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Fig. 1: Examples illustrating effects of grasp and placement configurations for placing into clutter. Left & Middle: Multiple grasp and place configurations
for the same pick and place task. Left: Different successful grasp solutions for the same object (top grasp: green, side grasp: red). Middle: Corresponding
place configurations: place for side grasp configuration (red) is infeasible due to the robot in collision, place configuration for top grasp (green) is feasible.
Right: Reachability effects of grasp choice: Right-Top: Unable to reach target behind red can due to limited reachability with top grasp. Right-Bottom

Target reached with side grasp.

Abstract— Robotic pick and place stands at the heart of
autonomous manipulation. When conducted in cluttered or
complex environments robots must jointly reason about the
selected grasp and desired placement locations to ensure suc-
cess. While several works have examined this joint pick-and-
place problem, none have fully leveraged recent learning-based
approaches for multi-fingered grasp planning. We present a
modular algorithm for joint pick and place planning that can
make use of state of the art grasp classifiers for planning
multi-fingered grasps for novel objects from partial view point
clouds. We demonstrate our joint pick and place formulation
with several costs associated with different placement tasks.
Experiments on pick and place tasks with cluttered scenes using
a physical robot show that our joint inference method is more
successful than a sequential pick then place approach, while
also achieving better placement configurations.

I. INTRODUCTION

Pick and place operations, where a robot grasps, lifts, and
then safely deposits an object at a desired location, define the
quintessential problem in robotic manipulation. The research
literature reflects this key importance with considerable work
examining grasping objects [1,2], with contemporary meth-
ods capable of grasping novel objects with high success [3—
5]. Research focused on object placement, though not as
extensive as grasping, investigates various aspects including
stability of placements [6,7], semantic placement [8,9], and
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multi-object rearrangement [10,11]. Though pick and place
naturally go hand-in-hand, most research investigates the two
highly related sub-tasks individually.

Treating the problems independently ignores a number
of important issues. In particular, while grasp success is
necessary for successful placement, it is not sufficient to
guarantee it. In fact, a grasp configuration might succeed in
lifting an object, but could end up contributing to placement
failure if the robot collides with other objects in the scene
during placement as shown in Fig. (1)(Left & Middle).
Likewise, if one ensures that a previously planned grasp does
not collide with objects during placement, it might do so at
the expense of object instability or reachability by the robot
at the placement location Fig. (1)(Right). Thus causing either
placement planning or execution failure.

Works that have tackled pick and place jointly, restrict
themselves in some way, making simplifying assumptions
not needed by modern grasp planners. These simplifications
include requiring full geometry of the object and environ-
ment as meshes [12], a restricted class of known object
categories [13], restricting the planner to use a fixed subset
of grasps (e.g. overhead) [14], or simplified grippers [15].

In contrast, we examine the problem of joint pick and
place planning given only partial view point clouds of the
object and environment. This includes the case of grasping
and placing previously unseen objects. Further, we plan over
arbitrary grasps from the full continuous space of feasible
robot configurations, as done in recent grasping work [3].

We formalize the joint pick and place task as a constrained



optimization problem (Sec. III). Our framework enables us
to jointly solve for both the optimal placement location
of the given object in clutter and a corresponding grasp
configuration suitable with the placement. We do so using
only sensor information of the scene enabling our approach
to work with novel objects. Jointly solving for the grasp
and placement configurations ensures compatibility between
pick and place by means of propagating gradients. We
use a state of the art, grasp learning approach to encode
the grasp success likelihood [3]. Like other works using
neural networks for learning [2,16—19] the ability to compute
gradients through the model enables efficient gradient-based
planning. We detail our proposed solution in Sec. IV.

We evaluate our planner in various placement tasks in-
cluding placing items in a line, tight packing of objects,
and object stacking. We define associated costs for each
of these tasks, highlighting the modularity of our approach.
We validate our approach on a physical robot with a multi-
fingered hand. Our results in Sec. V show our approach has
higher placement success rate than the baselines that treat
the individual pick and place planning as sequential, non-
interacting problems. Along with improved pick and place
success rate, our method is able to handle harder placement
configurations with clutter in both pick and place scenes.

A primary limitation to our work as implemented is the
assumption that the object maintains the same rigid offset
to the hand as that decided in the initial plan. This could
easily be incorrect as the object might move during the pick
or transit phase. Our work also does not examine any visual
or tactile feedback during placement to ensure gentle con-
tact [20,21] with the environment or correct for inaccuracies
in planning. Other areas for improvement including placing
on sloped or non-planar surfaces. We discuss further ideas
for improving on our work in Sec. VL.

We make the following contributions.

1) Present a framework for reasoning about pick and place
planning jointly. The components of which could be easily
swapped to achieve different tasks.

2) Provide a concrete implementation using a learned multi-
fingered grasp classifier to encode grasp cost in the objective.
3) Empirically validate the ability of our framework to also
pick from clutter.

4) A fast, GPU-accelerated 3D signed distance generator
based on partial view point clouds, that can be easily
reused and updated as the placement scene changes during
sequential pick and place executions.

5) We replicate the grasp learning method of [3] on a
different hand, providing further support for its effectiveness.

II. RELATED WORK

We now describe related work in placement and joint
pick and place planning. We note that the joint grasp and
placement planning problem can be seen as a special case
of the more general task-oriented grasping problem [22].
We only examine those task-oriented papers that specifically
examine placement. The robotic object placement problem
typically focuses on finding a placement pose for an object,

such that it will be stable when released and potentially meet
some semantic requirements [6,7,9,23].

Jiang et al were the first to examine learning for stable
object placement of novel objects from partial-view point
clouds [9]. Their proposed method employs hand-modeled
features to learn stable and semantic placement locations for
multiple objects in complex scenes and solves the associated
inference problem for planning as an integer linear program.
Though they have real robot demonstrations, they assume
given and feasible grasps. [7] discusses a GPU based method
to generate orientation and contact points for object and
environment models constructed from sensors, using local
optimization to validate stability. Only placement poses of
the object are generated ignoring any robot constraints.

A few works have examined arbitrary reorientation of
objects. Furrer et al. [6] show impressive results of stable
placement configurations for stacking stones by optimizing
over costs generated using a physics simulation. Newbury et
al. [23] learn stable, human-preferred orientations for placing
objects observed as point clouds onto flat surfaces.

The pick and place method described in [24] learns
to pick novel objects in clutter using grasping primitives
and drops the objects into bins according to the measured
appearance. Zeng et al, then proposed Transporter Networks
in [25] using spatially consistent visual representation to
learn pick-conditioned placing. Gualtieri et al. [13] propose a
reinforcement learning approach to learn joint pick and place
policies trained separately for different object classes.

Haustein et al. propose an anytime algorithm in [12] to
solve for optimal and stable placement locations given the
object and the environment meshes on user provided heuris-
tic. Though this method is not scalable to novel objects, due
to the need for meshes, they propose a similar constrained
optimization approach to the one we present.

Zhao et al. propose a task-oriented grasping approach in
[26] solving for highly precise task-oriented grasps in SE(2),
by filtering sampled grasps through separate networks for
predicting grasp quality, post-grasp displacement and task
quality, trained using a curriculum learning approach.

Paxton et al. [8] propose a method to generate stable
placement configurations satisfying semantic relationships
specified as logical predicates for novel objects. They learn
discriminators to predict stability as well as logical predicates
and plan for placement locations through a gradient-free
optimization. While this approach uses a learned grasp
planner [27], grasps are selected after the placement location
via rejection sampling, making it inefficient in clutter.

Berscheid et al. [14] learn embeddings from top views of
2 fingered grasps and placement images such that feasible
grasp and place pairs are close to each other in the latent
space. They use this learned space to jointly select grasps
and placements; experiments show joint inference of grasp
and placement outperforms separate inference in clutter.

Mitash et al. [28] propose a pick and place pipeline
with pick, place, handoff (regrasp), and sense actions. They
estimate the object geometry in order to generate plans for
constrained placement of novel objects. Using a combination



of suction and two fingered grasps with simple placement
scenes their results show that task oriented grasping and
perception perform better than the pick then place methods.

He et al. [15] extend the object reconstruction and grasp
planning approach for parallel-jaw grippers from [29], to
placement-aware grasping by learning to generate affordance
maps using a NeRF representation of the scene with a re-
constructed object SDF. They use a sampling based approach
for determining an optimal grasp and placement pair.

Our work builds on the findings that joint pick and place
outperforms pick then place planning. In contrast to existing
work, we propose a modular pick and place framework for
use with multi-fingered grasps on novel objects, that plans
over continuous grasps and placement configuration.

III. PICK AND PLACE AS CONSTRAINED OPTIMIZATION

Let O be an object to be placed in a cluttered environment
E, with partial-view depth images Zo and Zg respectively.
The grasp configuration 6, = [z, qg] is a vector including
the robot palm pose x, € SE/(3) and preshape joint angles of
the gripper’s fingers qf; € Q. The placement configuration
x, € SE(3) defines the 6-DOF pose of where the centroid
of object point cloud Z should be once placed. We can then
define the probability of successfully grasping the object as:

P(Tg:”gngO) = F(egQZO) (D

and the probability of the place configuration x, being
successful for object O in environment £ as:

P (rp=1|xp, 04, Z0, ZE) = G (x;0,4, Z0,ZE) (2)
The joint probability for pick and place success is then:

P (ry=1,7p=1|0,,,, Zo, Zg)
=F (09; Zo) G (.’Bp; Og, Zo, ZE) (3)

Which we visualize as a factor graph in Fig. (2). We see that
while the success probabilities are conditionally independent
given the planning parameters, they do not fully decoupled,
requiring joint inference over pick and place parameters.
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Fig. 2: Factor graph of the pick and place probability distribution.
We see that while the success probabilities are conditionally inde-
pendent given the planning parameters, they can not fully decouple,
requiring joint inference over pick and place parameters.

We define the pick and place inference problem as find-
ing a tuple of grasp configuration and place configurations
(84, xp), that maximizes the joint probability defined in
Eq. (3). Taking the negative log on Eq. (3), we formalize
this as a constrained optimization in Eq. (4)

Fig. 3: Robot-object geometry for pick-and-place collision check-
ing: a object; b robot; ¢ union of object and robot.

argmin  —In(G (xy; 04, Z4, Zp)) —In(F (8,4; Zo))

Ep’eg,quqgﬂ'

(4a)

subject to  x, € P (4b)
zy = on(qy); xp, = 90(qp) (40)

4 <a<qf Vie{gp} (4d)

Z8 =20 URg(0y) (4e)

€ < SDF (xp, Z4, (0,) , ZE) (4f)

T(:Ep’wg) € (4g)

Equation (4a) defines the objective of the optimization as
a log-linear combination of the placement success prob-
ability G (xp;04, Zo, Zp) and grasp success probability
F(8,;Zp). The remaining constraints ensure physical va-
lidity for successful execution, i.e., the grasp and placement
must be reachable by the robot and the objects and robot
should not interpenetrate. Eq. (4b) constraints the placement
configurations x,, to be within the footprint of the placement
surface and above it. Depending on the task the placement
configuration x,, is in SE(3) or SE(2). Eq. (4c) encodes the
arm forward kinematics for the grasp and placement, while
Eq. (4d) defines the joint limits, where the superscript, ¢,
denotes the joints associated with the robot arm and hand.
Eq. (4e) augments the object cloud with the geometry of
the hand and spheres approximating the geometry of the wrist
(last 2 arm links) defined by R¢(6,), at the current grasp
pose. We note this is a similar procedure to that in [30].
We visualize the gripper geometry augmentation in Fig. (3).
Using this we define the placement collision constraint in
Eq. (4f). Finally, Eq. (4g) defines that there must be a
feasible, collision-free trajectory from grasp to placement.

IV. SOLVING THE JOINT PICK AND PLACE PROBLEM

In this section we discuss our approach to instantiating
and solving the problem defined by Eq. (4). We first discuss
the details of different placement probabilities, G(-), which
we examine in our experiments. We then briefly review the
learning-based grasp method from [3] and its use as our
grasp probability F(+). Following that we present an efficient
algorithm for SDF-based collision checking built specifically
for repeated placement into clutter. We conclude this section
by discussing the choice of solver used and generation of
grasp and place priors to perform MAP inference.

A. Placement Probabilities

Given any placement cost H (x,) that accepts an object
placement configuration ,, € SE(3) as input and outputs a
scalar value that quantifies the suitability of x,, for the task
considered, with lower values being more desirable for the
task and higher values being less desirable.



We can convert this H(x,) to a probability likelil
G(p) o exp (—aH (zp))

Higher values of the o parameter make the solve
placements more desirable to the task at the expense
success, lower values of a prefer more confident gr

We now define the four placement likelihoods
this paper. We use the notation G(x,) to denote pl
likelihood and H(x,) to denote placement cost. A
we define can be converted to a likelihood using Ec

1) Target Pose: The simplest of costs, the encodes
the object to a target pose. We can define this as
minimizing the squared-Euclidean distance between
and target pose, giving the likelihood:

1
Gtarget(mp; xt) X exXp (2 (mt - :Ep)T (mt - wp)) (6)

2) Tight Packing: The cost defined in Eq. (7) aims to place
objects as close to each other as possible. This is relevant
for organizing objects into shelves or boxes. We encode this
cost as the area of the bounding box enclosing all objects in
the scene plus the area of the bounding box enclosing the
newly placed object and a reference point.

Hpack(mp;207ZE) :LE(mp7ZO7Ze) : WE(mpa ZOa ZE)
(1,1,0) - Ty(zp) - (Lo, Wo, 1) (7)

where (Lg, W) define the length and width of the bounding
box enclosing all objects in Zg, including the newly placed
object, (Lo, W¢) define the length and width of the object
point cloud Zo, and T (x,,) defines the homogeneous SE(2)
transformation matrix associated with pose x,, the place
probability for this cost is obtained using Eq. (5). Fig. (10)
shows results of planning with the tight packing cost.

3) Stacking: Allows objects to be placed on top of each
other. Given the centroid x. of the point cloud of an existing
object or stack Zg, the cost defined in Eq. (8) penalizes the
height Hp and width L of the object at place configuration
xp. The position of the object is constrained to be close to x..
while the orientations are not constrained. This task allows
for placement configurations «, to be in SE(3). Fig. (14)
shows the robot stacking five blocks using this cost.

Hyaek(p; Z0, Zp) = (1,0,1) - R(z,) - (Lo, 0, Ho)" (8)

where R(x,) = }?m(Q)Ry(w)RZ(@ and Ry, defines the
absolute values of the rotation matrix about object-axes k.

4) Place Inline: Places a sequence of objects in a straight
line given a point on the line x; and its angle of slope 6;.
We model this as a Gaussian about the  component of the
placement configuration in Eq. (9).

Ginline(mp§ T, 91) = —€exXp (7(-’13;0 - l't)TKGl (:Bp - xt))
©))
where Ky, = R.(0,)T K, R.(0;) with R,(6;) € SO(2) and

1
K, = 00

the real robot rearranging as set of cups in a straight line.

, aligns the x-coordinates. Fig. (13) shows
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Fig. 4: Overview of our grasp prediction pipeline based on [3].
A grasp classifier predicts grasp success given an object voxel
grid and grasp configuration. A mixture density network models

a distribution over grasp configurations given an input voxel grid.

B. Grasp Prediction

Following the success of recent learning-based grasp plan-
ning approaches [3,31] we define our grasp cost as the
negative log probability of grasp success —log (F'(04; Zp)).
However, we note that our framework could handle any
differentiable grasp cost encoding.

Fig. (4) shows an overview of the grasp prediction pipeline
used here. A neural network classifier defines the core of
the grasp prediction model F(0,; Zo). This outputs a scalar
value between O and 1 that represent the grasp success
probability for the given grasp 8, on the observed object Zp.
We learn this model as a 3D convolutional neural network
classifier using the approach proposed in [3]. This takes a
voxel representation of the object, converted from the point
cloud, as input and passes it through several 3D convolutional
layers to predict grasp success. The only modification we
make to the neural network structure is changing the grasp
input model to accept the one-dimensional preshape config-
uration (the finger spread) instead of the higher-dimensional
vector used for the dexterous hand in [3].

A mixture density network (MDN) comprises an addi-
tional part of the model. It takes the same voxel grid as
input and generates a distribution over grasp configurations
as output (c.f. Fig. (6)). We use this to initialize the solver
described later in this section. For further details see [3].

C. SDF Collision Constraint Computation

To account for the collision constraints in Eq (4f), we
require signed distances from the partial view points of the
objects in the environment. For efficient computation we
compute a discrete approximation of the SDF that we can
quickly update as more objects are placed into the scene.
Fig. (5) shows the steps in generating the SDF queries for
the collision constraint.

Given a point cloud of the environment we convert it
to a 3D voxel grid encoding the point cloud occupancy.
We then interpret this occupancy grid as a discretization of
the zero level set of the environment’s SDF. To compute
the positive signed distances associated with the surface
we use a brushfire algorithm to iteratively march outward
till a truncation distance from the zero level set to obtain
discrete positive distances at uniform increments. Similarly
the negative signed distances are obtained by marching
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Fig. 6: Mean configurations of the MDN top and side grasp modes,
visualized with the partial view point clouds of the objects (a) lego
blocks, (b) cracker box, (c) mustard bottle and (d) pitcher.

inward, resulting in a truncated discretized signed distance
field (DSDF). By treating the DSDF as a 3D image we apply
1D finite differentiation filters along the x, y and z-axes to
compute the gradients.

Given the discrete SDF, we can query it with any con-
tinuous point with trilinear interpolation of neighboring
points. To handle the collision constraints in the optimization
problem Eq. (4), we obtain a uniform discretized set of
points associated with the object being placed, Zp, and the
known robot geometry, R(8,) denoted as Z, and Zg(6)
respectively, where we keep the dependence on the grasp
configuration explicit. For use in the optimization we trans-
form these points Z = Z, U Zg(0,) according to the
placement pose, &, this transformation and querying is done
efficiently in parallel as defined below:

DSDFg (T'(x,)Z) (10)

min

SDF (x,, 7., Z =
(9,2, Zp) ®€2,26{%o,Lr}

where the min over both object and robot geometry accounts
for the union operation Eq. (4e). In practice we can treat
the collision constraints for the object O and the robot R
separately for the same grasp and place configurations to
have more informative gradients.

D. Optimization and Motion Planning

We perform MAP inference by solving the optimization
problem from Eq. (4) without constraint Eq. (4g). We relax
the forward kinematics Eq. (4c) and the collision SDF
constraints Eq. (4f) into the objective using an Augmented
Lagrangian method. We convert the constraint, x € P,
to bound constrain the placement configuration, x,, within
the table edges. We solve the resulting bound constrained
problem using BFGS [32] with projections to handle the
bounds on the joint angles and placement pose. We ensure
Eq. (4g) when motion planning for the arm after solving for
the pick and place configurations.

The solver is initialized with grasp configurations 990
sampled from the MDN prior described in IV-B and shown

in Fig. (6). The place prior is then obtained by convolving
the 2D binary occupancy of the augmented object-robot
geometry (Fig. ( 5e)) over the coarse 2D binary occupancy
of the place scene (Fig. ( 5d)), which outputs collision-
free place configurations (Fig. ( 5f)), these are then ranked
by predicted place probabilities and filtered by kinematic
feasibility, to obtain the initial place configuration x,,°.

Given the solutions of the grasp and place configurations
in joint space, the full mesh models of the robot, the grasp
and placement surfaces, and meshes of all objects in the
scene generated from the computed SDFs , we use Movelt!’s
constrained RRT planner [33] for planning trajectories to pre-
grasp pose, transfer from pick to place configurations, and
pre-place pose. We constrain the task space orientation of the
hand to restrict rotation of the object being during transfer
to the place pose. The pre-grasp and pre-place poses are
obtained by offsetting the end-effector by a small distance
along the negative direction of the end-effector’s x-axis. We
use a task space velocity controller during grasp approach,
lift, place approach, and post-placement retraction to soften
interaction with the environment.

V. EXPERIMENTS

We now validate the benefits of our proposed pick and
place framework (i.) by benchmarking against sequential
pick and place and a sampling based baseline, and (ii.)
qualitative experiments demonstrating the applicability of the
approach to a variety of scenarios. We experiment using a
KUKA iiwa 7-DOF arm with a Reflex Takktile 2 gripper and
a Realsense D455 camera for sensing, with an 8-core Ryzen
5800X CPU and a 12GB Nvidia RTX 3060 for computation.

A. Benchmarks

We benchmark the success rate of pick and place execu-
tions and the optimality of our joint optimization approach
against the baselines in 2 different tasks, the following
baselines are considered:

1) The pick then place approach: Where we solve for
the best grasp configuration subject to all the constraints in
Eq. 4 that apply during grasping. Then keeping this grasp
configuration fixed, the placement configuration that suits the
grasp is solved for. This is essentially done by solving the
optimization problem described in III and IV twice with the
grasp and place costs individually. This is similar to the pick-
conditioned placing in [25] with grasps in SFE(3).
2) Sampling: Similar to the approach in [8,15], We develop
a baseline that generates compatible grasp and placement
configurations using Monte Carlo sampling. First we sample
a set of grasp configurations with high success rate from
the trained grasp MDN network, and a set of placement
configurations not in collision with the environment for both
object and robot using the generated SDF, then the generated
grasp and placement configurations are refined locally for
feasibility with other constraints.

1) Place to an unreachable target: The robot is tasked
with picking an object in isolation and placing it on a corner
of a table (placement surface) that is not reachable by the



robot. We recorded 30 executions for this task with 10
different objects in varied levels of clutter ranging from 4
— 7 objects in the placement scene. We use the target pose
cost defined in Eq. (6). Since, the target pose is unreachable
and may be infeasible due to other objects being in the way,
the solver must find a feasible placement solution as close
to the target as possible while accounting for the grasp.

We report the success rate, and predicted placement prob-
abilities for each method. Fig. (7) shows the grasp and place
success rates. We call a grasp successful if the robot lifts the
object without dropping it. We call a placement successful if
the robot places it on the placement surface and all objects
remain upright. Cases where the solver fails to find a feasible
solution are failures. For this task the joint method has an
average run time of 58.21s with a standard deviation of
26.83s for varied levels of clutter, the sequential method
takes on average 71.48s (37.27s std dev); sampling takes
on average 39.93s (5.63s std dev) for 450 samples.

We see that the joint method significantly outperforms the
baselines in terms of place success with 80% of the exe-
cutions being successful, While unsurprisingly the joint and
sequential methods achieve comparable grasp success rates.
The sampling based baseline is not able to reliably generate
safe and stable placement configurations. It was often in
violation of constraints, due to the initial discretization of
the placement configuration samples and lack of gradient
information for refinement. The sequential baseline primarily
fails due to the lack of feasible placement initializations for
the fixed grasp generated. Another interesting cause of failure
was the object slipping and falling during the placement
trajectory more than the joint optimization method, we
hypothesize this could be due to the joint method preferring
more tighter grasps to avoid collisions with other objects.

Fig. (8) shows the placement likelihoods from Eq. (6) for
each of the 30 executions for all 3 methods. The likelihood
encodes the closeness of the solved placement configuration
to the target configuration with a likelihood of 1 when the
placement configuration aligns with the target and the value
approaching 0 as the distance increases. We set the placement
likelihoods of unsuccessful executions to 0. We see from the
plot that the joint method generally produces solutions closer
to the target than the baselines.. Most failures of the joint
method also fail for the baselines. We observe the leading
cause of failure being the object shifting during grasp and
transfer. Fig. (9) shows example placement executions for
each method considered in each place scene.

2) Pick from clutter: If Zg in Eq. (4) includes the point
cloud of nearby objects in the grasp scene, our framework
can enable grasping in clutter. We experimentally validate
this by having the robot pick up an object from clutter and
place it as close as possible to another cluster of objects in
the place scene as shown in Fig. (10). We use the packing
cost from Eq. (7) for placement. We drop the sampling-based
inference for this benchmark, as the grasp sampler failed to
reliably find grasps not in contact with the grasp scene clutter.

Similar to the previous task, we report the grasp and place
success rates in Fig. (11) 16 executions each for the joint and
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Fig. 7: Grasp and place success rates for the joint inference,
sequential inference and sampling methods across 30 executions,
for placing into clutter benchmark.
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i?'g. 8: Closeness of solved placement configuration to target pose
as likelihood [0, 1]. (1 being the closest and 0 being farthest away).
Likelihood of failed executions are set to zero.

sequential methods. In addition to the previous requirements
for grasp success, a successful grasp must not knock over any
objects in the scene during grasp and lift. Fig. (11) shows
that though the grasp and place success rates drop relative
to the previous experiments, joint inference still significantly
outperforms the sequential baseline, with 69% of placements
being successful. The drop in success rate compared to the
previous benchmark can be explained by the added difficulty
of grasping from clutter for both methods.

We also report the packing likelihood from Eq. (7) in
Fig. (12). Here the likelihood encodes the growth in area
of the bounding box enclosing all objects after placement.
A likelihood of 1 denotes no growth and a likelihood of 0
denotes the bounding box has grown infinitely. We report the
likelihood as 0 in cases of failed placement. Fig. (12) shows
that sequential inference performs close to joint in cases with
low levels of clutter in the placement scene, but outright fails
with denser clutter. Hence the joint method is more capable
of handling clutter in both grasp and place scenes.

For this task the joint method had an average runtime
of 82.01s (28.94 std dev). The sequential method took on
average 73.59s (39.74s. std dev). We attribute the lower
average to the placement optimization failing in many cases.
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Fig. 9: Example executions for each scene in the unreachable target
task: (a) joint inference, (b) sequential, (c¢) sampling. The robot is
shown at the placement configuration before opening its fingers.
Successful executions are outlined in green and failures in red.
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Fig. 10: Example of picking from clutter (left) and packing (right).

B. Qualitative Demonstrations

We demonstrate our joint pick and place inference in two
sequential objects placement tasks using costs from IV-A:

1) Place objects in line: Using the cost from Eq. (9). We
execute the solutions from our framework for the robot to
rearrange a set of cups in a straight line shown in Fig. (13).
2) Stacking in 6 DOF: Fig. (14) show the robot stacking a
sequence of blocks on top of each other, by allowing rotation
in all 3-axes, each block is placed on top of another to have
the minimum height possible. Thus showing our framework
is capable of solving for placement configurations in SE(3)
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Fig. 11: Grasp and place success rates for pick from clutter and
packing task for both joint and sequential inference methods.

B Joint [ Sequential

p—
095
0.90
085
0.80
2 > A 0 A k3 ° 2 2
, BN S S >~ . ’ 8‘5? P I b"%? L7 e
& ¥ S Q) S S & ¥ S & S S &
¥ & & F o F L E Y P FE P
¥ Q@ & Q\@ 6& & Q\v& & @\)e S & @\)e N

Fig. 12: Placement likelihood for the picking from clutter and
packing task, for joint and sequential inference methods.

VI. CONCLUSION

We presented an approach for planning a grasp for picking
an unknown object jointly with a downstream placement
task. By formalizing this problem as a joint inference we
were able to leverage both model-based geometric and
learning-based costs and constraints into a single framework.

Many opportunities exist for future work. One could
learn a post-grasp classifier, akin to the grasp classifier, in
order to handle placement on non-planar surfaces or other
downstream tasks (e.g. handover). Using visual or tactile
feedback during placement could account for shifts of object
pose relative to the gripper during transport.

In conclusion, our work is the first to show unified
planning of a multi-fingered grasp for pick and place
operations. Our results show the benefit of taking the
placement location into account when planning grasps.
In particular we enable higher success for placement in
cluttered scenes relative to planning placements sequentially
after a successful grasp. We also show that our method
applies to grasping in clutter scenarios without much loss
in performance.
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