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A B S T R A C T   

Reliable prediction of multi-finger forces is crucial for neural-machine interfaces. Various neural decoding 
methods have progressed substantially for accurate motor output predictions. However, most neural decoding 
methods are performed in a supervised manner, i.e., the finger forces are needed for model training, which may 
not be suitable in certain contexts, especially in scenarios involving individuals with an arm amputation. To 
address this issue, we developed an unsupervised neural decoding approach to predict multi-finger forces using 
spinal motoneuron firing information. We acquired high-density surface electromyogram (sEMG) signals of the 
finger extensor muscle when subjects performed single-finger and multi-finger tasks of isometric extensions. We 
first extracted motor units (MUs) from sEMG signals of the single-finger tasks. Because of inevitable finger muscle 
co-activation, MUs controlling the non-targeted fingers can also be recruited. To ensure an accurate finger force 
prediction, these MUs need to be teased out. To this end, we clustered the decomposed MUs based on inter-MU 
distances measured by the dynamic time warping technique, and we then labeled the MUs using the mean firing 
rate or the firing rate phase amplitude. We merged the clustered MUs related to the same target finger and 
assigned weights based on the consistency of the MUs being retained. As a result, compared with the supervised 
neural decoding approach and the conventional sEMG amplitude approach, our new approach can achieve a 
higher R2 (0.77 ± 0.036 vs. 0.71 ± 0.11 vs. 0.61 ± 0.09) and a lower root mean square error (5.16 ± 0.58 % 
MVC vs. 5.88 ± 1.34 %MVC vs. 7.56 ± 1.60 %MVC). Our findings can pave the way for the development of 
accurate and robust neural-machine interfaces, which can significantly enhance the experience during human- 
robotic hand interactions in diverse contexts.   

1. Introduction 

Human hands exhibit remarkable dexterity, allowing us to perform a 
variety of motions with high precision. With the rapid advancements in 
robotics, cutting-edge prosthetics, and exoskeletal hands can now 
actuate individual fingers or even joints [1], approaching the profi
ciency of the human hand. To maximize the potential of these sophis
ticated robotic systems in rehabilitation, assistance, or remote 
operations, it is crucial to develop accurate and robust neural-machine 
interfaces for intuitive interactions between humans and robots [2]. It 
is possible to derive neural command signals from various sources such 
as the brain [3], peripheral nerves [4], and muscles [5]. These physio
logical signals can be interpreted for motion intention recognition, and 

these signals can further be translated into directives to facilitate 
interaction with advanced robotic systems [6,7]. However, accurate 
decoding of individual finger motor output remains a challenge for 
reliable and dexterous neural-machine interactions. 

Recent progress has seen the advent of brain-machine interfaces 
(BMIs) leveraging state-based decoding techniques [8–11]. Such de
coders are pivotal for enhancing the performance of BMIs by dis
tinguishing different brain states related to hand movements. For 
example, Aggarwal et al. [8] combined local field potential (LFP)-based 
state decoding with spike-based kinematic decoding to enhance the 
accuracy of reach-to-grasp movements. Ahmadi et al. [9] applied the 
common spatial pattern (CSP) algorithm on various spectral LFP 
sub-bands to improve the distinction between two classes: force and rest. 
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In addition, they found that combining discrete state decoders with 
continuous force decoders could improve force decoding performance. 
Farrokhi et al. [10] introduced a state-based probabilistic approach to 
decode hand positions from ECoG signals in Rhesus monkeys during 
unilateral and bilateral movements. Although promising, two challenges 
need to be tackled for practical implementation: 1) These studies relied 
on invasive methods, necessitating surgical implantation of electrodes, 
which raised concerns regarding human user adoptions. 2) The studies 
were conducted on animal models, necessitating further validation to 
ensure safety, effectiveness, and reliability in human applications. 
Correspondingly, recent developments in non-invasive BMIs present a 
promising alternative. For example, Hosseini et al. [11] recorded elec
troencephalogram (EEG) data in a non-invasive manner. In this study, a 
binary discrete decoder was built to detect the axis of movements using 
CSP features. Along each axis, a non-parametric continuous decoder was 
trained using the envelope features of EEG data to conduct an accurate 
and continuous hand movement decoding. However, the process of 
acquiring EEG data remains cumbersome. These issues encompass as
pects such as setup time and complexity, wearability and comfort, 
mobility restrictions, and user acceptance. Additionally, the typical low 
signal-to-noise ratio of scalp EEG complicates the differentiation of 
various brain activities [12]. In light of these difficulties, the exploration 
of alternative methods for capturing neural signals in a relatively easy 
way has become increasingly pertinent. In this context, surface elec
tromyogram (sEMG) emerges as a compelling option. 

sEMG, a type of non-invasive neural signal obtained from the skin 
surface [13], is formed as a summation of hundreds of motor unit action 
potentials (MUAPs) stemming from motor unit (MU) discharges. The 
number of MUAPs in a given time tends to scale with the level of 
descending neural drive signal to the muscles, it is therefore feasible to 
decode motion intentions using sEMG signals, which has gained signif
icant attention in the field of neural-machine interfaces partly due to its 
non-invasive nature [14–16]. Regarding decoding techniques, pattern 
recognition approaches [17–20] have advanced substantially to identify 
numerous hand movements [21]. However, these approaches can only 
recognize pre-defined motions, and these motions cannot be recognized 
in a continuous way. As an alternative approach, proportional direct 
control continuously maps or converts sEMG features to the desired 
motor output using regression-based approaches [15,22]. Direct control 
allows users to conduct continuous control of a single degree of freedom 
by varying sEMG features, which can generally be categorized as 
macroscopic features and microscopic features. The macroscopic fea
tures (such as sEMG amplitude) are extracted directly from global sEMG 
signals, which have been widely adopted in myoelectric control [21]. 
However, the advancement of continuous finger motion prediction 
using global sEMG features is constrained due to several issues [19,20], 
including crosstalk arising from neighboring muscles or muscle com
partments [23], inconsistent electrode placement over time, and biased 
sEMG recording caused by various interferences, such as superimposi
tion of MUAPs, motion artifact, and background noise. These factors can 
lead to overestimation or underestimation errors, thereby degrading the 
decoding performance. 

In contrast, with the advent of flexible high-density sEMG (HD- 
sEMG) electrode array techniques, it is now possible to perform neuro
muscular information analysis from the microscopic perspective (via 
motoneuron discharge trains extracted from HD-sEMG signals) [24]. 
Firing event trains can be employed for motor output predictions. To be 
specific, the spinal motoneurons receive excitatory neural drive from the 
brain. Then, the neural drive is transformed into MU firing event trains. 
The population discharge frequency of MUs can be employed to indicate 
the neural drive and further be used to predict motor output. Previous 
studies [25–28] have developed a neural decoding-based approach and 
have demonstrated the superiority of concurrently predicting finger 
forces using motoneuron discharge information. Prior to finger force 
predictions, because of the inevitable MU recruitment of untargeted 
fingers, measure finger forces were used to refine the MU pool based on 

the correlation between finger forces and MU firing rate. This supervised 
approach might not be feasible in some cases, such as scenarios 
involving individuals with hand disabilities. For example, individuals 
with hand amputation do not allow finger force measurement, and in
dividuals with a brain injury may not be able to voluntarily exert 
well-controlled forces on their individual fingers, making finger force 
measurements unfeasible. Therefore, there is a need to develop an un
supervised approach that can bypass the need for direct force mea
surements, which is the focus of the current study. Such an approach can 
offer a more inclusive and adaptable solution for a wider range of users, 
including those with hand impairments. 

In our study, each participant performed two types of tasks (i.e., 
single-finger tasks for MU extraction, and multi-finger tasks for the MU 
weight assignment and decoder performance evaluation). Previous 
studies revealed that a relatively large enslaving was observed between 
the ring and little fingers [29–31]. Based on the sEMG recordings, 
similar activation patterns can be found for the EDC muscle compart
ments of the ring and little fingers [32]. Consequently, the ring and little 
fingers were required to extend simultaneously, and the forces were 
aggregated for subsequent analyses [28]. As illustrated in Fig. 1, we first 
decomposed sEMG signals of single-finger tasks. Due to inevitable finger 
muscle co-activation, MUs related to non-targeted fingers may also be 
recruited. Those MUs should be excluded for accurate force prediction. 
Therefore, we conducted a MU clustering and labeling procedure to 
exclude MUs not associated with target fingers. We assigned weights to 
MUs based on the consistency of the MUs being retained across 
multi-finger trials. We found that our developed decoder model out
performed existing state-of-the-art neural decoders with a higher force 
prediction accuracy. Our unsupervised approach can broaden the 
applicability of the neural decoding techniques. The outcomes also hold 
potential benefits for a more intuitive experience during 
human-machine interactions. 

2. Methods 

2.1. Experimental data acquisition and preprocessing 

Eight subjects (1 female and 7 males) were employed for the 

Fig. 1. Overview of the research framework. The brain sends neural drive to 
different sub-groups of motoneurons innervating different finger extensor 
compartments. We extract the MU pool containing a mixture of MUs of different 
fingers from HD-sEMG recordings. We then perform unsupervised neural 
decoding procedures (MU clustering, labeling, and weight assignment) to 
derive the weighted neural drive signals for individual fingers, which can be 
used for continuous force predictions. 
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experiment. All subjects were aged between 21 and 35 years without any 
known neurological or muscular disorders. Before participation, sub
jects signed the informed consent to acknowledge that they fully un
derstood the research purposes, their rights, and potential risks. The 
study protocol was approved by the Institutional Review Board of the 
Pennsylvania State University (Approval Number: STUDY00021035). 

As for the experimental setup, subjects were allowed to adjust the 
height of the seating chair to their preferred comfort level. The forearm 
rested on the table in a neutral position, and the wrist was restricted in a 
neutral state to minimize finger force contamination. Four fingers 
(index, middle, ring, and little fingers) were involved in this study. To 
track the extension force of each finger, we separately secured four 
fingers to four miniature load cells (SM-200 N, Interface). The measured 
forces were displayed to subjects in real time as visual feedback and 
were acquired at a sampling frequency of 1000 Hz. The corresponding 
sEMG data were measured with an 8 × 20 high-density electrode array 
(diameter of electrode: 3 mm, inter-electrode distance: 10 mm) attached 
over the extensor digitorum communis (EDC) muscle, as shown in Fig. 1. 
The covering area of the electrode array was determined by palpating 
the EDC muscles at the time of finger extensions. The monopolar sEMG 
signals were recorded using the EMG-USB2+ (OT Bioelettronica, Torino, 
Italy), with a gain of 1000, a pass band of 10–900 Hz, and a sampling 
frequency of 2048 Hz. Then, an independent component analysis (ICA)- 
based interference detection and removal approach was adopted to 
eliminate the motion artifacts with minimal distortion of the sEMG 
signals [33]. This approach could effectively remove power line noise 
and motion artifacts. First, sEMG signals were decomposed into inde
pendent components using the Infomax ICA algorithm. Second, for each 
separated component, power line noise was detected using spectral 
analysis and mitigated through notch filtering. Motion artifacts were 
addressed by a high-pass filter and peak thresholding techniques. Refer 
to Section A in the Supplementary Material for the detailed techniques of 

interference removal. The final step aimed to reconstruct the sEMG 
signals from the processed components. The denoised sEMG signals ̃x =

W− 1c̃, where W− 1 denotes the original mixing matrix obtained from the 
ICA process, c̃ denotes the processed components. This approach can 
effectively reduce noise artifacts (as shown in Fig. 2), thereby enhancing 
the signal quality for further analysis. 

At the beginning of the experiment, we measured the maximum 
voluntary contraction (MVC) force of each involved finger when sub
jects performed the maximum isometric extension of the related fingers. 
During the main experiment, subjects were required to perform two 
types of isometric extension tasks, termed single-finger task and multi- 
finger task, respectively. For the single-finger task, only one single 
finger (ring and little fingers were treated as one finger) was active for 
each trial, as shown in Fig. 3(a). Subjects followed a 21-s trapezoid force 
target trajectory using their target finger, with instructions to minimize 
the co-activation of other non-targeted fingers. Fifteen single-finger 
trials (3 fingers × 5 trials/finger) in total were performed. For the 
multi-finger task, we randomly selected at least two fingers for each 
trial. Each target finger took turns to follow a trapezoid force trajectory 
with 1-s duration of rest between trajectories, as shown in Fig. 3(b) and 
(c). The duration of each trial was 36 s for the three-finger combination 
and 12 s for the two-finger combinations. Twenty-eight multi-finger 
trials in total were performed. Because we aimed to evaluate the multi- 
finger force prediction for dexterous control of assistive robots, co- 
contractions of other non-targeted fingers were allowed during the 
multi-finger task. 

2.2. Unsupervised neural decoding using firing rate information 

As shown in Fig. 4, the overall approach included four steps: 1. Initial 
MU extraction, 2. MU clustering, 3. MU weight assignment, and 4. Force 
prediction performance evaluation. Briefly, we first extracted MUs using 

Fig. 2. Examples of the single-finger and multi-finger sEMG data before and after ICA-based interference detection and removal approach. (a) and (b) show a 
representative single-finger sEMG signal before and after artifact removal, respectively. (c) and (d) show a representative multi-finger sEMG signal before and after 
artifact removal, respectively. 
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the sEMG data of single-finger trials. We then clustered and labeled the 
extracted MUs based on the shape similarity of the firing rate profiles 
over time. For a fair comparison, we adopted a four-fold cross-validation 
approach to avoid in-sample optimization bias by dividing the multi- 

finger trials into the refinement dataset (i.e., three folds for MU 
weight assignment) and testing dataset (i.e., one fold for model evalu
ation using the weighted MU sets). 

2.2.1. MU extraction 
We decomposed the HD-sEMG signals obtained during single-finger 

tasks via the fast independent component analysis (FastICA) algorithm 
[34], which has been widely used in recent studies [19,20,35–37] for the 
blind source separation due to its relatively high computational effi
ciency. As shown in Fig. 5, after artifact removal, we first selected 60 
channels with maximum root mean square (RMS) values from 160 
channels for subsequent decomposition. By taking this step, we can 
decrease the computational cost and exclude channels contributing little 
to the decomposition accuracy [19,20]. Then, we conducted the channel 
extension procedure by a factor of 10 to increase the number of obser
vations and whitened the extended sEMG data to remove the correlation 
between observations. Lastly, we applied the FastICA algorithm to 
decompose the whitened sEMG signals. Refer to Section B in the Sup
plementary Material for the procedures of FastICA-based sEMG 
decomposition. Because subjects were required to perform a 
single-finger task using the same finger multiple times, we pooled the 
decomposed MUs from the same finger together to form the Raw MU Set 
for this finger. Correspondingly, the separation matrixes obtained using 
different single-finger trials were concatenated to form B0,l. Duplicate 
MUs were then removed in subsequent steps. 

2.2.2. MU clustering and labeling 
Despite instructions for subjects to isolate force output to a single 

finger, co-activations of other fingers were inevitable, due to the finger 
enslavement effect [29–31]. As a result, some MUs of the non-targeted 
fingers were also recruited. These MUs would be considered as in
terferences to the target finger force predictions because the separation 

Fig. 3. Designed force trajectories. (a) A 21-s trapezoid force target trajectory 
for a single-finger task, where subjects were instructed to minimize co- 
activation of non-targeted fingers. (b) and (c) Trapezoid force trajectories for 
multi-finger tasks, with each target finger following the trajectory in succession 
and a 1-s rest between trajectories. The total trial duration was 12 s for two- 
finger combinations and 36 s for three-finger combinations. In the multi- 
finger tasks, co-contractions were permitted to assess the force prediction ca
pabilities for each finger combination. 

Fig. 4. Flowchart for the unsupervised neural decoding algorithm. l ∈ {index,middle, ring − little}.  

Fig. 5. Initial MU extraction procedure.  
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matrices of the single-finger tasks were applied directly to the sEMG 
signals of the multi-finger tasks. We, therefore, implemented the MU 
clustering and labeling processes to eliminate these MUs. 

Fig. 6 shows the MU clustering and labeling procedure. For each 
single-finger trial, we first obtained a MU set and calculated corre
sponding time courses of firing rates using a sliding window. Based on 
the shape similarity of paired Kalman-filtered firing rate profiles 
measured by Dynamic Time Warping (DTW) [38], we employed the 
agglomerative hierarchical clustering [39] approach to obtain 3 clusters. 
The MU cluster having the largest mean population firing frequency was 
labeled as the target MU cluster. Then, the target MUs from the same 
finger were pooled together as the Clustered MU set for this finger. 
Correspondingly, their separation matrixes were concatenated to form 
B1,l. Specifically, the MU labeling was conducted in the following pro
cedures for each decomposed spike train set:  

(1) Obtain the time course of firing rates for each MU. To accurately 
estimate the time-varying firing rates of motor units (MUs), we 
initially applied a sliding window (window size: 0.5 s, sliding step 
size: 0.1 s) to convert spike occurrences (Fig. 7 (a)) into a firing 
rate time course (Fig. 7 (b)). Given the inherent variability in 
spike timing and the finite window size, this estimation process 
can introduce noise, manifested as sporadic, large-amplitude 
fluctuations in the estimated firing rates, as shown in Fig. 7 (c). 
To address these issues, we employed a Kalman filter smoothing 
process, tailored to our specific needs and data characteristics 
[40]. In our context, it was used to refine our firing rate estimates 
by iteratively predicting and correcting the state (i.e., the true 
firing rates) based on both the system’s dynamics and the current 
noisy observations (i.e., the initially estimated firing rates). As 
suggested by the previous study [40], the implementation of the 
Kalman filter in our analysis was characterized by four key pa
rameters: the observation covariance (0.5), system covariance 
(0.1), observation matrix (1), and system matrix (1). If not 
specified, the same Kalman filter settings were applied in the 
subsequent analyses.  

(2) Calculate the distance between two time courses of firing rates 
using DTW. One key factor affecting the performance of clus
tering is the way that quantifies the similarity between two 
datasets. Given the characteristics of MU recruitment and the 
impact of muscle fatigue, certain MUs may not synchronize with 
the variations in force, resulting in temporal shifts of the plateau 
phase. To address this issue, we adopted the DTW technique to 
measure the similarity of paired time courses of firing rates as the 
inter-object distance. DTW is a well-known approach to measure 
the similarity of time series sequences. Suppose two time series 
sequences, u = {u1, u2,⋯, ui,⋯, up} and v = {v1, v2,⋯, vj,⋯, vq}, 
where p and q denote the number of samples in u and v, respec
tively. DTW aims to minimize the difference between the two 
time series by the following alignment procedure: A distance 
matrix D ∈ Rp×q is built, where the value of (i, j) element in D is 
the Euclidean distance between ui and vj. Then, DTW solves a 

minimum-distance path starting from D(0,0) to D(p, q) with two 
constraints: 1) neighboring points should be spatially adjacent, 
and 2) the warping path should move monotonically over time.  

(3) Cluster MUs by generating an agglomerative hierarchical cluster 
tree. The agglomerative hierarchical clustering [39] was a 
bottom-up clustering approach where each object (time courses 
of firing rate) was initially considered as a separate cluster. Then, 
two clusters with the shortest distance among all inter-cluster 
distances were merged as a new cluster until a tree of clusters 
was formed. We adopted the group average linkage as the strat
egy of measuring the inter-cluster to minimize the impact of 
potential outlier values. Based on the number of fingers involved 
in this study, the final number of clusters was set to 3. Compared 
with three prevailing unsupervised clustering techniques 
(KMeans++, KMedoids and AutoEncoder), we can achieve the 
best force prediction performance using the agglomerative hier
archical clustering. Refer to Section E in the Supplementary 
Material for details.  

(4) Determine the cluster for the target finger. After the clustering 
procedure, we calculated the mean population firing frequency of 
each cluster. As subjects were required to follow the force target 
trajectory using the target finger (with efforts to minimize the co- 
activation of other fingers) in the single-finger tasks, the MU 
cluster with the largest mean population firing frequency was 
considered to have a close association with the target finger and 
thus were selected for subsequent analyses. 

The same procedures were performed for each single-finger trial. 
MUs from clusters related to the same finger were pooled together. 
Accordingly, three separation matrixes were obtained for the index, 
middle, and ring-little fingers, i.e., B1,I, B1,M and B1,RL, respectively. This 
was the preliminary categorization or labeling of MUs into different 
fingers. There is a high possibility that duplicated MUs exist in the 
clustered MU pool, those MUs would be removed in the subsequent 
analyses. 

A representative example of the clustering effect is shown in Fig. 8. 
MUs in Fig. 8(c) and (d) and 8(e) were groups clustered from Fig. 8(b). 
Based on the time course of firing rates, it was clear that MUs in Fig. 8(c) 
and (e) and were not associated with the forces of the target finger. 
Correspondingly, those MUs were removed from subsequent analyses. 

2.2.3. MU weight assignment 
Because the FastICA decomposition is time-consuming and not 

feasible for real-time neural decoding, we directly applied the separation 
matrixes B1,l (i.e., B1,I, B1,M or B1,RL) obtained from the single finger 
tasks to decompose the refinement dataset of the multi-finger tasks, as 
shown in Fig. 9. This approach has been used for real-time decoding to 
obtain the firing events of specified MUs [40]. Suppose there were m 
multi-finger trials involving l finger in the refinement dataset, and a total 
of n MUs were decomposed using B1,l. We used the same sliding window 
as in the clustering procedure to obtain the time courses of firing rates. 
Then, the Kalman filter was applied to smooth the filtered firing rate 
profiles. Because some MUs may be activated for the movement of more 

Fig. 6. MU clustering and labeling procedure. l ∈ {index,middle, ring − little}.  
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than one finger, we assigned weights to MUs based on their contribu
tions over trials using an unsupervised approach. For each firing rate 
profile, if the mean firing rate during the plateaus of the l finger was 
greater than the mean firing rate during the plateaus of other active 
fingers, we designated this MU to be dominated in the l-finger plateau 
period. The percentage of this MU retained across the m trials was used 
as the weight for this MU. To improve the effectiveness of decomposing 
MUs, we removed the MUs whose weights were 0. Then, we pooled the 
rest of the MUs together, obtaining the separation matrix B2,l and cor
responding weight vector. The detailed procedures to assign weights are 
as follows:  

(1) Calculate the source signals si,l (i = 1,2,⋯,n1,l) by applying the 
separation vectors of B1,l to multi-finger refinement dataset, 
where n1,l is the number of separation vectors in B1,l. Obtain 
firing event trains ti,l from si,l, remove the low-quality firing event 
trains (SIL<0.5), and obtain the time courses of firing rate (f i,l) for 
each retained MU, where 1 ≤ i ≤ the number of retained MUs.  

(2) Select MUs closely related to the target finger. The rationale for 
this selection is that if the current MU is closely related to the 
target finger, the corresponding mean firing rate during the pla
teaus of the target finger should be higher than that during the 
plateaus of other untargeted fingers. Take one trial of the two- 
finger movements as an example, and suppose the index is the 
first finger shown in Fig. 3(b), for each MU obtained from B1,l, we 
obtained the corresponding time courses of the firing rate f i,l. If 
the mean firing rate of f i,l during the plateau period (i.e., 2s–4s) of 
the index finger force was larger than the mean firing rate of f i,l 

during the plateau period (i.e., 8s–10s) of the force trajectories of 
the second finger, the MU was retained for the next step.  

(3) Calculate the weight for each MU. Due to variations over different 
multi-finger trials, the retained MUs may vary with trials. To get a 
generalized MU set and emphasize the contribution of MUs 
closely related to the target finger, we calculated the weight for 
each MU as how often this MU was retained in the MU sets, i.e., 
the number of times this MU was retained

the number of trials for weighting . Accordingly, we updated the 
separation matrix B1,l to B2,l by excluding the separation vectors 

not meeting the requirement of step 2 across all included 
refinement trials. The related weight vector w2,l was associated to 
the separation vectors in B2,l for the index finger. 

To intuitively illustrate this part, we presented the population 
discharge frequency for the movement of the middle finger (Fig. 10). 
The MUs were ranked based on their assigned weights. The height of 
each spike train was multiplied by its weight. As shown in Fig. 10, MUs 
with high weights were more specific to the target finger than those with 
low weights. By emphasizing the MUs with high contributions and 
reducing the effect of cross-finger MUs, the force prediction accuracy 
can be improved. 

2.2.4. Force prediction 
Fig. 11 Shows the force prediction procedure for a testing trial. We 

first decomposed the testing trial using the three separation matrixes 
(B2,index,B2,middle,B2,ring− little) for the index, middle, and ring-little finger, 
respectively. Then, we obtained the population firing frequency of each 
finger by multiplying the spike trains with their corresponding weights 
and summed the weighted spike trains. Same as the previous study [28], 
a linear model was built to map the neural drive signals to the force of 
the target finger of each finger. Note that the measured force was only 
used for the performance evaluation without being utilized in any of the 
MU extraction, clustering, labeling, or weighting procedures. Because 
the neural drive signals are generally linear to the finger force, users can 
easily scale the prediction models by their subjective perception of 
finger force levels. The practical use is not affected in scenarios where 
the actual finger force cannot be measured. 

For each multi-finger trial in the testing dataset, we constructed three 
separate models to estimate the forces of the three fingers. Using the l 
finger as an example, we first obtained the source signals of MUs using 
B2,l, and excluded low-quality firing event trains (SIL<0.6). Then, we 
removed duplicated source signals. Some source signals may represent 
the activity of the same MU. After regulating the time delay within ±2.5 
ms, any pair of two firing event trains was considered as a duplicate if 
80% of synchronized spike events were detected. The duplicated source 
signal with a lower SIL was removed from subsequent analyses. 
Accordingly, the time courses of firing rates and the weight vector 

Fig. 7. A representative example of transforming the MU spike train (a) into a time course of firing rates (b) and Kalman filtering performance. (a) Spike train. (b) 
Time course of firing rates. (c) Raw time course of firing rate. (d) Kalman-smoothed firing rate. (b) Is the detailed representative of (c) from 11s to 13.5s. 
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updated as Fl = [f 1,l, f 2,l,⋯, f i,l,⋯f nl ,l] and wl = [w1,l,w2,l,⋯,wi,l,⋯wnI ,l], 
where f i,l and wi,l denote the time course of firing rate and the weight for 
the i th MU, nI denotes the number of retained high-quality MUs after 
this step. The neural drive time series signals Dl =

∑

i
f i,l • wi,l. After 

smoothing Dl with the Kalman filter, we used the neural drive signals to 

predict the force using a linear regression model. 

ForceTst
l = alDl + bl (1)  

where Forcel indicates the estimated force of the index finger, al and bl 
represent the slope coefficient and intercept of the model, respectively. 

Fig. 8. A representative example of the population firing frequency of clustered MUs. (a) Measured force of the representative ring-little (RL) finger task. We ob
tained the raw MUs (b) by decomposing the sEMG signals from the RL finger task. The raw MUs were then clustered into three groups, shown in (c), (d), and (e), 
respectively. The MU set in (d) having the largest population firing frequency was selected as the MU set closely related to the target finger. 

Fig. 9. MU weight assignment procedure for l finger. l ∈ {index,middle, ring − little}.  
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The performance of force prediction was quantified using the coef
ficient of determination (R2) and the root mean square error (RMSE) 
value between the measured force and the estimated force. We selected 
the R2 and RMSE as two complementary metrics due to their relevance 
and widespread acceptance in the field of neural decoding and motor 
control prediction. The R2 metric provides insight into the proportion of 
variance in the dependent variable (multi-finger forces) that is predict
able from the independent variables. The equation for R2 can be 
expressed as: 

R2 = 1 −

∑n

i=1
(yi − ŷi)

2

∑n

i=1
(yi − y)

2
(2)  

where yi denotes the actual value of the i th observation, ŷi denotes the 
predicted value for the i th observation, y = 1

n
∑n

i=1yi denotes the mean of 
the actual values and n denotes the number of observations. 

RMSE, on the other hand, provides a clear measure of the magnitude 
of prediction errors, offering an intuitive understanding of the average 
error magnitude in the same units as the predicted variable. Mathe
matically, RMSE is defined as follows: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(yi − ŷi)

2

√

(3)  

where yi denotes the actual value of the i th observation, ŷi denotes the 
predicted value for the i th observation and denotes the number of ob
servations. 

2.3. Alternative methods for comparison 

2.3.1. Unsupervised neural decoding using phase amplitude 
Considering subtle changes of a time-dependent variable can be 

revealed in the phase plane (the variable against one time derivative of 
the variable), we provided an alternative perspective for force predic
tion using the phase amplitude instead of the firing rate information. 
Given the time course of firing rate f , the corresponding time course of 

phase amplitude can be obtained via 
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

f 2 +
(

Δf/Δt
)22

√

. To explore the 

force prediction performance using the phase amplitude, all the firing 
rates used in Section 2.2 were replaced with the phase amplitudes for the 
MU clustering, labeling, weight assignment, and force prediction 
calculations. 

2.3.2. Supervised neural decoding 
A recent study [28] developed a supervised neural decoding 

approach for force prediction, in which the measured forces were used 
for the MU pool refinement. The supervised neural decoding approach 
first extracted MUs from single-finger tasks. MUs related to the same 
target finger were pooled together. The key step was to calculate the 
average R2 between each MU and three finger forces across trials in the 
refinement dataset. If MUs had the highest mean R2 with the target 
finger force, the MUs were retained for the force prediction. Refer to 
Section C in the Supplementary Material for detailed procedures of force 
prediction using the supervised approach. 

Fig. 10. Representative population discharge frequency using weighted MUs for the middle finger. The yellow trajectory represents the weighted neural drive. The 
MUs were ranked based on their weights, and the heights of the spike trains denote the relative weight values. 

Fig. 11. Force prediction procedure for a testing trial.  
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2.3.3. sEMG amplitude-based force prediction 
The force prediction was also conducted using a conventional sEMG 

amplitude method (a preferred feature for force prediction [41]) as a 
comparison. The interference from channel-crosstalk on sEMG ampli
tude could potentially introduce a bias in force prediction. The finger 
muscle compartments also have different spatial distributions. There
fore, we performed a channel-refinement procedure developed in a 
previous study [28] to minimize the channel interference. To be specific, 
we first selected top 60 channels with maximum average sEMG ampli
tude (RMS value) for three fingers based on single-finger trials (motion 
artifacts of sEMG signals have been removed prior to the RMS calcula
tion). Then, we calculated the average R2 between the sEMG amplitude 
of each channel and three measured forces across trials in the refinement 
dataset. We retained the channels having a higher R2 with the target 
finger than that with other fingers for the final force prediction. Refer to 
Section D in the Supplementary Material for detailed procedures of 
sEMG amplitude-based force prediction. 

2.4. Statistical analysis 

We performed statistical analyses to evaluate the force prediction 
performance. First, if the compared groups satisfied the Gaussian dis
tribution assumption (indicated by the Shapiro-Wilk test) and met the 
assumption of sphericity (indicated by the Mauchly’s test, for compar
isons involving at least three groups), we adopted the parametric anal
ysis (paired t-test for two group comparison, and Repeated Measures 
Analysis of Variance (ANOVA) for multi-group comparisons). Other
wise, the non-parametric analysis approach (Wilcoxon signed-rank test 
or Friedman test) was applied for the statistical analysis. When appli
cable after ANOVA or Friedman tests, Holm-Bonferroni correction was 
employed to avoid multiple-comparison errors. The significance level 
was set to 0.05 and only the corrected p values were reported in this 
study. 

3. Results 

3.1. Comparison of the unsupervised and supervised neural decoding 
approaches 

First, we were able to predict multi-finger force with a computational 
delay of 79 ± 31.5 ms using an AMD Ryzen 7 6800H @ 3.2 GHz with 64 
GB of memory environment. This delay is sufficient to meet the daily 
needs of real-time human-robot interactions, for which an acceptable 
loop delay ranges between 100 ms and 150 ms [42,43]. Force prediction 
performances using unsupervised, supervised, and sEMG amplitude 
(sEMG-Amp) approaches are shown in Fig. 12. The unsupervised 
approach was implemented using the firing rate information based on 
the weighted MU. Fig. 12(a) shows a representative force prediction 
using the three approaches. The unsupervised or supervised 
neural-decoding approaches can accurately predict the measured force. 
In contrast, the force predictions using the sEMG-Amp deviated sub
stantially from the measured forces, resulting in large estimation errors. 
As shown in Fig. 12(b), the overall average R2 values using unsuper
vised, supervised, and sEMG-Amp methods were 0.77 ± 0.036, 0.71 ±
0.11, and 0.61 ± 0.09, respectively. The overall average RMSE values 
(Fig. 12(c)) were 5.16 ± 0.58 %MVC (unsupervised), 5.88 ± 1.34 % 
MVC (supervised), and 7.56 ± 1.60 %MVC (sEMG-Amp). One-way 
repeated-measures ANOVA demonstrated significant differences for 
both R2 (F (2,14) = 12.29, p < 0.001) and RMSE (F (2,14) = 10.61, p =

0.0016). Further post-hoc analyses revealed that the R2 using either 
unsupervised or supervised approaches was significantly larger than 
that using the sEMG-Amp approach (both p < 0.05). Besides, the R2 

using the unsupervised method was significantly smaller than that using 
the sEMG-Amp approach (p = 0.0051). 

The force prediction performances for each finger are shown in 
Fig. 12(d) and (e) and. The comparisons of R2 were significantly 
different for the index finger (F (2,14) = 5.46, p = 0.018) and the ring- 
little finger (F (2,14) = 22.05, p < 0.001). Further post-hoc analyses 
revealed that R2 obtained using either the unsupervised or supervised 
method was significantly better than that using the sEMG-Amp method 
for the ring-little finger (both p < 0.01). Besides, the R2 value obtained 
using unsupervised approach was significantly larger than that using 
sEMG-Amp approach for the index finger (p = 0.01). For the comparison 

Fig. 12. Comparison of the unsupervised and supervised neural decoding approaches. (a) A representative force prediction using the unsupervised neural decoding, 
supervised neural decoding and sEMG amplitude-based approach. (b) Overall Interquartile range of R2 value. (c) Overall Interquartile range of RMSE value. In both 
(b) and (c), each colored dot represents the average R2 or RMSE value for a subject. (d) Average R2 value for each finger. (e) Average RMSE value for each finger. The 
length of error bars indicates the standard error. * denotes 0.01< p <0.05, ** denotes 0.001<p <0.01, *** denotes p <0.001. 
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of RMSE, the Friedman test demonstrated a significant difference for the 
ring-little finger (χ2 (2) = 13, p = 0.0015). The pair-wise comparison 
showed that the RMSE value obtained using either the unsupervised or 
the supervised approach was significantly smaller than that using the 
sEMG-Amp approach for the ring-little finger (both p < 0.05). Besides, 
the RMSE value using the unsupervised approach was significantly 
lower than that using the supervised approach for the ring-little finger 
(p = 0.027). 

3.2. Evaluating the effect of MU clustering and weighting procedures 

We compared the performance of three different unsupervised neural 
drive-based force prediction methods (Fig. 13): The first directly used 
MUs (termed raw MU) decomposed from single-finger tasks without any 
clustering and weighting, the second clustered and labeled MUs (termed 
clustered MU) related to the target fingers, and the third assigned a 
weight to each MU (termed weighted MU). We initially averaged the 
performance index (R2 value and RMSE value) across all trials in the 
testing dataset, and then across all fingers. The overall average R2 values 
(Fig. 13(a)) were 0.77 ± 0.036 (weighted MU), 0.69 ± 0.063 (clustered 
MU), and 0.68 ± 0.063 (raw MU). The overall average RMSE values 
(Fig. 13(b)) were 5.16 ± 0.58 %MVC (weighted MU), 6.37 ± 0.91 % 
MVC (clustered MU), and 6.56 ± 0.90 %MVC (raw MU). One-way 
repeated-measures ANOVA demonstrated that the force prediction 
performances using different methods were significantly different in 
both R2 (F (2,14) = 19.09, p <0.001) and RMSE (F (2,14) = 19.79, p 
<0.001). Further post-hoc test revealed that the R2 using the weighted 
MU was significantly larger than those using the clustered MU and the 
raw MU (both p <0.01), and the R2 value using the clustered MU was 
significantly higher than that using the raw MU (p = 0.013). Similarly, 
the RMSE using the weighted MU was significantly smaller than those 
using the clustered MU and the raw MU (both p <0.01). The RMSE using 
the clustered MU was also significantly lower than that using the raw 
MU (p = 0.006). 

We also compared the force prediction performance for individual 
fingers, as shown in Fig. 13(c) and (d) and. For the comparison of R2, 
since the results using the cluster MU and raw MU did not follow 
Gaussian distribution, we used the Friedman to test the overall 

difference, and conducted the pair-wise comparison using the Wilcoxon 
signed-rank test for the index finger. Statistical analysis revealed that 
significant differences were observed for each finger (i.e., index: χ2 (2) 
= 9.75, p = 0.0076, middle: F (2,14) = 12.8, p <0.001, ring-little: F 
(2,14) = 7.34, p = 0.007). Further post-hoc analyses showed that the R2 

value obtained using the weighted MU was significantly larger than that 
using either the clustered MU or the raw MU (both p <0.05) for each 
finger. Similarly, significant differences in the RMSE values were 
observed for each finger (i.e., index: χ2 (2) = 7, p = 0.03, middle: F 
(2,14) = 13.48, p <0.001, ring-little: χ2 (2) = 10.75, p = 0.0046). The 
post-hoc analyses showed that the RMSE value using the weighted MU 
was significantly smaller than that using either the clustered MU or the 
raw MU (both p <0.05) for each finger. The RMSE using the clustered 
MU was also significantly lower than that using the raw MU for the 
middle finger (p = 0.011). 

3.3. Comparison of performance using firing rate and phase amplitude 

We explored the force prediction performance using the phase 
amplitude of the firing rate based on the weighted MU, as shown in 
Fig. 14. The average R2 values obtained using the firing rate and phase 
amplitude were 0.77 ± 0.036 and 0.75 ± 0.022, respectively (Fig. 14 
(a)). The paired t-test showed no significant difference for the R2 using 
the firing rate and the phase amplitude (t(7) = 1.18, p = 0.28). The 
average RMSE using the firing rate and phase amplitude were 5.16 ±
0.58 %MVC and 5.58 ± 0.76 %MVC, respectively (Fig. 14(b)). The 
paired t-test showed no significant difference for the RMSE using the 
firing rate and the phase amplitude (t (7) = -1.44, p = 0.19). 

To investigate finger-specific difference, the two measurements were 
averaged across trials in the testing dataset (Fig. 14(c) and (d)) for in
dividual fingers. For the R2 evaluation, the obtained results for the 
middle finger using phase amplitude did not follow Gaussian distribu
tion (p = 0.037). Accordingly, the Wilcoxon signed-rank test showed no 
significant difference between the firing rate and phase amplitude for 
the middle finger (p = 0.38). The paired t-test revealed that the firing 
rate was significantly better than the phase amplitude for the ring-little 
finger (t(7) = 3.57, p = 0.0045), but no significant difference was found 
between the two approaches for the index finger (t(7) = -0.68, p = 0.52). 
For the RMSE evaluation, the obtained results using the firing rate for 
the index finger (p = 0.047) and the ring-little finger (p = 0.033) did 

Fig. 13. Force prediction performance using three different MU-based neural 
decoding methods. (a) Average R2 value for each subject. (b) Average RMSE 
value for each subject. Each colored circle represents the mean R2 in (a) and 
RMSE value in (b) of individual subjects. (c) Interquartile range of R2 value for 
each finger. (d) Interquartile range of RMSE value for each finger. The error 
bars in (a) and (b) denote the standard error. The “+” in (c) and (d) denote 
outliers. * denotes 0.01< p <0.05, ** denotes 0.001<p <0.01, *** denotes 
p <0.001. 

Fig. 14. Force prediction performances using the firing rate and the phase 
amplitude. (a) Overall average R2 value. (b) Overall average RMSE value; (c) 
Average R2 value for each finger; (d) Average RMSE value for each finger. The 
length of the error bars indicates the standard error. * denotes 0.01< p <0.05, 
** denotes 0.001<p <0.01. 
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not follow Gaussian distribution. Statistical analysis indicated that the 
firing rate was significantly better than phase amplitude for the ring- 
little finger (Wilcoxon signed-rank test: p = 0.012), and no significant 
difference between the two approaches for the index finger (Wilcoxon 
signed-rank test: p = 0.46) and the middle finger (paired test: t(7) =

-0.89, p = 0.41). 

4. Discussion 

In this study, we aimed to decode the sEMG signals for concurrent 
and continuous multi-finger force prediction in an unsupervised 
manner. We decomposed HD-sEMG signals using the FastICA algorithm 
to extract raw MUs from single-finger tasks. The decomposed MUs were 
then clustered and labeled for individual fingers. The clustered MUs 
were assigned weights based on the consistency of being retained during 
the plateau period of the refinement dataset. The population firing fre
quency of weighted MUs was utilized for the extension force prediction 
of each finger. The results revealed that the force prediction accuracy 
improved significantly using MU clustering and weighting procedures. 
The outcomes demonstrated the feasibility of unsupervised neural 
decoding using MU firing activities. 

The improvement of force prediction performance using the unsu
pervised neural decoding may arise from several factors. First, it is 
common to recruit MUs in muscle compartments associated with 
untargeted fingers [29–31] due to the enslavement effect across fingers. 
The MU clustering procedure can remove some of these MUs prior to 
neural drive calculation. Second, the force prediction was further 
improved using the weighted MUs. The weighting procedure can assign 
large weights to MUs specially aligned with the target finger. Finally, the 
clustering and weighting procedures may also remove or attenuate the 
effect of inaccurate MU spikes. Although the separate vectors were 
filtered initially. Earlier work has shown that the SIL index only has a 
moderate correlation with the spike detection accuracy [44,45]. The 
clustering procedure could remove these MUs from the pool, and the 
weighting procedures can assign smaller weights to these MUs poten
tially due to inconsistent MU presence across activation trials. 

Our study revealed that prediction accuracy (R2) using the neural 
decoding approaches was significantly better than that using the sEMG- 
Amp method, which was attributed to multiple factors. The finger 
muscle compartments are spatially close to each other and are even 
partially overlapped from the viewpoint of skin surface, some sEMG 
channels are corrupted due to crosstalk of multiple muscle compart
ments, and this can lead to inaccurate force predictions. Even though the 
channel refinement in the sEMG-Amp approach reduced the influence of 
crosstalk, remaining channels may still be impacted by this interference. 
As a comparison, the neural decoding methods decomposed MUs from 
single-finger tasks. This critical step in classifying or clustering MUs 
specific to each finger ensured that neural drive signals can be concur
rently and independently estimated for each finger even when muscle 
compartments were located in close proximity to each other. Compared 
with the supervised approach, the unsupervised method can achieve a 
competitive result. The variability in performance between subjects 
using our unsupervised prediction model was found to be lower than 
that observed with the supervised approach, demonstrating its enhanced 
consistency and robustness across different individuals. As a crucial step, 
the supervised neural decoding distinguished MUs specific to the target 
finger by comparing the R2 between the time course of one MU with the 
force of each finger. In contrast, we introduced the clustering step to 
exclude MUs not related to the target finger. Then, to emphasize the MUs 
with a high consistency of MU inclusion in the target finger activation 
trials and minimize the impact of cross-finger MUs, we performed the 
weighting step by assigning different weights to clustered MUs. Our 
results show that both the clustering and weighting procedures can 
contribute to accurate force predictions. 

As an alternative to MU firing rate, we also used the phase amplitude 

to perform MU clustering, weighting, and finger force predictions. The 
phase amplitude in the phase plane incorporates the amplitude of the 
firing rate as well as the change of firing rate. However, it was unex
pected that the phase amplitude of the firing rate did not outperform the 
direct firing rate calculation for finger force predictions. The phase 
amplitude and firing rate time series signals are highly correlated, which 
can partly explain their similar performance in force predictions. In our 
current study, we did not incorporate the phase angle information at any 
stage of the algorithm procedures. It is worth exploring how dynamic 
information of the MU firing activities can be further leveraged to 
improve the decoding accuracy. 

Although we have achieved a promising result using the unsuper
vised approach, this study has limitations. First, only isometric finger 
force was included. In future studies, we can validate the developed 
unsupervised method for finger force prediction during dynamic finger 
movement tasks. Second, one advantage of the unsupervised approach 
was that it was suitable for individuals with hand disabilities. However, 
all the participants in the current study were able-bodied individuals. 
For transradial amputees, the available stump areas may not be suited 
for the electrode array placement. Besides, the neuromuscular system 
might undergo changes after amputation. The way muscles receive and 
interpret signals in the brain can be different from able-bodied people. In 
future work, we can employ subjects with hand disabilities to further 
test the developed unsupervised approach. Third, our study focused on 
the four fingers, excluding the thumb due to its unique anatomy and 
movement capabilities, which our sEMG data from forearm muscles 
could not accurately capture, thus limiting our analysis. In future work, 
we can extend our data collection to include sEMG signals from the 
thumb’s intrinsic muscles, which will enable us to validate our neural 
decoding algorithms on the thumb force prediction. Fourth, the sepa
ration matrix of the single-finger tasks was directly applied to the multi- 
finger tasks. However, it is likely that new MUs were active during the 
multi-finger tasks, but our current procedure could not identify these 
new MUs. Further investigations that can capture these newly recruited 
MUs using an adaptive decomposition algorithm [46] may help improve 
the decoder accuracy. Lastly, we will conduct further validation using 
suitable single-finger and multi-finger sEMG datasets when they become 
available. 

5. Conclusion 

In summary, we developed an unsupervised neural decoding 
approach to predict multi-finger forces concurrently and continuously in 
real-time, in which MUs extracted from the single-finger tasks were 
clustered and weighted for individual fingers in an unsupervised 
manner. Our new MU clustering and refining approach has been proven 
to be effective for accurate finger force prediction. Compared with the 
supervised neural decoding approach, the proposed method can achieve 
a consistently high accuracy across participants. Our findings offer a 
foundation for expanding the scope of the neural-machine interface. 
With further improvement, our approach has the potential to help 
improve or restore motor functions in individuals with hand disabilities. 
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