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Intensifying drought conditions across the western United States due to global climate change are altering
plant-insect interactions. Specialist herbivores must find their host plants within a matrix of nonhosts, and
thus often rely upon specific plant secondary chemistry for host location and oviposition cues. Climate-induced
alterations to plant chemistry could thus affect female selection of larval food plants. Here, we investigated
whether host-plant water limitation influenced oviposition preference in a threatened invertebrate: the mon-
arch butterfly (Danaus plexippus). We found that females deposited more eggs on reduced-water than on
well-watered narrowleaf milkweed plants (Asclepias fascicularis), but we could not attribute this change to any
specific change in plant chemistry. Specialist herbivores, such as the monarch butterfly, which are tightly linked
to specific plant cues, may experience shift in preferences under global-change conditions. Understanding
oviposition preferences will be important to directing ongoing habitat restoration activities for this declining
insect.
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Introduction although, in actuality, females frequently choose to oviposit on
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Increased periods of drought across the Western United States may plants with suboptimal larval conditions ,( ayhew 001). For ex
. . . L ample, females may select plants for oviposition that have more
change plant—insect interactions (Cook et al. 2015). Water limitation dult food heth . th | . | )
induces plastic changes to plant chemical traits (Chaves et al. 2002), adult food resources, whether or Ot those plants improve farva

increasing concentrations of both primary and secondary metabolites
(Mundim and Pringle 2018). Higher primary metabolites may attract
insects and stimulate feeding behavior (Mattson and Haack 1987;

performance (Gripenberg et al. 2010). Climate-induced changes in
plant chemistry may thus create or widen disconnects between fe-
male preference and offspring performance.

. Here we evaluated the effect of water limitation on the ovipo-
but see, e.g., Huberty and Denno 2004). Secondary metabolites can . o ) P
sition preferences of a threatened specialist herbivore, the western

be attractants or deterrents, depending on their toxicity and the )
> P 8 Y monarch butterfly (Danaus plexippus). A recent population de-

herbivores’ degree of specialization (Gutbrodt et al. 2011). Specialist
herbivores often use particular secondary metabolites to detect their
host plants (Schoonhoven et al. 2005).

Climate-induced changes in plant chemistry could thus affect

cline has prompted restoration activities for the monarch’s larval
food plants: milkweeds in the genus Asclepias (Pelton et al. 2019).
Milkweeds have numerous secondary metabolites, including
flavonol glycosides and cardenolides, which are oviposition cues for
monarchs (Haribal and Renwick 1996, Agrawal et al. 2021). Water
limitation can change the concentrations of these compounds in

female insects’ choice of larval food plants, particularly among
specialists. Oviposition selection relies on olfactory, visual, and phys-
ical cues (Schoonhoven et al. 2005). Olfactory cues, in particular,
may change with plant chemistry (Conchou et al. 2019). Oviposition
preferences then affect offspring development and survival, partic-
ularly when larvae have initially low mobility (Gripenberg et al.

plant tissues (Diethelm et al. 2022), suggesting that climatic stress
could alter female preference via changes in secondary metabolites
(McCluney et al. 2012). Here, we hypothesized that water limita-
. . . i 1d aff h ovipositi f; LT icul

2010), and can go on to affect adult traits such as wing loading tion wou d affect monarch oviposition preferences. In particular,
. L we predicted that females would prefer low-water plants over well-
and fecundity (Soule et al. 2020). Indeed, ovipositing females are . .
watered plants due to an upregulation of leaf flavonol glycosides

ted t fer plant traits that f. higher offspri for-
EXpECied o preler plant traits that favor fugher OfSpring perior under water limitation (Diethelm et al. 2022).

mance (i.e., the Preference-Performance Hypothesis; Jaenike 1978),
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Fig. 1. Diagram of the oviposition preference trials with Danaus plexippus on Asclepias fascicularis. At the start of the trial, gravid females (n = 15) were placed
the center of the 20 m? flight cage and allowed to feed ad libitum using a cotton pad soaked in a 1:1 ratio of red Gatorade:deionized. Two plants per treatment
(well-watered = 70% soil field capacity or reduced-water = 30% soil field capacity) were kept in acrylic boxes (14 x 14 x 24 cm) with the top 10 cm of the plant
exposed to the females. Boxes were randomly assigned to the north or south position in each trial and placed 0.65 m from the food source.

Materials and Methods

Experimental Design

To determine if plant water status affects plant selection by females,
we conducted an oviposition choice experiment using D. plexippus
and Asclepias fascicularis (narrowleaf milkweed), one of the most
widely distributed milkweed species in the Western United States.
Asclepias fascicularis is an important food species for the western
monarch (Dilts et al. 2019).

Seeds of A. fascicularis were collected from Reno, NV (39.49361,
-119.85459) in 2018 and 2019 and germinated in May 2020. Plants
were grown in 164 ml treepots with 50% peat moss: 34% vermic-
ulite: 16% perlite. To manipulate water availability, soil saturation
was maintained at 70% field capacity in control (well-watered)
plants and at 30% in reduced-water plants for 1-3 wk using a grav-
itational dry-down method following Diethelm et al. (2022). The
variation in dry-down time is due to initially high dieback in the
reduced-water group, which led us to add more plants to that treat-
ment group, with the treatment maintained for >1 wk. The 70%
control level reflects what plants typically experience at agricultural
field edges, whereas 30% represents a dry treatment that does not
induce wilting (Diethelm et al. 2022). We avoided wilting because
females may discriminate against wilted plants, independent of plant
chemistry (Aikins et al. 2023).

To allow female monarchs to select a mate, each female was
initially kept in a mesh caging (40 cm x 40 cm x 61 c¢cm) with 3
male butterflies and 2 other females. Male—female pairs that were
observed mating were moved, still linked, to separate cages, and
mated females were isolated the following day. Once males were
observed to mate twice, they were removed from the study. Each
oviposition preference trial presented a single, mated female but-
terfly (n = 15) with a choice between one control and one reduced-
water plant box within a flight cage. In an attempt to isolate the
effects of plant chemistry and account for potential oviposition

bias toward larger plants (Cohen and Brower 1982), we selected
experimental plants of similar size and presented only the top 10
cm of the stem to the butterflies (Fig. 1). Each oviposition trial
occurred in a 20 m? flight cage for 3 h between 9:30 AM and 6:30
PM. To allow females to eat ad libitum, a cotton pad of 1:1 ratio
of red Gatorade:deionized water was placed at the middle of the
flight cage. After each trial, the exposed biomass of milkweeds per
treatment was clipped, the number of monarch eggs per treatment
was recorded before eggs were removed, and the plant section was
weighed. All but two of the females were used twice, with trials >
6 d apart. At the end of each 3 h trial, the exposed sections of the
plants were transferred to a =80 °C freezer for storage until chem-
ical analysis. For additional methods see Supplementary Appendix
S1: Methods S1.

To investigate how our water treatments affected plant secondary
metabolites, we performed a non-targeted analysis of UV-absorbent
metabolites following Diethelm et al. (2022). We estimated the con-
centration of each metabolite using ultrahigh-performance liquid
chromatography (Waters Corporation, Milford, MA). To calcu-
late the concentrations of plant secondary compounds in digitoxin
equivalents, we used a digitoxin internal standard (Sigma Chemical
Company, St. Louis, MO) and corrected peak areas by sample dry
mass and the 0.15 mg/ml concentration of the digitoxin standard.
We also calculated metabolite diversity, using the exponential term
of the Shannon index (¢ = 1; Chao et al. 2014). For additional
methods see Supplementary Appendix S1: Methods S2.

Statistical Analysis

For female choice response variables, we used generalized linear
mixed models with Gaussian or negative binomial distributions from
the glmmTMB R package (Brooks et al. 2017) in R version 3.6.1 (R
Core Team 2021). For secondary chemistry response variables, we
modeled the data with linear regressions. We report beta coefficients
(B) with standard errors as effect sizes (Bischl et al. 2017). Marginal
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Table 1. Model selection results for female oviposition preferences from the global GLMM. Parameters in the model (K), degrees of
freedom error (DF), Aikaike's information criterion for small sample sizes (AIC ), the difference in AIC (dAIC), and variance of the random
intercept terms are shown. All models included a random effect of the trial number nested within monarch identity. Only models with dAIC,
< 2.5 are shown. Marginal (fixed effects only; R?,) and conditional (fixed + random effects; R?.) R? values are also shown

Model Fixed effects K DF (N)

Random effect

AIC, dAIC Female ID/trial code R? R?

Number of eggs ~ Water availability 5 47
Wiater + flavonoid concn 6 46

None 4 48

263.3 0.0 0.045 0.05 0.50
265.2 1.9 0.046 0.07 0.52
265.3 2.0 0.042 0.00 0.41
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Fig. 2. Eggs laid on Asclepias fascicularis by Danaus plexippus (n = 15) on
control (70% soil field capacity) and reduced-water (30% soil field capacity)
treatment plants during 3 h preference trials. Points represent individual
trials, black diamonds represent means, and bars represent SE. Asterisks **
denote P < 0.03 from the generalized linear mixed model.

and conditional R? values were calculated in the MuMIn R package
(Barton 2009).

To establish the predictors of the number of monarch eggs,
we started with a saturated model treating water and the concen-
tration of flavonol glycosides as fixed effects and the number of
leaves, female age, time since female mated, and female identity
as covariates (Table 1). We included both flavonol glycosides and
water treatment as fixed effects in the model because preliminary
tests suggested that the water treatment did not affect chemistry (¢
= -0.5, df = 50, P = 0.6). To account for repeated trials of a given
female, we included female identity as a random intercept effect. To
control for nonindependence between plants within a single trial,
the trial number was also as a random intercept effect, nested within
female identity. We then used backward selection (Zuur et al. 2009)
in MuMIn, and the best-fit model was selected based on the Akaike
information criterion (AIC). Marginal predictors were evaluated
using log-likelihood ratio tests in lmtest (Zeileis and Hothorn 2002).
To evaluate the predictors of plant secondary metabolites, including
the total concentration of UV-absorbent metabolites, the concen-
tration of flavonol glycosides, and the exponential of Shannon’s

entropy index (g = 1) for metabolite diversity, we modeled water as a
fixed effect and the duration of dry-down as a covariate. To measure
the strength of the relationship between total concentration and the
concentration of flavonol glycosides, we calculated a Pearson’s cor-
relation value.

Results

Gravid monarchs preferred reduced-water plants, leaving an av-
erage of ~40% more eggs on dry plants than on control plants (8,
=0.46 = 0.21, z = 2.19, P < 0.03; Fig. 2). Based on the corrected
Akaike Information Criterion for k-means and likelihood ratio tests,
none of our selected covariates improved the model fit for oviposi-
tion preferences (Table 1). Females typically explored both plants
in each trial and displayed postalighting discriminatory behavior
(Supplementary Appendix S1: Video S1).

We isolated 32 unique UV-absorbent metabolites in the plants
(Supplementary Appendix S2). We did not detect any cardiac
glycosides (cardenolides) in our experimental plants. Two flavonol
glycosides—quercetin-glucoside-rhamnoside  and  isorhamnetin-
glucoside-rhamnoside—were present in all plant samples. The
value of total concentration was strongly driven by the concentra-
tion of flavonols (r = 0.94). The presence of benzoylated pregnane
glycosides was highly variable (ranging from 2 to 8 compounds per
plant). Neither the total concentration of UV-absorbent secondary
metabolites, nor flavonol glycoside content, nor the diversity of
metabolites differed between water treatments (8, =-1.18 = 2.18,
2=-0.54,P=0.6;8 =-0.95+183,2=-052,P=06,p =

water water

0.06 0.17, 2 = 0.34, P = 0.7).

Discussion

Here we show that gravid monarch butterflies preferred to de-
posit their eggs on reduced-water plants. Counter to our predic-
tion, however, our reduced-water treatment did not induce higher
concentrations of flavonol glycosides or alter chemical diversity.
Given that we also controlled for plant size and wilting, it is not
clear what signal caused observed preference between plants of dif-
ferent water stress. However, our observation that females explored
plants from both treatments suggests that oviposition preferences
were based on plant quality (Baur et al. 1998).

Although we did not uncover any probable causal mechanism
for female preference of low-water plants, our results suggest that
the females were able to detect differences between the water treat-
ment groups. Our results warrant further investigation into the
mechanism behind monarch oviposition preferences for low-water
plants. For example, Asclepias syriaca can increase foliar nitrogen
levels under water-limited conditions (Couture et al. 2015, but see
Hahn and Maron 2018), which could alter female preferences based
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on nutritional quality (C/N levels) of the plant tissue. Similarly, water
limitation could induce a change in the volatile organic compound
omitted by the plant or perhaps change leaf surface characteristics
such as foliar water content (Mundim and Pringle 2018, Conchou
et al. 2019). Understanding the traits used by females in larval-host
plant selection will be important to targeted conservation efforts. To
verify whether the preferences observed in this experiment remain
consistent in field conditions, additional oviposition trials should be
conducted in outdoor common gardens where females experience
a more realistic suite of abiotic and biotic conditions. Because A.
fascicularis is being used in habitat restoration activities for monarchs
across the aridifying West, successful conservation will require con-
sideration of female oviposition preferences and the effect that those
preferences may have on the fitness of the offspring generation.

Female preference for low-water plants could have a positive
impact on larval performance if low-water plants are less defended
or more nutritious. Monarch larvae tend to gain more weight on
water-limited than on well-watered milkweed in another species,
the common milkweed A. syriaca (Couture et al. 2015, Hahn and
Maron 2018), suggesting that larval performance could improve if
females oviposit on drier plants. However, A. fascicularis has dif-
ferent defense strategies, including a different chemical profile, than
A. syriaca (Agrawal and Fishbein 2006, 2008). Asclepias fascicularis
is also morphologically different than A. syriaca, with thinner leaves
that could result in larvae needing to move more frequently and thus
expend more energy to consume the same amount of leaf tissue.

Alternatively, whatever the plant’s condition, larvae developing
among a higher density of eggs and larvae could be disadvantaged.
For example, an increased density of monarch offspring is correlated
to a higher rate of infection by the protozoan parasite Ophryocystis
elektroscirrha, which decreases larval survival and hinders adult flight
performance (Bartel et al. 2011). In addition, higher densities of mon-
arch larvae may reduce both larval and adult size and survival rates
(Flockhart et al. 2012). Typically, monarch butterflies deposit a sol-
itary egg on each milkweed ramet (Prysby and Oberhauser 2004),
although field studies have documented cases in which as many as
ten eggs were discovered (Zalucki and Kitching 1982). We observed
that a small number of females depositing more than 10 eggs over the
course of the trial (Fig. 2). Our high values could be a result of females
responding to limited host plants by egg dumping (Aikins et al. 2023).
Regardless, females in this trial exhibited plant investigation behaviors
and postalighting preferences for water-limited milkweeds.

By investigating the oviposition preferences of gravid monarch
butterflies under water-limited conditions, our study demonstrates
the potential for climate change to disrupt the relationship between
specialist herbivores, like the monarch butterfly, and the cues they rely
on from their host plants. Understanding exactly which plant traits
produced the oviposition preferences seen here could benefit conser-
vation efforts and promote the reproductive success of this iconic
butterfly species. Moreover, future work should investigate larval
development and survival on milkweeds with low-water milkweeds.
Higher larval performance given higher female preference is by no
means assured (Jones and Agrawal 2019). Our findings emphasize
the need for comprehensive conservation strategies that consider not
only the availability of host plants but also the intricate cues and
mechanisms that guide the behavior of herbivores in decline.
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