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Towards Efficient Neural Decoder for Dexterous
Finger Force Predictions

Jiahao Fan and Xiaogang Hu

Abstract—Objective: Dexterous control of robot hands requires
a robust neural-machine interface capable of accurately decoding
multiple finger movements. Existing studies primarily focus on
single-finger movement or rely heavily on multi-finger data
for decoder training, which requires large datasets and high
computation demand. In this study, we investigated the feasibility
of using limited single-finger surface electromyogram (SEMG)
data to train a neural decoder capable of predicting the forces of
unseen multi-finger combinations. Methods: We developed a deep
forest-based neural decoder to concurrently predict the extension
and flexion forces of three fingers (index, middle, and ring-pinky).
We trained the model using varying amounts of high-density
EMG data in a limited condition (i.e., single-finger data). Results:
We showed that the deep forest decoder could achieve consistently
commendable performance with 7.0% of force prediction errors
and R? value of 0.874, significantly surpassing the conventional
EMG amplitude method and convolutional neural network
approach. However, the deep forest decoder accuracy degraded
when a smaller amount of data was used for training and
when the testing data became noisy. Conclusion: The deep
forest decoder shows accurate performance in multi-finger force
prediction tasks. The efficiency aspect of the deep forest lies in
the short training time and small volume of training data, which
are two critical factors in current neural decoding applications.
Significance: This study offers insights into efficient and accurate
neural decoder training for advanced robotic hand control, which
has the potential for real-life applications during human-machine
interactions.

Index Terms—Hand function, finger force prediction, deep
forest, convolutional neural network.

I. INTRODUCTION

UR ability to independently control individual fingers

empowers us to accomplish intricate tasks, spanning
from simple grasping activities to complex manipulation
tasks. In an effort to restore impaired or lost hand function,
the development of assistive devices, such as prosthetic
hands and exoskeleton gloves, has progressed significantly.
Although these advanced devices can mimic the complex
movements of a biological human hand [1]-[4], decoding
user’s motion intention into executable control commands
remains a substantial challenge.

Surface electromyogram (EMG) signals are commonly
used as the source of neural control for robotic hands.
While EMG-based pattern recognition has attained prominent
performance in identifying a finite set of intended movements
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(e.g. hand gesture recognition) [5]-[7], a major limitation of
the pattern recognition is the lack of proportional activation
of the recognized classes [8]. A second approach, termed
proportional control, enables users to control individual
actuators in a continuous manner, which has more potential
to enable dexterous control of robotic hands [9].

Most previous studies on proportional finger control have
primarily focused on predicting the motor output of an
individual finger, which may have limited application as
many daily tasks require dexterous control of multiple fingers.
Relatively few studies have explored neural decoders that
can predict forces of multiple fingers concurrently [10]-[13].
When leveraging high-density EMG (HD-EMG), it has been
demonstrated that both the global (i.e., EMG amplitude)
[14], [15] and microscopic (i.e., neural drive information)
HD-EMG features can predict forces at individual finger
levels. The global-feature-based method directly maps EMG
amplitude to forces using simple regression models. However,
global EMG amplitude features are susceptible to interference
such as signal crosstalk and amplitude drift, leading to
suboptimal performance at the individual finger level. In
contrast, neural drive information utilizes motor unit firing
activities obtained through motor unit decomposition. This
information more accurately reflects the motor commands,
thus providing accurate decoding of finger motor intent
[11], [12], [16]. However, extracting neural drive information
via motor unit decomposition was computationally intensive,
limiting its practicality in real-life implementations.

Recent studies [17]-[19] have shown that individual finger
flexion or extension can be characterized by localized
spatial activation patterns in the HD-EMG global features,
suggesting the presence of finger-specific mapping between
EMG channels and their corresponding motor outputs.
However, extrapolating these finger-specific channel mappings
identified in single-finger tasks to untrained multi-finger tasks
have proven to be unsatisfactory [11], [12]. To achieve
optimal multi-finger force prediction, EMG from multi-finger
movements must be included in the training data to provide
information about the intricate co-activation patterns between
fingers. However, given the multitude of possible finger
combinations, it is often inefficient and sometimes impractical
to exhaustively acquire data for all finger combinations to train
the neural decoders. Therefore, it is invaluable to develop
a method that can be trained on a limited dataset, such as
single-finger data, and subsequently extrapolate to movements
outside the training set (e.g., combinations of fingers). Such
an approach can substantially reduce the time required for
system training. However, implementing such a method may
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be challenging, as the interdependencies among fingers [15],
[16] may not be as pronounced in EMG during single-finger
movements as in the movements of the unseen multiple-finger
combinations.

Deep neural network models have demonstrated proficiency
in mapping complex non-linear relations [20], [21]. For
instance, an earlier work [22] utilized a deep convolutional
neural network (CNN) that combined time and frequency
domain features for wrist force prediction. Similarly, CNN
demonstrated the effectiveness of predicting multi-directional
wrist torques [23]. Others also employed a multi-task learning
framework [24], [25], incorporating a deep learning approach
to predict both myoelectric patterns and the resultant force.
An earlier study [26] developed a more complex transformer
structure to predict the joint kinematics of the hands.

However, there are several limitations of neural network
models, First, these models often require a large volume
of training data, which may not be feasible. Second, neural
networks typically require extensive hyperparameter tuning to
achieve optimal performance. Third, the optimization of neural
network weights through iterative backpropagation is also
notably time-consuming. From the perspective of efficiency,
here we introduced a deep forest (DF) [27] based neural
decoder to concurrently predict the force exerted by multiple
fingers. DF leverages hierarchical cascade layers of decision
trees to achieve deep representation learning, which enables
it to capture the finger-specific activation patterns from HD-
EMG for force prediction. In addition, compared to neural
networks, DF has minimal hyper-parameters to tune, and the
model structure could be adapted in a data-driven manner, thus
being considered more efficient.

We used the DF-based decoder to simultaneously and
accurately predict the flexion and extension forces of multiple
fingers, using a global HD-EMG feature. We restricted our
training data to single-finger data and then evaluated the model
on untrained multi-finger combinations. Assessments on the
force prediction of three fingers (index, middle, and ring-
pinky) across seven participants revealed that the DF decoder
consistently exhibited high accuracy, even with limited training
data, in comparison to both the traditional EMG amplitude
method and convolutional neural network. These findings
underscore the potential of the DF decoder as an efficient tool
for EMG-based neural decoding.

II. METHODS
A. Experimental Setup

Seven neurologically intact participants were recruited
in the study. All subjects gave informed consent with
protocols approved by the Institutional Review Board of the
Pennsylvania State University.

The experiments included performing isometric finger
flexion and extension tasks using the index, middle, pinky,
and ring fingers. As shown in Fig. 1, two 8 x 16 electrode
arrays were replaced on the anterior and posterior sides of
the forearm of the subjects to record EMG signal from the
flexor digitorum superficialis (FDS) and extensor digitorum
communis (EDC) muscles. The single-electrode diameter and

the inter-electrode distance of the electrode arrays are 3-mm
and 10-mm, respectively. The reference channel was placed at
the wrist. The HD EMG was acquired using an EMG-USB2+
system (OT Bioelettronica) with a gain of 1000 and a sampling
rate of 2048 Hz. To measure the force during finger flexion and
extension, we used miniature load cells (SM-200N, Interface)
for the index, middle, ring, and pinky fingers individually. The
sampling rate for recording the force data was set at 1000
Hz. During the experiments, the forearm was positioned in a
neutral position and supported by two stiff foam pads. Prior to
each trial, the offsets of the individual load cells were carefully
adjusted, to ensure a positive force reading represented flexion
and a negative reading represented extension.

B. Experiment Procedure

For each participant, the first step involved measuring
the maximum voluntary contraction (MVC) of the flexion
and extension force exerted by each finger. The flexion and
extension MVC were measured separately for each finger.
These MVC values were respectively used for flexion and
extension force normalizations. A positive force indicates the
flexion force, while a negative force denotes the extension
force. In particular, the subjects were asked to perform finger
flexion and extension at MVC following the force trajectory
displayed on the monitor. Given the significant enslavement
between the ring and pinky fingers [28], the participant was
requested to extend and flex these two fingers simultaneously.
These two fingers were treated as one finger (referred to
hereafter as the ’ring’). Consequently, the force exerted by
the ring-pinky finger was computed as the summation of
the ring and pinky forces, which were then displayed to the
participants.

During the experiment, the subjects followed a predefined
force target (Fig.1 (B) and Fig.1 (C)), ranging from 0 to 50%
MVC for each finger. The 50% MVC was selected to alleviate
muscle fatigue that might occur at higher force levels. Two
types of trials were performed by the participants. The first
type was the single-finger trial, where the participants were
instructed to flex or extend an individual finger according to
the predefined single trapezoid for a duration of 21 seconds(
Fig. 1 (B)). During the single-finger trial, the subjects were
asked to avoid co-contraction with the unintended fingers.
The second type was the multi-finger trial, where subjects
were asked to flex and extend a minimum of two fingers,
following a sequence of trapezoids for a duration of 27 seconds
(two fingers involved) or 42 seconds (three fingers involved)
(Fig. 1 (C)). For a specific duration, one finger was instructed
to maintain the intended force level, while co-activation was
allowed for other fingers. The selection of target fingers was
randomized across the multi-finger trials. Overall, 12 single-
finger trials (3 fingers x 4 trials) and 16 multi-finger trials
were performed by each subject.
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Fig. 1: The experiment setup and protocol. (A): Monopolar
EMG signals were recorded from the finger extensor and
flexor, respectively, with two 8x16 electrode arrays, and the
flexion/extension forces of the index, middle, ring, and pinky
fingers were recorded. The trapezoidal force target from the
single-finger extension and flexion trial (B) and the multi-
finger trial (C). The force target of the multi-finger trial was
shown with different colors to represent the three fingers, i.e.
index (red), middle (brown), and ring (green) as the instructed
finger, respectively.

C. Data Preprocess

The data analysis was performed using MATLAB (The
MathWorks, Inc.), scikit-learn', and Pytorchz, running on a
computer equipped with an Intel i7-12700k CPU and an RTX
3070 Ti GPU. The pre-processing of the recorded EMG and
force data involved several steps. Initially, the raw EMG
signals were filtered using a high-pass filter (Butterworth zero-
phase shift with an order of 4). Next, the Root Mean Square
(RMS) was computed for each channel utilizing a smoothing
window of 0.5 seconds and a moving step of 0.1 seconds. The
extracted RMS served as the input feature for the subsequent
computations. For deep forest, the dimension of the input
was 256 (2 electrode arrays x 128 channels). For CNN, we
reshaped the input to a spatial layout of 2x8x16. The recorded
force was separately normalized by the MVC values for both
flexion and extension. The normalized force was smoothed
using the same window size and moving step.

In the supplementary material, we have provided example
data for both single-finger and multi-finger trials, as illustrated
in Fig. S1 and Fig. S2. The rationale behind using single-finger
trials to predict multi-finger trials is based on the observation
that the localized activation patterns in both single-finger and
multi-finger movements exhibit overlap when the subject is
instructed to perform the same finger-force task. Although the
activation of an intended finger in a multi-finger movement
can be influenced by the adjacent fingers due to co-activation,
it is still expected to exhibit similar activation patterns as
observed in the corresponding single-finger trials. Our goal
is to capture these localized activation patterns during single-
finger force production and utilize them to accurately predict

Uhttps://scikit-learn.org/stable/
Zhttps://pytorch.org/

multi-finger forces, even in scenarios where multiple fingers
are simultaneously activated.

D. Deep Forest

As illustrated in Fig. 2, each finger corresponded to a Deep
Forest (DF), with each layer consisting of two random forests
(RF) and two completely random forests (C-RF). This finger-
specific model design offers scalability, because when a new
finger needs to be incorporated, there’s no need to retrain the
models. In practice, these finger-specific models could run
in parallel to ensure real-time processing during inference.
In contrast to deep neural networks (DNNs) that necessitate
determining the complexity of the network prior to training,
the complexity of DF (e.g. the layer number) was determined
in a data-driven manner and was automatically adjusted based
on the information in the data. Namely, the addition of more
layers is interrupted if there is no performance improvement.

During training, both RF and C-RF were fitted on the input
data by selecting features that lead to the highest impurity
reduction at each node within their respective decision trees.
However, C-RF introduced an additional degree of randomness
by not just randomly selecting the feature subsets in the
splitting, but also randomly assigning split points within these
features. This combination of different types of random forests
in each estimator encourages diversity, which could potentially
improve the model’s overall performance. The estimation
output of a forest layer was concatenated with the original
input feature (x € R2%® (2 electrode arrays x 128 channels)),
forming an augmented feature to be fed into the next layer.
This simple feature augmentation promotes effective in-model
feature transformation.

Though DF shares a similar concept of layer-by-layer
processing with DNNGs, it fundamentally differs in its essence
as a non-parametric, tree-based ensemble method. Unlike
DNNs, DF doesn’t require the differentiation of layers or back-
propagation for training. As previously mentioned, the number
of layers is dynamically added until optimal performance is
reached, ensuring a structured, step-wise training procedure
for efficient learning and optimal model performance. It was
worth noting that we did not undertake any hyper-parameter
searching for the DF. The only hyper-parameters explicitly
assigned were the number of RF and C-RF (n = 2) in each
layer, with each forest comprising 100 trees. Beyond that, all
the hyper-parameters were used in their default settings as
described earlier [27].

E. CNN

CNN has emerged as an effective approach for EMG-
force prediction [21], [22]. We implemented a two-branch
Convolutional Neural Network (CNN) architecture (Fig. 3) to
specifically analyze the activation patterns of the flexor and
extensor muscles. Given the relatively small size of our dataset,
we used a lightweight CNN architecture to prevent overfitting
while ensuring efficient learning. Since the employed hyper-
parameters may significantly impact the model’s performance,
we have tested various combinations of layer numbers N &
{1,2,3,4} and filter sizes f € {3,5, 7}. We found that N = 2
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Fig. 2: The cascade structure of a deep forest. RF:random forest; C-RF: completely random forest; Ave.: Average operation
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Fig. 3: The two-branch CNN model. Conv: 2d Convolutional
Layer; LReLU, Leakey Rectified Linear Unit; Pooling: Max
Pooing. FC: fully connected layer. The feature vectors
extracted from the flexor and extensor EMG signals were
fused to make a final prediction. The gray block represents
the feature fusion operation.

and f = 3 yielded the best results on the validation dataset.
Consequently, these settings were employed throughout our
data analysis. The details of the utilized CNN can be found
in Section 2 of the supplementary material.

Our initial strategy was to train a finger-specific model using
the available single-finger data. However, due to data scarcity,
the performance of the finger-specific CNN was notably
inferior in comparison with the concurrent prediction models.
As a remedy, we trained the CNN model capable of concurrent
prediction of three-finger forces. This model, featuring a three-
dimensional output space, was able to efficiently capture and
represent the complex dynamics of multiple finger outputs.

The CNN was trained employing the Mean Squared Error
(MSE) loss function along with L, regularization, with a
weight of 107%. The training process was set to a maximum
of 300 iterations, using a learning rate of 0.001. To monitor
the training progress and perform early stopping, 20% of the
training data was randomly selected for validation after each
training iteration. If the validation loss did not decrease for 10
consecutive iterations, the training process was stopped. The
model that yielded the lowest validation loss was selected as

the final model for testing and evaluation.

FE. EMG-amplitude Method

The conventional EMG-amplitude (referred to as AMP
hereafter) method was also applied as a benchmark
for comparison. In order to enhance its performance in
differentiating individual fingers, steps were taken to refine
the channel selection process. This refinement is based on the
understanding that not all channels are necessarily tied to the
activation of a specific finger. Thus, only the most informative
channels were chosen, restricted to the top 60 channels with
the highest amplitude for the extensor or flexor muscle of
each finger. This channel selection represents approximately
50% of the total channels of the extensor or flexor. The
force prediction errors between EMG amplitudes using all
channels and the top 60 channels are presented in Fig. S3
of the Supplementary Materials. If the multi-finger trial was
available (only in sectionlll-A), a further refinement procedure
was undertaken to select the most informative EMG channels
from the top 60 channels for individual fingers [11], [13]. For
a given finger, the EMG amplitude of the top 60 channels and
the forces were calculated using a 0.5-second average window.
Subsequently, a linear regression analysis was performed
between all the 60 EMG channels and the forces recorded in
multi-finger trials. The corresponding R? values were obtained
and averaged across all multi-finger trials. An EMG channel
was retained if the R? value between the EMG amplitude
of the channel and the force of the corresponding finger was
larger than that of other fingers. Otherwise, the channel was
removed from the channel pool. After the channel refinement,
a linear regression model was computed as follows:

Fy =aA;nx +bAjex +¢i (D
where F; represents the force of the i — th finger, A; ax
and A; e denote the sum of the EMG amplitudes for the
selected flexor and extensor channels related to the i — th
finger, respectively. The parameters a and b are coefficients
that are learned through the regression, and ¢; is the intercept.
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G. Validation Protocol

Firstly, we evaluated the performance of the three methods
(Deep Forest, EMG-amplitude, and CNN) in predicting multi-
finger force when multi-finger trials were included during the
training. For each subject, we used all the single-finger data
and 3/4 of the multi-finger trials for training, while keeping
the hold-out multi-finger trials for testing. This process was
repeated four times using a 4-fold cross-validation approach
over the testing multi-finger trials.

In the main experiments, we focused on training the model
using only single-finger trials and testing it on all the multi-
finger trials. To ensure reproducibility, we repeated this process
five times to account for any potential randomness or variation
in the results.

We further investigated the robustness of the proposed
methods under conditions of reduced training data and
varied levels of noise. In particular, we evaluated model
performance when the volume of training data was reduced
to {75%,50%,25%} of its original amount. In addition, the
resistance to noise is also examined, while the quality of
training data can be controlled during the data acquisition
phase, the quality of real-world testing data may be influenced
by various uncontrollable factors such as ambient noise,
movement artifacts, or changes in electrode-skin contact over
time. Therefore, it is vital to assess the performance of the
trained models under different noise conditions in the testing
phase. Hence we have evaluated the robustness of the proposed
deep forest against various levels of noise. We introduced
Gaussian Noise into our testing data at varying signal-to-noise
ratios (SNRs) to emulate real-world scenarios where the signal
might be compromised. The levels of noise were defined by
the SNRs in {5, 10, 15, 20}. For each SNR, the Gaussian
noise was added to each channel of the original EMG, and
then fed into the trained models for evaluation.

H. Performance Metrics

Root mean square error (RMSE) and coefficient of
determination (R?) were used to evaluate the force estimation
performance of the different decoding methods. To quantify
the finger separation, the false active rate and false active
rate were computed based on different levels of the threshold.
Specifically, a finger was classified as ’active’ if the
recorded force exceeded a particular MVC threshold (set at
{5%,10%, or15%}) during a specific timeframe. Conversely,
if the force fell below this threshold, the finger was deemed
to be in a ’rest’ state. The false rest rate refers to the
percentage of ’rest’ samples classified as ’active,” whereas
the false active rate corresponds to the proportion of ’active’
samples mistakenly identified as ’rest’. The reported values
are computed by pooling all the obtained subject-wise results.
Shapiro-Wilk test was first applied to verify the normality
of the obtained metrics. Results showed that the Gaussian
distribution assumption was satisfied. Therefore, the repeated
measures analysis of variance (ANOVA) was used to evaluate
the effects of specific factors on the obtained performance
metrics. Paired t-tests with Bonferroni-Holm correction were
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Fig. 4: Decoding accuracy of different approaches when
single-finger and multi-finger data were used for training.
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denotes outliers (A) An example trial illustrating the estimated
force relative to the recorded force using different methods
(Deep Forest, EMG-amplitude, and CNN). (B) Root Mean
Square Error (RMSE) and (C) R? were obtained by three
methods using data that included multi-finger trials under 4-
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Fig. 5: Decoding accuracy of different approaches when
only single-finger data were used for training. The error
bar represents standard error and the solid diamond denotes
outliers*:p < 0.05. **: p < 0.01

then applied for multiple comparisons if necessary. The
significance level was set as p < 0.05 in this study.

Authorized licensed use limited to: Penn State University. Downloaded on April 12,2024 at 19:09:40 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Biomedical Engineering. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TBME.2024.3353145

Xopup

APPIA

Sury

0 5 10 15 20 25 30 35 40
‘Time (s)
B " a = (C = o
(B) 10 ™S PR = (O e -
o % . ® 254 °
L J
0.8 G|
° = 204 .
0.6 =
. § 154 o
044 ZRIN .
0.2- C‘ E 5.
0

Middle

Index

Index  Middle Ring

[ AMP s CNN mm DF |

Ring

Fig. 6: The average force prediction results across subjects
and trials. (A) An exemplar trial of multi-finger extension and
flexion, (B) R? and (C)RMSE; *:p < 0.05, **: p < 0.01

N AMP @W CNN BEE DF

— [ ey
*%
[ —
0.8 1
0.6 1
o
« 0.4 1
0.2 1
0.0 -
25% 50% 75% 100%
Training Samples
20
S 151
%
< 19
[Sa)
w2
2 5
0 -

25%

50% 75%
Training Samples

100%

Fig. 8: The averaged force prediction performance v.s. the

(A) EEE AMP mmm CNN WM DF utilized training data. *:p < 0.05, **: p < 0.01.
301
. 25 225
§ 201 20.04 0.8 :l\\
.
S Q 17.5 A 0.6 1
2157 £ 150 D u 041
5 10 g 12.51 —8— DF 02
10.0 1 —8— AMP
3 ::f/-/'/' 001 o o
7.5 —&— DF
T T T T _02 T T T T
0 - . . 20 15 10 20 15 10 5
(B) Index Middle Ring SNR (dB) SNR (dB)
g 60 S 90 Fig. 9: The performance of force estimation v.s. the signal-to-
g g 10 € o noise ratio of the testing data
© 40 & oy
2 % 30 g
2 g 5 70
520 2 20 g
@ . . . . . .
TE E 00 involved during training. The CNN and DF methods exhibit
AMP CNN DF AMP CNN DF aMp cNN  Dr exceptional performance, achieving low RMSE of 4.16 £ 0.5
& 5%MVC L0%MVC  —8— 15%MVC and 4.11 £ 0.5 (mean £ standard error, %MVC) respectively,

Fig. 7: (A) The force estimation error of unintended fingers.
(B) The accuracy of active v.s. rest classification. *:p < 0.05,
**:p < 0.01

III. RESULTS

A. Multi-finger Force Prediction Using Both single-finger and
Multi-finger Data

Fig. 4 (B) and (C) display the results of multi-finger force
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with corresponding R? values of 0.95740.01 and 0.58+0.01.
In comparison, the EMG-amplitude method yields an RMSE
value of 13.12 + 1.2 and an R? value of 0.617 & 0.06, which
is consistent with previous studies [13]. A one-way repeated
measures ANOVA indicated significant differences in both
RMSE (F(2,12) = 111.9, p < 0.01) and R? (F(2,12) =
97.0, p < 0.01). Subsequent post-hoc analysis demonstrated
that both CNN and DF methods yielded significantly lower
RMSE and higher R? compared to AMP methods. However,
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the performance between the DF and CNN methods did not
exhibit any significant differences.

Fig. 4 (C) shows that both the CNN and DF methods can fit
the recorded force almost perfectly, while the EMG amplitude
method also demonstrates a good fit, especially for the ring
finger. However, we observed substantial over- or under-fit
in the index and middle fingers. These results provide initial
validation of the feasibility of these methods for concurrent
prediction of flexion and extension forces of three fingers.

B. Multi-finger Force Prediction Using Single-finger data

When the multi-finger data was excluded from the training
data, the force estimation accuracy of all the methods
decreased substantially (Fig.5). However, DF method still
maintains commendable accuracy with an average R? of
0.874, while the AMP method showed a much lower mean
R? value of 0.182. This suggests that the AMP method is
not able to effectively establish the mapping between EMG
signals and force outputs when the regression function was
trained solely on single-finger data. On the other hand, the DF
method demonstrates its robustness and ability to generalize
in the absence of multi-finger data. We observed that the DF
method exhibits superior performance by achieving the lowest
average RMSE and the highest R? value among the tested
methods. A one-way repeated measures ANOVA showed a
significant difference in RMSE (F'(2,12) = 52.71,p < 0.01)
)yand R? (F(2,12) = 22.62,p < 0.01)) value among methods.
Further post-hoc comparison showed that the difference in
performance between the DF method and the other two
methods was statistically significant (p < 0.05).

Fig.6 offers a detailed examination of the force estimation
performance for individual fingers. For the intended fingers,
the DF method consistently showed the lowest estimation
error, with RMSE of the index (7.86 4 0.72% MVC (mean
+ standard error)), middle (7.18 + 0.49%MVC), and ring
fingers (5.95 £+ 0.71%MVC). The two-way (method (DF
vs. CNN vs. AMP) x finger (index vs. middle vs. ring))
repeated measures ANOVA revealed a significant effect of
the method on the RMSE (F'(2,12) = 130.91,p < 0.01 and
R%*(F(2,12) = 41.38,p < 0.01) with no interaction effect.
The significant effect on fingers was found on the RMSE
(F(2,12) = 4.80,p < 0.01) with no significant effect on R?
(F(2,12) = 2.23,p > 0.05). Post-hoc comparisons showed
that DF methods achieved significantly lower RMSE and
higher R? on index and middle fingers (p < 0.05) compared
to AMP and CNN methods. However, the performance
differences between CNN and DF on ring fingers were not
significant (p > 0.05). A representative trial of the flexion-
extension task of multi-finger was depicted in Fig.6(A). Both
the DF and CNN methods demonstrated a precise fit to the
recorded force, not only during specific finger activation but
also during simultaneous multi-finger movements.

We evaluated the estimation errors for forces exerted by
unintended fingers. The root mean square error (RMSE)
for these unintended fingers was illustrated in Fig.7 (A). A
two-way (method (DF vs. CNN vs. AMP) x finger (index
vs. middle vs. ring)) repeated measures ANOVA revealed

significant effects of both the method (F(2,12)=26.09, p <
0.001) and the fingers (F(2,12)=7.89, p < 0.05) on the RMSE
without interaction effect. Notably, a post-hoc comparison
revealed that the RMSE for the DF and CNN methods was
significantly lower than that of the AMP method (p < 0.05)
on three fingers. Yet, there were no significant differences
in RMSE between DF and CNN methods. This observation
underscores the ability of both DF and CNN to effectively
distinguish individualized finger forces during multi-finger
motor output.

We further quantified the active and rest states of finger
muscle contraction based on the predicted force and a
predetermined threshold. The average rates of false activation,
false rest, and detection accuracy are presented in Fig. 7
(B). The repeated measures ANOVA revealed a significant
difference in the false activation rate across the three methods,
irrespective of the threshold used (5% MVC: F(2,12) =
51.63,p < 0.01; 10% MVC: F(2,12) = 58.71,p < 0.01;
15% MVC: F(2,12) = 15.78,p < 0.01). Subsequent
paired comparisons with post-hoc demonstrated that the false
activation rate of the DF method was significantly lower
than the other two methods (p < 0.05). Similarly, the
detection accuracy also showed significant differences across
the three methods, irrespective of the threshold used (5%
MVC: F(2,12) = 29.15,p < 0.01; 10% MVC: F(2,12) =
71.12,p < 0.01; 15% MVC: F(2,12) = 26.09,p < 0.01),
subsequent post-hoc tests indicated that the DF method
achieved significantly higher accuracy than both AMP (p <
0.05) and CNN (p < 0.05) under all thresholds. The false rest
rate showed significant differences between methods under
10% MVC ( F(2,12) = 16.15,p < 0.01) and 15% MVC
(F(2,12) = 37.61,p < 0.01). However, at 5% MVC, no
significant difference was observed (F'(2,12) = 0.43,p >
0.05).

C. Exploring Minimal Training Data

To further enhance the training efficiency, we determined
the minimum amount of data required to train the models
effectively. We progressively reduced the training data from
100% to 75%, 50%, and 25% using a subset of the single-
finger data (corresponding to 1, 2, and 3 out of the 4
total available trials). This exploration allowed us to identify
the optimal volume training data that can yield satisfactory
performance (Fig.8). Two-way repeated measures ANOVA
(method x training size) revealed a significant effect of
training size on both RMSE (F'(3,18) = 16.80,p < 0.01)
and R?(F(3,18) = 11.04,p < 0.01) with no interaction with
the method. We observed that the DF method consistently
demonstrated the lowest RMSE and the highest R? regardless
of the training data size. Remarkably, using merely 25% of
the training data, the force estimation reached an RMSE of
9.34 0.4%MVC and an R? value of 0.78 4 0.03. Upon post-
hoc analysis, both the DF and CNN methods were seen to
substantially surpass the AMP method under every condition.
However, a significant difference in RMSE between CNN
and AMP was only evident when utilizing 75% and 100%
data (p < 0.05). The difference in R? between CNN and
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DF was only significant when utilizing 50% and 100% data.
Overall, these findings underscore the DF method’s proficiency
in harnessing a limited training dataset to effectively decode
finger force to some extent.

D. Robustness to Noise

As depicted in Fig9, a declining trend in performance
was noticeable for all methods as SNR decreased. The two-
way repeated measures ANOVA (method x SNR) showed
an interaction effect between these two factors for both
RMSE (F(6,36) = 25.92,p < 0.01) and R* (F(6,36) =
4.78,p < 0.01). Under all conditions, both DF and CNN
show significantly outperformed the AMP method. Significant
differences in RMSE between DF and CNN were observed
when SNR > 10 (p = 0.02 for SNR = 15 and p = 0.015 for
SNR = 20).Similarly, significant differences in R? between
DF and CNN were observed when SNR > 10 (p = 0.04
for SNR = 15 and p = 0.03 for SNR = 20). Despite the
observable performance variation, the DF method was able to
maintain the best performance across most scenarios.

TABLE I: The training and testing times (mean + standard
error) are provided for the three methods. The testing time
indicates the time taken to infer one data segment, defined as
an EMG signal with a 500-ms window and a 100-ms moving
step. Both training and testing times are averaged across all
subjects.

Method Training time (second) Testing time (second)
AMP 6x107%+16x10"% 298x107°+53x 107
CNN 119.67 + 4.18 1.2x1073+1.4x 104

DF 18.20 £ 0.92 33x10724+49x 103

E. Training Time Efficiency

The average layer depth for DF across experimental runs is
2.28 + 0.17, with a maximum depth of 5 and a minimum
of 2. In table I, we documented the training time for the
AMP (6 x 107* + 1.6 x 10~* seconds), CNN (119.67 +4.18
seconds), and DF (18.20+0.92 seconds) methods. The EMG-
amplitude method showed the shortest training time, and the
DF method exhibited approximately 5 times faster training
time than that of CNN. The average time for inferring a single
EMG input segment (with a 500-ms window and a 100-ms
updating interval) was also estimated by three methods. For
the AMP method, the inference time is 2.98x107°4+5.3x10~7
seconds. The CNN, with a time of 1.2 x 1073 + 1.4 x 10™*
seconds, was more efficient in inference compared to the DF,
which took 3.3 x 1072 4 4.9 x 10~ seconds.

IV. DISCUSSION

Our study addressed the intricate challenge of decoding
concurrent multi-finger motion intention from EMG signals
for robotic hand control. Due to the numerous combinations
of multi-finger movement, capturing exhaustive data for every
possible scenario is not feasible. Consequently, we sought to
harness single-finger data to predict multi-finger movements,

which could enhance training efficiency and practicality in
controlling advanced prosthetics.

Although AMP [11], [13] and CNN methods [23], [29], [30]
have been widely explored for multi-finger force prediction,
achieving satisfactory performance using only single-finger
data remains challenging. A key reason might be that the
AMP method lacks the necessary complexity to effectively
manage the finger-specific nonlinear mapping between HD-
EMG features and forces. The CNN method, while capable
of modeling complex finger-force relationships, often requires
large data volumes for effective training to avoid overfitting.
The DF method potentially bridges this gap between model
complexity and data requirements. Our findings suggest that
DF significantly outperforms both AMP and CNN methods.
With its training efficiency and data efficacy, DF emerges as
a particularly promising technique for facilitating fine motor
control in advanced prosthetic hands

Our initial results suggested that all three methods (EMG
amplitude, CNN, and DF) were capable of predicting multi-
finger forces with high accuracy when the multi-finger data
were utilized during training. The DF and CNN methods,
in particular, exhibited superior predictive performance,
indicating that complex non-linear modeling is essential to
capture the EMG-force relation. However, when we only
used single-finger data to train the model, an inevitable
decrease in performance was observed across all methods,
with the EMG amplitude method demonstrating notably poor
performance. It was noticeable that the activation patterns
for the flexion/extension of different fingers display distinct
localized activations on the 2D electrode grid. Consequently,
conventional amplitude methods, which use information from
all channels, may not be optimal for force prediction at
the individual finger level, often resulting in overestimated
or underestimated forces. Channel refinement is critical
for identifying finger-specific channel pools and contributes
to accurate force predictions for each finger [11], [13].
In our experiments, a significant increase in prediction
error was observed when multi-finger data was unavailable
(which means that the application of channel refinement is
inapplicable) for the AMP method.

By contrast, both CNN and DF had the model complexity
necessary to establish the complex relationship between EMG
features and multi-finger forces, even when only single-
finger is available for training. In our study, the DF method
demonstrated notable performance advantages over CNN,
particularly for target fingers. Specifically, DF benefits from
its inherent ability to perform implicit feature selection and
transformation, allowing it to focus on and effectively utilize
the most significant features [27]. This is especially beneficial
when HD-EMG features from each channel did not uniformly
contribute to the forces of different fingers. While CNNs excel
at processing complex data structures and identifying intricate
patterns, their lack of an explicit feature selection mechanism
means that they extract hierarchical representations from all
EMG channels. This approach may result in overestimated
force values compared to DF in certain scenarios (Fig.6).
The different mechanisms in feature selection might primarily
account for the observed difference in performance between
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CNN and DF methods.

Both the CNN and DF methods exhibited significantly
reduced estimation errors on unintended fingers compared
to the AMP method. Instead of comparing against a zero
value, we evaluated the force of unintended fingers against the
actual recorded force. This approach is crucial as accurately
estimating the force of unintended fingers contributes to
the natural control of prosthetics. Muscle contractions were
classified into two states: rest and active. We assessed the
ability of the decoder to separate fingers using metrics
such as the false activation rate, false rest rate, and overall
state detection accuracy. The DF method demonstrated
the lowest false activation rate and the highest detection
accuracy across various thresholds, likely due to its explicit
feature selection capability that effectively distinguishes force
differences across fingers. However, this advantage becomes
less pronounced in detecting lower force levels. For example,
the false rest rates of CNN and DF are notably similar when
the thresholds are set at 5% and 10% MVC.

The scarcity of training data for EMG-force modeling
remains a significant challenge, largely due to the high
costs of data acquisition. Our observations indicated that
the DF method consistently outperforms other methods in
most scenarios, even with training data progressively reduced
to only one trial per finger. This superior performance
is likely due to the inherent ability of DF to adaptively
adjust its complexity based on the available training data,
thereby effectively utilizing limited datasets. In contrast, for
the CNN, we implemented a lightweight architecture with
approximately 4.2 x 10# parameters for optimization. However,
the complexity of this neural network model is fixed before
training and did not adapt to the volume of data available.
This static nature of the CNN model limited its effectiveness
when dealing with with a limited amount of training data.

Our study revealed that both CNN and DF exhibit a certain
degree of resistance to noise. This resilience underscores their
potential for implementation in real-world applications, where
encountering signal interference is common. Specifically, in
testing signals with an SNR above 15 dB, the DF method
consistently outperformed the CNN. However, as the noise
in the testing signal increased and the SNR decreased, the
performance gap between DF and CNN narrowed. This
observation suggests that while the DF method may be
preferable in environments with relatively clean signals, both
models demonstrate comparable performance in high-noise
scenarios.

Before training, the CNN underwent an extensive grid
search for the best filter size and layer depth. Conversely,
the DF method showed its efficiency by necessitating minimal
hyperparameter tuning. Ideally, a system for prosthesis control
should need short and easy training [31]. In our study,
the AMP method completed training in just 0.6 ms. While
training the CNN took an average of approximately 2 minutes,
the DF method was notably more efficient, requiring only
18.2 seconds. The longer training duration of CNN was
expected given the inherent complexity of neural networks,
which involve multiple layers of interconnected neurons to be
optimized via back-propagation. By contrast, the DF method

exhibited a balance between the two methods, with a training
time of around 18.20 seconds, highlighting its ability to
offer sufficient complexity without compromising efficiency
to some extent. Regarding testing time, all methods could
complete the inference within the input update time (100
ms), indicating that all methods were suitable for real-time
applications. As expected, the AMP method exhibited the
shortest inference time, while the CNN method demonstrated
a faster inference speed than DF. This can be attributed
to the efficient implementation of the deep neural network
framework, which was enhanced by numerous acceleration
techniques using GPU computations (we also used PyTorch
in this work). On the other hand, as deep forest is a
relatively new technique, its implementation was performed
using CPUs. Nonetheless, the current implementation still
meets real-time requirements. As a burgeoning trend in the
field, there are implementations like “ForestLayer” [32] that
are considerably faster than current methods. We foresee
significant advancements and refinements in the inference
efficiency of DF as this emerging technique progresses.

In comparison with previous studies on force prediction
at the individual finger level, we found that the DF
method surpasses the conventional regression-based amplitude
method and the state-of-the-art neural drive method [11],
[13], including CNN models trained on the neural drive
information [33], [34]. Clearly, global features are more
efficient to extract than neural drive information, with the latter
requiring computationally intensive motor unit decomposition.
Furthermore, the neural drive method [11], [13] required data
from multi-finger trials to refine the motor unit pools for
accurate force prediction. In contrast, our approach predicted
multi-finger movement forces solely based on data from
single-finger trials. Overall, our approach introduces new and
efficient solutions for multi-finger motor decoding, expanding
upon existing methods.

Despite the promising results, several limitations should be
addressed in future works. Firstly, the study was conducted
with seven subjects, and the applicability of the proposed
method to a larger population should be involved to validate
the findings. Secondly, the current study only involved intact
subjects. The effectiveness of the proposed methods has not
been validated on amputees. The muscle activation patterns in
amputees can undergo significant alterations, combined with
the potential reduction in available EMG recording channels
due to amputation. Future studies should aim to address these
complexities and evaluate the adaptability of these methods to
the unique EMG characteristics of amputees. Third, our focus
was on isometric contractions. In reality, hand movements
are more complex, often involving a range of dynamic
motions, which plays a crucial role in fine motor tasks our
hands perform daily. Therefore, future work should consider
incorporating dynamic finger joint estimation to potentially
allow for finer motor control in practical settings.

V. CONCLUSION

This study offered insights into enhancing the training
efficiency of neural decoders potentially viable for fine control
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of advanced prostheses. Our findings demonstrate that the
DF method can achieve superior performance in concurrently
predicting the flexion and extension force of individual fingers,
even when training exclusively using single-finger data. With
its superior performance and capacity to effectively utilize
limited training data, the DF method can enable efficient
EMG-based control systems for dexterous finger control in
robotic applications.

[1]
[2]

[3]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

REFERENCES

C. Castellini, “Upper limb active prosthetic systems—overview,”
Wearable Robotics, pp. 365-376, 2020.

M. S. Johannes, E. L. Faulring, K. D. Katyal, M. P. Para, J. B. Helder,
A. Makhlin, T. Moyer, D. Wahl, J. Solberg, S. Clark et al., “The modular
prosthetic limb,” in Wearable Robotics. Elsevier, 2020, pp. 393-444.
T. Worsnopp, M. Peshkin, J. Colgate, and D. Kamper, “An actuated
finger exoskeleton for hand rehabilitation following stroke,” in 2007
IEEE 10th international conference on rehabilitation robotics. 1EEE,
2007, pp. 896-901.

K. Tong, S. Ho, P. Pang, X. Hu, W. Tam, K. Fung, X. Wei, P. Chen,
and M. Chen, “An intention driven hand functions task training
robotic system,” in 2010 Annual International Conference of the IEEE
Engineering in Medicine and Biology. 1EEE, 2010, pp. 3406-3409.
G. Li, A. E. Schultz, and T. A. Kuiken, “Quantifying pattern
recognition—based myoelectric control of multifunctional transradial
prostheses,” IEEE Transactions on Neural Systems and Rehabilitation
Engineering, vol. 18, no. 2, pp. 185-192, 2010.

X. Jiang, X. Liu, J. Fan, X. Ye, C. Dai, E. A. Clancy, M. Akay, and
W. Chen, “Open access dataset, toolbox and benchmark processing
results of high-density surface electromyogram recordings,” [EEE
Transactions on Neural Systems and Rehabilitation Engineering, vol. 29,
pp. 1035-1046, 2021.

R. N. Khushaba, S. Kodagoda, M. Takruri, and G. Dissanayake, “Toward
improved control of prosthetic fingers using surface electromyogram
(emg) signals,” Expert Systems with Applications, vol. 39, no. 12, pp.
10731-10738, 2012.

A. Fougner, @. Stavdahl, P. J. Kyberd, Y. G. Losier, and P. A.
Parker, “Control of upper limb prostheses: Terminology and proportional
myoelectric control—a review,” I[EEE Transactions on neural systems
and rehabilitation engineering, vol. 20, no. 5, pp. 663-677, 2012.

J. G. Ngeo, T. Tamei, and T. Shibata, “Continuous and simultaneous
estimation of finger kinematics using inputs from an emg-to-muscle
activation model,” Journal of neuroengineering and rehabilitation,
vol. 11, no. 1, pp. 1-14, 2014.

C. Dai, Z. Zhu, C. Martinez-Luna, T. R. Hunt, T. R. Farrell, and E. A.
Clancy, “Two degrees of freedom, dynamic, hand-wrist emg-force using
a minimum number of electrodes,” Journal of Electromyography and
Kinesiology, vol. 47, pp. 10-18, 2019.

Y. Zheng and X. Hu, “Concurrent prediction of finger forces based on
source separation and classification of neuron discharge information,”
International journal of neural systems, vol. 31, no. 06, p. 2150010,
2021.

R. Roy, Y. Zheng, D. G. Kamper, and X. Hu, “Concurrent and continuous
prediction of finger kinetics and kinematics via motoneuron activities,”
IEEE Transactions on Biomedical Engineering, 2022.

Y. Zheng and X. Hu, “Concurrent estimation of finger flexion
and extension forces using motoneuron discharge information,” IEEE
transactions on biomedical engineering, vol. 68, no. 5, pp. 1638-1645,
2021.

E. A. Clancy, E. L. Morin, G. Hajian, and R. Merletti, “Tutorial. surface
electromyogram (semg) amplitude estimation: Best practices,” Journal
of Electromyography and Kinesiology, vol. 72, p. 102807, 2023.

P. Liu, D. R. Brown, F. Martel, D. Rancourt, and E. A. Clancy, “Emg-
to-force modeling for multiple fingers,” in 2011 IEEE 37th Annual
Northeast Bioengineering Conference (NEBEC). 1EEE, 2011, pp. 1-2.
E. Clancy and N. Hogan, “Single site electromyograph amplitude
estimation,” IEEE Transactions on Biomedical Engineering, vol. 41,
no. 2, pp. 159-167, 1994.

X. Hu, N. L. Suresh, C. Xue, and W. Z. Rymer, “Extracting extensor
digitorum communis activation patterns using high-density surface
electromyography,” Frontiers in physiology, vol. 6, p. 279, 2015.

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

[31]

[32]

(33]

[34]

N. van Beek, D. F. Stegeman, J. C. van den Noort, D. H. Veeger, and
H. Maas, “Activity patterns of extrinsic finger flexors and extensors
during movements of instructed and non-instructed fingers,” Journal of
electromyography and kinesiology, vol. 38, pp. 187-196, 2018.

C. Dai and X. Hu, “Extracting and classifying spatial muscle activation
patterns in forearm flexor muscles using high-density electromyogram
recordings,” International journal of neural systems, vol. 29, no. 01, p.
1850025, 2019.

T. Bao, S. Q. Xie, P. Yang, P. Zhou, and Z.-Q. Zhang, “Toward
robust, adaptiveand reliable upper-limb motion estimation using machine
learning and deep learning—a survey in myoelectric control,” IEEE
Journal of biomedical and health informatics, vol. 26, no. 8, pp. 3822—
3835, 2022.

Y. Chen, C. Dai, and W. Chen, “Cross-comparison of emg-to-force
methods for multi-dof finger force prediction using one-dof training,”
IEEE Access, vol. 8, pp. 13958-13968, 2020.

G. Hajian, A. Etemad, and E. Morin, “Generalized
emg-based  isometric  contact force  estimation using a
deep learning approach,” Biomedical Signal Processing and
Control, vol. 70, p. 103012, 2021. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S174680942100609 1
A. Ameri, M. A. Akhaee, E. Scheme, and K. Englehart, “Regression
convolutional neural network for improved simultaneous emg control,”
Journal of neural engineering, vol. 16, no. 3, p. 036015, 2019.

X. Li, X. Zhang, L. Zhang, X. Chen, and P. Zhou, “A transformer-
based multi-task learning framework for myoelectric pattern recognition
supporting muscle force estimation,” IEEE Transactions on Neural
Systems and Rehabilitation Engineering, 2023.

R. Hu, X. Chen, H. Zhang, X. Zhang, and X. Chen, “A novel
myoelectric control scheme supporting synchronous gesture recognition
and muscle force estimation,” IEEE Transactions on Neural Systems and
Rehabilitation Engineering, vol. 30, pp. 1127-1137, 2022.

C. Lin, X. Chen, W. Guo, N. Jiang, D. Farina, and J. Su, “A bert
based method for continuous estimation of cross-subject hand kinematics
from surface electromyographic signals,” IEEE Transactions on Neural
Systems and Rehabilitation Engineering, vol. 31, pp. 87-96, 2022.
Z.-H. Zhou and J. Feng, “Deep forest,” National science review, vol. 6,
no. 1, pp. 74-86, 2019.

V. Zatsiorsky, Z. Li, and M. Latash, “Enslaving effects in multi-finger
force production,” Experimental Brain Research, vol. 131, no. 2, pp.
187-195, 2000.

D. Yang and H. Liu, “An emg-based deep learning approach for
multi-dof wrist movement decoding,” IEEE Transactions on Industrial
Electronics, vol. 69, no. 7, pp. 7099-7108, 2021.

C. Ma, W. Guo, H. Zhang, O. W. Samuel, X. Ji, L. Xu, and G. Li, “A
novel and efficient feature extraction method for deep learning based
continuous estimation,” IEEE Robotics and Automation Letters, vol. 6,
no. 4, pp. 7341-7348, 2021.

D. Farina, N. Jiang, H. Rehbaum, A. Holobar, B. Graimann, H. Dietl, and
0. C. Aszmann, “The extraction of neural information from the surface
emg for the control of upper-limb prostheses: emerging avenues and
challenges,” IEEE Transactions on Neural Systems and Rehabilitation
Engineering, vol. 22, no. 4, pp. 797-809, 2014.
G. Zhu, Q. Hu, R. Gu, C. Yuan,
“Forestlayer: Efficient training of deep forests
task-parallel platforms,” Journal of Parallel and Distributed
Computing, vol. 132, pp. 113-126, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0743731518305392
R. Roy, F. Xu, D. G. Kamper, and X. Hu, “A generic neural
network model to estimate populational neural activity for robust neural
decoding,” Computers in Biology and Medicine, vol. 144, p. 105359,
2022.

J. Fan, L. Vargas, D. G. Kamper, and X. Hu, “Robust neural decoding
for dexterous control of robotic hand kinematics,” Computers in Biology
and Medicine, p. 107139, 2023.

and Y. Huang,
on distributed

Authorized licensed use limited to: Penn State University. Downloaded on April 12,2024 at 19:09:40 UTC from IEEE Xplore. Restrictions apply.

© 2024 |IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



