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Transferability of a Data-Driven
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Abstract
Regional perimeter control based on the existence of macroscopic fundamental diagrams has been widely studied as an effec-
tive tool to regulate traffic and prevent oversaturation in dense urban areas. Significant research efforts have been performed
concerning the modeling aspects of perimeter control. More recently, data-driven techniques for perimeter control have
shown remarkable promise; however, few studies have examined the transferability of these techniques. While it is surely of
the highest priority to devise effective perimeter control methods, the ability of such methods to transfer the learned knowl-
edge and quickly adapt control policies to a new setting is critical, particularly in real-life situations where training a method
from scratch is intractable. This work seeks to bridge this research gap by comprehensively examining the effectiveness and
transferability of a reinforcement-learning-based perimeter control method for a two-region urban network in a microsimula-
tion setting. The results suggest: 1) the presented data-driven method demonstrates promising control effectiveness in com-
parison with no perimeter control and an extended greedy controller and 2) the method can readily transfer its learned
knowledge and adapt its control policy with newly collected data to simulation settings with different traffic demands, driving
behaviors, or both.
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Urban traffic signal control has been a heated research
topic in the transportation community owing to its poten-
tial to alleviate congestion and reduce accidents. Classical
signal control systems such as SCATS and SCOOT make
the utilization of existing transportation infrastructures
more efficient (1, 2). However, these systems are micro-
scopic and localized ones that concentrate on intersection-
or link-level performances yet disregard network-level
effects such as congestion propagation. Further, their
applicability and effectiveness may be in question under
oversaturated traffic conditions where severe queue spill-
backs occur. Historically, there have been continued
efforts on aggregate modeling of traffic dynamics to facili-
tate the development of network-level traffic control
schemes, with the notion of macroscopic fundamental dia-
gram (MFD) receiving extensive research interest over the
past 15 years. Initially proposed in (3) and recently verified

with analytical and empirical evidence (4, 5), MFD
describes a well-defined relationship between network
usage (e.g., vehicle accumulation) and production (e.g.,
space-mean traffic flow or trip completion rate). The exis-
tence of MFD has been observed in homogeneously
loaded traffic networks with low spatial variation of traf-
fic flows (5, 6). In the presence of heterogeneous vehicle
distributions, undesirable phenomena such as instability,
hysteresis, and bifurcation may arise (7–10). In such sce-
narios, network partitioning methods can be applied to
divide a heterogeneous network into several smaller
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regions so as to maintain the feasibility of MFD-based
aggregate modeling of traffic dynamics (11, 12).

Ever since its conceptualization, MFD has served as a
theoretical foundation in the construction of numerous
regional-level traffic control schemes. Among these, peri-
meter control, which involves the regulation of transfer
flows between neighboring regions, is perhaps the most
intensively studied. Adopting a gating concept, perimeter
control aims to regulate the regional accumulations to
predefined critical levels that are associated with the max-
imum productions. This control scheme is particularly
helpful in scenarios with strong directional traffic
demands into a protected region where the resultant con-
gestion cannot be mitigated by intra-regional traffic con-
trol alone. Numerous works have been presented in the
literature, with perimeter control applications spanning
single-region, two-region, and multi-region urban net-
works (4, 13–19). Different aspects of perimeter control
have also been examined, for example the integration
with route guidance, robust control, and boundary queue
dynamics (18, 20–24).

Over the years, various techniques have been pre-
sented for perimeter control problems. These range
from classical proportional–integral regulator to more
advanced model predictive control (MPC) (15, 18, 21,
25). Recent times have witnessed an increasing trend to
develop data-driven methods for perimeter control,
which are particularly helpful as a network’s traffic
dynamics or MFD functions are often unknown or
hard to calibrate accurately. Even more so, the model-
ing of network traffic dynamics may need to be
adjusted continuously as it is prone to exogeneous dis-
turbances (e.g., vehicle rerouting and demand stochasti-
city). These modeling difficulties thus highlight the
prospect of data-driven perimeter control methods, in
contrast to the model-based counterparts. On this note,
the modeling difficulties also highlight the need to eval-
uate perimeter control methods in a more realistic envi-
ronment that does not rely on the explicit modeling of
traffic dynamics (e.g., microsimulation rather than
numerical simulation) as, otherwise, comparisons using
inaccurate models may not truthfully reflect the real
efficacy of the methods.

Despite still being in the early stage, the development
of data-driven methods for perimeter control has seen
some notable research works; for example, data-driven
adaptive control methods, adaptive dynamic program-
ming methods, and reinforcement learning (RL)-based
approaches (26–33). The current paper follows the lines
of these works to present an RL-based perimeter control-
ler and evaluate its effectiveness and transferability using
microsimulation. Note, most data-driven methods are
evaluated using numerical experiments with explicit mod-
els of network macroscopic traffic dynamics. However,

these models are merely estimates; more realistic evalua-
tions and impartial comparisons can only be established
with microsimulation. To the best knowledge of the
authors, (29, 30) are the only works that have presented
and evaluated data-driven perimeter control methods
using microsimulation. In (29), numerical experiments
and microsimulations were adopted for a comprehensive
validation, while in (30) the perimeter controller is evalu-
ated in combination with the max pressure method (34).
However, only a single-region network was simulated
there, where boundary queue impacts were largely over-
looked. Importantly, neither work considered the trans-
ferability aspects of their methods.

While it is surely of the highest priority to devise an
effective perimeter control method, the ability of the
method to transfer to unencountered traffic conditions is
also critical, especially in real-life scenarios where train-
ing the method from scratch may be costly or even infea-
sible. Moreover, in practical applications of perimeter
control, the scenarios where the data-driven methods are
to be applied (i.e., reality) may differ from where they
are initially trained (i.e., simulation). In such cases, the
ability of the methods to transfer the learned knowledge
and even to continue their learning trajectories is crucial,
as this would significantly reduce the training time thus
facilitating fast application on the new scenarios. In this
regard, note that, while transferability has been consid-
ered in (31, 33), only numerical experiments were
adopted, and the ability of the proposed agents to keep
learning in another setting with continuous data feed is
not examined (31, 33). Further, the current work focuses
on examining the effectiveness and transferability of a
RL-based two-region perimeter controller in microsimu-
lation and seeks to bridge several research gaps previ-
ously outlined, while acknowledging that perimeter
control is merely part of the urban traffic control frame-
work (31–33). Combining this regional-level control with
intra-regional traffic signal control will potentially
increase the control benefits and lead to a more complete
paradigm of urban traffic control, as previously demon-
strated in, but this exceeds the scope of the present work
(30, 35, 36). The significance of this work is to show that
the RL controller, when pretrained in one setting, can
transfer its knowledge and more quickly adapt its action-
taking policy (compared to training from scratch) with
newly collected data in a different setting with demand
patterns, driving behaviors, or both, that are more indi-
cative of reality.

The remainder of the paper is structured as follows.
The next section provides the specification of the simu-
lated two-region network. The methodology is then
explained, followed by the simulation results on the eva-
luation of effectiveness and transferability. Concluding
remarks are provided in the last section.
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Two-Region Urban Network Set-Up

In this work, a two-region urban network is simulated
using the Eclipse SUMO software (37), where a larger
periphery encompasses a smaller city center (see Figure
1). The periphery shaded in blue is denoted as Region 1
while the city center in gray is denoted as Region 2. The
two regions are assumed to be homogeneous and con-
nected by two-directional linking roads where perimeter
control can be enforced (see (28) for a similar structure).
Figure 1 also presents the detailed layouts of three types
of intersections in the network: four-leg (circled in
orange), T-shaped (circled in blue), and the perimeter
control intersections (circled in green). Each street in the
network assumes a length of 500m with three lanes in
each travel direction. The free flow speed of each lane is
set to 50 km/h while the saturation flow is 1,800 vehicles
per hour per lane.

All intersections in the network are signalized, where
the non-perimeter control intersections adopt a fixed
multiphase signal plan with a shared cycle length of 90 s.
In contrast, the 16 perimeter control intersections assume
a common cycle length of 30 s so that they can adapt
faster to the prevailing traffic. All left-turn movements
are treated as protected, as permitted movements form
long queues and were observed to be a source of inho-
mogeneity. No offset is assumed, as it is shown to be
inconsequential to the network-level performances in
grid networks (38). The simulation step is set to 1 s.

Origin and destination locations are evenly distributed
within each region. To simulate scenarios where perimeter
control is the most helpful—that is, to protect destination-

loaded regions from over-saturation—strong directional
demand from the periphery to the city center is assumed;
see Figure 2 for the baseline demand profile where strong
inbound traffic flows last for 60min followed by a recov-
ery period of 30min. Each of the total demands (e.g.,
from Region 1 to 2) is evenly assigned to all associated
origin-destination pairs. Note that, while the traffic
demands in Figure 2 appear to be constant, the realized
traffic demands will exhibit variability during each simula-
tion instance; for example, the exact times when vehicles
are inserted into the network, the initial routes of the
vehicles, and/or the vehicle speeds may differ in each
simulation instance depending on the random number
generation process. For this reason, multiple random
seeds were used to enhance realism for the traffic
demands. Moreover, different demand profiles will be
adopted in subsequent sections. The simulated vehicles
are initially routed using the stochastic C-logit route
choice model (39). A subset of the vehicles (60%) were
assumed to be able to adaptively reroute themselves
based on prevailing traffic to mimic more realistic driv-
ing patterns (which, other than rerouting, also include
car-following and lane-changing behaviors). This adap-
tive rerouting has been shown to be helpful to network-
wide operational performances (7, 8). In this work, it
happens at regular intervals of 3min.

Methodology

This section first presents designs of a comparative
method, that is, an improved greedy controller (I-GC).

Figure 1. The simulated two-region urban network.
Note: blue shading = periphery (Region 1); gray shading = city center (Region 2); orange circle = four-leg intersection; blue circle = T-shaped intersection;

green circle = perimeter control intersection.
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Adopting similar design ideas, the RL-based two-region
perimeter controller is explained. Lastly, transfer
learning—a technique that enables the transferring of
learned knowledge and policies to a new setting—is dis-
cussed. Note, in this work the MPC method is not
applied for comparison, as consistent with existing works
that evaluate data-driven perimeter control methods
using microsimulation (29, 30). The reasons are multi-
fold. For one, the MPC method has tremendous data
requirement, such as detailed traffic demand information
throughout the whole simulation. However, such infor-
mation is specific to the environment (microsimulation
or reality) and often not made available to the controller
beforehand. For another, applying MPC necessitates the
estimation of the MFD functions so as to describe the
traffic evolutions using dynamic equations in the predic-
tion model. Yet, such estimation (and therefore the resul-
tant prediction model) is prone to significant errors,
which would make the MPC application particularly
challenging (8–10). In contrast, I-GC can serve as an
effective comparative baseline for perimeter control in a
microsimulation environment, as will be explained
shortly.

Improved Greedy Controller (I-GC)

Greedy control, a two-region extension of the bang-bang
policy, seeks to protect the more congested region by
minimizing the transfer flow into it, and it has often been

adopted as a comparative baseline (4). However, despite
its relatively wide usage involved in numerical experi-
ments, its effectiveness has not been examined in microsi-
mulation environments (15, 40). The greedy control
policy considers two levels of congestion in the MFDs
(with accumulations below or over the critical values)
and could alternate its action abruptly around the critical
values. Nevertheless, the regions are operating roughly
around the maximum production level in the proximity
of the critical values, and such abrupt alternation may
cause irregularities in the traffic patterns that would dis-
rupt the congestion distribution and evolution. While
such impacts may be negligible in numerical simulations
where vehicle dynamics are not modeled, they could
greatly manifest themselves in a microsimulation envi-
ronment and cause local pockets of congestion that can-
not recover.

Microsimulation experiments are used in this work;
thus, the greedy control policy is extended with consider-
ation of three levels of congestion in the MFDs: free
flow, critical flow, and congestion flow. A similar cate-
gorization of the regional congestion levels can also be
found in (32, 41). Specifically, when a region operates in
free flow, traffic flows into the region should not be
metered, and green times at the perimeter control inter-
sections should be set at the maximum value (gmax).
When the region operates in critical flow, it is prone to
worsened congestion and even instability once the accu-
mulation becomes sufficiently high (7). As such, the
inflow should be metered. However, if the inflows are
strictly metered, significant queues will form around the
perimeter control intersections and may even spill back
to the upstream locations. Thus, as a middle ground,
green times should be set at a small value (gmid) that is
close to the minimum value (gmin). When the region oper-
ates in congestion, the regional productivity becomes
fairly low and it may be gridlocked should the conges-
tion not be restored soon. In this case, vehicles that enter
the region may not be able to reach their destinations in
a timely manner and may even impede completion of
trips that are already within the region. Therefore, the
strictest metering should be enforced to help restore the
regional operations, and the green times should be set at
gmin. Integrating these intuitions into a two-region urban
network system, the I-GC policy is summarized in Table
1, where the green times at the perimeter control intersec-
tions for traffic flows from Region 1(2) to Region 2(1)
are denoted as g12 (g21); the accumulations and the jam
values of the two regions are ni, i= 1, 2 and
ni, jam, i= 1, 2; and ni, c1, ni, c2, i= 1, 2 represents two cut-
off points used to categorize the congestion levels for
each region.

A few remarks are provided here on the I-GC policy.
First, the cutoff points generally adopt values higher

Figure 2. The baseline traffic demand profile.
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than the critical accumulations to avoid excessively long
queues at the perimeter control intersections that may be
highly disruptive to the network operations. In such
manner, the critical flow range ½ni, c1, ni, c2� spans a little
over the critical accumulations, whereas the congestion
flow range [ni, c2, ni, jam� indicates severe regional conges-
tion. Second, the traffic demands are assumed to be fea-
sible, that is, the resultant congestion can be managed by
traffic control. As such, the scenario where both regions
are severely congested is not considered since, in that
case, perimeter control may be of little help. This is
reflected by the empty cell (‘‘na’’) in Table 1. Third,
notice that the I-GC policy directly manipulates the
green times at the perimeter control intersections, instead
of deriving those from allowable ratios of transfer flows
(17, 19). This form of implementation is mainly consid-
ered to alleviate the data requirement during perimeter
control application. Specifically, as implied in (17, 19),
the detailed current traffic flows on each perimeter con-
trol intersection must be collected to minimize the differ-
ences between the actual transfer flows and ordered ones
(17, 19). However, in a realistic network, obtaining such
detailed and large amount of information is not always
tractable. Similar to the green time manipulations, recent
works have considered setting the green ratios at the
perimeter control intersections (29, 30). Lastly, compared
with greedy control, the I-GC policy is more flexible and
can smooth the resulting traffic patterns by providing a
control buffer between complete metering and accommo-
dation of transfer flows. Concretely, the vanilla greedy
control policy, without considering the congestion level
of critical flow, would alternate the action between gmin
and gmax. If gmin indicates complete metering (i.e., with a
value of 0), then significant queues will form at the peri-
meter control intersections even if the protected region is
marginally congested. As a result, the regional capacity
will be under-utilized when the protected region becomes
marginally uncongested. On the other hand, if gmin is
greater than 0, then the regional congestion cannot be
adequately metered if the region is already severely con-
gested (as vehicles can still enter during the green time of
gmin). The I-GC policy thus mitigates all these draw-
backs. In addition, notice that at the core of the I-GC
policy lies the bang-bang form of actions (as adopted by
vanilla greedy control), which has been shown optimal

for perimeter control problems (4, 24, 40). The exten-
sions serve to further improve its applicability in a micro-
simulation setting. This applicability, coupled with the
eased data requirement, renders I-GC an effective com-
parative baseline for perimeter control in microsimula-
tion environments.

Reinforcement Learning (RL)-Based Two-Region
Perimeter Controller

To better compare with the I-GC policy, the RL con-
troller utilizes the same actions; that is, it selects
among gmin, gmid , gmax as the green times for both
travel directions at the perimeter control intersections.
As such, the action space is 9-dimensional (three pos-
sible choices for each travel direction), and faithful
comparisons with I-GC can be established with this
action space. The controller does not embed into its
designs explicit information about the environment
and aims to learn a reasonable acting policy from
interactions with the environment. However, when
initialized, the controller has a rather randomized pol-
icy. To conduct effective learning, it first needs to
actively explore the environment based on the inputs
it receives (i.e., the state) and a random action-taking
process, as follows:

p stð Þ=
argmax

at
Q st, at; utð Þ, proability 1� E

a random action, probability E

(
ð1Þ

where
st = the state at step t (which includes the vehicle accu-
mulations, average speed and flow of both regions),
at = the action at step t (i.e., the green times at the peri-
meter control intersections),
p( � ) = the policy that map a state to an action,
Q( � ) = the long-term benefits of taking the action at at
state st (also known as action value), and
E = a user-defined parameter that controls the amount
of exploration the controller performs in its learning
process.

Clearly, larger values of E indicate more exploration
of the environment (more random actions) and therefore
more variability in the realized control outcomes. To

Table 1. Improved Greedy Control (I-GC) Policy

(g12 tð Þ, g21 tð Þ) n1 2 ½0, n1, c1) n1 2 ½n1, c1, n1, c2� n1 2 (n1, c2, n1, jam�

n2 2 ½0, n2, c1) (gmax, gmax) (gmax, gmid) (gmax, gmin)
n2 2 ½n2, c1, n2, c2� (gmid, gmax) (gmid, gmid) (gmid, gmin)
n2 2 (n2, c2, n2, jam� (gmin, gmax) (gmin, gmid) na*

Note: na = not applicable. *This case is not considered, as perimeter control will be of little help.
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reduce the opportunity loss during exploration, the E value
is decayed in the training process. Further, the action
value predictions Q( � ) are parameterized by ut, and in this
work ut represents the weight and bias parameters of a
neural network, as widely adopted in the deep-RL litera-
ture (42–44). Intuitively, Equation 1 suggests the RL con-
troller takes an action with a blend of its own knowledge
(the predicted action values) and a random exploration
process to ensure that it can sufficiently explore the envi-
ronment whilst learning a reasonable action-taking policy
by learning the parameters ut.

The actions taken by the RL controller, which inform
the green time settings at the perimeter control intersec-
tions, are then implemented in the microsimulation for a
time step, which in this work has the same duration as
the cycle length of the perimeter control intersections
(i.e., 30 s). At the end of a time step, the microsimulation
arrives at a new state and returns a reward to the con-
troller as an evaluation for the action taken. The reward
is characterized by the weighted sum of average flows in
both regions, and a larger weight (0.7) is placed on the
average flow of the inner region (i.e., Region 2, the simu-
lated city center) since it is the region to protect from
oversaturated traffic conditions. With this reward, the
RL controller proceeds to take another action based on
the new state. This action-taking process is executed
sequentially until termination, that is, until the simula-
tion ends in 90min.

The learning goal of the RL controller is to accumu-
late as many rewards as possible in a simulation run. To
balance the importance of rewards with respect to the
time they are received, a discount factor is employed
which decays the value of the rewards received at a
delayed time. Thus, the learning goal amounts to maxi-
mizing the cumulative discounted reward in a simulation,
as termed by return G and calculated by

G=
PT
t= 0

gtrt+ 1 ð2Þ

where
g 2 ½0, 1� = the discount factor,
rt+ 1 = the reward for the action taken at time step t, and
T = the total time steps of a simulation.

Note, the action value Q( � ) presented above is an esti-
mate of the return G starting at state st and action at.
Therefore, when not exploring, the RL controller is
attempting to maximize the estimated return by choose
the action argmax

at
Q st, at; utð Þ (see Equation 1).

To carry out the learning process in a principled man-
ner, the double DQN method is adopted (43).
Specifically, after each visit to a state-action pair (st, at),
the RL controller receives a reward rt+ 1 from the envi-
ronment and constructs a learning target Yt as follows:

Yt = rt+ 1 + gQ st+ 1, argmax
a

Q st+ 1, a; utð Þ; u�t
� �

ð3Þ

where
u�t = parameters of the target network (a periodical copy
of the parameters ut that is used to stabilize the learning
process by providing relatively static learning targets).

The learning target embeds in the Bellman Equation
for solving Markov decision processes and also decou-
ples the action selection from evaluation to mitigate the
overestimation of action values (43, 45, 46). Then, the
RL controller updates its parameters toward the learning
targets by minimizing the loss:

L=
Pb
i= 0

Y i
t � Q st, at; utð Þ

� �2 ð4Þ

where
b = the size of a minibatch of transitions
\st, at, rt+ 1, st+ 1. sampled from the replay buffer (47).
Note, utilizing a replay buffer improves sample efficiency
as it allows reusing the transitions multiple times; also, it
enhances training stability by reducing correlations
between the transitions via random sampling (47).

In this work, the parameters ut to be optimized repre-
sent the weight and bias parameters of a neural network
constructed as a two-layer 64-unit multilayer perceptron.
To minimize the loss in Equation 4, the Adam optimizer is
used to perform stochastic gradient descent (48). To esti-
mate the parameters more accurately, a distributed learn-
ing structure is also integrated with the RL controller to
collect an increased amount of transitions (44). The train-
ing process of the RL controller lasts for 100 iterations,
and four simulations are run concurrently in each iteration
to gather more training experiences. During the learning
process, the E value is decayed from 1 to 0.05 exponentially
by 5% per iteration, while the learning rate decreases from
0.003 to 0.001. The discount factor is set to 0.95 to account
for the potentially delayed effects of perimeter control.
The replay buffer contains the past 10,000 transitions and
in each iteration 1,000 transitions are sampled to update
the parameters ut. Parameters of the target network u�t are
replaced with ut every five iterations.

Transfer Learning

Transferability is an important methodological aspect
for a perimeter control method to have the potential to
be applied in the real world. While training a perimeter
control method from scratch can be conveniently done
using numerical experiments or microsimulation, this is
hardly feasible in real networks. Further, the training
process can be rather time-consuming, even under micro-
simulation. As such, the ability of a method to transfer
its learned knowledge and continue the learning course
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becomes increasingly crucial. Though transferability of a
perimeter control method has been investigated by (31,
33), only numerical experiments were considered and the
ability of the methods to continue learning with online
data feed was neglected. This work thus bridges a few
research gaps outlined there.

In the present work, the examination of transferability
is enabled by transfer learning, a technique that helps
speed up fast application of knowledge gained from one
problem to another. Typically, transfer learning is
applied on deep learning tasks (such as computer vision)
where there is a lack of sufficient data (e.g., labeled
images) on a new problem, in which case the general fea-
tures learned from a relevant problem can be reused. In
this work, instead of transferring the learned features,
the mapping from state-action pairs to action values (i.e.,
Q(st, at; ut)) is transferred to a new task with the learned
parameters ut being reused (see similar concepts of value
function transfer in (49, 50). Specifically, the transferred
setting (called the ‘‘target problem’’) has different traffic
demands, driving behaviors, or both, than the source set-
ting (as previously described in the network setup), while
the definitions of states, actions, and rewards are not
altered. As such, directly transferring the learned action
value function is feasible. Further, RL controller is
trained to conduct effective perimeter control based on
the traffic conditions of both regions (as indicated by the
state). While the detailed action-taking policy may not
apply to the target problem, the principles underlying the
policy learned from the source setting should resemble
those for the target problem. Therefore, transferring the
action value function could potentially provide a better
starting point for the target problem. Moreover, in the
target problem, continued streams of data (in the form of
transitions \st, at, rt+ 1, st+ 1.) can be collected and fed
to the RL controller so that it can adapt the transferred
value function quickly and thus produce improved peri-
meter control policies. Note, the pretrained RL control-
ler has already internalized knowledge on how to act on
the traffic conditions; therefore, less learning update and
exploration will be needed for the controller during
adaptation. The reader may also refer to (51, 52) for
more information on transfer learning and its relevance
to reinforcement learning.

This work considers only homogeneous transfer learn-
ing (53) applied to perimeter control; that is, the source
and target problems share the same network settings such
as intersection layouts and speed limit, while the traffic
patterns (e.g., travel demands and driver rerouting beha-
viors) are allowed to differ. In the case of notable differ-
ences between the source and target problems (e.g., when
there are numerous road closures in the target problem),
negative transfer might occur, that is, the reused knowl-
edge is not helpful to the target problem and ends up

hampering the learning process rather than accelerating
it. As such, transferring the agent might perform even
worse than training the agent from scratch. On the other
hand, homogeneous transfer learning allows the RL con-
troller to adapt quickly to unseen traffic patterns where
there may be travel demands, driving behaviors, or both,
different from microsimulation and more representative
of reality.

To sum up, in this work, transferability is evaluated
by transferring the learned action value function of a pre-
trained RL controller to a target problem and adapting
the function with continued data feed. With this type of
intra-agent transfer (51), the RL controller could learn
better initial control policies and improve the control per-
formances more efficiently with reduced learning and
exploration, compared with training the controller from
scratch.

Microsimulation Experiments

In this section, the effectiveness and transferability of the
RL controller is evaluated on a simulated two-region net-
work. The experiment setups are first provided, followed
by simulation results.

Experiment Setup

Initially, to investigate the regional productions (MFD), a
strong traffic demand is used to fill up the network. The
MFDs (reflected by regional trip completion rate versus
accumulation relationships) are presented in Figure 3,
where each symbol represents a random seed in the simu-
lation. Note, trip completion refers to a trip ended within
the region or transferred to the neighboring region; also,
the term MFD is used interchangeably as the network exit
function (15, 28, 29). Each point in Figure 3 represents
average measurements of trip completion and vehicle
accumulation within an interval of 180 s. As can be
observed, both regions exhibit relatively low-scatter
MFDs, and the regional trip completion rate peaks at
accumulations around 5,000 vehicles and 1,000 vehicles
for Region 1 and 2, respectively. The macroscopic traffic
dynamics are not modeled as they are neither utilized in
the microsimulation nor the control algorithm, so the
MFD functions are not estimated. The critical accumula-
tion information, however, provides guidance on how the
comparative benchmarking methods should be implemen-
ted (but not needed for the RL method).

Two benchmarking methods are considered, that is,
no control (NC) and the I-GC policy. In the case of NC,
fixed time signal plans are applied, which simulates the
status quo. I-GC is the baseline perimeter controller and
used to show perimeter control can alleviate oversatu-
rated traffic conditions even without an advanced
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solution mechanism. As previously noted, the cutoff
points used by I-GC are higher than the critical accumu-
lations and set to
n1, c1 = 5000, n1, c2 = 8000, n2, c1 = 1000, n2, c2 = 1600.
These values have been observed to help avoid exces-
sively long queues at the perimeter control intersections
while also suitable to mitigate the severe congestion in
the city center. Similarly, observations on the simulations
have informed proper green time settings, which are
gmin= 0s, gmid = 3s, gmax= 27s. The minimum green
time gmin is adopted when a region is severely congested
with accumulations in [ni, c2, ni, jam�. Since the cutoff point
ni, c2 is noticeably larger than the critical values, all vehi-
cle entries into the region should be prevented to restore
the regional operations and avoid further performance
degradations. The medium green time gmid is used when
a region is operating in critical flow (with accumulation
in ½ni, c1, ni, c2�). Within this range, regional congestion
has built up but the average flow is at a relatively high
level. Therefore, it is reasonable to reduce the amount of
inflow into the region. Once the metering decision is
made, queues will form at the upstream locations of all
perimeter control intersections. Observations on the
simulation show that, when the queuing vehicles are
allowed entry in a time step, they discharge at a very
high rate (not necessarily the saturation flow, because of
factors such as startup loss time as well as the mismatch

between simulated vehicle dynamics and theoretical
models) and 3 s green time at the perimeter control inter-
sections would correspond to an aggregate inflow rate of
5,760 vehicles per hour. Thus, gmid is set to 3 s as it helps
avoid long queues and leads to reduced entry rate that is
much smaller than the traffic demands (see Figure 2). It
also provides a control buffer between complete metering
and admitting of transfer flows that helps smooth the
traffic patterns around the critical accumulations, and
improves the applicability of vanilla greedy control in a
microsimulation setting. Finally, the maximum green
time used when the region is in free flow is set to 27 s,
followed by a 3 s change interval. Note that the cutoff
points and green time settings are mainly obtained via
observing the simulations, rather than from mathemati-
cal derivations. As such, they may not be analytically
optimal. However, deriving the best form of I-GC imple-
mentation is beyond the focus of this work and, as will
be shown in the results, the I-GC policy adopting these
values can substantially improve the operational perfor-
mance of the overall network.

In this work, multiple random seeds are used in the
simulation to enhance realism where each seed corre-
sponds to a specific traffic pattern (e.g., vehicle routing,
speed distribution, times of vehicle insertion). These
seeds are used both by the benchmarking methods and
the RL controller. Concretely, for the RL controller, a

Figure 3. Regional trip completion rate-accumulation relationships (macroscopic fundamental diagram): Region 1 (left) and Region 2
(right).
Note: Each symbol represents a random seed in the simulation.
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seed will be randomly picked every time a simulation is
run during the training process so that it can learn a
robust policy against simulation randomness. In con-
trast, the benchmarking methods are directly applied to
the simulation with all seeds, as they are not learning-
based approaches and adopt fixed policies. As such,
each random seed is associated with a constant control
outcome for these methods, and their performances
among multiple random seeds will be expressed as nar-
row horizontal bands.

Simulation Results: Effectiveness

This section presents the simulation results on evaluating
the effectiveness of the RL method. Adopting the base-
line demands in Figure 2, the simulation starts from an
empty network and the first 90 s is used as a warmup
period during which the network operations are not
recorded. The presented RL method, as well as the
benchmarking I-GC and NC policies, are applied, and
the realized cumulative trip completion (CTC) is shown
in Figure 4, where the solid line and shaded area sepa-
rately indicate the mean and 95% confidence interval.
Note, the benchmarking methods are not learning-based
approaches and adopt fixed policies based on the envi-
ronment information (e.g., regional accumulations for I-
GC). Therefore, their ‘‘learning curves’’ appear as hori-
zontal bands and do not exhibit an upward trend, while
the shaded areas represent the variation over random
seeds.

As shown in Figure 4, the I-GC and RL controller can
achieve significantly higher CTCs than NC. While the
design ideas are intuitive, the I-GC policy can effectively
prevent oversaturation in the city center and realize a
more productive congestion distribution within the net-
work. The RL controller, with the ability to learn from
interactions with the microsimulation, can also yield con-
trol policies that lead to increasing CTCs over its learning
course. This learning ability is even more notable given
that multiple random seeds are used which can affect the
realized demand patterns and vehicle behaviors. As a side
effect, though, the abundance of simulation randomness
also leads to noticeable fluctuations in its learning curves.

To see how perimeter control improves the regional
level traffic operations, the accumulations and average
speeds are compared among the control methods. The
accumulations are obtained by counting the number of
vehicles in both regions, while the average speed is the
average of lane-level speed weighted by their lengths.
The profiles of (regional or network) accumulations and
average speed are presented in Figures 5 and 6, respec-
tively, where the cutoff points used by I-GC are also
plotted in Figure 5a. As can be seen, under NC, the
demands from the periphery would enter the city center

almost unrestrictedly. As such, the Region 2 accumula-
tion increases rapidly, and the congestion leads to a con-
sistently decreasing average speed that plateaus around
3,000 s. Even in the recovery period (3,600–5,400 s),
Region 2 cannot restore its operations from such conges-
tion when there is no new traffic demand, which suggests
the formation of traffic gridlock. In comparison, under
the I-GC policy, Region 2 accumulation is well regulated
between the two cutoff points adopted, whereas Region
1 is significantly more congested than under NC. This
metering policy considerably improves the average speed
of Region 2 at the cost of decreased average speed in
Region 1. In addition, the strictness in metering also
leads to fewer trips completed in the network (see
Figures 4 and 5b where the peak value of network accu-
mulation is smaller under RL than I-GC). On the other
hand, the RL method achieves a middle ground between
NC and I-GC in that it effectively mitigates congestion
in the city center compared with NC while, in the mean-
time, not hindering vehicle transfer too much, to realize
the highest trip completion. Furthermore, Figure 5 indi-
cates that perimeter control (RL or I-GC) can produce a
congestion distribution where both regions are trending
toward clearance of vehicles at the end of the simulation,
while the network (in particular Region 2) remains
severely congested under NC.

Figure 4. Cumulative trip completion (CTC) realized by
different methods under the baseline demand.
Note: I-GC = improved greedy controller; NC = no control; RL =

reinforcement learning; solid line = the mean; shaded area = 95%

confidence interval.
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To further compare the capability of the methods on
maximizing the network throughput, the trip comple-
tion plot is provided in Figure 7, where the total travel
time (TTT) difference can be calculated as the areas
between the curves. As can be seen, both RL and I-GC
realize higher CTCs than FT, where the mean improve-
ments are, respectively, 16.9% and 11.8%. However,
despite the higher trip completion, the I-GC policy
results in a large TTT than FT (by 1:8353 106 s on
average). In contrast, the RL method achieves the

smallest TTT that is, on average, 1:9493 106 s smaller
than FT. Along with the highest trip completion, this
showcases the superiority of the RL method at through-
put maximization.

A few additional remarks are provided here. First, the
city center is destination-loaded with large traffic
demands from the periphery area. Therefore, perimeter
control is the most helpful if it helps prevent Region 2
from becoming oversaturated. In this regard, both the I-
GC and the RL controller can effectively realize this

Figure 5. (a) Evolution of accumulations in Region 1 (left) and Region 2 (right) and (b) Evolution of accumulations in the network.
Note: I-GC = improved greedy controller; NC = no control; RL = reinforcement learning.
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control objective, in that Region 2 has substantially
improved operational performance compared with NC.
Second, the RL controller presented in this paper can
effectively regulate traffic and consistently achieve higher
CTC than the I-GC policy, despite differences in the con-
trol outcomes. Third, the RL controller adopts the same
action designs as I-GC to fairly compare the two meth-
ods. As a result, the simulation outcomes could exhibit
noticeable fluctuations over time (see Figure 6).
Foreseeably, a more flexible action space design could
potentially yield smoother network operations, as
demonstrated in (30).

Real-life measurements of traffic states (e.g., vehicle
accumulation) are often subject to noises because of fac-
tors such as sensor malfunction. Thus, to evaluate the
learning robustness of the presented RL controller, mea-
surement noise of regional accumulations is examined.
Here, the form of measurement noise considered is (simi-
lar to (27, 33):

~ni = ni +N 0, d2
� �

ð5Þ

where
ni = the true accumulation value in the environment,
~ni = the measured accumulation value received by the
controllers, and
N 0, d2
� �

= a mean-zero normal distribution with stan-
dard deviation d.

The control methods receive inaccurately measured
accumulations, while the microsimulation environment
maintains the accurate accumulation values. Therefore, a
mismatch exists between the actual congestion level and
the controller’s perception, which would affect the con-
trol policy should the controllers act on accumulation
information. In other words, the RL method and I-GC
policy are subject to the measurement noise, while NC is
not. As such, the realized control outcomes remain the
same under NC.

In this work, two levels of measurement noise with
standard deviation of 25 and 50 are examined: the rea-
lized CTC curves during the training processes are pre-
sented in Figure 8. As can be confirmed, the NC method
has performances invariant to the measurement noise, as
its policy does not build on any accumulation informa-
tion. The performances of I-GC are affected, but it still
significantly outperforms NC with increased CTC. More
importantly, the presented RL method can learn to
achieve higher CTCs than I-GC in both levels of mea-
surement noise. As the level of noise increases, the fluc-
tuations in the learning curves also increase. Further, the
average CTC improvement of RL over I-GC is higher
with noise 50 than under noise 25, which showcases the
RL controller’s robustness to learn against increasingly
noisy measurements. However, note that the measure-
ment noise cannot be overly high as it may disrupt the
controller’s ability to regulate traffic (e.g., the controller

Figure 6. Average speed: Region 1 (left) and Region 2 (right).
Note: I-GC = improved greedy controller; NC = no control; RL = reinforcement learning.
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might over-perceive the congestion in the environment
heavily and meter the transfer flows needlessly, thus
reducing trip completion). Overall, these results suggest
that the presented RL controller is effective and robust,
even with sizable measurement noise.

Simulation Results: Transferability

Transferability is examined here by applying the pre-
trained RL controller with the baseline demand to differ-
ent demand scenarios, driving behaviors, or both. Note
that homogeneous transfer learning is considered to
avoid negative transfer, so the network settings are not
altered (as the dynamics underlying the problem would
otherwise be significantly affected). Also, the premise of
transfer learning is the source and target problems share
adequate commonalities (as opposed to, say, models
trained for image classification applied to natural lan-
guage processing). It should thus be expected that the
more different the two scenarios are, the less promising
the transferred performances will be, though control ben-
efits may still be achievable. Further, the controller has
already internalized knowledge on how to conduct peri-
meter control based on the traffic conditions; therefore,
during adaptation, less learning and exploration are
needed. Finally, it is worth reiterating that these tests are

Figure 8. Realized cumulative trip completion (CTC) curves by different methods under noisy measurements: noise 25 (left) and noise
50 (right).
Note: I-GC = improved greedy controller; NC = no control; RL = reinforcement learning.

Figure 7. Trip completion plot.
Note: I-GC = improved greedy controller; NC = no control; RL =

reinforcement learning.
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meant to showcase the ability of the RL controller to
quickly adapt its policy to unseen traffic patterns by uti-
lizing its knowledge learned from the source problem
and continuing its learning with online data feed. This is
important for real-life applications where training the
controller from scratch may be expensive or even
prohibitive.

The first scenario considers a non-uniform demand
pattern from the periphery to the city center, while the
other demands remain unchanged. This demand simu-
lates a commute pattern where one side of the periphery
area is more populous than the other. As an example, the
west side of the periphery is assumed to have the most
traffic demands into the city center (see Figure 9a).
Further, this demand change is coupled with worse driv-
ing behaviors (e.g., less adaptive routing and higher
driver imperfection), which was done to mimic real-
world driving conditions where human drivers exhibit
more variation in their driving performance than is typi-
cally modeled in simulation (54). For this traffic scenario,
NC and I-GC are applied with numerous random seeds
and, to better demonstrate transferability, an RL con-
troller is also trained from scratch (with same parameters
as used for the baseline demand) to compare with the
transferred RL controller. The CTC achieved by differ-
ent methods are provided in Figure 9b, where the

transferred RL controller is denoted by ‘‘RL (Transfer).’’
The transferred RL controller is only trained for 50 itera-
tions, as it is merely adapting its pretrained action value
function. As can be seen, the RL controller, when trained
from scratch, can still realize promising control benefits
that are generally better than the I-GC policy. This indi-
cates the applicability of the RL controller to different
scenarios, more so considering the same parameters are
used. Comparatively, the RL controller transferred with
pretrained action value function learns at a faster rate
from a substantially better starting point and achieves
promising control performances within 20 iterations.
With newly collected experiences, it can quickly adapt its
action value functions to the different traffic scenario,
even with less exploration of the environment and learn-
ing update. Importantly, these results indicate the RL
controller, despite trained in an environment with better
simulated driving behavior, can transfer its knowledge
and quickly adapt its action-taking policy to a setting
that is more representative of reality, which showcases its
significant potential for practical application.

To evaluate the transferability of the RL controller to
a setting with more dissimilar travel demands, a second
traffic scenario is tested that considers an abrupt demand
increase, as also examined in (15, 29). In this scenario,
the traffic demands from the periphery to the city center

Figure 9. Transferability scenario 1: (a) demand profile and (b) realized cumulative trip completion (CTC) curves.
Note: I-GC = improved greedy controller; NC = no control; RL = reinforcement learning; RL (Transfer) = transferred RL controller.
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have increased intensity from the baseline demand for a
duration of 15min (see Figure 10a). The RL controller
pretrained with the baseline demand is applied to this
scenario, in comparison with the NC, I-GC, and an RL
controller trained from scratch. The CTC curves are pre-
sented in Figure 10b. As can be seen, the RL controller,
when trained from scratch, can still learn control policies
that are notably better than the I-GC, despite increased
demand dissimilarity. The transferred RL controller with
pretrained action value function can also achieve higher
CTC than the I-GC policy, yet its learning performances
are not as desirable as in the previous case (the CTC
curves are noisier than in Figure 9). This, however, is
expected, as increased difference between the pretrained
and applied scenarios would require more learning and
exploration, which may not be achievable within 50
iterations. Nevertheless, the CTC obtained by the trans-
ferred RL controller increases more rapidly than the one
trained from scratch in the first 50 iterations, which
again exemplifies its transferability.

Concluding Remarks

This paper studies the classical two-region perimeter con-
trol problem in a microsimulation environment. An RL-
based perimeter controller is presented, with its effective-
ness and transferability comprehensively demonstrated in a
microsimulation environment. Importantly, the ability of a

data-driven perimeter control method to transfer its learned
knowledge from one setting to another and to quickly
adapt its control policy with newly collected data is critical
in real life applications, where training a controller from
scratch may be costly or even impossible. Transferability of
perimeter control methods has long been neglected, and the
few recent works that considered transferring the learned
policies have not examined the ability of the methods to
keep learning with continued data feed. Further, no other
studies that considered transferability have utilized the
more realistic microsimulation environment but, instead,
adopted simpler numerical simulations. This work thus
bridges several research gaps and strengthens the existing
literature on data-driven methods for perimeter control.

The simulation results provided in this work suggest
the presented RL controller can consistently learn con-
trol policies that are superior to I-GC. More importantly,
it can readily transfer its learned knowledge to simulation
settings with different traffic demands, driving behaviors,
or both, and keep learning from newly collected data to
produce more promising control strategies. These results
showcase the real-world application potential of data-
driven methods for perimeter control. In particular, the
RL controller can be trained offline in a microsimulation
environment with an estimate of the real traffic demands,
assuming proper driving behaviors; then, at the time of
application, continued streams of traffic data can be col-
lected and fed to the controller to adjust its policy. In this

Figure 10. Transferability scenario 2: (a) demand profile and (b) realized cumulative trip completion (CTC) curves.
Note: I-GC = improved greedy controller; NC = no control; RL = reinforcement learning; RL (Transfer) = transferred RL controller.
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manner, a smaller amount of data will be needed (as the
controller has already internalized knowledge in the pre-
train process) whereas the controller can adapt at a faster
rate than if trained from scratch. Note that the application
process can be carried out in real time as the action-taking
only involves a forward pass using the parameters ut and
less learning update is required to adapt the control policy.

Opportunities for future extensions exist. First, different
forms of perimeter control implementation should be
investigated, for example setting the green ratios or the
allowable ratios of transfer flows (17, 19, 29, 30). Also, it is
worth examining if a more flexible action space could fur-
ther improve the control benefits. Moreover, it is a research
priority to evaluate RL-based perimeter control methods
using a larger-scale urban network with microsimulation.
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