding templates; the tutorials are
MATLAB Live Scripts and Jupyter Notebooks, further modeling the flexibility of these
instructional tools. We also created a YouTube video introducing literate programming and
highlighting the key features of MATLAB Live Scripts and Jupyter Notebooks [43].

The following workshop materials are available in a dedicated GitHub repository [1]:

0. Pre-Workshop Set-Up

Instructions for downloading .mlx files and .ipynb files from Google Drive and for
opening them in MATLAB, MATLAB Online, or Google Colab. The instructions were
deemed necessary as workshop participants were expected to bring their own devices to
the workshop rather than using preconfigured devices. We provided this document to
workshop participants a week prior to the Chemical Engineering Summer School to
prepare them to access the workshop’s Google Drive folder, how to acquire a MATLAB
license, how to open and edit MATLAB Live Scripts using the local MATLAB client and
MATLAB Online, and how to open and edit Jupyter Notebooks using Google Colab.
This consideration also drove us to provide web-based tools to open and edit MATLAB
Live Scripts and Jupyter Notebooks to minimize the workshop’s system requirements.
The instructions include screen captures of the webpages and applications that may need
to be updated in the future if any changes are made to the interfaces for Google Colab or
MATLAB Online or to update the source where the files are shared with participants if
outside a Google Drive.

1. Workshop Files Table of Contents

2. Workshop Objectives & Overview

3. Numerical Problem Solving Workshop

Workshop instructional slide deck available in pdf and pptx formats.

4. Additional Resources

Spreadsheet of related computational resources with hyperlinks, which are elaborated in
Table 1 at the end of this manuscript. This serves as our literature review of collections of
codes relevant to the workshop that may be useful for educators to extend beyond the
interactive coding templates we provided.

5. Interactive Coding Template

These are the main files intended to be shared for the workshop and are detailed further
below.

6. Shareable Handout Numerical Problem Solving across the Curriculum with Python and
MATLAB Using Interactive Coding Templates

This pdf document is intended to serve as a handout with all workshop materials directly
embedded in/attached to this file, making it shareable as one file to avoid potentially
broken links in the future.

Interactive coding templates

This section includes a brief description of each of the interactive coding templates that we
developed. This section is organized by the type of numerical method used, except the starting
tutorials on how to create MATLAB Live Scripts and Jupyter Notebooks. Some numerical
methods have more than one template. In addition to the numerical techniques used for each
template, the chemical engineering applications are described, and information as to how the
template is designed to be used by students is provided. Nine interactive coding templates and
one tutorial are MATLAB Live Scripts. Six of these MATLAB Live Scripts and the tutorial are
duplicated as Jupyter Notebooks to allow workshop participants to choose their preferred
programming language. Additional solution files are available for four of the MATLAB Live
Scripts and two of the Jupyter Notebooks.

MATLAB Live Script and Jupvter Notebook Tutorials

MO _HowToCreate.mlx & JO_HowToCreate.ipynb
The files cover how to create MATLAB Live Scripts and use Google Colab to create
Jupyter Notebooks, respectively.

Linear Equations

Template 1: M1 MassBalance.mlx (separate solution file available)

The case study in this MATLAB Live Script is adapted from [44] and is designed to be
used by students as a homework problem. The case study involves solving a system of
linear mass balances on a reaction and separation system with recycle by formatting the
mass balances as a linear algebraic system in matrix-vector form and subsequently using
the Gauss elimination algorithm to solve the linear system.

Nonlinear Equations

Template 1: M2 NonlinearSystems.mlx (separate solution file available)

The worked examples and case study in this MATLAB Live Script are adapted from
[44]. The template contains three worked numerical methods examples and a chemical
engineering case study that requires students to input a set of initial guesses to solve the
problem. The case study involves solving a system of nonlinear mass balances ona
reaction and separation system with recycle. Newton’s method, Picard’s method, and
Newton-Raphson’s method of solving systems of nonlinear equations are the numerical
techniques used in the worked examples and case study. The template is designed to be
used as an interactive textbook.

Template 2: M3 _PipeNetwork.mlx & J3_PipeNetwork.ipynb

The case study in this MATLAB Live Script and Jupyter Notebook is adapted from
Problem 8.11 from [45]. The case study models the behavior of water flowing through a
pipe system. The template is designed to be used as in-class activity or case study for part

“a” and as a homework problem for part “b” and part “c”. The case study involves
solving a system of nonlinear equations using a built-in nonlinear equation solver.
Ordinary Differential Equations (ODESs): Initial Value Problems

Template 1: M4 _NonisothermalPFR.mlx & J4_NonisothermalPFR.ipynb (separate
solution files available)

The case study in this MATLAB Live Script and Jupyter Notebook is adapted from
Example 12-5 from [46]. The case study models the behavior of parallel reactions in a
nonisothermal plug flow reactor (PFR). The template is designed to be used by students
as a worked example or case study forpart “a” and as a homework problem or in-class
exercise for part “b” and part “c”. The case study involves solving a system of first-order
ODEs using a given set of initial conditions and a built-in ODE solver.

Template 2: M5 ParEstKinetics.mlx & J5 ParEstKinetics.ipynb (separate solution files
available)

The case study and homework problem in this MATLAB Live Script and Jupyter
Notebook include equations, illustrations, and data from [47]. The template is designed to
be used by students as a worked example or case study for the first problem and then as a
homework problem for the second problem. The case study and homework problem
involve fitting reaction rate constants to data for the kinetics of a fluidized catalytic
cracker. The solution requires parameter estimation using built-in curve fitting functions
applied to a dynamic model involving multiple ODEs.

Template 3: M6 _TankDrainage.mlx & J6_TankDrainage.ipynb

The case study in this MATLAB Live Script and Jupyter Notebook is adapted from
Example 10.2-1 from [48]. The case study models the mass balance of a water tank using
a system of ODEs. The template is designed to be used a case study or interactive
textbook and involves solving a system of ODEs using a built-in ODE solver. The
template ends with an extension of the case study that can be used as homework problem
or in-class example.

ODEs: Boundary Value Problems

Template 1: M7 _StefanTubeDiffn.mlx & J7 _StefanTubeDiffn.ipynb

The case study in this MATLAB Live Script and Jupyter Notebook is adapted from
Problem 10.1 from [45]. The case study models diffusion in a Stefan tube as a second
order ODE with split boundary conditions. Particular attention is given to how a student
might generate and iterate on a set of initial guesses using the secant method or
automated code when determining the split boundary conditions. The template is
designed to be used as a worked example or case study and ends with an extension of the
case study that can be used as homework problem or in-class example.

Template 2: M8 LaminarPipe.mlx & J8 LaminarPipe.ipynb

The case study in this MATLAB Live Script and Jupyter Notebook is adapted from
Problem 8.1 from [45]. The case study models laminar flow in a horizontal pipe as a
second order ODE with split boundary conditions. Particular attention is given to how a

student might generate and iterate on a set of initial guesses when determining the split
boundary conditions. The template is designed to be used as a worked example or case
study and ends with an extension of the case study that can be used as homework
problem or in-class example.

e Partial Differential Equations

Template 1: M9 HeatTransfer.mlx (separate solution file available)

The problem worked in this MATLAB Live Script is adapted from [44]. The template is
designed to be used as a worked example, interactive textbook, or in-class activity and
asks students to modify the value of specific variables to explore the behavior of the
system. The template models heat transfer as a partial differential equation initial
boundary value problem. The method of lines and a built-in ODE solver are used to
determine the solution to the problem.

Workshop activities and experiences
Learning objectives
By the end of this workshop, participants will be able to:

e C(Create interactive coding templates (MATLAB Live Scripts or Jupyter Notebooks using
Python) for teaching chemical engineering concepts and problem solving

e Select, run, and interact with a MATLAB Live Script or Jupyter Notebook template
applied to a chemical engineering topic of their choice

Mini-lecture

We began the workshop by introducing ourselves and relevant expertise and the workshop
learning objectives (above). Next, one of the interactive coding templates was introduced, and
we showed how it may be used in a chemical engineering classroom. Figure 2 illustrates some of
the salient features for using MATLAB Live Scripts for educational purposes using one of our
examples; similarly, Figure 3 shows a Jupyter Notebook example. Some of the interactive coding
templates are designed to serve as class lecture notes or textbook alternatives with embedded
activities. Figure 4 highlights a few examples of the types of visual aids that have been included
for these purposes. Then, the pedagogical background of computational thinking and literate
programming were introduced to participants with an emphasis on MATLAB Live Scripts and
Jupyter Notebooks. The literate programming materials were the same used for our YouTube
video [43], and the video is available for all outside the workshop. After the mini-lecture, we
used active learning exercises (described below) to guide the participants towards achieving the
learning objectives.

Active learning exercise 1

The activity focused on working through the provided tutorials on how to create interactive
coding templates. Our use of the tutorials in the workshop was designed to model an educational

use case where students read short segments of background text and follow along with embedded
images and starting code blocks to complete the interactive activities. We used the following
activity prompt:

e Choose either MATLAB Live Script or Jupyter Notebook (Google Colab)

e Open MO HowToCreate.mlx or JO_ HowToCreate.ipynb file on How to create a
MATLAB Live Script/How to create a Jupyter Notebook

e Read through the file and complete the interactive activities

e We will circulate to answer your questions

The hands-on active learning exercise 1 was critical for participants to get experience with the
tools for opening, running, editing, and creating MATLAB Live Scripts or Jupyter Notebooks.
We spent a substantial portion of the workshop assisting participants with questions. Most
participants had read the instructions in the Pre-Workshop Set-Up document in advance, which
minimized the time needed to trouble shoot accessing the files and opening the software. An
unexpected minor issue arose with some users of Google Colab not being allowed to use their
university credentials to login due to some university-specific license agreements. This issue was
bypassed by either use of a personal Google account or switching to the MATLAB software. The
biggest technical challenge for participants was in editing code blocks or writing new functions if
they were less familiar with the language.

LIVE EDITOR INSERT

[[l Compare A g Title = =] == 4 L% Refactor> [|=| Section Break . G

¢ 4 || |Ee Bl - = = ¥ (P =
New Open | Save 5 Print > GoTo [Bookmark v Text _]3 l{ U ILI _ Code Control Task Run e o i e Run Step Stop

= = > | | Export = = = i= = = = = F [Fp Section '@ Run te End -

FILE NAVIGATE TEXT CODE SECTION RUN

B Parallel Reactions in a PFR with Heat Effects (C MNetrates for each species E Plot Solution
ry= =k Ca— knC? Flot the temperatis 3nd molar e

The case study in this MATLAB Live Scriptis adapted from Example 12-5 from Essentials of Chemical Reaction
Engineering 2nd Edifion by H. Seotl Fagler. This case study models the behavior of parallel reactions in a re=rp =k Oy
nonisothermal plug flow reactor (FFR)

Note that we have aiflen

"
rem e =L aaC3

Code authors:| G 3

Table of Contents Mole Balances

Leaming Objectives

Problem Statement dFy _ o
Parta av
Partb dF

PFR Energy Balance

y of the gas phase, Parta :_-H_- 0 w50 b {

+ (=) (Al) + (=rs (A,
Falr, +Falp, + Fely, |

Parth 5"‘;70“ LT

P _UdTu=T) + (=ra) (AHgaa) + (=rsa) (AHge
pan e 4T - Ul 1) (AH g1 24) [AHin
av

Filr, +Filr, +F 0,

D Initial Values

ual solutions from output
Input the range of valume the ODEs will be evalusted across.

Learning Objectives Vspan = [Vmin, vesx); % du*2

After completing this lesson, students should be able to

F Reflection Questions

Input the initial values for the dependent variables (molar flow rales and lemperature) and consolidate them into
« winite a MATLAB function to define a system of ODEs one vector

+ use oded5 o solve a system of ODEs

» create plots using MATLAB

+ model parallel reactions in a PFR with heat effects

Figure 2: Example MATLAB Live Script with screenshots from

M4 NonisothermalPFR solution.mlx. A) MATLAB Live Editor menu, B) formatted text blocks
with title, text, code authors (blinded), Table of Contents, and bulleted list of learning objectives,
C) equations formatted with LaTeX directly in MATLAB, D) instructional text interwoven with
code blocks written in MATLAB syntax, E) formatted text, code block, and plot output rendered
inline, F) formatted text block with sample reflection questions at the end of the template.

Parameter Estimation of ODE Models C

for Chemical Kinetics

Parameter estimation or curve fitting is the precess of finding the coefficients or
parameters to fit some model or curve to a set of data. This module covers how
to use Python tools for this process. The specific application features a model

consisting of a system of ordinary differential equations for chemical kinetics.

Reference: Data. model equations, and expected results figures from [1] M. A,
Fahim, T, A, Al-Sahhaf, and A, S, Elkilani, Chapter 8: Fluidised Catalytic Cracking
In Fundamentals of Petroleum Refining. pages 199-235. Elsevier, New York, 2010.
I /doi.org/10.1016/C2009-0-16348-1

Learning Objectives

By the end of this module, students will be able to:

* use Python functions to estimate parameters for models that involve
systems of ordinary differential equations (ODEs) to describe a chemical
kinetics problem from the chemical industry

Problem Statement

Read through the following background and worked solution for estimating the
parameters for a three-lump model of the reaction kinetics for a fluid catalytic
cracker. Then create your own code for estimating the parameters of a four-
lump model of the same application.

Three-lump model

The three-lump model involves three subgroups: VGO (1). gasoline (y2). and
the sum of gas and coke (y3). The reaction network for the three-lump model is
shown in Figure 2. The ODEs that define the three-lump model are [1]

dy, 2
S (kg + Ry
dt (K, 1)V
dys 9
2 gyt — k

at 1 202
dyz

e ki + kowy

where ky, ky, and kg are the parameters, and y; denotes the weight fraction of

lump . Conversion is defined as 1 — y;. Note that the initial conditions are

D

E

Data

The following data have been reported in the literature, summarized in [1]. and

converted to a convenient form for use here.

Table 1. Experimental data for the FCC kinetics [1]

Time (h) Conversion VGO Gasoline Gas Coke
1/60 0.4926 0.5074 0.3767 0.0885 0.0274
1/30 0.6204 03796 04385 0.1360 0.0459
1/20 0.7118 02882 04865 0.1681 0.0572
1/10 0.8238 0.1762 0.5416 0.2108 0.0714

run curve_fit to estimate parameters

parametersoln, pcov = curve_fit(model,xaxisData,np.ravel(yaxisData),p@=-parameterguesses)

print outputs

print('Parameter values:')

print('k_1 = ','%.4f 'Xparametersoln[0])
print('k_2 = .4f '%parametersoln[1])
print('k_3 = ','%.47 'Xparametersoln[2])
print(’'Covariance array:')

print(pcov)

Parameter values:

k_1 = 38.8664
k_2 = 1.8439
k_3 = 13.2322

Covariance array:

[[2.96922223 ©.49220859 -0.35005335]
[©.49220859 ©.35836703 -0.6383415 |
[-0.35005335 -0.6383415 1,8687553]]

Figure 6: y. . time

plt.plot(xaxisData, yaxisData[@,:], 'ro
plt.plot(xaxisData, yaxisData[1,:], ‘gx’

plt.plot(xaxisData, yaxisData[2,:],'b*’,

plt.plot(timeaxisForPlotting, yatsoln
plt.plot(timeaxisForPlotting, yatsoln
plt.plot(timeaxisForPlotting, yatsoln[:
plot Labels:

,» label="VGO data')

» label="Gasoline data")
label="Gas+Coke data')
'r*, label='vG0')

‘g", label="Gasoline')
'b*, label='Gas+Coke')

221,
title, axis labels, Legend
plt.title('Three-lump parameter estimation for FCC process: yield vs. time')
plt.legend()

plt.xlabel(' Time (hours)')
plt.ylabel('vield (weight fraction)"')
plt.show

1(0) = 1 y2(0) = 0. and y3(0) = 0. <function matplotlib.pyplot.show(close=None, block=None)>

Three-lump parameter estimation for FCC process: yield vs. time

k . 10
VGO (y;) ———» Gasoline (yy)
_ 08
H ® VGO data
k3 k2 gDS X Gasoline data
= * Gas+Coke data
-] — VGO
Gas + Coke 2os — Gasoline
(y) 3 —— Gas+Coke
3 7 oz
Figure 2: Three-lump model reaction network [1] 00
00 02 04 06 08 10

Time (hours)

Figure 6: Three-lump parameter estimation results: yield vs. time

Figure 3: Example Jupyter Notebook with screenshots from J5 ParEstKinetics.ipynb.

A) formatted text blocks with title, text, code authors (blinded), and bulleted list of learning
objectives (note Table of Contents is visible as a side panel if the file is opened in Google
Colab), B) formatted text including equations written in markup language in Jupyter Notebook
and an image embedded, C) table of data written in markup language, D) code block written in
Python syntax and text output displayed inline, E) code block written in Python syntax and plot
output rendered inline.

A Well-posed problems and the Condition Number D

While a linear system, Mx = b, may have a unique solution, we also seek to understand whether using a Call Libraries: : numpy, scipy, e

particular algorithm to solve Mx = b will yield an accurate solution. We often don't know M or b exactly. As a NumPy is a library that contains
consequence, solutions which vary greatly when M or b are slightly perturbed may be suspect. This is many numerical methods. In this
generally assessed by evaluating the condition number of a linear system and is defined as. template we use np.zeros();
cond(M) = ||[M]| x |[M~"||. A derivation of this is given in section 2.3.4 of Dorfman and Daoutidis, Numerical np.abs(); np.linspace()

Methods with Chemical Engineering Applications which arrives at the following inequality

Ao smnd(M)("Ab.E"x")
libll smport nuspy as np
from scipy. integrate dmport solve v

For a fixed condition number, cond(M), solution x, and b if we slightly perturb b by Ab then x may change by inport math
at most an amount proportional to the condition number. Another way of interpreting this is by applying the hversmtploctiv ppler so pit
following rule of thumb: the condition number x means that the method looses log;o(x) of accuracy relative to

solve_ivp is in the SciPy library for

rounding error. integrations
If an application leads to an ill-posed problem (values of M and b may be known to very high precision), there

are a multitude of ways this may be dealt with. This most common and often most robust approach is to apply Matplotlib is a python plotting
a preconditioner. That is we find an appropriate matrix Y and multiply both sides of the original linear system package

to create an equivalent new linear system, (YM)x = (Yb), which has a lower condition number. We can then
solve the equivalent modified system

cond_M = cond(M) import numpy as np
from scipy.integrate import solve_ivp
import math

B Newton-Raphson import matplotlib.pyplot as plt
A common method for solving nonlinear systems of equations is the Newton-Raphson method. It relies on the
same idea as Newton's method but is now generalized to n dimensions. The iterative scheme is given by ODE S
olver Flowchart

JO D - x®) = _Rx®)

wihere the J is the Jacobian matrix defined as

Ry IRy Call Libraries: : numpy, scipy, matplotlib, etc.
o 7 ox,
IJ=] i ~ i ,
Lo L Eol?aE!isois
e g a
that is to be evaluated at the value x’. In component form, the elements of the Jacobian are the partial A\ \ Results Print Table
OR; it — 4 -
i Initial Values 4 | Solve_ivp » soltand +f and/or graph
oxj / soly of results
ash)

Itis common to use a shorthand notation 5" = x

—x™ for the difference between the previous values

and the new values of x. The iterative Startand /
stop
scheme then becomes the linear system integration
JW)EE) = —RaW) values
Values

XD = O 4 50D

We have reduced solving the system of nonlinear equations into an iterative method where, at each step, we
need to solve a system of linear equations. Since x’ changes at each time step, we need to solve the linear

system for different right-hand-side constant vectors and Jacobian matrices.

ODEfun(z, y/’s)

C Split Boundary Value de _(_ ’_") eq7 This cell contains the equations that you
Probl | 4‘:::) A derived from the momentum balance
roblem: T" = (— ;) r eq8 and the constitutive equation.

Defines function and required variables
sent into function. ris the radius and
def 0DEfun(r,Yfuncvec): gq— | is the y function vector
vz = Yfuncvec[@] —Y
ing values of r7,, and v,.

P2

) R rTAUrz = Yfuncvec[1]
¢ s R =
deltap = 5 Names the variable from the vector so that
o We do know r7,,|,.=o=0! L=1 the equations look like what you derived
v, |r=o at the center of the pipeis a relr=0 SRl pued el ¥
large value. But we don’t know it! 8 R = ©.009295 Defines constants and explicit equations
ifr>e: This if statement prevents a divide by zero at
If we guess it and integrate we will : faa THi= IMIr2 [E the start of the integration (r=0)
12 else:
know we are correct when TAUPZ = @
Vg lr=p=0 A

dvzdr = @ - (TAUrz / mu) - T 0

drTAUrzdr = deltaP * r / L The 2 differential equations for
this problem

dyfuncvecdr = [dvzdr, drTAUrzdr]

Estimation of the first guess of the velocity at r=0 can be made from the first integration of
return dYfuncvecdr

Values of derivatives required by ‘

Ov: T) solve_ivp sent out of the function
a

Figure 4: Examples of teaching aids embedded in the interactive coding templates with
screenshots from A) M1 MassBalance.mlx, B) M2 NonlinearSystems.mlx, and C & D)

J8 LaminarPipe.ipynb. A) Formatted text block with equations, hyperlink, and symbols, B)
formatted text block with matrices, derivatives, and more, C) handwritten sketch and typed notes
embedded as a image followed by text and an equation, D) coding tutorials with typed notes
overlayed on code snippets embedded as images interspersed with executable code blocks.

Active learning exercise 2

For the second exercise, the workshop participants created their own interactive coding
templates. Workshop participants formed teams of 2-3 based on mutual interest in the same
programming language to provide some support in generating ideas and debugging. We used the
following activity prompt:

e Choose either MATLAB Live Script or Jupyter Notebook (Google Colab)

e Find a partner who is interested in using the same language (MATLAB or Python)

e Work together to build a notebook for students to solve an equation of your choice. The
notebook must include code blocks for numerical computation (solving) and the
following text blocks (in any order)

o learning objectives

o problem statement

o mathematical equation(s)
o animage

The hands-on active learning exercise 2 challenged participants to apply the tools that they
learned in exercise 1 for a lesson on a topic of their choice. Participants were asked to include
code blocks, text blocks, learning objectives, a problem statement, mathematical equations, and
an image because these were the most frequently used types of elements in the educational
interactive coding templates developed by the authors (see Figures 2-4). The participants were
very engaged in this activity. Some opened notes or problem sets from classes they teach and
directly adapted that existing content into their MATLAB Live Script or Jupyter Notebook.
Others found text and visual materials from the internet to include in their lessons. Due to how
active participants were in this exercise, we did not proceed to final exercise. It is included below
for reference as it was also shared with the participants.

Active learning exercise 3
We left a third exercise for exploration after the workshop. The activity prompt was:

e We have prepared a set of interactive coding templates that correspond to mathematical
topics and chemical engineering topics across the curriculum.

e Pick a file from our set of templates. Play with the interface and reflect on how to adapt
for your purposes: lecture/in-class activity, homework, group projects, other.

Conclusions and reflections for the future

The workshop and materials described in this paper were developed to provide faculty with
resources for incorporating modern computational tools and computational thinking into their
classrooms through lecture materials, interactive textbook-like content, case studies, in-class
activities, homework, and course projects. We focused on instructing and equipping chemical
engineering faculty rather than students to scale our efforts to reach the target student audience
for the overall goal of improving their use of computational thinking and practices across
chemical engineering curriculum. The workshop materials focused on a suite of interactive

coding templates educators can either adapt to their needs or use as inspiration for their curricula.
This paper serves to further disseminate the workshop materials and broaden the impact of these
materials on the chemical engineering curriculum.

Using the interactive coding templates required no previous coding experience or installed
software. The templates were designed to introduce students to relevant coding topics in a just-
in-time fashion, i.e., teach only the programming aspects that are needed for a particular lesson
when itis encountered. However, creating or editing the code blocks in the templates required
some knowledge of the underlying software language. While the goal was to be beginner
friendly, the expert amnesia of the presenters prevented us from seeing the workshop from a
completely novice perspective. During and after the workshop, some participants mentioned that
they were originally interested in the workshop because they were looking for guided instruction
on how to create and use Python. While this was not the focus of the workshop, these comments
illustrated that there was interest among chemical engineering faculty to receive additional
computational training. Self-paced resources targeted to scientists and engineers on how to code
using MATLAB and Python have been developed [40,41, 49-56]. However, busy faculty may
be interested in guided real-time workshops or coding bootcamps to efficiently train them to the
point that they are then familiar enough with Python (or MATLAB) to further expand their
skillsets independently. Additional efforts in disseminating existing Python resources could also
help address the perceived need for Python instruction among chemical engineering faculty. For
those interested in offering workshops similar to ours in the future, we recommend pairing this
workshop with preliminary training in fundamentals of MATLAB and/or Python programming
to prepare participants for editing the code blocks in the interactive coding templates.

For readers of this paper who are interested in deploying MATLAB Live Scripts or Jupyter
Notebooks in your classes, we recommend the following:

e Gain familiarity with basics of MATLAB and/or Python programming. This could be
through prior experience, a workshop such as those offered through AIChE or Software
Carpentry, or through the self-paced resources for Python [40, 41, 49-55] and MATLAB
[49-52, 56] (annotated in Table 1).

e Access our workshop materials online [1], particularly our library of interactive coding
templates.

e Work through Active learning exercise 1 (described above) to learn how to create a
MATLAB Live Script or Jupyter Notebook.

o Work through Active learning exercise 2 (described above) to make a simple lesson plan
ina MATLAB Live Script or Jupyter Notebook.

e Skim through our library of interactive coding templates [1] and the curated materials
[42,44,45,57-77] annotated in Table 1 to find existing codes that you can adapt for
various educational purposes across many chemical engineering applications and courses.

e Contact the authors if assistance is needed or to discuss reuse of any of these materials.

Table 1: Curated additional resources for chemical engineering educators. Computational
materials relevant to the chemical engineering undergraduate curriculum that include MATLAB
and/or Python among the available software types.

Software Types
Available

Resource Description

Source

MATLAB Live
Scripts (.mlx)
Jupyter Notebooks
(.ipynb)
Static Scripts
(-m/.py)
Other

Workshop materials

Repository contains all the workshop materials described in

this paper. X X [1]

Materials for learning Python and/or MATLAB

Webpage for Software Carpentry “Programming with
Python” workshop focused on Python basics for handling X [40]
data.

Webpage for Software Carpentry “Plotting and
Programming with Python” workshop that introduces
Python basics and plotting functions.

[41]

Textbook for modeling with MATLAB and Python. [49]

Companion website for the code described in textbook for

modeling with MATLAB and Python [49]. [50]

T B ol B

Course website on programming for engineers covering X

MATLAB and Python among other software. X151

Course website on applied numerical computing [11]
covering Git for version control, LaTeX for typesetting, and
MATLAB and Python for high-level programming and

scientific computing.

X | X X | X |[52]

Repository contains notes (see pdf at the link) on using
Python in scientific and engineering calculations to X [54]
demonstrate the utility of Python as a computational
platform in engineering education.

AIChE Academy course website on Python for chemical
engineers, focused on individuals who would benefit from X X [53]
receiving continuing education credits for such training.

Repository contains files used for an AIChE Python
! ! X [55]
workshop for chemical engineers.

Website for catalogue of MATLAB self-paced online X 156]
courses available through MathWorks.

Resource Description

Software Types
Available

MATLAB Live

Scripts (.mlx)

Jupyter Notebooks

(-ipynb)

Static Scripts
(-m/.py)

Other

Source

Computer Aids for Chemical Engineering (CACHE)
chemical engineering teaching resources categorized by
subject including material and energy balances, fluid
mechanics, heat transfer, thermodynamics, and kinetics.
CACHE teachingresources include recommended
textbooks, interactive simulations, and software.

[57]

Course website on data-driven engineering covering data
science topics in Python.

[42]

Textbook for numerical methods includes full codes for all
example problems from chemical engineering applications.

[44]

Textbook for problem solving across chemical engineering
includes full codes for all example problems from chemical
engineering applications.

[45]

Companion website for the code for all living example
problems described in textbook for reaction engineering
[46].

[58]

Repository contains supplemental MATLAB Live Scripts
and Jupyter Notebooks (running Julia, not Python) for use
in courses centered around teaching and applying numerical
methods with a chemical engineering context.

[59]

Course website for introduction to chemical engineering
analysis covering basic chemical engineering calculations
using Python. These calculations include stoichiometry,
reactor performance, separations, and energy analysis.

[60]

Course website for practical numerical methods with
Python, massive open online course (MOOC) covering
Jupyter Notebook modules for relevant chemical
engineering problems including finite-difference solutions
of PDEs, convection problems, diffusion problems, and
elliptic problems. Problems are worked step-by-step with an
explanation for each step.

[61]

Course website on a second principles of chemical
processes course covering energy balances for chemically
non-reacting and reacting systems and how to use property
tables and diagrams.

[62]

Resource Description

Software Types

Available

MATLAB Live

Scripts (.mlx)

(-ipynb)
(-m/.py)

Jupyter Notebooks
Static Scripts

Other

Source

Course website on separations covering modes of diffusion
of mass and chemical composition, mass transfer analysis,
molecular diffusion, and convective mass transfer and
introducing equilibrium-staged mass transfer operations
such as absorption/stripping and extraction/leaching
operations.

[63]

Course website on a second semester fluids course for
chemical engineers.

[64]

Course website on chemical reaction engineering covering
homogeneous and heterogeneous reaction kinetics,
idealized reactor models for batch and flow systems,
corrections for non-ideal residence times, and heat and mass
transfer effects. It also introduces homogeneous and
heterogeneous catalytic processes and industrial catalytic
reactors.

[65]

Repository of simulations for chemical and process
engineering courses. These simulations allow the user to
change equation parameters using sliders and buttons to
obtain a better understanding of the system being modeled.

[66]

Repository for a lesson on solving systems of linear
equations for material balances.

[67]

Repository for ht open source software and includes
modules for various heat transfer functions.

[68]

Repository for Thermo open source software that facilitates
the retrieval of constants of chemicals, the calculation of
temperature and pressure dependent chemical properties
(both thermodynamic and transport), and the calculation of
the same for chemical mixtures (including phase equilibria)
using various models.

[69]

Repository for Fluids open source software that includes
modules for piping, fittings, pumps, tanks, compressible
flow, open-channel flow, atmospheric properties, particle
size distributions, two phase flow, friction factors, control
valves, orifice plates and other flow meters, ejectors, relief
valves, and more.

[70]

Resource Description

Software Types
Available

MATLAB Live

Scripts (.mlx)

Jupyter Notebooks

(-ipynb)

Static Scripts
(-m/.py)

Other

Source

Repository for the Chemics package, a collection of Python
functions for performing calculations in the field of
chemical engineering.

[71]

Website for Cantera, an open source suite of tools for
problems involving chemical kinetics, thermodynamics, and
transport processes that can be used from Python and
MATLAB.

[72]

Jupyter community-curated collection of notable notebooks
and includes sections on engineering education,
mathematics, physics, chemistry, and biology. Links are all
rendered using nbviewer.

[73]

Website for catalogue of available MathWorks courseware.
Relevant subjects include intro to engineering, chemistry,
and controls.

[74]

Website for MathWorks Grader contains prebuilt problem
sets for system dynamics and control, statistics, numerical
methods, and more.

[75]

Website for the MATLAB file exchange includes over 300
MathWorks files, nearly 45,000 Community files, and
nearly 90 files tagged “Chemical Engineering.”

[76]

Website for the MATLAB Live Script Gallery includes a
selection of MATLAB Live Script interactive examples.

[77]

Acknowledgments

This material is based upon work supported by the National Science Foundation under Grants
No. 2133411 (ANFV) and No. 1932723 (MDS) and resources from Computer Aids in Chemical
Engineering (CACHE) Corporation (grants to ANFV and MDS and travel support for ANFV and

RPH) and the University at Buffalo. We also acknowledge the support from the Chemical

Engineering Summer School. We would like to thank Dr. David Kofke (master's project
committee member for ANJ) and members of ANFV's lab for their thorough feedback on drafts
of this manuscript. MDS would like to acknowledge Matthew E. Wilhelm and Chenyu Wang for
designing the original MATLAB resources during his CACHE grant, and ANFV acknowledges
Duncan H. Mullins for contributions to MATLAB and Python resources during her CACHE

grant.

References

[1]
[2]

[3]
[4]
[5]

[6]

[7]

[&]

[9]

[10]

[11]

[12]

[13]

[14]

A.N. Ford Versypt, R. Hesketh, A. Johns, and M. Stuber. "ChESS2022."
https://github.com/ashleefv/ChESS2022 (accessed Dec. 23, 2022).

R. P. Hesketh, M. Grover, and D. L. Silverstein, "CACHE/ASEE Survey on Computing
in Chemical Engineering," in ASEE Annual Conference, Virtual, 2020. [Online].
Available: https://peer.asee.org/34249.

J. Hedengren and B. Nicholson, "[Preprint] Open-Source Modeling Platforms." [Online].
Available: https://apm.byu.edu/prism/uploads/Members/Hedengren2023.pdf

L. A. Barbaetal., Teaching and Learning with Jupyter, Creative Commons, 2019.
[Online]. Available: https://jupyterdedu.github.io/jupyter-edu-book.

L. A. Barba, "Engineers Code: Reusable Open Learning Modules for Engineering
Computations," Computing in Science & Engineering, vol. 22, no. 4, pp. 26-35, 2020,
doi: 10.1109/MCSE.2020.2976002.

J. A. Lyon, A. Jaiswal, and A. J. Magana, "The Use of MATLAB Live as a Technology-
enabled Learning Environment for Computational Modeling Activities within a Capstone
Engineering Course," in ASEE Annual Conference, Virtual, 2020. [Online]. Available:
https://peer.asee.org/35380.

L. Niand K. Hekman, "Improving Student Learning Experience with MATLAB Grader
and Live Scripts," presented at the ASEE Annual Conference, Minneapolis, MN, 2022.
[Online]. Available: https://peer.asee.org/40610.

D. J. Antunes. "Using MATLAB Live Scripts to Teach Optimal Control and Dynamic
Programming Online." https://www.mathworks.com/company/newsletters/articles/using-
matlab-live-scripts-to-teach-optimal-control-and-dynamic-programming-online.html
(accessed Feb. 18,2023).

N. Nevaranta, P. Jaatinen, K. Griasbeck, and O. Pyrhonen, "Interactive Learning Material
for Control Engineering Education Using Matlab Live Scripts," in /EEE 17th
International Conference on Industrial Informatics (INDIN), Helsinki, Finland, 2019, pp.
1150-1154, doi: 10.1109/INDIN41052.2019.8972282.

M. Borowczak and A. C. Burrows, "Interactive Web Notebooks Using the Cloud to
Enable CS in K-16+ Classrooms and PDs," in ASEE Annual Conference, Columbus, OH,
2017. [Online]. Available: https://peer.asee.org/28571.

A. N. Ford Versypt, "An Interdisciplinary Elective Course to Build Computational Skills
for Mathematical Modeling in Science and Engineering," in ASEE Annual Meeting,
Tampa, FL, 2019. [Online]. Available: https://peer.asee.org/32072.

B. Weber, "Work in Progress: Using Jupyter Notebooks to Climb Bloom’s Taxonomy in
Thermodynamics," in ASEE Annual Conference, Virtual, 2020. [Online]. Available:
https://peer.asee.org/35700.

M. Miiller and S. Rosenzweig, "PCP Notebooks: A Preparation Course for Python with a
Focus on Signal Processing," Journal of Open Source Education, vol. 5,no. 57, p. 148,
2022, doi: 10.21105/jose.00148.

M. Duda et al., "Teaching Python for Data Science: Collaborative development of a
modular & interactive curriculum," Journal of Open Source Education, vol. 4, no. 46, p.
138,2021,doi: 10.21105/jose.00138.

https://github.com/ashleefv/ChESS2022
https://peer.asee.org/34249
https://apm.byu.edu/prism/uploads/Members/Hedengren2023.pdf
https://jupyter4edu.github.io/jupyter-edu-book
https://peer.asee.org/35380
https://peer.asee.org/40610
https://www.mathworks.com/company/newsletters/articles/using-matlab-live-scripts-to-teach-optimal-control-and-dynamic-programming-online.html
https://www.mathworks.com/company/newsletters/articles/using-matlab-live-scripts-to-teach-optimal-control-and-dynamic-programming-online.html
https://peer.asee.org/28571
https://peer.asee.org/32072
https://peer.asee.org/35700

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

J. Wagemann, S. H. Szeto, S. Mantovani, and F. Fierli, "LTPy - Learning tool for Python
on Atmospheric Composition," Journal of Open Source Education, vol. 6, no. 60, p. 172,
2023, doi: 10.21105/jose.00172.

V. Danchev, "Reproducible Data Science with Python: An Open Learning Resource,"
Journal of Open Source Education, vol. 5,no. 56, p. 156, 2022, doi:
10.21105/jose.00156.

L. A. Barba and G. F. Forsyth, "CFD Python: the 12 steps to Navier-Stokes equations,"
Journal of Open Source Education, vol. 1,n0.9,p. 21,2018, doi: 10.21105/jose.00021.
L. A. Barba and O. Mesnard, "Aero Python: classical acrodynamics of potential flow
using Python," Journal of Open Source Education, vol. 2,no. 15, p. 45,2019, doi:
10.21105/jose.00045.

M. Silva et al., "Innovating and modernizing a Linear Algebra class through teaching
computational skills," in ASEE Annual Conference, Minneapolis, MN, 2022. [Online].
Available: https://peer.asee.org/40766.

K. Suthar et al., "Real Data and Application-based Interactive Modules for Data Science
Education in Engineering," presented at the ASEE Annual Conference, Virtual, 2021.
[Online]. Available: https://peer.asee.org/37640.

A. Dowling, "Toward Integrating Python Throughout the Chemical Engineering
Curriculum: Using Google Colaboratory in the Classroom," in Future of Cyber Assisted
Chemical Engineering Education, Breckenridge, CO, 2019. [Online]. Available:
https://psecommunity.ore/LAPSE:2019.0640.

D. E. Knuth, "Literate Programming," The Computer Journal, vol. 27,no0. 2, pp. 97-111,
1984, doi: 10.1093/comjnl/27.2.97.

B. Childs, "Literate Programming, A Practioner’s View," TUGboat, vol. 13, no. 3, pp.
261-269, 1992.

M. Croucher. "Official MathWorks MATLAB kernel for Jupyter released.”
https://blogs.mathworks.com/matlab/2023/01/30/official-mathworks-matlab-kernel-for-
jupyter-released (accessed Feb. 1,2023).

T. Zimmerman, "Computational Modeling in Introductory Physics Courses and Across
the Curriculum," presented at the ASEE Annual Conference, Virtual, 2020. [Online].
Available: https://peer.asee.org/34319.

J. M. Wing, "Computational thinking," Communications of the ACM, vol. 49, no. 3, pp.
33-35,2006, doi: 10.1145/1118178.1118215.

J. M. Wing, "Computational thinking and thinking about computing," Philosophical
Transactions of the Royal Society 4, vol. 366, n0. 1881, pp.3717-25, 2008, doi:
10.1098/rsta.2008.0118.

V.J. Shute, C. Sun, and J. Asbell-Clarke, "Demystifying computational thinking,"
Educational Research Review, vol. 22, pp. 142-158,2017,doi:
10.1016/j.edurev.2017.09.003.

K. Mills, M. Coenraad, P. Ruiz, Q. Burke, and J. Weisgrau, "Computational Thinking for
an Inclusive World: A Resource for Educators to Learn and Lead." [Online]. Available:
http://hdl.handle.net/20.500.12265/138

F. B. Florez, R. Casallas, M. Hernandez, A. Reyes, S. Restrepo, and G. Danies,
"Changing a Generation’s Way of Thinking: Teaching Computational Thinking Through
Programming," Review of Educational Research, vol. 87,n0. 4, pp.834-860, 2017, doi:
10.3102/0034654317710009.

https://peer.asee.org/40766
https://peer.asee.org/37640
https://psecommunity.org/LAPSE:2019.0640
https://blogs.mathworks.com/matlab/2023/01/30/official-mathworks-matlab-kernel-for-jupyter-released
https://blogs.mathworks.com/matlab/2023/01/30/official-mathworks-matlab-kernel-for-jupyter-released
https://peer.asee.org/34319
http://hdl.handle.net/20.500.12265/138

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]
[41]
[42]

[43]

[44]

[45]

D. Barr, J. Harrison, and L. Conery, "Computational Thinking: A Digital Age Skill for
Everyone," Learning & Leading with Technology, vol. 38, no. 6, pp. 20-23,2011.
[Online]. Available: https://eric.ed.gov/?id=EJ918910.

S. Grover and R. Pea, "Computational Thinking in K—12: A Review of the State of the
Field," Educational Researcher, vol. 42,no. 1, pp. 3843, 2013, doi:
10.3102/0013189X12463051.

M. Israel, J. N. Pearson, T. Tapia, Q. M. Whertfel, and G. Reese, "Supporting all learners
in school-wide computational thinking: A cross-case qualitative analysis," Computers &
Education, vol. 82, pp. 263-279, 2015, doi: 10.1016/j.compedu.2014.11.022.

Digital Promise, "Powerful learning with computational thinking: Our why, what, and
how of computational thinking." [Online]. Available:
http://hdl.handle.net/20.500.12265/115

C. Lu, R. Macdonald, B. Odell, V. Kokhan, C. Demmans Epp, and M. Cutumisu, "A
scoping review of computational thinking assessments in higher education," Journal of
Computing in Higher Education, vol. 34, pp. 416-461, 2022, doi: 10.1007/s12528-021-
09305-y.

J. Guggemos, S. Seufert, and M. Roman-Gonzalez, "Computational Thinking Assessment
— Towards More Vivid Interpretations," Technology, Knowledge and Learning, vol. In
Press, 2022, doi: 10.1007/s10758-021-09587-2.

T. Durham Brooks, R. Burks, E. Doyle, M. Meysenburg, and T. Frey, "Digital imaging
and vision analysis in science project improves the self-efficacy and skill of
undergraduate students in computational work," PLoS One, vol. 16,n0. 5, p. €0241946,
2021, doi: 10.1371/journal.pone.0241946.

M. Roman-Gonzélez, J. Moreno-Ledn, and G. Robles, "Combining assessment tools for a
comprehensive evaluation of computational thinking interventions," Computational
Thinking Education, S. C. Kong and H. Abelson, Eds.: Springer, 2019, pp. 79-98.
[Online]. Available: https:/link.springer.com/chapter/10.1007/978-981-13-6528-7 6

K. Brennan and M. Resnick, "New frameworks for studying and assessing the
development of computational thinking," in Annual Meeting of the American Educational
Research Association, Vancouver, BC, Canada, 2012, pp. 1-25. [Online]. Available:
https:/www.media.mit.edu/publications/new-frameworks-for-studying-and-assessing-
the-development-of-computational-thinking/.

Software Carpentry. "Programming with Python." https://swcarpentry.github.io/python-
novice-inflammation/ (accessed Feb. 19, 2023).

Software Carpentry. "Plotting and Programming in Python."
http://swcarpentry.github.io/python-novice-gapminder/ (accessed Feb. 19,2023).

J. D. Hedengren. "Data-Driven Engineering." https://apmonitor.com/dde (accessed Feb.
19,2023).

A.N. Johns and A. N. Ford Versypt. "[YouTube Video] Literate Programming Using
MATLAB Live Scripts and Jupyter Notebooks." https://youtu.be/u5 YkzFI6 FbE (accessed
Jul. 24,2022).

K. Dorfman and P. Daoutidis, Numerical Methods with Chemical Engineering
Applications, 1sted. New York: Cambridge University Press, 2017.

M. Cutlip and M. Shacham, Problem Solving in Chemical and Biochemical Engineering
with POLYMATH, Excel, and MATLAB, 2nd ed. Hoboken, NJ: Prentice Hall, 2007.

https://eric.ed.gov/?id=EJ918910
http://hdl.handle.net/20.500.12265/115
https://link.springer.com/chapter/10.1007/978-981-13-6528-7_6
https://www.media.mit.edu/publications/new-frameworks-for-studying-and-assessing-the-development-of-computational-thinking/
https://www.media.mit.edu/publications/new-frameworks-for-studying-and-assessing-the-development-of-computational-thinking/
https://swcarpentry.github.io/python-novice-inflammation/
https://swcarpentry.github.io/python-novice-inflammation/
http://swcarpentry.github.io/python-novice-gapminder/
https://apmonitor.com/dde
https://youtu.be/u5YkzFl6FbE

[46]

[47]

[48]
[49]
[50]
[51]
[52]

[53]

[54]
[55]
[56]
[57]
[58]

[59]

[60]
[61]
[62]
[63]
[64]
[65]

[66]

H. S. Fogler, Essentials of Chemical Reaction Engineering, 2nd ed. New York: Pearson
Education, 2018.

M. A. Fahim, T. A. Al-Sahhaf, and A. S. Elkilani, "Fluidised Catalytic Cracking," in
Fundamentals of Petroleum Refining, 1sted. New York: Elsevier, 2010, ch. 8, pp. 199-
235.

R. M. Felder, R. W. Rousseau, and L. G. Bullard, Elementary Principles of Chemical
Processes, 4th ed. Hoboken, NJ: John Wiley & Sons, Inc., 2016.

S. I. Gordon and B. Guilfoos, Introduction to Modeling and Simulation with MATLAB
and Python 1sted. Boca Raton, FL: CRC Press, 2020.

S. I. Gordon and B. Guilfoos. "Introduction to Modeling and Simulation with MATLAB
and Python Companion Site." http://www.intromodeling.com/ (accessed Dec. 30, 2022).
J. D. Hedengren. "Programming for Engineers." https://apmonitor.com/che263/ (accessed
Dec. 30,2022).

A.N. Ford Versyptand D. H. Mullins. "AppINumComp: Applied Numerical Computing
Course." https://github.com/ashleefv/AppINumComp (accessed Dec. 30, 2022).

J. Hedengren. "Introduction to Python for Chemical Engineers."
https://www.aiche.org/academy/courses/ela270/introduction-python-chemical-
engineers#course-tab-who-should-attend (accessed Dec. 30,2022).

J. Kitchin. "pycse - Python Computations in Science and Engineering."
https://github.com/jkitchin/pycse (accessed Dec. 30,2022).

P. Adamson. "Python for Chemical Engineers: Getting Started."
https://github.com/padamson/python cheme (accessed Feb. 19, 2023).

MathWorks. "Self-Paced Online Courses." https://matlabacademy.mathworks.com/
(accessed Dec. 30, 2022).

CACHE Corporation. "Teaching Resources." https://cache.org/teaching-resources-center
(accessed Dec. 30, 2022).

H. S. Fogler. "Living Example Problems."
http://websites.umich.edu/~clements/6¢/live/index.html (accessed Dec. 30, 2022).

M. Wilhelm, C. Wang, and M. Stuber. "Chemical Engineering - Analysis Notebooks."
https://github.com/PSORLab/Chemical Engineering Analysis Notebooks (accessed
Dec. 30,2022).

J. Kantor. "CBE20255 Introduction to Chemical Engineering Analysis."
https://github.com/jckantor/CBE20255 (accessed Dec. 30, 2022).

L. A. Barba, I. Hawke, and B. Knaepen. "Practical Numerical Methods with Python."
https://github.com/numerical-mooc/numerical-mooc (accessed Dec. 30, 2022).

R. Hesketh. "Principles of Chemical Processes I1."
https://github.com/heskethrp/PrinciplesChemProcesses (accessed Dec. 30, 2022).

R. Hesketh. "Separations I." https://github.com/heskethrp/Separations-I (accessed Dec.
30,2022).

R. Hesketh. "Process Fluid Transport."
https://github.com/heskethrp/ProcessFluid Transport (accessed Dec. 30,2022).

R. Hesketh. "Chemical Reaction Engineering." https://github.com/heskethrp/CRE
(accessed Dec. 30, 2022).

CAChemE, "Chemical and Process Engineering Interactive Simulations," 2021. [Online].
Available: https://github.com/CAChemE/learn#chemical-and-process-engineering-
interactive-simulations.

http://www.intromodeling.com/
https://apmonitor.com/che263/
https://github.com/ashleefv/ApplNumComp
https://www.aiche.org/academy/courses/ela270/introduction-python-chemical-engineers#course-tab-who-should-attend
https://www.aiche.org/academy/courses/ela270/introduction-python-chemical-engineers#course-tab-who-should-attend
https://github.com/jkitchin/pycse
https://github.com/padamson/python_cheme
https://matlabacademy.mathworks.com/
https://cache.org/teaching-resources-center
http://websites.umich.edu/%7Eelements/6e/live/index.html
https://github.com/PSORLab/Chemical_Engineering_Analysis_Notebooks
https://github.com/jckantor/CBE20255
https://github.com/numerical-mooc/numerical-mooc
https://github.com/heskethrp/PrinciplesChemProcesses
https://github.com/heskethrp/Separations-I
https://github.com/heskethrp/ProcessFluidTransport
https://github.com/heskethrp/CRE
https://github.com/CAChemE/learn#chemical-and-process-engineering-interactive-simulations
https://github.com/CAChemE/learn#chemical-and-process-engineering-interactive-simulations

[67]
[68]
[69]
[70]
[71]
[72]
[73]
[74]
[75]
[76]

[77]

A.Johns and A. N. Ford Versypt. "MEBLinearSystems."
https://github.com/ashleefv/MEBLinearSystems (accessed Feb. 19,2023).

C. Bell. "ht: Heat transfer component of Chemical Engineering Design Library
(ChEDL)." https://github.com/CalebBell/ht (accessed Dec. 30, 2022).

C. Bell. "Thermo: Chemical properties component of Chemical Engineering Design
Library (ChEDL)." https://github.com/CalebBell/thermo (accessed Dec. 30, 2022).

C. Bell. "fluids: Fluid dynamics component of Chemical Engineering Design Library
(ChEDL)." https://github.com/CalebBell/fluids (accessed Dec. 30, 2022).

G. Wiggins. "Chemics." https://github.com/wigging/chemics (accessed Dec. 30,2022).
Cantera Developers. "Cantera." https://cantera.org/ (accessed Dec. 30, 2022).

Project Jupyter. "Jupyter Wiki." https://github.com/jupyter/jupyter/wiki (accessed Dec.
30,2022).

MathWorks. "Courseware." https://www.mathworks.com/academia/courseware.html
(accessed Dec. 30, 2022).

MathWorks. "Grader." https://www.mathworks.com/products/matlab-grader.html
(accessed Dec. 30, 2022).

MathWorks. "File Exchange." https://www.mathworks.com/matlabcentral/fileexchange/
(accessed Dec. 30, 2022).

MathWorks. "Live Script Gallery." https://www.mathworks.com/products/matlab/live-
script-gallery.html (accessed Dec. 30, 2022).

https://github.com/ashleefv/MEBLinearSystems
https://github.com/CalebBell/ht
https://github.com/CalebBell/thermo
https://github.com/CalebBell/fluids
https://github.com/wigging/chemics
https://cantera.org/
https://github.com/jupyter/jupyter/wiki
https://www.mathworks.com/academia/courseware.html
https://www.mathworks.com/products/matlab-grader.html
https://www.mathworks.com/matlabcentral/fileexchange/
https://www.mathworks.com/products/matlab/live-script-gallery.html
https://www.mathworks.com/products/matlab/live-script-gallery.html

