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Reliable prediction of multi-finger forces is crucial for neural-machine interfaces. Various neural decoding
methods have progressed substantially for accurate motor output predictions. However, most neural decoding
methods are performed in a supervised manner, i.e., the finger forces are needed for model training, which may
not be suitable in certain contexts, especially in scenarios involving individuals with an arm amputation. To
address this issue, we developed an unsupervised neural decoding approach to predict multi-finger forces using
spinal motoneuron firing information. We acquired high-density surface electromyogram (sEMG) signals of the
finger extensor muscle when subjects performed single-finger and multi-finger tasks of isometric extensions. We
first extracted motor units (MUs) from sEMG signals of the single-finger tasks. Because of inevitable finger muscle
co-activation, MUs controlling the non-targeted fingers can also be recruited. To ensure an accurate finger force
prediction, these MUs need to be teased out. To this end, we clustered the decomposed MUs based on inter-MU
distances measured by the dynamic time warping technique, and we then labeled the MUs using the mean firing
rate or the firing rate phase amplitude. We merged the clustered MUs related to the same target finger and
assigned weights based on the consistency of the MUs being retained. As a result, compared with the supervised
neural decoding approach and the conventional SEMG amplitude approach, our new approach can achieve a
higher R? (0.77 + 0.036 vs. 0.71 & 0.11 vs. 0.61 + 0.09) and a lower root mean square error (5.16 4 0.58 %
MVC vs. 5.88 + 1.34 %MVC vs. 7.56 + 1.60 %MVC). Our findings can pave the way for the development of
accurate and robust neural-machine interfaces, which can significantly enhance the experience during human-
robotic hand interactions in diverse contexts.

1. Introduction these signals can further be translated into directives to facilitate
interaction with advanced robotic systems [6,7]. However, accurate
decoding of individual finger motor output remains a challenge for

reliable and dexterous neural-machine interactions.

Human hands exhibit remarkable dexterity, allowing us to perform a
variety of motions with high precision. With the rapid advancements in

robotics, cutting-edge prosthetics, and exoskeletal hands can now
actuate individual fingers or even joints [1], approaching the profi-
ciency of the human hand. To maximize the potential of these sophis-
ticated robotic systems in rehabilitation, assistance, or remote
operations, it is crucial to develop accurate and robust neural-machine
interfaces for intuitive interactions between humans and robots [2]. It
is possible to derive neural command signals from various sources such
as the brain [3], peripheral nerves [4], and muscles [5]. These physio-
logical signals can be interpreted for motion intention recognition, and

Recent progress has seen the advent of brain-machine interfaces
(BMIs) leveraging state-based decoding techniques [8-11]. Such de-
coders are pivotal for enhancing the performance of BMIs by dis-
tinguishing different brain states related to hand movements. For
example, Aggarwal et al. [8] combined local field potential (LFP)-based
state decoding with spike-based kinematic decoding to enhance the
accuracy of reach-to-grasp movements. Ahmadi et al. [9] applied the
common spatial pattern (CSP) algorithm on various spectral LFP
sub-bands to improve the distinction between two classes: force and rest.

* Corresponding author. Pennsylvania State University-University Park, 205 Reber Building, University Park, PA, 16802, USA.

E-mail address: xxh120@psu.edu (X. Hu).

https://doi.org/10.1016/j.compbiomed.2024.108384

Received 21 October 2023; Received in revised form 27 February 2024; Accepted 24 March 2024

Available online 27 March 2024
0010-4825/© 2024 Elsevier Ltd. All rights reserved.

Downloaded for Anonymous User (n/a) at The Pennsylvania State University from ClinicalKey.com by Elsevier on April 12,
2024. For personal use only. No other uses without permission. Copyright ©2024. Elsevier Inc. All rights reserved.


mailto:xxh120@psu.edu
www.sciencedirect.com/science/journal/00104825
https://www.elsevier.com/locate/compbiomed
https://doi.org/10.1016/j.compbiomed.2024.108384
https://doi.org/10.1016/j.compbiomed.2024.108384
https://doi.org/10.1016/j.compbiomed.2024.108384

L. Meng and X. Hu

In addition, they found that combining discrete state decoders with
continuous force decoders could improve force decoding performance.
Farrokhi et al. [10] introduced a state-based probabilistic approach to
decode hand positions from ECoG signals in Rhesus monkeys during
unilateral and bilateral movements. Although promising, two challenges
need to be tackled for practical implementation: 1) These studies relied
on invasive methods, necessitating surgical implantation of electrodes,
which raised concerns regarding human user adoptions. 2) The studies
were conducted on animal models, necessitating further validation to
ensure safety, effectiveness, and reliability in human applications.
Correspondingly, recent developments in non-invasive BMIs present a
promising alternative. For example, Hosseini et al. [11] recorded elec-
troencephalogram (EEG) data in a non-invasive manner. In this study, a
binary discrete decoder was built to detect the axis of movements using
CSP features. Along each axis, a non-parametric continuous decoder was
trained using the envelope features of EEG data to conduct an accurate
and continuous hand movement decoding. However, the process of
acquiring EEG data remains cumbersome. These issues encompass as-
pects such as setup time and complexity, wearability and comfort,
mobility restrictions, and user acceptance. Additionally, the typical low
signal-to-noise ratio of scalp EEG complicates the differentiation of
various brain activities [12]. In light of these difficulties, the exploration
of alternative methods for capturing neural signals in a relatively easy
way has become increasingly pertinent. In this context, surface elec-
tromyogram (sEMG) emerges as a compelling option.

SsEMG, a type of non-invasive neural signal obtained from the skin
surface [13], is formed as a summation of hundreds of motor unit action
potentials (MUAPs) stemming from motor unit (MU) discharges. The
number of MUAPs in a given time tends to scale with the level of
descending neural drive signal to the muscles, it is therefore feasible to
decode motion intentions using SEMG signals, which has gained signif-
icant attention in the field of neural-machine interfaces partly due to its
non-invasive nature [14-16]. Regarding decoding techniques, pattern
recognition approaches [17-20] have advanced substantially to identify
numerous hand movements [21]. However, these approaches can only
recognize pre-defined motions, and these motions cannot be recognized
in a continuous way. As an alternative approach, proportional direct
control continuously maps or converts sEMG features to the desired
motor output using regression-based approaches [15,22]. Direct control
allows users to conduct continuous control of a single degree of freedom
by varying sEMG features, which can generally be categorized as
macroscopic features and microscopic features. The macroscopic fea-
tures (such as sEMG amplitude) are extracted directly from global SEMG
signals, which have been widely adopted in myoelectric control [21].
However, the advancement of continuous finger motion prediction
using global SEMG features is constrained due to several issues [19,20],
including crosstalk arising from neighboring muscles or muscle com-
partments [23], inconsistent electrode placement over time, and biased
SsEMG recording caused by various interferences, such as superimposi-
tion of MUAPs, motion artifact, and background noise. These factors can
lead to overestimation or underestimation errors, thereby degrading the
decoding performance.

In contrast, with the advent of flexible high-density sEMG (HD-
SsEMG) electrode array techniques, it is now possible to perform neuro-
muscular information analysis from the microscopic perspective (via
motoneuron discharge trains extracted from HD-sEMG signals) [24].
Firing event trains can be employed for motor output predictions. To be
specific, the spinal motoneurons receive excitatory neural drive from the
brain. Then, the neural drive is transformed into MU firing event trains.
The population discharge frequency of MUs can be employed to indicate
the neural drive and further be used to predict motor output. Previous
studies [25-28] have developed a neural decoding-based approach and
have demonstrated the superiority of concurrently predicting finger
forces using motoneuron discharge information. Prior to finger force
predictions, because of the inevitable MU recruitment of untargeted
fingers, measure finger forces were used to refine the MU pool based on
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the correlation between finger forces and MU firing rate. This supervised
approach might not be feasible in some cases, such as scenarios
involving individuals with hand disabilities. For example, individuals
with hand amputation do not allow finger force measurement, and in-
dividuals with a brain injury may not be able to voluntarily exert
well-controlled forces on their individual fingers, making finger force
measurements unfeasible. Therefore, there is a need to develop an un-
supervised approach that can bypass the need for direct force mea-
surements, which is the focus of the current study. Such an approach can
offer a more inclusive and adaptable solution for a wider range of users,
including those with hand impairments.

In our study, each participant performed two types of tasks (i.e.,
single-finger tasks for MU extraction, and multi-finger tasks for the MU
weight assignment and decoder performance evaluation). Previous
studies revealed that a relatively large enslaving was observed between
the ring and little fingers [29-31]. Based on the SEMG recordings,
similar activation patterns can be found for the EDC muscle compart-
ments of the ring and little fingers [32]. Consequently, the ring and little
fingers were required to extend simultaneously, and the forces were
aggregated for subsequent analyses [28]. As illustrated in Fig. 1, we first
decomposed sEMG signals of single-finger tasks. Due to inevitable finger
muscle co-activation, MUs related to non-targeted fingers may also be
recruited. Those MUs should be excluded for accurate force prediction.
Therefore, we conducted a MU clustering and labeling procedure to
exclude MUs not associated with target fingers. We assigned weights to
MUs based on the consistency of the MUs being retained across
multi-finger trials. We found that our developed decoder model out-
performed existing state-of-the-art neural decoders with a higher force
prediction accuracy. Our unsupervised approach can broaden the
applicability of the neural decoding techniques. The outcomes also hold
potential benefits for a more intuitive experience during
human-machine interactions.

2. Methods
2.1. Experimental data acquisition and preprocessing

Eight subjects (1 female and 7 males) were employed for the
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Fig. 1. Overview of the research framework. The brain sends neural drive to
different sub-groups of motoneurons innervating different finger extensor
compartments. We extract the MU pool containing a mixture of MUs of different
fingers from HD-sEMG recordings. We then perform unsupervised neural
decoding procedures (MU clustering, labeling, and weight assignment) to
derive the weighted neural drive signals for individual fingers, which can be
used for continuous force predictions.
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experiment. All subjects were aged between 21 and 35 years without any
known neurological or muscular disorders. Before participation, sub-
jects signed the informed consent to acknowledge that they fully un-
derstood the research purposes, their rights, and potential risks. The
study protocol was approved by the Institutional Review Board of the
Pennsylvania State University (Approval Number: STUDY00021035).
As for the experimental setup, subjects were allowed to adjust the
height of the seating chair to their preferred comfort level. The forearm
rested on the table in a neutral position, and the wrist was restricted in a
neutral state to minimize finger force contamination. Four fingers
(index, middle, ring, and little fingers) were involved in this study. To
track the extension force of each finger, we separately secured four
fingers to four miniature load cells (SM-200 N, Interface). The measured
forces were displayed to subjects in real time as visual feedback and
were acquired at a sampling frequency of 1000 Hz. The corresponding
sEMG data were measured with an 8 x 20 high-density electrode array
(diameter of electrode: 3 mm, inter-electrode distance: 10 mm) attached
over the extensor digitorum communis (EDC) muscle, as shown in Fig. 1.
The covering area of the electrode array was determined by palpating
the EDC muscles at the time of finger extensions. The monopolar SEMG
signals were recorded using the EMG-USB2+ (OT Bioelettronica, Torino,
Italy), with a gain of 1000, a pass band of 10-900 Hz, and a sampling
frequency of 2048 Hz. Then, an independent component analysis (ICA)-
based interference detection and removal approach was adopted to
eliminate the motion artifacts with minimal distortion of the sEMG
signals [33]. This approach could effectively remove power line noise
and motion artifacts. First, SEMG signals were decomposed into inde-
pendent components using the Infomax ICA algorithm. Second, for each
separated component, power line noise was detected using spectral
analysis and mitigated through notch filtering. Motion artifacts were
addressed by a high-pass filter and peak thresholding techniques. Refer
to Section A in the Supplementary Material for the detailed techniques of

(a) Raw Single-Finger sSEMG Data
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interference removal. The final step aimed to reconstruct the sEMG
signals from the processed components. The denoised SEMG signals x =
W~1¢, where W~! denotes the original mixing matrix obtained from the
ICA process, ¢ denotes the processed components. This approach can
effectively reduce noise artifacts (as shown in Fig. 2), thereby enhancing
the signal quality for further analysis.

At the beginning of the experiment, we measured the maximum
voluntary contraction (MVC) force of each involved finger when sub-
jects performed the maximum isometric extension of the related fingers.
During the main experiment, subjects were required to perform two
types of isometric extension tasks, termed single-finger task and multi-
finger task, respectively. For the single-finger task, only one single
finger (ring and little fingers were treated as one finger) was active for
each trial, as shown in Fig. 3(a). Subjects followed a 21-s trapezoid force
target trajectory using their target finger, with instructions to minimize
the co-activation of other non-targeted fingers. Fifteen single-finger
trials (3 fingers x 5 trials/finger) in total were performed. For the
multi-finger task, we randomly selected at least two fingers for each
trial. Each target finger took turns to follow a trapezoid force trajectory
with 1-s duration of rest between trajectories, as shown in Fig. 3(b) and
(c). The duration of each trial was 36 s for the three-finger combination
and 12 s for the two-finger combinations. Twenty-eight multi-finger
trials in total were performed. Because we aimed to evaluate the multi-
finger force prediction for dexterous control of assistive robots, co-
contractions of other non-targeted fingers were allowed during the
multi-finger task.

2.2. Unsupervised neural decoding using firing rate information
As shown in Fig. 4, the overall approach included four steps: 1. Initial

MU extraction, 2. MU clustering, 3. MU weight assignment, and 4. Force
prediction performance evaluation. Briefly, we first extracted MUs using

7(c) Raw Multi-Finger sSEMG Data

1 4 . . .
10 20 30

(d) Processed Multi-Finger
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Fig. 2. Examples of the single-finger and multi-finger SEMG data before and after ICA-based interference detection and removal approach. (a) and (b) show a
representative single-finger sSEMG signal before and after artifact removal, respectively. (c) and (d) show a representative multi-finger SEMG signal before and after

artifact removal, respectively.
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Fig. 3. Designed force trajectories. (a) A 21-s trapezoid force target trajectory
for a single-finger task, where subjects were instructed to minimize co-
activation of non-targeted fingers. (b) and (c) Trapezoid force trajectories for
multi-finger tasks, with each target finger following the trajectory in succession
and a 1-s rest between trajectories. The total trial duration was 12 s for two-
finger combinations and 36 s for three-finger combinations. In the multi-
finger tasks, co-contractions were permitted to assess the force prediction ca-
pabilities for each finger combination.

the SEMG data of single-finger trials. We then clustered and labeled the
extracted MUs based on the shape similarity of the firing rate profiles
over time. For a fair comparison, we adopted a four-fold cross-validation
approach to avoid in-sample optimization bias by dividing the multi-

(a) Initial MU Extraction |
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finger trials into the refinement dataset (i.e., three folds for MU
weight assignment) and testing dataset (i.e., one fold for model evalu-
ation using the weighted MU sets).

2.2.1. MU extraction

We decomposed the HD-sEMG signals obtained during single-finger
tasks via the fast independent component analysis (FastICA) algorithm
[34], which has been widely used in recent studies [19,20,35-37] for the
blind source separation due to its relatively high computational effi-
ciency. As shown in Fig. 5, after artifact removal, we first selected 60
channels with maximum root mean square (RMS) values from 160
channels for subsequent decomposition. By taking this step, we can
decrease the computational cost and exclude channels contributing little
to the decomposition accuracy [19,20]. Then, we conducted the channel
extension procedure by a factor of 10 to increase the number of obser-
vations and whitened the extended SEMG data to remove the correlation
between observations. Lastly, we applied the FastICA algorithm to
decompose the whitened sEMG signals. Refer to Section B in the Sup-
plementary Material for the procedures of FastICA-based SEMG
decomposition. Because subjects were required to perform a
single-finger task using the same finger multiple times, we pooled the
decomposed MUs from the same finger together to form the Raw MU Set
for this finger. Correspondingly, the separation matrixes obtained using
different single-finger trials were concatenated to form By;. Duplicate
MUs were then removed in subsequent steps.

2.2.2. MU clustering and labeling

Despite instructions for subjects to isolate force output to a single
finger, co-activations of other fingers were inevitable, due to the finger
enslavement effect [29-31]. As a result, some MUs of the non-targeted
fingers were also recruited. These MUs would be considered as in-
terferences to the target finger force predictions because the separation

(b) MU Clustering and Labeling
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matrices of the single-finger tasks were applied directly to the SEMG
signals of the multi-finger tasks. We, therefore, implemented the MU
clustering and labeling processes to eliminate these MUs.

Fig. 6 shows the MU clustering and labeling procedure. For each
single-finger trial, we first obtained a MU set and calculated corre-
sponding time courses of firing rates using a sliding window. Based on
the shape similarity of paired Kalman-filtered firing rate profiles
measured by Dynamic Time Warping (DTW) [38], we employed the
agglomerative hierarchical clustering [39] approach to obtain 3 clusters.
The MU cluster having the largest mean population firing frequency was
labeled as the target MU cluster. Then, the target MUs from the same
finger were pooled together as the Clustered MU set for this finger.
Correspondingly, their separation matrixes were concatenated to form
By ;. Specifically, the MU labeling was conducted in the following pro-
cedures for each decomposed spike train set:

(1) Obtain the time course of firing rates for each MU. To accurately
estimate the time-varying firing rates of motor units (MUs), we
initially applied a sliding window (window size: 0.5 s, sliding step
size: 0.1 s) to convert spike occurrences (Fig. 7 (a)) into a firing
rate time course (Fig. 7 (b)). Given the inherent variability in
spike timing and the finite window size, this estimation process
can introduce noise, manifested as sporadic, large-amplitude
fluctuations in the estimated firing rates, as shown in Fig. 7 (c).
To address these issues, we employed a Kalman filter smoothing
process, tailored to our specific needs and data characteristics
[40]. In our context, it was used to refine our firing rate estimates
by iteratively predicting and correcting the state (i.e., the true
firing rates) based on both the system’s dynamics and the current
noisy observations (i.e., the initially estimated firing rates). As
suggested by the previous study [40], the implementation of the
Kalman filter in our analysis was characterized by four key pa-
rameters: the observation covariance (0.5), system covariance
(0.1), observation matrix (1), and system matrix (1). If not
specified, the same Kalman filter settings were applied in the
subsequent analyses.

(2

—

Calculate the distance between two time courses of firing rates
using DTW. One key factor affecting the performance of clus-
tering is the way that quantifies the similarity between two
datasets. Given the characteristics of MU recruitment and the
impact of muscle fatigue, certain MUs may not synchronize with
the variations in force, resulting in temporal shifts of the plateau
phase. To address this issue, we adopted the DTW technique to
measure the similarity of paired time courses of firing rates as the
inter-object distance. DTW is a well-known approach to measure
the similarity of time series sequences. Suppose two time series
sequences, u = {uy, Uy, -+, U, -+, Up} and v = {v1,Va, -, Vj, -+, Vg},
where p and q denote the number of samples in # and v, respec-
tively. DTW aims to minimize the difference between the two
time series by the following alignment procedure: A distance
matrix D € RP*? is built, where the value of (i,j) element in D is
the Euclidean distance between u; and v;. Then, DTW solves a

Raw Time Courses Kalman Filtered
of Firing Rates  Time Courses of Firing Rates
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minimum-distance path starting from D(0, 0) to D(p, q) with two
constraints: 1) neighboring points should be spatially adjacent,
and 2) the warping path should move monotonically over time.

(3) Cluster MUs by generating an agglomerative hierarchical cluster
tree. The agglomerative hierarchical clustering [39] was a
bottom-up clustering approach where each object (time courses
of firing rate) was initially considered as a separate cluster. Then,
two clusters with the shortest distance among all inter-cluster
distances were merged as a new cluster until a tree of clusters
was formed. We adopted the group average linkage as the strat-
egy of measuring the inter-cluster to minimize the impact of
potential outlier values. Based on the number of fingers involved
in this study, the final number of clusters was set to 3. Compared
with three prevailing unsupervised -clustering techniques
(KMeans++, KMedoids and AutoEncoder), we can achieve the
best force prediction performance using the agglomerative hier-
archical clustering. Refer to Section E in the Supplementary
Material for details.

(4) Determine the cluster for the target finger. After the clustering
procedure, we calculated the mean population firing frequency of
each cluster. As subjects were required to follow the force target
trajectory using the target finger (with efforts to minimize the co-
activation of other fingers) in the single-finger tasks, the MU
cluster with the largest mean population firing frequency was
considered to have a close association with the target finger and
thus were selected for subsequent analyses.

The same procedures were performed for each single-finger trial.
MUs from clusters related to the same finger were pooled together.
Accordingly, three separation matrixes were obtained for the index,
middle, and ring-little fingers, i.e., By 1, B1 m and B g1, respectively. This
was the preliminary categorization or labeling of MUs into different
fingers. There is a high possibility that duplicated MUs exist in the
clustered MU pool, those MUs would be removed in the subsequent
analyses.

A representative example of the clustering effect is shown in Fig. 8.
MUs in Fig. 8(c) and (d) and 8(e) were groups clustered from Fig. 8(b).
Based on the time course of firing rates, it was clear that MUs in Fig. 8(c)
and (e) and were not associated with the forces of the target finger.
Correspondingly, those MUs were removed from subsequent analyses.

2.2.3. MU weight assignment

Because the FastICA decomposition is time-consuming and not
feasible for real-time neural decoding, we directly applied the separation
matrixes By (i.e., Bi1, Bim or Byg.) obtained from the single finger
tasks to decompose the refinement dataset of the multi-finger tasks, as
shown in Fig. 9. This approach has been used for real-time decoding to
obtain the firing events of specified MUs [40]. Suppose there were m
multi-finger trials involving [ finger in the refinement dataset, and a total
of n MUs were decomposed using B; ;. We used the same sliding window
as in the clustering procedure to obtain the time courses of firing rates.
Then, the Kalman filter was applied to smooth the filtered firing rate
profiles. Because some MUs may be activated for the movement of more
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(d) Kalman-Smoothed Firing Rate

Fig. 7. A representative example of transforming the MU spike train (a) into a time course of firing rates (b) and Kalman filtering performance. (a) Spike train. (b)
Time course of firing rates. (c) Raw time course of firing rate. (d) Kalman-smoothed firing rate. (b) Is the detailed representative of (c) from 11s to 13.5s.

than one finger, we assigned weights to MUs based on their contribu-
tions over trials using an unsupervised approach. For each firing rate
profile, if the mean firing rate during the plateaus of the I finger was
greater than the mean firing rate during the plateaus of other active
fingers, we designated this MU to be dominated in the I-finger plateau
period. The percentage of this MU retained across the m trials was used
as the weight for this MU. To improve the effectiveness of decomposing
MUs, we removed the MUs whose weights were 0. Then, we pooled the
rest of the MUs together, obtaining the separation matrix B,; and cor-
responding weight vector. The detailed procedures to assign weights are
as follows:

(1) Calculate the source signals s;; (i = 1,2,---,n;;) by applying the
separation vectors of Bj; to multi-finger refinement dataset,
where n;; is the number of separation vectors in Bj;. Obtain
firing event trains #;; from s;;, remove the low-quality firing event
trains (SIL<0.5), and obtain the time courses of firing rate (f; ) for
each retained MU, where 1 < i < the number of retained MUs.

(2) Select MUs closely related to the target finger. The rationale for
this selection is that if the current MU is closely related to the
target finger, the corresponding mean firing rate during the pla-
teaus of the target finger should be higher than that during the
plateaus of other untargeted fingers. Take one trial of the two-
finger movements as an example, and suppose the index is the
first finger shown in Fig. 3(b), for each MU obtained from B ;, we
obtained the corresponding time courses of the firing rate f;;. If
the mean firing rate of f;; during the plateau period (i.e., 2s-4s) of
the index finger force was larger than the mean firing rate of f;;
during the plateau period (i.e., 8s-10s) of the force trajectories of
the second finger, the MU was retained for the next step.

(3) Calculate the weight for each MU. Due to variations over different
multi-finger trials, the retained MUs may vary with trials. To get a
generalized MU set and emphasize the contribution of MUs
closely related to the target finger, we calculated the weight for

each MU as how often this MU was retained in the MU sets, i.e.,

the number of times this MU was retained
the number of trials for weighting

separation matrix By to B,; by excluding the separation vectors

. Accordingly, we updated the

not meeting the requirement of step 2 across all included
refinement trials. The related weight vector w,; was associated to
the separation vectors in B,; for the index finger.

To intuitively illustrate this part, we presented the population
discharge frequency for the movement of the middle finger (Fig. 10).
The MUs were ranked based on their assigned weights. The height of
each spike train was multiplied by its weight. As shown in Fig. 10, MUs
with high weights were more specific to the target finger than those with
low weights. By emphasizing the MUs with high contributions and
reducing the effect of cross-finger MUs, the force prediction accuracy
can be improved.

2.2.4. Force prediction

Fig. 11 Shows the force prediction procedure for a testing trial. We
first decomposed the testing trial using the three separation matrixes
(B2, index> B2, middle> B2 ring1ittte) for the index, middle, and ring-little finger,
respectively. Then, we obtained the population firing frequency of each
finger by multiplying the spike trains with their corresponding weights
and summed the weighted spike trains. Same as the previous study [28],
a linear model was built to map the neural drive signals to the force of
the target finger of each finger. Note that the measured force was only
used for the performance evaluation without being utilized in any of the
MU extraction, clustering, labeling, or weighting procedures. Because
the neural drive signals are generally linear to the finger force, users can
easily scale the prediction models by their subjective perception of
finger force levels. The practical use is not affected in scenarios where
the actual finger force cannot be measured.

For each multi-finger trial in the testing dataset, we constructed three
separate models to estimate the forces of the three fingers. Using the [
finger as an example, we first obtained the source signals of MUs using
B, and excluded low-quality firing event trains (SIL<0.6). Then, we
removed duplicated source signals. Some source signals may represent
the activity of the same MU. After regulating the time delay within +2.5
ms, any pair of two firing event trains was considered as a duplicate if
80% of synchronized spike events were detected. The duplicated source
signal with a lower SIL was removed from subsequent analyses.
Accordingly, the time courses of firing rates and the weight vector
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Fig. 8. A representative example of the population firing frequency of clustered MUs. (a) Measured force of the representative ring-little (RL) finger task. We ob-
tained the raw MUs (b) by decomposing the SEMG signals from the RL finger task. The raw MUs were then clustered into three groups, shown in (c), (d), and (e),
respectively. The MU set in (d) having the largest population firing frequency was selected as the MU set closely related to the target finger.
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updated as Fy = [f1 ;,fo, . fip gl @0d wy = (w11, wag, -, Wi, - Wa 1], predict the force using a linear regression model.

where f;; and w;; denote the time course of firing rate and the weight for

the i th MU, n; denotes the number of retained high-quality MUs after

this step. The neural drive time series signals D; = ) f;; e w;;. After
i

smoothing D; with the Kalman filter, we used the neural drive signals to

Force[ =a;D; + b, (@)

where Force; indicates the estimated force of the index finger, g; and b;
represent the slope coefficient and intercept of the model, respectively.
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Fig. 10. Representative population discharge frequency using weighted MUs for the middle finger. The yellow trajectory represents the weighted neural drive. The
MUs were ranked based on their weights, and the heights of the spike trains denote the relative weight values.
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Fig. 11. Force prediction procedure for a testing trial.

The performance of force prediction was quantified using the coef-
ficient of determination (R?) and the root mean square error (RMSE)
value between the measured force and the estimated force. We selected
the R? and RMSE as two complementary metrics due to their relevance
and widespread acceptance in the field of neural decoding and motor
control prediction. The R? metric provides insight into the proportion of
variance in the dependent variable (multi-finger forces) that is predict-
able from the independent variables. The equation for R?> can be
expressed as:

R=1-5—— (@)

where y; denotes the actual value of the i th observation, y; denotes the
predicted value for the i th observation, y = 13°7 , y; denotes the mean of
the actual values and n denotes the number of observations.

RMSE, on the other hand, provides a clear measure of the magnitude
of prediction errors, offering an intuitive understanding of the average
error magnitude in the same units as the predicted variable. Mathe-
matically, RMSE is defined as follows:

RMSE= |- > " (i = 3)° 3)

where y; denotes the actual value of the i th observation, y; denotes the
predicted value for the i th observation and denotes the number of ob-
servations.

2.3. Alternative methods for comparison

2.3.1. Unsupervised neural decoding using phase amplitude

Considering subtle changes of a time-dependent variable can be
revealed in the phase plane (the variable against one time derivative of
the variable), we provided an alternative perspective for force predic-
tion using the phase amplitude instead of the firing rate information.
Given the time course of firing rate f, the corresponding time course of

N 2
phase amplitude can be obtained via {/f2 + (Af/ At) . To explore the

force prediction performance using the phase amplitude, all the firing
rates used in Section 2.2 were replaced with the phase amplitudes for the
MU clustering, labeling, weight assignment, and force prediction
calculations.

2.3.2. Supervised neural decoding

A recent study [28] developed a supervised neural decoding
approach for force prediction, in which the measured forces were used
for the MU pool refinement. The supervised neural decoding approach
first extracted MUs from single-finger tasks. MUs related to the same
target finger were pooled together. The key step was to calculate the
average R? between each MU and three finger forces across trials in the
refinement dataset. If MUs had the highest mean R? with the target
finger force, the MUs were retained for the force prediction. Refer to
Section C in the Supplementary Material for detailed procedures of force
prediction using the supervised approach.
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2.3.3. sSEMG amplitude-based force prediction

The force prediction was also conducted using a conventional SEMG
amplitude method (a preferred feature for force prediction [41]) as a
comparison. The interference from channel-crosstalk on sSEMG ampli-
tude could potentially introduce a bias in force prediction. The finger
muscle compartments also have different spatial distributions. There-
fore, we performed a channel-refinement procedure developed in a
previous study [28] to minimize the channel interference. To be specific,
we first selected top 60 channels with maximum average sEMG ampli-
tude (RMS value) for three fingers based on single-finger trials (motion
artifacts of SEMG signals have been removed prior to the RMS calcula-
tion). Then, we calculated the average R? between the sSEMG amplitude
of each channel and three measured forces across trials in the refinement
dataset. We retained the channels having a higher R? with the target
finger than that with other fingers for the final force prediction. Refer to
Section D in the Supplementary Material for detailed procedures of
sEMG amplitude-based force prediction.

2.4. Statistical analysis

We performed statistical analyses to evaluate the force prediction
performance. First, if the compared groups satisfied the Gaussian dis-
tribution assumption (indicated by the Shapiro-Wilk test) and met the
assumption of sphericity (indicated by the Mauchly’s test, for compar-
isons involving at least three groups), we adopted the parametric anal-
ysis (paired t-test for two group comparison, and Repeated Measures
Analysis of Variance (ANOVA) for multi-group comparisons). Other-
wise, the non-parametric analysis approach (Wilcoxon signed-rank test
or Friedman test) was applied for the statistical analysis. When appli-
cable after ANOVA or Friedman tests, Holm-Bonferroni correction was
employed to avoid multiple-comparison errors. The significance level
was set to 0.05 and only the corrected p values were reported in this
study.

Computers in Biology and Medicine 173 (2024) 108384

3. Results

3.1. Comparison of the unsupervised and supervised neural decoding
approaches

First, we were able to predict multi-finger force with a computational
delay of 79 + 31.5 ms using an AMD Ryzen 7 6800H @ 3.2 GHz with 64
GB of memory environment. This delay is sufficient to meet the daily
needs of real-time human-robot interactions, for which an acceptable
loop delay ranges between 100 ms and 150 ms [42,43]. Force prediction
performances using unsupervised, supervised, and sEMG amplitude
(SEMG-Amp) approaches are shown in Fig. 12. The unsupervised
approach was implemented using the firing rate information based on
the weighted MU. Fig. 12(a) shows a representative force prediction
using the three approaches. The unsupervised or supervised
neural-decoding approaches can accurately predict the measured force.
In contrast, the force predictions using the SEMG-Amp deviated sub-
stantially from the measured forces, resulting in large estimation errors.
As shown in Fig. 12(b), the overall average R? values using unsuper-
vised, supervised, and sEMG-Amp methods were 0.77 + 0.036, 0.71 +
0.11, and 0.61 + 0.09, respectively. The overall average RMSE values
(Fig. 12(c)) were 5.16 + 0.58 %MVC (unsupervised), 5.88 + 1.34 %
MVC (supervised), and 7.56 + 1.60 %MVC (SEMG-Amp). One-way
repeated-measures ANOVA demonstrated significant differences for
both R? (F (2,14) = 12.29, p < 0.001) and RMSE (F (2,14) = 10.61,p =
0.0016). Further post-hoc analyses revealed that the R? using either
unsupervised or supervised approaches was significantly larger than
that using the SEMG-Amp approach (both p < 0.05). Besides, the R?
using the unsupervised method was significantly smaller than that using
the sSEMG-Amp approach (p = 0.0051).

The force prediction performances for each finger are shown in
Fig. 12(d) and (e) and. The comparisons of R? were significantly
different for the index finger (F (2,14) = 5.46, p = 0.018) and the ring-
little finger (F (2,14) = 22.05, p < 0.001). Further post-hoc analyses
revealed that R? obtained using either the unsupervised or supervised
method was significantly better than that using the SEMG-Amp method
for the ring-little finger (both p < 0.01). Besides, the R? value obtained
using unsupervised approach was significantly larger than that using
SEMG-Amp approach for the index finger (p = 0.01). For the comparison
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Fig. 12. Comparison of the unsupervised and supervised neural decoding approaches. (a) A representative force prediction using the unsupervised neural decoding,
supervised neural decoding and sEMG amplitude-based approach. (b) Overall Interquartile range of R? value. (c) Overall Interquartile range of RMSE value. In both
(b) and (c), each colored dot represents the average R? or RMSE value for a subject. (d) Average R? value for each finger. (e) Average RMSE value for each finger. The
length of error bars indicates the standard error. * denotes 0.01< p <0.05, ** denotes 0.001<p <0.01, *** denotes p <0.001.
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of RMSE, the Friedman test demonstrated a significant difference for the
ring-little finger (¥® (2) = 13, p = 0.0015). The pair-wise comparison
showed that the RMSE value obtained using either the unsupervised or
the supervised approach was significantly smaller than that using the
SsEMG-Amp approach for the ring-little finger (both p < 0.05). Besides,
the RMSE value using the unsupervised approach was significantly
lower than that using the supervised approach for the ring-little finger
(p = 0.027).

3.2. Evaluating the effect of MU clustering and weighting procedures

We compared the performance of three different unsupervised neural
drive-based force prediction methods (Fig. 13): The first directly used
MUs (termed raw MU) decomposed from single-finger tasks without any
clustering and weighting, the second clustered and labeled MUs (termed
clustered MU) related to the target fingers, and the third assigned a
weight to each MU (termed weighted MU). We initially averaged the
performance index (R? value and RMSE value) across all trials in the
testing dataset, and then across all fingers. The overall average R? values
(Fig. 13(a)) were 0.77 + 0.036 (weighted MU), 0.69 + 0.063 (clustered
MU), and 0.68 + 0.063 (raw MU). The overall average RMSE values
(Fig. 13(b)) were 5.16 + 0.58 %MVC (weighted MU), 6.37 + 0.91 %
MVC (clustered MU), and 6.56 + 0.90 %MVC (raw MU). One-way
repeated-measures ANOVA demonstrated that the force prediction
performances using different methods were significantly different in
both R? (F (2,14) = 19.09, p <0.001) and RMSE (F (2,14) = 19.79, p
<0.001). Further post-hoc test revealed that the R? using the weighted
MU was significantly larger than those using the clustered MU and the
raw MU (both p <0.01), and the R? value using the clustered MU was
significantly higher than that using the raw MU (p = 0.013). Similarly,
the RMSE using the weighted MU was significantly smaller than those
using the clustered MU and the raw MU (both p <0.01). The RMSE using
the clustered MU was also significantly lower than that using the raw
MU (p = 0.006).

We also compared the force prediction performance for individual
fingers, as shown in Fig. 13(c) and (d) and. For the comparison of R?,
since the results using the cluster MU and raw MU did not follow
Gaussian distribution, we used the Friedman to test the overall
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Fig. 13. Force prediction performance using three different MU-based neural
decoding methods. (a) Average R? value for each subject. (b) Average RMSE
value for each subject. Each colored circle represents the mean R? in (a) and
RMSE value in (b) of individual subjects. (c) Interquartile range of R? value for
each finger. (d) Interquartile range of RMSE value for each finger. The error
bars in (a) and (b) denote the standard error. The “+” in (¢) and (d) denote
outliers. * denotes 0.01< p <0.05, ** denotes 0.001<p <0.01, *** denotes
p <0.001.
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difference, and conducted the pair-wise comparison using the Wilcoxon
signed-rank test for the index finger. Statistical analysis revealed that
significant differences were observed for each finger (i.e., index: y? (2)
= 9.75, p = 0.0076, middle: F (2,14) = 12.8, p <0.001, ring-little: F
(2,14) = 7.34, p = 0.007). Further post-hoc analyses showed that the R?
value obtained using the weighted MU was significantly larger than that
using either the clustered MU or the raw MU (both p <0.05) for each
finger. Similarly, significant differences in the RMSE values were
observed for each finger (i.e., index: y? (2) = 7, p = 0.03, middle: F
(2,14) = 13.48, p <0.001, ring-little: ¥> (2) = 10.75, p = 0.0046). The
post-hoc analyses showed that the RMSE value using the weighted MU
was significantly smaller than that using either the clustered MU or the
raw MU (both p <0.05) for each finger. The RMSE using the clustered
MU was also significantly lower than that using the raw MU for the
middle finger (p = 0.011).

3.3. Comparison of performance using firing rate and phase amplitude

We explored the force prediction performance using the phase
amplitude of the firing rate based on the weighted MU, as shown in
Fig. 14. The average R? values obtained using the firing rate and phase
amplitude were 0.77 £+ 0.036 and 0.75 + 0.022, respectively (Fig. 14
(a)). The paired t-test showed no significant difference for the R? using
the firing rate and the phase amplitude (¢(7) = 1.18, p = 0.28). The
average RMSE using the firing rate and phase amplitude were 5.16 +
0.58 %MVC and 5.58 + 0.76 %MVC, respectively (Fig. 14(b)). The
paired t-test showed no significant difference for the RMSE using the
firing rate and the phase amplitude (¢t (7) = -1.44, p = 0.19).

To investigate finger-specific difference, the two measurements were
averaged across trials in the testing dataset (Fig. 14(c) and (d)) for in-
dividual fingers. For the R? evaluation, the obtained results for the
middle finger using phase amplitude did not follow Gaussian distribu-
tion (p = 0.037). Accordingly, the Wilcoxon signed-rank test showed no
significant difference between the firing rate and phase amplitude for
the middle finger (p = 0.38). The paired t-test revealed that the firing
rate was significantly better than the phase amplitude for the ring-little
finger (¢(7) = 3.57, p = 0.0045), but no significant difference was found
between the two approaches for the index finger (¢(7) =-0.68, p = 0.52).
For the RMSE evaluation, the obtained results using the firing rate for
the index finger (p = 0.047) and the ring-little finger (p = 0.033) did
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Fig. 14. Force prediction performances using the firing rate and the phase
amplitude. (a) Overall average R? value. (b) Overall average RMSE value; (c)
Average R? value for each finger; (d) Average RMSE value for each finger. The
length of the error bars indicates the standard error. * denotes 0.01< p <0.05,

** denotes 0.001<p <0.01.
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not follow Gaussian distribution. Statistical analysis indicated that the
firing rate was significantly better than phase amplitude for the ring-
little finger (Wilcoxon signed-rank test: p = 0.012), and no significant
difference between the two approaches for the index finger (Wilcoxon
signed-rank test: p = 0.46) and the middle finger (paired test: t(7) =
-0.89, p = 0.41).

4. Discussion

In this study, we aimed to decode the sEMG signals for concurrent
and continuous multi-finger force prediction in an unsupervised
manner. We decomposed HD-sEMG signals using the FastICA algorithm
to extract raw MUs from single-finger tasks. The decomposed MUs were
then clustered and labeled for individual fingers. The clustered MUs
were assigned weights based on the consistency of being retained during
the plateau period of the refinement dataset. The population firing fre-
quency of weighted MUs was utilized for the extension force prediction
of each finger. The results revealed that the force prediction accuracy
improved significantly using MU clustering and weighting procedures.
The outcomes demonstrated the feasibility of unsupervised neural
decoding using MU firing activities.

The improvement of force prediction performance using the unsu-
pervised neural decoding may arise from several factors. First, it is
common to recruit MUs in muscle compartments associated with
untargeted fingers [29-31] due to the enslavement effect across fingers.
The MU clustering procedure can remove some of these MUs prior to
neural drive calculation. Second, the force prediction was further
improved using the weighted MUs. The weighting procedure can assign
large weights to MUs specially aligned with the target finger. Finally, the
clustering and weighting procedures may also remove or attenuate the
effect of inaccurate MU spikes. Although the separate vectors were
filtered initially. Earlier work has shown that the SIL index only has a
moderate correlation with the spike detection accuracy [44,45]. The
clustering procedure could remove these MUs from the pool, and the
weighting procedures can assign smaller weights to these MUs poten-
tially due to inconsistent MU presence across activation trials.

Our study revealed that prediction accuracy (R?) using the neural
decoding approaches was significantly better than that using the sSEMG-
Amp method, which was attributed to multiple factors. The finger
muscle compartments are spatially close to each other and are even
partially overlapped from the viewpoint of skin surface, some SEMG
channels are corrupted due to crosstalk of multiple muscle compart-
ments, and this can lead to inaccurate force predictions. Even though the
channel refinement in the SEMG-Amp approach reduced the influence of
crosstalk, remaining channels may still be impacted by this interference.
As a comparison, the neural decoding methods decomposed MUs from
single-finger tasks. This critical step in classifying or clustering MUs
specific to each finger ensured that neural drive signals can be concur-
rently and independently estimated for each finger even when muscle
compartments were located in close proximity to each other. Compared
with the supervised approach, the unsupervised method can achieve a
competitive result. The variability in performance between subjects
using our unsupervised prediction model was found to be lower than
that observed with the supervised approach, demonstrating its enhanced
consistency and robustness across different individuals. As a crucial step,
the supervised neural decoding distinguished MUs specific to the target
finger by comparing the R? between the time course of one MU with the
force of each finger. In contrast, we introduced the clustering step to
exclude MUs not related to the target finger. Then, to emphasize the MUs
with a high consistency of MU inclusion in the target finger activation
trials and minimize the impact of cross-finger MUs, we performed the
weighting step by assigning different weights to clustered MUs. Our
results show that both the clustering and weighting procedures can
contribute to accurate force predictions.

As an alternative to MU firing rate, we also used the phase amplitude
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to perform MU clustering, weighting, and finger force predictions. The
phase amplitude in the phase plane incorporates the amplitude of the
firing rate as well as the change of firing rate. However, it was unex-
pected that the phase amplitude of the firing rate did not outperform the
direct firing rate calculation for finger force predictions. The phase
amplitude and firing rate time series signals are highly correlated, which
can partly explain their similar performance in force predictions. In our
current study, we did not incorporate the phase angle information at any
stage of the algorithm procedures. It is worth exploring how dynamic
information of the MU firing activities can be further leveraged to
improve the decoding accuracy.

Although we have achieved a promising result using the unsuper-
vised approach, this study has limitations. First, only isometric finger
force was included. In future studies, we can validate the developed
unsupervised method for finger force prediction during dynamic finger
movement tasks. Second, one advantage of the unsupervised approach
was that it was suitable for individuals with hand disabilities. However,
all the participants in the current study were able-bodied individuals.
For transradial amputees, the available stump areas may not be suited
for the electrode array placement. Besides, the neuromuscular system
might undergo changes after amputation. The way muscles receive and
interpret signals in the brain can be different from able-bodied people. In
future work, we can employ subjects with hand disabilities to further
test the developed unsupervised approach. Third, our study focused on
the four fingers, excluding the thumb due to its unique anatomy and
movement capabilities, which our sEMG data from forearm muscles
could not accurately capture, thus limiting our analysis. In future work,
we can extend our data collection to include sEMG signals from the
thumb’s intrinsic muscles, which will enable us to validate our neural
decoding algorithms on the thumb force prediction. Fourth, the sepa-
ration matrix of the single-finger tasks was directly applied to the multi-
finger tasks. However, it is likely that new MUs were active during the
multi-finger tasks, but our current procedure could not identify these
new MUs. Further investigations that can capture these newly recruited
MUs using an adaptive decomposition algorithm [46] may help improve
the decoder accuracy. Lastly, we will conduct further validation using
suitable single-finger and multi-finger sEMG datasets when they become
available.

5. Conclusion

In summary, we developed an unsupervised neural decoding
approach to predict multi-finger forces concurrently and continuously in
real-time, in which MUs extracted from the single-finger tasks were
clustered and weighted for individual fingers in an unsupervised
manner. Our new MU clustering and refining approach has been proven
to be effective for accurate finger force prediction. Compared with the
supervised neural decoding approach, the proposed method can achieve
a consistently high accuracy across participants. Our findings offer a
foundation for expanding the scope of the neural-machine interface.
With further improvement, our approach has the potential to help
improve or restore motor functions in individuals with hand disabilities.
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