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Intensifying drought conditions across the western United States due to global climate change are altering 
plant–insect interactions. Specialist herbivores must find their host plants within a matrix of nonhosts, and 
thus often rely upon specific plant secondary chemistry for host location and oviposition cues. Climate-induced 
alterations to plant chemistry could thus affect female selection of larval food plants. Here, we investigated 
whether host-plant water limitation influenced oviposition preference in a threatened invertebrate: the mon-
arch butterfly (Danaus plexippus). We found that females deposited more eggs on reduced-water than on 
well-watered narrowleaf milkweed plants (Asclepias fascicularis), but we could not attribute this change to any 
specific change in plant chemistry. Specialist herbivores, such as the monarch butterfly, which are tightly linked 
to specific plant cues, may experience shift in preferences under global-change conditions. Understanding 
oviposition preferences will be important to directing ongoing habitat restoration activities for this declining 
insect.
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Introduction

Increased periods of drought across the Western United States may 
change plant–insect interactions (Cook et al. 2015). Water limitation 
induces plastic changes to plant chemical traits (Chaves et al. 2002), 
increasing concentrations of both primary and secondary metabolites 
(Mundim and Pringle 2018). Higher primary metabolites may attract 
insects and stimulate feeding behavior (Mattson and Haack 1987; 
but see, e.g., Huberty and Denno 2004). Secondary metabolites can 
be attractants or deterrents, depending on their toxicity and the 
herbivores’ degree of specialization (Gutbrodt et al. 2011). Specialist 
herbivores often use particular secondary metabolites to detect their 
host plants (Schoonhoven et al. 2005).

Climate-induced changes in plant chemistry could thus affect 
female insects’ choice of larval food plants, particularly among 
specialists. Oviposition selection relies on olfactory, visual, and phys-
ical cues (Schoonhoven et al. 2005). Olfactory cues, in particular, 
may change with plant chemistry (Conchou et al. 2019). Oviposition 
preferences then affect offspring development and survival, partic-
ularly when larvae have initially low mobility (Gripenberg et al. 
2010), and can go on to affect adult traits such as wing loading 
and fecundity (Soule et al. 2020). Indeed, ovipositing females are 
expected to prefer plant traits that favor higher offspring perfor-
mance (i.e., the Preference-Performance Hypothesis; Jaenike 1978), 

although, in actuality, females frequently choose to oviposit on 
plants with suboptimal larval conditions (Mayhew 2001). For ex-
ample, females may select plants for oviposition that have more 
adult food resources, whether or not those plants improve larval 
performance (Gripenberg et al. 2010). Climate-induced changes in 
plant chemistry may thus create or widen disconnects between fe-
male preference and offspring performance.

Here we evaluated the effect of water limitation on the ovipo-
sition preferences of a threatened specialist herbivore, the western 
monarch butterfly (Danaus plexippus). A recent population de-
cline has prompted restoration activities for the monarch’s larval 
food plants: milkweeds in the genus Asclepias (Pelton et al. 2019). 
Milkweeds have numerous secondary metabolites, including 
flavonol glycosides and cardenolides, which are oviposition cues for 
monarchs (Haribal and Renwick 1996, Agrawal et al. 2021). Water 
limitation can change the concentrations of these compounds in 
plant tissues (Diethelm et al. 2022), suggesting that climatic stress 
could alter female preference via changes in secondary metabolites 
(McCluney et al. 2012). Here, we hypothesized that water limita-
tion would affect monarch oviposition preferences. In particular, 
we predicted that females would prefer low-water plants over well-
watered plants due to an upregulation of leaf flavonol glycosides 
under water limitation (Diethelm et al. 2022).
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Materials and Methods

Experimental Design
To determine if plant water status affects plant selection by females, 
we conducted an oviposition choice experiment using D. plexippus 
and Asclepias fascicularis (narrowleaf milkweed), one of the most 
widely distributed milkweed species in the Western United States. 
Asclepias fascicularis is an important food species for the western 
monarch (Dilts et al. 2019).

Seeds of A. fascicularis were collected from Reno, NV (39.49361, 
−119.85459) in 2018 and 2019 and germinated in May 2020. Plants 
were grown in 164 ml treepots with 50% peat moss: 34% vermic-
ulite: 16% perlite. To manipulate water availability, soil saturation 
was maintained at 70% field capacity in control (well-watered) 
plants and at 30% in reduced-water plants for 1–3 wk using a grav-
itational dry-down method following Diethelm et al. (2022). The 
variation in dry-down time is due to initially high dieback in the 
reduced-water group, which led us to add more plants to that treat-
ment group, with the treatment maintained for ≥1 wk. The 70% 
control level reflects what plants typically experience at agricultural 
field edges, whereas 30% represents a dry treatment that does not 
induce wilting (Diethelm et al. 2022). We avoided wilting because 
females may discriminate against wilted plants, independent of plant 
chemistry (Aikins et al. 2023).

To allow female monarchs to select a mate, each female was 
initially kept in a mesh caging (40 cm × 40 cm × 61 cm) with 3 
male butterflies and 2 other females. Male–female pairs that were 
observed mating were moved, still linked, to separate cages, and 
mated females were isolated the following day. Once males were 
observed to mate twice, they were removed from the study. Each 
oviposition preference trial presented a single, mated female but-
terfly (n = 15) with a choice between one control and one reduced-
water plant box within a flight cage. In an attempt to isolate the 
effects of plant chemistry and account for potential oviposition 

bias toward larger plants (Cohen and Brower 1982), we selected 
experimental plants of similar size and presented only the top 10 
cm of the stem to the butterflies (Fig. 1). Each oviposition trial 
occurred in a 20 m3 flight cage for 3 h between 9:30 AM and 6:30 
PM. To allow females to eat ad libitum, a cotton pad of 1:1 ratio 
of red Gatorade:deionized water was placed at the middle of the 
flight cage. After each trial, the exposed biomass of milkweeds per 
treatment was clipped, the number of monarch eggs per treatment 
was recorded before eggs were removed, and the plant section was 
weighed. All but two of the females were used twice, with trials > 
6 d apart. At the end of each 3 h trial, the exposed sections of the 
plants were transferred to a −80 °C freezer for storage until chem-
ical analysis. For additional methods see Supplementary Appendix 
S1: Methods S1.

To investigate how our water treatments affected plant secondary 
metabolites, we performed a non-targeted analysis of UV-absorbent 
metabolites following Diethelm et al. (2022). We estimated the con-
centration of each metabolite using ultrahigh-performance liquid 
chromatography (Waters Corporation, Milford, MA). To calcu-
late the concentrations of plant secondary compounds in digitoxin 
equivalents, we used a digitoxin internal standard (Sigma Chemical 
Company, St. Louis, MO) and corrected peak areas by sample dry 
mass and the 0.15 mg/ml concentration of the digitoxin standard. 
We also calculated metabolite diversity, using the exponential term 
of the Shannon index (q = 1; Chao et al. 2014). For additional 
methods see Supplementary Appendix S1: Methods S2.

Statistical Analysis
For female choice response variables, we used generalized linear 
mixed models with Gaussian or negative binomial distributions from 
the glmmTMB R package (Brooks et al. 2017) in R version 3.6.1 (R 
Core Team 2021). For secondary chemistry response variables, we 
modeled the data with linear regressions. We report beta coefficients 
(β) with standard errors as effect sizes (Bischl et al. 2017). Marginal 

Fig. 1. Diagram of the oviposition preference trials with Danaus plexippus on Asclepias fascicularis. At the start of the trial, gravid females (n = 15) were placed 
the center of the 20 m3 flight cage and allowed to feed ad libitum using a cotton pad soaked in a 1:1 ratio of red Gatorade:deionized. Two plants per treatment 
(well-watered = 70% soil field capacity or reduced-water = 30% soil field capacity) were kept in acrylic boxes (14 × 14 × 24 cm) with the top 10 cm of the plant 
exposed to the females. Boxes were randomly assigned to the north or south position in each trial and placed 0.65 m from the food source.
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and conditional R2 values were calculated in the MuMIn R package 
(Barton 2009).

To establish the predictors of the number of monarch eggs, 
we started with a saturated model treating water and the concen-
tration of flavonol glycosides as fixed effects and the number of 
leaves, female age, time since female mated, and female identity 
as covariates (Table 1). We included both flavonol glycosides and 
water treatment as fixed effects in the model because preliminary 
tests suggested that the water treatment did not affect chemistry (t 
= −0.5, df = 50, P = 0.6). To account for repeated trials of a given 
female, we included female identity as a random intercept effect. To 
control for nonindependence between plants within a single trial, 
the trial number was also as a random intercept effect, nested within 
female identity. We then used backward selection (Zuur et al. 2009) 
in MuMIn, and the best-fit model was selected based on the Akaike 
information criterion (AICc). Marginal predictors were evaluated 
using log-likelihood ratio tests in lmtest (Zeileis and Hothorn 2002). 
To evaluate the predictors of plant secondary metabolites, including 
the total concentration of UV-absorbent metabolites, the concen-
tration of flavonol glycosides, and the exponential of Shannon’s 

entropy index (q = 1) for metabolite diversity, we modeled water as a 
fixed effect and the duration of dry-down as a covariate. To measure 
the strength of the relationship between total concentration and the 
concentration of flavonol glycosides, we calculated a Pearson’s cor-
relation value.

Results

Gravid monarchs preferred reduced-water plants, leaving an av-
erage of ~40% more eggs on dry plants than on control plants (βwater 
= 0.46 ± 0.21, z = 2.19, P < 0.03; Fig. 2). Based on the corrected 
Akaike Information Criterion for k-means and likelihood ratio tests, 
none of our selected covariates improved the model fit for oviposi-
tion preferences (Table 1). Females typically explored both plants 
in each trial and displayed postalighting discriminatory behavior 
(Supplementary Appendix S1: Video S1).

We isolated 32 unique UV-absorbent metabolites in the plants 
(Supplementary Appendix S2). We did not detect any cardiac 
glycosides (cardenolides) in our experimental plants. Two flavonol 
glycosides—quercetin-glucoside-rhamnoside and isorhamnetin-
glucoside-rhamnoside—were present in all plant samples. The 
value of total concentration was strongly driven by the concentra-
tion of flavonols (r = 0.94). The presence of benzoylated pregnane 
glycosides was highly variable (ranging from 2 to 8 compounds per 
plant). Neither the total concentration of UV-absorbent secondary 
metabolites, nor flavonol glycoside content, nor the diversity of 
metabolites differed between water treatments (βwater = −1.18 ± 2.18, 
z = −0.54, P = 0.6; βwater = −0.95 ± 1.83, z = −0.52, P = 0.6, βwater = 
0.06 ± 0.17, z = 0.34, P = 0.7).

Discussion

Here we show that gravid monarch butterflies preferred to de-
posit their eggs on reduced-water plants. Counter to our predic-
tion, however, our reduced-water treatment did not induce higher 
concentrations of flavonol glycosides or alter chemical diversity. 
Given that we also controlled for plant size and wilting, it is not 
clear what signal caused observed preference between plants of dif-
ferent water stress. However, our observation that females explored 
plants from both treatments suggests that oviposition preferences 
were based on plant quality (Baur et al. 1998).

Although we did not uncover any probable causal mechanism 
for female preference of low-water plants, our results suggest that 
the females were able to detect differences between the water treat-
ment groups. Our results warrant further investigation into the 
mechanism behind monarch oviposition preferences for low-water 
plants. For example, Asclepias syriaca can increase foliar nitrogen 
levels under water-limited conditions (Couture et al. 2015, but see 
Hahn and Maron 2018), which could alter female preferences based 

Table 1.  Model selection results for female oviposition preferences from the global GLMM. Parameters in the model (K), degrees of 
freedom error (DF), Aikaike’s information criterion for small sample sizes (AICc), the difference in AIC (dAIC), and variance of the random 
intercept terms are shown. All models included a random effect of the trial number nested within monarch identity. Only models with dAICc 
< 2.5 are shown. Marginal (fixed effects only; R2

M) and conditional (fixed + random effects; R2
C) R2 values are also shown

Model Fixed effects K DF (N)

Random effect

AICc dAIC Female ID/trial code R2
M R2

C

Number of eggs ~ Water availability 5 47 263.3 0.0 0.045 0.05 0.50
Water + flavonoid concn 6 46 265.2 1.9 0.046 0.07 0.52
None 4 48 265.3 2.0 0.042 0.00 0.41

Fig. 2. Eggs laid on Asclepias fascicularis by Danaus plexippus (n = 15) on 
control (70% soil field capacity) and reduced-water (30% soil field capacity) 
treatment plants during 3 h preference trials. Points represent individual 
trials, black diamonds represent means, and bars represent SE. Asterisks ** 
denote P < 0.03 from the generalized linear mixed model.
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on nutritional quality (C/N levels) of the plant tissue. Similarly, water 
limitation could induce a change in the volatile organic compound 
omitted by the plant or perhaps change leaf surface characteristics 
such as foliar water content (Mundim and Pringle 2018, Conchou 
et al. 2019). Understanding the traits used by females in larval-host 
plant selection will be important to targeted conservation efforts. To 
verify whether the preferences observed in this experiment remain 
consistent in field conditions, additional oviposition trials should be 
conducted in outdoor common gardens where females experience 
a more realistic suite of abiotic and biotic conditions. Because A. 
fascicularis is being used in habitat restoration activities for monarchs 
across the aridifying West, successful conservation will require con-
sideration of female oviposition preferences and the effect that those 
preferences may have on the fitness of the offspring generation.

Female preference for low-water plants could have a positive 
impact on larval performance if low-water plants are less defended 
or more nutritious. Monarch larvae tend to gain more weight on 
water-limited than on well-watered milkweed in another species, 
the common milkweed A. syriaca (Couture et al. 2015, Hahn and 
Maron 2018), suggesting that larval performance could improve if 
females oviposit on drier plants. However, A. fascicularis has dif-
ferent defense strategies, including a different chemical profile, than 
A. syriaca (Agrawal and Fishbein 2006, 2008). Asclepias fascicularis 
is also morphologically different than A. syriaca, with thinner leaves 
that could result in larvae needing to move more frequently and thus 
expend more energy to consume the same amount of leaf tissue.

Alternatively, whatever the plant’s condition, larvae developing 
among a higher density of eggs and larvae could be disadvantaged. 
For example, an increased density of monarch offspring is correlated 
to a higher rate of infection by the protozoan parasite Ophryocystis 
elektroscirrha, which decreases larval survival and hinders adult flight 
performance (Bartel et al. 2011). In addition, higher densities of mon-
arch larvae may reduce both larval and adult size and survival rates 
(Flockhart et al. 2012). Typically, monarch butterflies deposit a sol-
itary egg on each milkweed ramet (Prysby and Oberhauser 2004), 
although field studies have documented cases in which as many as 
ten eggs were discovered (Zalucki and Kitching 1982). We observed 
that a small number of females depositing more than 10 eggs over the 
course of the trial (Fig. 2). Our high values could be a result of females 
responding to limited host plants by egg dumping (Aikins et al. 2023). 
Regardless, females in this trial exhibited plant investigation behaviors 
and postalighting preferences for water-limited milkweeds.

By investigating the oviposition preferences of gravid monarch 
butterflies under water-limited conditions, our study demonstrates 
the potential for climate change to disrupt the relationship between 
specialist herbivores, like the monarch butterfly, and the cues they rely 
on from their host plants. Understanding exactly which plant traits 
produced the oviposition preferences seen here could benefit conser-
vation efforts and promote the reproductive success of this iconic 
butterfly species. Moreover, future work should investigate larval 
development and survival on milkweeds with low-water milkweeds. 
Higher larval performance given higher female preference is by no 
means assured (Jones and Agrawal 2019). Our findings emphasize 
the need for comprehensive conservation strategies that consider not 
only the availability of host plants but also the intricate cues and 
mechanisms that guide the behavior of herbivores in decline.
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