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Towards Efficient Neural Decoder for Dexterous

Finger Force Predictions
Jiahao Fan and Xiaogang Hu

Abstract—Objective: Dexterous control of robot hands requires
a robust neural-machine interface capable of accurately decoding
multiple finger movements. Existing studies primarily focus on
single-finger movement or rely heavily on multi-finger data
for decoder training, which requires large datasets and high
computation demand. In this study, we investigated the feasibility
of using limited single-finger surface electromyogram (sEMG)
data to train a neural decoder capable of predicting the forces of
unseen multi-finger combinations. Methods: We developed a deep
forest-based neural decoder to concurrently predict the extension
and flexion forces of three fingers (index, middle, and ring-pinky).
We trained the model using varying amounts of high-density
EMG data in a limited condition (i.e., single-finger data). Results:
We showed that the deep forest decoder could achieve consistently
commendable performance with 7.0% of force prediction errors
and R

2 value of 0.874, significantly surpassing the conventional
EMG amplitude method and convolutional neural network
approach. However, the deep forest decoder accuracy degraded
when a smaller amount of data was used for training and
when the testing data became noisy. Conclusion: The deep
forest decoder shows accurate performance in multi-finger force
prediction tasks. The efficiency aspect of the deep forest lies in
the short training time and small volume of training data, which
are two critical factors in current neural decoding applications.
Significance: This study offers insights into efficient and accurate
neural decoder training for advanced robotic hand control, which
has the potential for real-life applications during human-machine
interactions.

Index Terms—Hand function, finger force prediction, deep
forest, convolutional neural network.

I. INTRODUCTION

O
UR ability to independently control individual fingers

empowers us to accomplish intricate tasks, spanning

from simple grasping activities to complex manipulation

tasks. In an effort to restore impaired or lost hand function,

the development of assistive devices, such as prosthetic

hands and exoskeleton gloves, has progressed significantly.

Although these advanced devices can mimic the complex

movements of a biological human hand [1]–[4], decoding

user’s motion intention into executable control commands

remains a substantial challenge.

Surface electromyogram (EMG) signals are commonly

used as the source of neural control for robotic hands.

While EMG-based pattern recognition has attained prominent

performance in identifying a finite set of intended movements
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(e.g. hand gesture recognition) [5]–[7], a major limitation of

the pattern recognition is the lack of proportional activation

of the recognized classes [8]. A second approach, termed

proportional control, enables users to control individual

actuators in a continuous manner, which has more potential

to enable dexterous control of robotic hands [9].

Most previous studies on proportional finger control have

primarily focused on predicting the motor output of an

individual finger, which may have limited application as

many daily tasks require dexterous control of multiple fingers.

Relatively few studies have explored neural decoders that

can predict forces of multiple fingers concurrently [10]–[13].

When leveraging high-density EMG (HD-EMG), it has been

demonstrated that both the global (i.e., EMG amplitude)

[14], [15] and microscopic (i.e., neural drive information)

HD-EMG features can predict forces at individual finger

levels. The global-feature-based method directly maps EMG

amplitude to forces using simple regression models. However,

global EMG amplitude features are susceptible to interference

such as signal crosstalk and amplitude drift, leading to

suboptimal performance at the individual finger level. In

contrast, neural drive information utilizes motor unit firing

activities obtained through motor unit decomposition. This

information more accurately reflects the motor commands,

thus providing accurate decoding of finger motor intent

[11], [12], [16]. However, extracting neural drive information

via motor unit decomposition was computationally intensive,

limiting its practicality in real-life implementations.

Recent studies [17]–[19] have shown that individual finger

flexion or extension can be characterized by localized

spatial activation patterns in the HD-EMG global features,

suggesting the presence of finger-specific mapping between

EMG channels and their corresponding motor outputs.

However, extrapolating these finger-specific channel mappings

identified in single-finger tasks to untrained multi-finger tasks

have proven to be unsatisfactory [11], [12]. To achieve

optimal multi-finger force prediction, EMG from multi-finger

movements must be included in the training data to provide

information about the intricate co-activation patterns between

fingers. However, given the multitude of possible finger

combinations, it is often inefficient and sometimes impractical

to exhaustively acquire data for all finger combinations to train

the neural decoders. Therefore, it is invaluable to develop

a method that can be trained on a limited dataset, such as

single-finger data, and subsequently extrapolate to movements

outside the training set (e.g., combinations of fingers). Such

an approach can substantially reduce the time required for

system training. However, implementing such a method may
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be challenging, as the interdependencies among fingers [15],

[16] may not be as pronounced in EMG during single-finger

movements as in the movements of the unseen multiple-finger

combinations.

Deep neural network models have demonstrated proficiency

in mapping complex non-linear relations [20], [21]. For

instance, an earlier work [22] utilized a deep convolutional

neural network (CNN) that combined time and frequency

domain features for wrist force prediction. Similarly, CNN

demonstrated the effectiveness of predicting multi-directional

wrist torques [23]. Others also employed a multi-task learning

framework [24], [25], incorporating a deep learning approach

to predict both myoelectric patterns and the resultant force.

An earlier study [26] developed a more complex transformer

structure to predict the joint kinematics of the hands.

However, there are several limitations of neural network

models, First, these models often require a large volume

of training data, which may not be feasible. Second, neural

networks typically require extensive hyperparameter tuning to

achieve optimal performance. Third, the optimization of neural

network weights through iterative backpropagation is also

notably time-consuming. From the perspective of efficiency,

here we introduced a deep forest (DF) [27] based neural

decoder to concurrently predict the force exerted by multiple

fingers. DF leverages hierarchical cascade layers of decision

trees to achieve deep representation learning, which enables

it to capture the finger-specific activation patterns from HD-

EMG for force prediction. In addition, compared to neural

networks, DF has minimal hyper-parameters to tune, and the

model structure could be adapted in a data-driven manner, thus

being considered more efficient.

We used the DF-based decoder to simultaneously and

accurately predict the flexion and extension forces of multiple

fingers, using a global HD-EMG feature. We restricted our

training data to single-finger data and then evaluated the model

on untrained multi-finger combinations. Assessments on the

force prediction of three fingers (index, middle, and ring-

pinky) across seven participants revealed that the DF decoder

consistently exhibited high accuracy, even with limited training

data, in comparison to both the traditional EMG amplitude

method and convolutional neural network. These findings

underscore the potential of the DF decoder as an efficient tool

for EMG-based neural decoding.

II. METHODS

A. Experimental Setup

Seven neurologically intact participants were recruited

in the study. All subjects gave informed consent with

protocols approved by the Institutional Review Board of the

Pennsylvania State University.

The experiments included performing isometric finger

flexion and extension tasks using the index, middle, pinky,

and ring fingers. As shown in Fig. 1, two 8 × 16 electrode

arrays were replaced on the anterior and posterior sides of

the forearm of the subjects to record EMG signal from the

flexor digitorum superficialis (FDS) and extensor digitorum

communis (EDC) muscles. The single-electrode diameter and

the inter-electrode distance of the electrode arrays are 3-mm

and 10-mm, respectively. The reference channel was placed at

the wrist. The HD EMG was acquired using an EMG-USB2+

system (OT Bioelettronica) with a gain of 1000 and a sampling

rate of 2048 Hz. To measure the force during finger flexion and

extension, we used miniature load cells (SM-200N, Interface)

for the index, middle, ring, and pinky fingers individually. The

sampling rate for recording the force data was set at 1000

Hz. During the experiments, the forearm was positioned in a

neutral position and supported by two stiff foam pads. Prior to

each trial, the offsets of the individual load cells were carefully

adjusted, to ensure a positive force reading represented flexion

and a negative reading represented extension.

B. Experiment Procedure

For each participant, the first step involved measuring

the maximum voluntary contraction (MVC) of the flexion

and extension force exerted by each finger. The flexion and

extension MVC were measured separately for each finger.

These MVC values were respectively used for flexion and

extension force normalizations. A positive force indicates the

flexion force, while a negative force denotes the extension

force. In particular, the subjects were asked to perform finger

flexion and extension at MVC following the force trajectory

displayed on the monitor. Given the significant enslavement

between the ring and pinky fingers [28], the participant was

requested to extend and flex these two fingers simultaneously.

These two fingers were treated as one finger (referred to

hereafter as the ’ring’). Consequently, the force exerted by

the ring-pinky finger was computed as the summation of

the ring and pinky forces, which were then displayed to the

participants.

During the experiment, the subjects followed a predefined

force target (Fig.1 (B) and Fig.1 (C)), ranging from 0 to 50%

MVC for each finger. The 50% MVC was selected to alleviate

muscle fatigue that might occur at higher force levels. Two

types of trials were performed by the participants. The first

type was the single-finger trial, where the participants were

instructed to flex or extend an individual finger according to

the predefined single trapezoid for a duration of 21 seconds(

Fig. 1 (B)). During the single-finger trial, the subjects were

asked to avoid co-contraction with the unintended fingers.

The second type was the multi-finger trial, where subjects

were asked to flex and extend a minimum of two fingers,

following a sequence of trapezoids for a duration of 27 seconds

(two fingers involved) or 42 seconds (three fingers involved)

(Fig. 1 (C)). For a specific duration, one finger was instructed

to maintain the intended force level, while co-activation was

allowed for other fingers. The selection of target fingers was

randomized across the multi-finger trials. Overall, 12 single-

finger trials (3 fingers × 4 trials) and 16 multi-finger trials

were performed by each subject.
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Fig. 1: The experiment setup and protocol. (A): Monopolar

EMG signals were recorded from the finger extensor and

flexor, respectively, with two 8×16 electrode arrays, and the

flexion/extension forces of the index, middle, ring, and pinky

fingers were recorded. The trapezoidal force target from the

single-finger extension and flexion trial (B) and the multi-

finger trial (C). The force target of the multi-finger trial was

shown with different colors to represent the three fingers, i.e.

index (red), middle (brown), and ring (green) as the instructed

finger, respectively.

C. Data Preprocess

The data analysis was performed using MATLAB (The

MathWorks, Inc.), scikit-learn1, and Pytorch2, running on a

computer equipped with an Intel i7-12700k CPU and an RTX

3070 Ti GPU. The pre-processing of the recorded EMG and

force data involved several steps. Initially, the raw EMG

signals were filtered using a high-pass filter (Butterworth zero-

phase shift with an order of 4). Next, the Root Mean Square

(RMS) was computed for each channel utilizing a smoothing

window of 0.5 seconds and a moving step of 0.1 seconds. The

extracted RMS served as the input feature for the subsequent

computations. For deep forest, the dimension of the input

was 256 (2 electrode arrays × 128 channels). For CNN, we

reshaped the input to a spatial layout of 2×8×16. The recorded

force was separately normalized by the MVC values for both

flexion and extension. The normalized force was smoothed

using the same window size and moving step.

In the supplementary material, we have provided example

data for both single-finger and multi-finger trials, as illustrated

in Fig. S1 and Fig. S2. The rationale behind using single-finger

trials to predict multi-finger trials is based on the observation

that the localized activation patterns in both single-finger and

multi-finger movements exhibit overlap when the subject is

instructed to perform the same finger-force task. Although the

activation of an intended finger in a multi-finger movement

can be influenced by the adjacent fingers due to co-activation,

it is still expected to exhibit similar activation patterns as

observed in the corresponding single-finger trials. Our goal

is to capture these localized activation patterns during single-

finger force production and utilize them to accurately predict

1https://scikit-learn.org/stable/
2https://pytorch.org/

multi-finger forces, even in scenarios where multiple fingers

are simultaneously activated.

D. Deep Forest

As illustrated in Fig. 2, each finger corresponded to a Deep

Forest (DF), with each layer consisting of two random forests

(RF) and two completely random forests (C-RF). This finger-

specific model design offers scalability, because when a new

finger needs to be incorporated, there’s no need to retrain the

models. In practice, these finger-specific models could run

in parallel to ensure real-time processing during inference.

In contrast to deep neural networks (DNNs) that necessitate

determining the complexity of the network prior to training,

the complexity of DF (e.g. the layer number) was determined

in a data-driven manner and was automatically adjusted based

on the information in the data. Namely, the addition of more

layers is interrupted if there is no performance improvement.

During training, both RF and C-RF were fitted on the input

data by selecting features that lead to the highest impurity

reduction at each node within their respective decision trees.

However, C-RF introduced an additional degree of randomness

by not just randomly selecting the feature subsets in the

splitting, but also randomly assigning split points within these

features. This combination of different types of random forests

in each estimator encourages diversity, which could potentially

improve the model’s overall performance. The estimation

output of a forest layer was concatenated with the original

input feature (x ∈ R
256 (2 electrode arrays × 128 channels)),

forming an augmented feature to be fed into the next layer.

This simple feature augmentation promotes effective in-model

feature transformation.

Though DF shares a similar concept of layer-by-layer

processing with DNNs, it fundamentally differs in its essence

as a non-parametric, tree-based ensemble method. Unlike

DNNs, DF doesn’t require the differentiation of layers or back-

propagation for training. As previously mentioned, the number

of layers is dynamically added until optimal performance is

reached, ensuring a structured, step-wise training procedure

for efficient learning and optimal model performance. It was

worth noting that we did not undertake any hyper-parameter

searching for the DF. The only hyper-parameters explicitly

assigned were the number of RF and C-RF (n = 2) in each

layer, with each forest comprising 100 trees. Beyond that, all

the hyper-parameters were used in their default settings as

described earlier [27].

E. CNN

CNN has emerged as an effective approach for EMG-

force prediction [21], [22]. We implemented a two-branch

Convolutional Neural Network (CNN) architecture (Fig. 3) to

specifically analyze the activation patterns of the flexor and

extensor muscles. Given the relatively small size of our dataset,

we used a lightweight CNN architecture to prevent overfitting

while ensuring efficient learning. Since the employed hyper-

parameters may significantly impact the model’s performance,

we have tested various combinations of layer numbers N ∈
{1, 2, 3, 4} and filter sizes f ∈ {3, 5, 7}. We found that N = 2
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Fig. 2: The cascade structure of a deep forest. RF:random forest; C-RF: completely random forest; Ave.: Average operation

Fig. 3: The two-branch CNN model. Conv: 2d Convolutional

Layer; LReLU, Leakey Rectified Linear Unit; Pooling: Max

Pooing. FC: fully connected layer. The feature vectors

extracted from the flexor and extensor EMG signals were

fused to make a final prediction. The gray block represents

the feature fusion operation.

and f = 3 yielded the best results on the validation dataset.

Consequently, these settings were employed throughout our

data analysis. The details of the utilized CNN can be found

in Section 2 of the supplementary material.

Our initial strategy was to train a finger-specific model using

the available single-finger data. However, due to data scarcity,

the performance of the finger-specific CNN was notably

inferior in comparison with the concurrent prediction models.

As a remedy, we trained the CNN model capable of concurrent

prediction of three-finger forces. This model, featuring a three-

dimensional output space, was able to efficiently capture and

represent the complex dynamics of multiple finger outputs.

The CNN was trained employing the Mean Squared Error

(MSE) loss function along with L2 regularization, with a

weight of 10−4. The training process was set to a maximum

of 300 iterations, using a learning rate of 0.001. To monitor

the training progress and perform early stopping, 20% of the

training data was randomly selected for validation after each

training iteration. If the validation loss did not decrease for 10

consecutive iterations, the training process was stopped. The

model that yielded the lowest validation loss was selected as

the final model for testing and evaluation.

F. EMG-amplitude Method

The conventional EMG-amplitude (referred to as AMP

hereafter) method was also applied as a benchmark

for comparison. In order to enhance its performance in

differentiating individual fingers, steps were taken to refine

the channel selection process. This refinement is based on the

understanding that not all channels are necessarily tied to the

activation of a specific finger. Thus, only the most informative

channels were chosen, restricted to the top 60 channels with

the highest amplitude for the extensor or flexor muscle of

each finger. This channel selection represents approximately

50% of the total channels of the extensor or flexor. The

force prediction errors between EMG amplitudes using all

channels and the top 60 channels are presented in Fig. S3

of the Supplementary Materials. If the multi-finger trial was

available (only in sectionIII-A), a further refinement procedure

was undertaken to select the most informative EMG channels

from the top 60 channels for individual fingers [11], [13]. For

a given finger, the EMG amplitude of the top 60 channels and

the forces were calculated using a 0.5-second average window.

Subsequently, a linear regression analysis was performed

between all the 60 EMG channels and the forces recorded in

multi-finger trials. The corresponding R2 values were obtained

and averaged across all multi-finger trials. An EMG channel

was retained if the R2 value between the EMG amplitude

of the channel and the force of the corresponding finger was

larger than that of other fingers. Otherwise, the channel was

removed from the channel pool. After the channel refinement,

a linear regression model was computed as follows:

Fi = aAi,flx + bAi,ext + ci (1)

where Fi represents the force of the i − th finger, Ai,flx

and Ai,ext denote the sum of the EMG amplitudes for the

selected flexor and extensor channels related to the i − th
finger, respectively. The parameters a and b are coefficients

that are learned through the regression, and ci is the intercept.
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G. Validation Protocol

Firstly, we evaluated the performance of the three methods

(Deep Forest, EMG-amplitude, and CNN) in predicting multi-

finger force when multi-finger trials were included during the

training. For each subject, we used all the single-finger data

and 3/4 of the multi-finger trials for training, while keeping

the hold-out multi-finger trials for testing. This process was

repeated four times using a 4-fold cross-validation approach

over the testing multi-finger trials.

In the main experiments, we focused on training the model

using only single-finger trials and testing it on all the multi-

finger trials. To ensure reproducibility, we repeated this process

five times to account for any potential randomness or variation

in the results.

We further investigated the robustness of the proposed

methods under conditions of reduced training data and

varied levels of noise. In particular, we evaluated model

performance when the volume of training data was reduced

to {75%, 50%, 25%} of its original amount. In addition, the

resistance to noise is also examined, while the quality of

training data can be controlled during the data acquisition

phase, the quality of real-world testing data may be influenced

by various uncontrollable factors such as ambient noise,

movement artifacts, or changes in electrode-skin contact over

time. Therefore, it is vital to assess the performance of the

trained models under different noise conditions in the testing

phase. Hence we have evaluated the robustness of the proposed

deep forest against various levels of noise. We introduced

Gaussian Noise into our testing data at varying signal-to-noise

ratios (SNRs) to emulate real-world scenarios where the signal

might be compromised. The levels of noise were defined by

the SNRs in {5, 10, 15, 20}. For each SNR, the Gaussian

noise was added to each channel of the original EMG, and

then fed into the trained models for evaluation.

H. Performance Metrics

Root mean square error (RMSE) and coefficient of

determination (R2) were used to evaluate the force estimation

performance of the different decoding methods. To quantify

the finger separation, the false active rate and false active

rate were computed based on different levels of the threshold.

Specifically, a finger was classified as ’active’ if the

recorded force exceeded a particular MVC threshold (set at

{5%, 10%, or15%}) during a specific timeframe. Conversely,

if the force fell below this threshold, the finger was deemed

to be in a ’rest’ state. The false rest rate refers to the

percentage of ’rest’ samples classified as ’active,’ whereas

the false active rate corresponds to the proportion of ’active’

samples mistakenly identified as ’rest’. The reported values

are computed by pooling all the obtained subject-wise results.

Shapiro–Wilk test was first applied to verify the normality

of the obtained metrics. Results showed that the Gaussian

distribution assumption was satisfied. Therefore, the repeated

measures analysis of variance (ANOVA) was used to evaluate

the effects of specific factors on the obtained performance

metrics. Paired t-tests with Bonferroni-Holm correction were

Fig. 4: Decoding accuracy of different approaches when

single-finger and multi-finger data were used for training.

The error bar represents standard error and the solid diamond

denotes outliers (A) An example trial illustrating the estimated

force relative to the recorded force using different methods

(Deep Forest, EMG-amplitude, and CNN). (B) Root Mean

Square Error (RMSE) and (C) R2 were obtained by three

methods using data that included multi-finger trials under 4-

fold validation. *:p < 0.05. **: p < 0.01

Fig. 5: Decoding accuracy of different approaches when

only single-finger data were used for training. The error

bar represents standard error and the solid diamond denotes

outliers*:p < 0.05. **: p < 0.01

then applied for multiple comparisons if necessary. The

significance level was set as p < 0.05 in this study.
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(B)

(A)

(C)

-

-

-

Fig. 6: The average force prediction results across subjects

and trials. (A) An exemplar trial of multi-finger extension and

flexion, (B) R2 and (C)RMSE; *:p < 0.05, **: p < 0.01

(A)

(B)

Fig. 7: (A) The force estimation error of unintended fingers.

(B) The accuracy of active v.s. rest classification. *:p < 0.05,

**: p < 0.01

III. RESULTS

A. Multi-finger Force Prediction Using Both single-finger and

Multi-finger Data

Fig. 4 (B) and (C) display the results of multi-finger force

prediction using three methods when multi-finger data was

**
**

**

**

**

***
**

****

**

**

**

***

**

**
**

** **

Fig. 8: The averaged force prediction performance v.s. the

utilized training data. *:p < 0.05, **: p < 0.01.

Fig. 9: The performance of force estimation v.s. the signal-to-

noise ratio of the testing data

involved during training. The CNN and DF methods exhibit

exceptional performance, achieving low RMSE of 4.16± 0.5
and 4.11± 0.5 (mean ± standard error, %MVC) respectively,

with corresponding R2 values of 0.957±0.01 and 0.58±0.01.

In comparison, the EMG-amplitude method yields an RMSE

value of 13.12± 1.2 and an R2 value of 0.617± 0.06, which

is consistent with previous studies [13]. A one-way repeated

measures ANOVA indicated significant differences in both

RMSE (F (2, 12) = 111.9, p < 0.01) and R2 (F (2, 12) =
97.0, p < 0.01). Subsequent post-hoc analysis demonstrated

that both CNN and DF methods yielded significantly lower

RMSE and higher R2 compared to AMP methods. However,
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the performance between the DF and CNN methods did not

exhibit any significant differences.

Fig. 4 (C) shows that both the CNN and DF methods can fit

the recorded force almost perfectly, while the EMG amplitude

method also demonstrates a good fit, especially for the ring

finger. However, we observed substantial over- or under-fit

in the index and middle fingers. These results provide initial

validation of the feasibility of these methods for concurrent

prediction of flexion and extension forces of three fingers.

B. Multi-finger Force Prediction Using Single-finger data

When the multi-finger data was excluded from the training

data, the force estimation accuracy of all the methods

decreased substantially (Fig.5). However, DF method still

maintains commendable accuracy with an average R2 of

0.874, while the AMP method showed a much lower mean

R2 value of 0.182. This suggests that the AMP method is

not able to effectively establish the mapping between EMG

signals and force outputs when the regression function was

trained solely on single-finger data. On the other hand, the DF

method demonstrates its robustness and ability to generalize

in the absence of multi-finger data. We observed that the DF

method exhibits superior performance by achieving the lowest

average RMSE and the highest R2 value among the tested

methods. A one-way repeated measures ANOVA showed a

significant difference in RMSE (F (2, 12) = 52.71, p < 0.01)

) and R2 (F (2, 12) = 22.62, p < 0.01)) value among methods.

Further post-hoc comparison showed that the difference in

performance between the DF method and the other two

methods was statistically significant (p < 0.05).

Fig.6 offers a detailed examination of the force estimation

performance for individual fingers. For the intended fingers,

the DF method consistently showed the lowest estimation

error, with RMSE of the index (7.86 ± 0.72% MVC (mean

± standard error)), middle (7.18 ± 0.49%MVC), and ring

fingers (5.95 ± 0.71%MVC). The two-way (method (DF

vs. CNN vs. AMP) × finger (index vs. middle vs. ring))

repeated measures ANOVA revealed a significant effect of

the method on the RMSE (F (2, 12) = 130.91, p < 0.01 and

R2(F (2, 12) = 41.38, p < 0.01) with no interaction effect.

The significant effect on fingers was found on the RMSE

(F (2, 12) = 4.80, p < 0.01) with no significant effect on R2

(F (2, 12) = 2.23, p > 0.05). Post-hoc comparisons showed

that DF methods achieved significantly lower RMSE and

higher R2 on index and middle fingers (p < 0.05) compared

to AMP and CNN methods. However, the performance

differences between CNN and DF on ring fingers were not

significant (p > 0.05). A representative trial of the flexion-

extension task of multi-finger was depicted in Fig.6(A). Both

the DF and CNN methods demonstrated a precise fit to the

recorded force, not only during specific finger activation but

also during simultaneous multi-finger movements.

We evaluated the estimation errors for forces exerted by

unintended fingers. The root mean square error (RMSE)

for these unintended fingers was illustrated in Fig.7 (A). A

two-way (method (DF vs. CNN vs. AMP) × finger (index

vs. middle vs. ring)) repeated measures ANOVA revealed

significant effects of both the method (F(2,12)=26.09, p <

0.001) and the fingers (F(2,12)=7.89, p < 0.05) on the RMSE

without interaction effect. Notably, a post-hoc comparison

revealed that the RMSE for the DF and CNN methods was

significantly lower than that of the AMP method (p < 0.05)

on three fingers. Yet, there were no significant differences

in RMSE between DF and CNN methods. This observation

underscores the ability of both DF and CNN to effectively

distinguish individualized finger forces during multi-finger

motor output.

We further quantified the active and rest states of finger

muscle contraction based on the predicted force and a

predetermined threshold. The average rates of false activation,

false rest, and detection accuracy are presented in Fig. 7

(B). The repeated measures ANOVA revealed a significant

difference in the false activation rate across the three methods,

irrespective of the threshold used (5% MVC: F (2, 12) =
51.63, p < 0.01; 10% MVC: F (2, 12) = 58.71, p < 0.01;

15% MVC: F (2, 12) = 15.78, p < 0.01). Subsequent

paired comparisons with post-hoc demonstrated that the false

activation rate of the DF method was significantly lower

than the other two methods (p < 0.05). Similarly, the

detection accuracy also showed significant differences across

the three methods, irrespective of the threshold used (5%

MVC: F (2, 12) = 29.15, p < 0.01; 10% MVC: F (2, 12) =
71.12, p < 0.01; 15% MVC: F (2, 12) = 26.09, p < 0.01),

subsequent post-hoc tests indicated that the DF method

achieved significantly higher accuracy than both AMP (p <

0.05) and CNN (p < 0.05) under all thresholds. The false rest

rate showed significant differences between methods under

10% MVC ( F (2, 12) = 16.15, p < 0.01) and 15% MVC

(F (2, 12) = 37.61, p < 0.01). However, at 5% MVC, no

significant difference was observed (F (2, 12) = 0.43, p >

0.05).

C. Exploring Minimal Training Data

To further enhance the training efficiency, we determined

the minimum amount of data required to train the models

effectively. We progressively reduced the training data from

100% to 75%, 50%, and 25% using a subset of the single-

finger data (corresponding to 1, 2, and 3 out of the 4

total available trials). This exploration allowed us to identify

the optimal volume training data that can yield satisfactory

performance (Fig.8). Two-way repeated measures ANOVA

(method × training size) revealed a significant effect of

training size on both RMSE (F (3, 18) = 16.80, p < 0.01)

and R2(F (3, 18) = 11.04, p < 0.01) with no interaction with

the method. We observed that the DF method consistently

demonstrated the lowest RMSE and the highest R2 regardless

of the training data size. Remarkably, using merely 25% of

the training data, the force estimation reached an RMSE of

9.3± 0.4%MVC and an R2 value of 0.78± 0.03. Upon post-

hoc analysis, both the DF and CNN methods were seen to

substantially surpass the AMP method under every condition.

However, a significant difference in RMSE between CNN

and AMP was only evident when utilizing 75% and 100%

data (p < 0.05). The difference in R2 between CNN and
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DF was only significant when utilizing 50% and 100% data.

Overall, these findings underscore the DF method’s proficiency

in harnessing a limited training dataset to effectively decode

finger force to some extent.

D. Robustness to Noise

As depicted in Fig.9, a declining trend in performance

was noticeable for all methods as SNR decreased. The two-

way repeated measures ANOVA (method × SNR) showed

an interaction effect between these two factors for both

RMSE (F (6, 36) = 25.92, p < 0.01) and R2 (F (6, 36) =
4.78, p < 0.01). Under all conditions, both DF and CNN

show significantly outperformed the AMP method. Significant

differences in RMSE between DF and CNN were observed

when SNR > 10 (p = 0.02 for SNR = 15 and p = 0.015 for

SNR = 20).Similarly, significant differences in R2 between

DF and CNN were observed when SNR > 10 (p = 0.04
for SNR = 15 and p = 0.03 for SNR = 20). Despite the

observable performance variation, the DF method was able to

maintain the best performance across most scenarios.

TABLE I: The training and testing times (mean ± standard

error) are provided for the three methods. The testing time

indicates the time taken to infer one data segment, defined as

an EMG signal with a 500-ms window and a 100-ms moving

step. Both training and testing times are averaged across all

subjects.

Method Training time (second) Testing time (second)

AMP 6× 10
−4 ± 1.6× 10

−4
2.98× 10

−5 ± 5.3× 10
−7

CNN 119.67± 4.18 1.2× 10
−3 ± 1.4× 10

−4

DF 18.20± 0.92 3.3× 10
−2 ± 4.9× 10

−3

E. Training Time Efficiency

The average layer depth for DF across experimental runs is

2.28 ± 0.17, with a maximum depth of 5 and a minimum

of 2. In table I, we documented the training time for the

AMP (6× 10−4
± 1.6× 10−4 seconds), CNN (119.67± 4.18

seconds), and DF (18.20±0.92 seconds) methods. The EMG-

amplitude method showed the shortest training time, and the

DF method exhibited approximately 5 times faster training

time than that of CNN. The average time for inferring a single

EMG input segment (with a 500-ms window and a 100-ms

updating interval) was also estimated by three methods. For

the AMP method, the inference time is 2.98×10−5
±5.3×10−7

seconds. The CNN, with a time of 1.2 × 10−3
± 1.4 × 10−4

seconds, was more efficient in inference compared to the DF,

which took 3.3× 10−2
± 4.9× 10−3 seconds.

IV. DISCUSSION

Our study addressed the intricate challenge of decoding

concurrent multi-finger motion intention from EMG signals

for robotic hand control. Due to the numerous combinations

of multi-finger movement, capturing exhaustive data for every

possible scenario is not feasible. Consequently, we sought to

harness single-finger data to predict multi-finger movements,

which could enhance training efficiency and practicality in

controlling advanced prosthetics.

Although AMP [11], [13] and CNN methods [23], [29], [30]

have been widely explored for multi-finger force prediction,

achieving satisfactory performance using only single-finger

data remains challenging. A key reason might be that the

AMP method lacks the necessary complexity to effectively

manage the finger-specific nonlinear mapping between HD-

EMG features and forces. The CNN method, while capable

of modeling complex finger-force relationships, often requires

large data volumes for effective training to avoid overfitting.

The DF method potentially bridges this gap between model

complexity and data requirements. Our findings suggest that

DF significantly outperforms both AMP and CNN methods.

With its training efficiency and data efficacy, DF emerges as

a particularly promising technique for facilitating fine motor

control in advanced prosthetic hands

Our initial results suggested that all three methods (EMG

amplitude, CNN, and DF) were capable of predicting multi-

finger forces with high accuracy when the multi-finger data

were utilized during training. The DF and CNN methods,

in particular, exhibited superior predictive performance,

indicating that complex non-linear modeling is essential to

capture the EMG-force relation. However, when we only

used single-finger data to train the model, an inevitable

decrease in performance was observed across all methods,

with the EMG amplitude method demonstrating notably poor

performance. It was noticeable that the activation patterns

for the flexion/extension of different fingers display distinct

localized activations on the 2D electrode grid. Consequently,

conventional amplitude methods, which use information from

all channels, may not be optimal for force prediction at

the individual finger level, often resulting in overestimated

or underestimated forces. Channel refinement is critical

for identifying finger-specific channel pools and contributes

to accurate force predictions for each finger [11], [13].

In our experiments, a significant increase in prediction

error was observed when multi-finger data was unavailable

(which means that the application of channel refinement is

inapplicable) for the AMP method.

By contrast, both CNN and DF had the model complexity

necessary to establish the complex relationship between EMG

features and multi-finger forces, even when only single-

finger is available for training. In our study, the DF method

demonstrated notable performance advantages over CNN,

particularly for target fingers. Specifically, DF benefits from

its inherent ability to perform implicit feature selection and

transformation, allowing it to focus on and effectively utilize

the most significant features [27]. This is especially beneficial

when HD-EMG features from each channel did not uniformly

contribute to the forces of different fingers. While CNNs excel

at processing complex data structures and identifying intricate

patterns, their lack of an explicit feature selection mechanism

means that they extract hierarchical representations from all

EMG channels. This approach may result in overestimated

force values compared to DF in certain scenarios (Fig.6).

The different mechanisms in feature selection might primarily

account for the observed difference in performance between
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CNN and DF methods.

Both the CNN and DF methods exhibited significantly

reduced estimation errors on unintended fingers compared

to the AMP method. Instead of comparing against a zero

value, we evaluated the force of unintended fingers against the

actual recorded force. This approach is crucial as accurately

estimating the force of unintended fingers contributes to

the natural control of prosthetics. Muscle contractions were

classified into two states: rest and active. We assessed the

ability of the decoder to separate fingers using metrics

such as the false activation rate, false rest rate, and overall

state detection accuracy. The DF method demonstrated

the lowest false activation rate and the highest detection

accuracy across various thresholds, likely due to its explicit

feature selection capability that effectively distinguishes force

differences across fingers. However, this advantage becomes

less pronounced in detecting lower force levels. For example,

the false rest rates of CNN and DF are notably similar when

the thresholds are set at 5% and 10% MVC.

The scarcity of training data for EMG-force modeling

remains a significant challenge, largely due to the high

costs of data acquisition. Our observations indicated that

the DF method consistently outperforms other methods in

most scenarios, even with training data progressively reduced

to only one trial per finger. This superior performance

is likely due to the inherent ability of DF to adaptively

adjust its complexity based on the available training data,

thereby effectively utilizing limited datasets. In contrast, for

the CNN, we implemented a lightweight architecture with

approximately 4.2×104 parameters for optimization. However,

the complexity of this neural network model is fixed before

training and did not adapt to the volume of data available.

This static nature of the CNN model limited its effectiveness

when dealing with with a limited amount of training data.

Our study revealed that both CNN and DF exhibit a certain

degree of resistance to noise. This resilience underscores their

potential for implementation in real-world applications, where

encountering signal interference is common. Specifically, in

testing signals with an SNR above 15 dB, the DF method

consistently outperformed the CNN. However, as the noise

in the testing signal increased and the SNR decreased, the

performance gap between DF and CNN narrowed. This

observation suggests that while the DF method may be

preferable in environments with relatively clean signals, both

models demonstrate comparable performance in high-noise

scenarios.

Before training, the CNN underwent an extensive grid

search for the best filter size and layer depth. Conversely,

the DF method showed its efficiency by necessitating minimal

hyperparameter tuning. Ideally, a system for prosthesis control

should need short and easy training [31]. In our study,

the AMP method completed training in just 0.6 ms. While

training the CNN took an average of approximately 2 minutes,

the DF method was notably more efficient, requiring only

18.2 seconds. The longer training duration of CNN was

expected given the inherent complexity of neural networks,

which involve multiple layers of interconnected neurons to be

optimized via back-propagation. By contrast, the DF method

exhibited a balance between the two methods, with a training

time of around 18.20 seconds, highlighting its ability to

offer sufficient complexity without compromising efficiency

to some extent. Regarding testing time, all methods could

complete the inference within the input update time (100

ms), indicating that all methods were suitable for real-time

applications. As expected, the AMP method exhibited the

shortest inference time, while the CNN method demonstrated

a faster inference speed than DF. This can be attributed

to the efficient implementation of the deep neural network

framework, which was enhanced by numerous acceleration

techniques using GPU computations (we also used PyTorch

in this work). On the other hand, as deep forest is a

relatively new technique, its implementation was performed

using CPUs. Nonetheless, the current implementation still

meets real-time requirements. As a burgeoning trend in the

field, there are implementations like ”ForestLayer” [32] that

are considerably faster than current methods. We foresee

significant advancements and refinements in the inference

efficiency of DF as this emerging technique progresses.

In comparison with previous studies on force prediction

at the individual finger level, we found that the DF

method surpasses the conventional regression-based amplitude

method and the state-of-the-art neural drive method [11],

[13], including CNN models trained on the neural drive

information [33], [34]. Clearly, global features are more

efficient to extract than neural drive information, with the latter

requiring computationally intensive motor unit decomposition.

Furthermore, the neural drive method [11], [13] required data

from multi-finger trials to refine the motor unit pools for

accurate force prediction. In contrast, our approach predicted

multi-finger movement forces solely based on data from

single-finger trials. Overall, our approach introduces new and

efficient solutions for multi-finger motor decoding, expanding

upon existing methods.

Despite the promising results, several limitations should be

addressed in future works. Firstly, the study was conducted

with seven subjects, and the applicability of the proposed

method to a larger population should be involved to validate

the findings. Secondly, the current study only involved intact

subjects. The effectiveness of the proposed methods has not

been validated on amputees. The muscle activation patterns in

amputees can undergo significant alterations, combined with

the potential reduction in available EMG recording channels

due to amputation. Future studies should aim to address these

complexities and evaluate the adaptability of these methods to

the unique EMG characteristics of amputees. Third, our focus

was on isometric contractions. In reality, hand movements

are more complex, often involving a range of dynamic

motions, which plays a crucial role in fine motor tasks our

hands perform daily. Therefore, future work should consider

incorporating dynamic finger joint estimation to potentially

allow for finer motor control in practical settings.

V. CONCLUSION

This study offered insights into enhancing the training

efficiency of neural decoders potentially viable for fine control
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of advanced prostheses. Our findings demonstrate that the

DF method can achieve superior performance in concurrently

predicting the flexion and extension force of individual fingers,

even when training exclusively using single-finger data. With

its superior performance and capacity to effectively utilize

limited training data, the DF method can enable efficient

EMG-based control systems for dexterous finger control in

robotic applications.
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