
Published in Transactions on Machine Learning Research (March/2023)

Containing a spread through sequential learning: to exploit
or to explore?

Xingran Chen xingranc@seas.upenn.edu
Electrical and Systems Engineering Department
University of Pennsylvania

Hesam Nikpey hesam@seas.upenn.edu
Computer and Information Science Department
University of Pennsylvania

Jungyeol Kim jungyeol@alumni.upenn.edu
JPMorgan Chase & Co.

Saswati Sarkar swati@seas.upenn.edu
Electrical and Systems Engineering Department
University of Pennsylvania

Shirin Saeedi-Bidokhti saeedi@seas.upenn.edu
Computer and Information Science Department
University of Pennsylvania

Reviewed on OpenReview: https: // openreview. net/ pdf? id= qvRWcDXBam

Abstract

The spread of an undesirable contact process, such as an infectious disease (e.g. COVID-
19), is contained through testing and isolation of infected nodes. The temporal and spatial
evolution of the process (along with containment through isolation) render such detection
as fundamentally different from active search detection strategies. In this work, through an
active learning approach, we design testing and isolation strategies to contain the spread and
minimize the cumulative infections under a given test budget. We prove that the objective
can be optimized, with performance guarantees, by greedily selecting the nodes to test.
We further design reward-based methodologies that effectively minimize an upper bound
on the cumulative infections and are computationally more tractable in large networks.
These policies, however, need knowledge about the nodes’ infection probabilities which are
dynamically changing and have to be learned by sequential testing. We develop a message-
passing framework for this purpose and, building on that, show novel tradeoffs between
exploitation of knowledge through reward-based heuristics and exploration of the unknown
through a carefully designed probabilistic testing. The tradeoffs are fundamentally distinct
from the classical counterparts under active search or multi-armed bandit problems (MABs).
We provably show the necessity of exploration in a stylized network and show through
simulations that exploration can outperform exploitation in various synthetic and real-data
networks depending on the parameters of the network and the spread.

1 Introduction

We consider learning and decision making in networked systems for processes that evolve both temporally
and spatially. An important example in this class of processes is COVID-19 infection. It evolves in time (e.g.
through different stages of the disease for an infected individual) and over a contact network and its spread
can be contained by testing and isolation. Public health systems need to judiciously decide who should be

1

https://openreview.net/pdf?id=qvRWcDXBam


Published in Transactions on Machine Learning Research (March/2023)

tested and isolated in presence of limitations on the number of individuals who can be tested and isolated
on a given day.

Most existing works on this topic have investigated the spread of COVID-19 through dynamic systems
such SIR models and their variants [1, 2, 3, 4, 5, 6]. These models are made more complex to fit the real
data in [7, 8, 9, 10, 11, 12]. Estimation of the model parameters by learning-based methods are considered
and verified by real data in [13, 14, 15, 16, 17, 18]. Other attributes such as lockdown policy [19], multi-
wave prediction [20], herd immunity threshold [21] are also considered by data-driven experiments. These
works mostly focus on the estimation of model parameters thorough real data, and aim to make a more
accurate prediction of the spread. None of them, however, consider testing and isolation policies. Our work
complements these investigations by designing sequential testing and isolation policies in order to minimize
the cumulative infections. For this purpose, we have assumed full statistical knowledge of the spread model
and the underlying contact network and we are not concerned with prediction and estimation of model
parameters.

Designing optimal testing and control policies in dynamic networked systems often involves computational
challenges. These challenges have been alleviated in control literature by capturing the spread through dif-
ferential equations [22, 23, 24, 25, 26]. The differential equations rely on classical mean-field approximations,
considering neighbors of each node as “socially averaged hypothetical neighbors”. Refinements of the mean-
field approximations such as pair approximation [27], degree-based approximation [28], meta-population
approximation [29] etc, all resort to some form of averaging of neighborhoods or more generally groups of
nodes. The averaging does not capture the heterogeneity of a real-world complex social network and in
effect disregards the contact network topology. But, in practice, the contact network topologies are often
partially known, for example, from contact tracing apps that individuals launch on their phones. Thus test-
ing and control strategies must exploit the partial topological information to control the spread. The most
widely deployed testing and control policy, the (forward and backward) contact tracing (and its variants)
[30, 31, 32, 33, 34, 35, 36, 37, 38], relies on partial knowledge of the network topology (ie, the neighbors
of infectious nodes who have been detected), and therefore does not lend itself to mean-field analysis. Our
proposed framework considers both the SIR evolution of the disease for each node and the spread of the
disease through a given network.

The following challenges arise in the design of intelligent testing strategies if one seeks to exploit the spatio-
temporal evolution of the disease process and comply with limited testing budget. Observing the state of a
node at time t will provide information about the state of (i) the node in time t+ 1 and (ii) the neighbors of
the node at time t, t+ 1, . . .. This is due to the inherent correlation that exists between states of neighboring
nodes because an infectious disease spreads through contact. Thus, testing has a dual role. It has to both
detect/isolate infected nodes and learn the spread in various localities of the network. The spread can often be
silent: an undetected node (that may not be particularly likely to be infected based on previous observations)
can infect its neighbors. Thus, testing nodes that do not necessarily appear to be infected may lead to timely
discovery of even larger clusters of infected nodes waiting to explode. In other words, there is an intrinsic
tradeoff between exploitation of knowledge vs. exploration of the unknown. Exploration vs. exploitation
tradeoffs were originally studied in classical multi-armed bandit (MAB) problems where there is the notion
of a single optimal arm that can be found by repeating a set of fixed actions [39, 40, 41]. MAB testing
strategies have also been designed for exploring partially observable networks [42]. Our problem differs from
what is mainly studied in the MAB literature because (i) the number of arms (potential infected nodes) is
time-variant and actions cannot be repeated; (ii) the exploration vs. exploitation tradeoff in our context
arises due to lack of knowledge about the time-evolving set of infected nodes, rather than lack of knowledge
about the network or the process model and its parameters.

Note that contact tracing policies are in a sense exploitation policies: upon finding positive nodes, they
exploit that knowledge and trace the contacts. While relatively practical, they have two main shortcomings,
as implemented today: (i) They are not able to prioritize nodes based on their likelihood of being infected
(beyond the coarse notion of contact or lack thereof). For example, consider an infectious node that has
two neighbors, with different degrees. Under current contact tracing strategies, both neighbors have the
same status. But in order to contain the spread as soon as possible, the node with a large degree should
be prioritized for testing. A similar drawback becomes apparent if the neighbors themselves have a different

2



Published in Transactions on Machine Learning Research (March/2023)

number of infectious neighbors; one with a larger number of infectious neighbors should be prioritized for
testing, but current contact tracing strategies accord both the same priority. (ii) Contact tracing strategies
do not incorporate any type of exploration. This may be a fundamental limitation of contact tracing. [38] has
shown that, with high cost, contact tracing policies perform better when they incorporate exploration (active
case finding). In contrast, our work provides a probabilistic framework to not only allow for exploitation in
a fundamental manner but also to incorporate exploration in order to minimize the number of infections.

Finally, our problem is also related to active search in graphs where the goal is to test/search for a set of
(fixed) target nodes under a set of given (static) similarity values between pairs of nodes [43, 44, 45, 46]. But
the target nodes in these works are assumed fixed, whereas the target is dynamic in our setting because the
infection spreads over time and space (i.e, over the contact network). Thus, a node may need to be tested
multiple times. The importance of exploitation/exploration is also known, implicitly and/or explicitly, in
various reinforcement learning literature [47, 48, 49].

We now distinguish our work from testing strategies that combine exploitation and exploration in some
form [50, 51, 52]. Through a theoretical approach, [50] models the testing problem as a partially observable
Markov decision process (POMDP). An optimal policy can, in principle, be formulated through POMDP, but
such strategies are intractable in their general form (and heuristics are often far from optimal) [53, 54]. [50]
devises tractable approximate algorithms with a significant caveat: In the design, analysis, and evaluation
of the proposed algorithms, it is assumed that at each time the process can spread only on a single random
edge of the network. This is a very special case that is hard to justify in practice and it is not clear how one
could go beyond this assumption. On the other hand, [51] proposes a heuristic by implementing classical
learning methods such as Linear support vector machine (SVM) and Polynomial SVM to rank nodes based
on a notion of risk score (constructed by real-data) while reserving a portion of the test budget for random
testing which can be understood as exploration. No spread model or contact network is assumed. [52] and
this work were done concurrently. In [52], a tractable scheme to control dynamical processes on temporal
graphs was proposed, through a POMDP solution with a combination of Graph Neural Networks (GNN) and
Reinforcement Learning (RL) algorithm. Nodes are tested based on some scores obtained by the sequential
learning framework, but no fundamental probabilities of the states of nodes were revealed. Different from
[51, 52], our approach is model-based and we observe novel exploration-exploitation tradeoffs that arise not
due to a lack of knowledge about the model or network, but rather because the set of infected nodes is
unknown and evolves with time. We can also utilize knowledge about both the model and the contact
network to devise a probabilistic framework for decision making.

We now summarize the contribution of some significant works that consider only exploitation and do not
utilize any exploration [36, 37, 38]. [36, 37] have considered a combination of isolation and contact tracing
sequential policies, and [36] has shown that the sequential strategies would reduce transmission more than
mass testing or self-isolation alone, while [37] has shown that the sequential strategies can reduce the amount
of quarantine time served and cost, hence individuals may increase participation in contact tracing, enabling
less frequent and severe lockdown measures. [38] have proposed a novel approach to modeling multi-round
network-based screening/contact tracing under uncertainty.

Our Contributions In this work, we study a spread process such as Covid-19 and design sequential testing
and isolation policies to contain the spread. Our contributions are as follows.

• Formulating the spread process through a compartmental model and a given contact network, we
show that the problem of minimizing the total cumulative infections under a given test budget
reduces to minimizing a supermodular function expressed in terms of nodes’ probabilities of infection
and it thus admits a near-optimal greedy policy. We further design reward-based algorithms that
minimize an upper bound on the cumulative infections and are computationally more tractable in
large networks.

• The greedy policy and its reward-based derivatives are applicable if nodes’ probabilities of infec-
tion were known. However, since the set of infected nodes are unknown, these probabilities are
unknown and can only be learned through sequential testing. We provide a message-passing frame-
work for sequential estimation of nodes’ posterior probabilities of infection given the history of test
observations.

3



Published in Transactions on Machine Learning Research (March/2023)

Figure 1: Left: Time evolution of the process per individual nodes. Right: A contact network with nodes in
states susceptible (blue), latency (pink), infectious (red), recovered (yellow).

• We argue that testing has a dual role: (i) discovering and isolating the infected nodes to contain the
spread, and (ii) providing more accurate estimates for nodes’ infection probabilities which are used
for decision making. In this sense, exploitation policies in which decision making only targets (i) can
be suboptimal. We prove in a stylized network that when the belief about the probabilities is wrong,
exploitation can be arbitrarily bad, while a policy that combines exploitation with random testing
can contain the spread. This points to novel exploitation-exploration tradeoffs that stem from the
lack of knowledge about the location of infected nodes, rather than the network or spread process.

• Following these findings, we propose exploration policies that test each node probabilistically ac-
cording to its reward. The core idea is to balance exploitation of knowledge (about the nodes’
infection probabilities and the resulting rewards) and exploration of the unknown (to get more ac-
curate estimates of the infection probabilities). Through simulations, we compare the performance
of exploration and exploitation policies in several synthetic and real-data networks. In particular,
we investigate the role of three parameters on when exploration outperforms exploitation: (i) the
unregulated delay, i.e., the time period when the disease spreads without intervention; (ii) the global
clustering coefficient of the network, and (iii) the average shortest path length of the network. We
show that when the above parameters increase, exploration becomes more beneficial as it provides
better estimates of the nodes’ probabilities of infection.

2 Modeling
To describe a spread process, we use a discrete time compartmental model [55]. Over decades, compartmental
models have been key in the study of epidemics and opinion dynamics, albeit often disregarding the network
topology. In this work, we capture the spread on a given contact network. For clarity of presentation, we
focus on a model for the spread of COVID-19. The ideas can naturally be generalized to other applications.
The main notations in the full paper are given in Table 1.

We model the progression of Covid-19 per individual, in time, through four stages or states: Susceptible (S),
Latent (L), Infectious (I), and Recovered (R). Per contact, an infectious individual infects a susceptible
individual with transmission probability β. An infected individual is initially in the latent state L, subse-
quently he becomes infectious (state I), finally he recovers (state R). Fig. 1 (left) depicts the evolution. The
durations in the latent and infectious states are geometrically distributed, with means 1/λ, 1/γ respectively.
We represent the state of node i at time t by random variable σi(t) and its support set X = {S,L, I,R}.
We assume that the parameters β, λ and γ are known to the public health authority. This is a practical
assumption because the parameters can be estimated by the public health authority based on the pandenmic
data collected [56, 57, 58].

Let G(t) = (V(t), E(t)) denote the contact network at time t, where V(t) is the set of nodes/individuals, of
cardinality N(t), and E(t) is the set of edges between the nodes, describing interactions/contacts on day
t. Let V = V(0), E = E(0), G = G(0), and N = N(0). The network is time-dependent not only because

4



Published in Transactions on Machine Learning Research (March/2023)

Notations Definitions
β transmission probability

1/γ mean duration in the latent state
1/λ mean duration in the infectious state
σi(t) state of node i at time t, σi(t) ∈ {I, S, L,R}
G(t) contact network at time t
V(t) set of nodes at time t
E(t) set of edges at time t
N(t) cardinality of V(t)
N N = N(0)
∂i(t) neighbors of node i at time t
∂+
i (t) {i} ∪ ∂i(t)
Yi(t) testing result of node i at time t
O(t) set of nodes tested at time t
Y (t) {Yi(t)}{i∈O(t)}
B(t) testing budget at time t
π a testing and isolation policy

Cπ(t) cumulative infections at time t
Kπ(t) set of nodes tested at time t (under policy π)
Kπ(t) Kπ(t) = |Kπ(t)|
T time horizon
vi(t) true probability vector of node i
ui(t) prior probability vector of node i
wi(t) posterior probability vector of node i
ei(t) updated posterior probability vector of node i
ri(t) rewards of selecting node i at time t
r̂i(t) estimated rewards of node i at time t
Ψi(t) Ψi(t) = O(t) ∩ ∂+

i (t− 1)
Φi(t) Φi(t) = {j|j ∈ ∂+

k (t− 1), k ∈ Ψi(t)}\{i}
θi(t) θi(t) = σi(t)|{Y (τ)}t−1

τ=1
, θi(t) ∈ {I, S, L,R}

ζi(t) ζi(t) = σi(t)|{Y (τ)}tτ=1
, ζi(t) ∈ {I, S, L,R}

Table 1: Summary of main notations

5



Published in Transactions on Machine Learning Research (March/2023)

interactions change on a daily basis, but also because nodes may be tested and isolated. If a node is tested
positive on any day t, it will be isolated immediately. If a node is isolated on any day t, we assume that it
remains in isolation until he recovers. We assume that a recovered node can not be reinfected again. Thus
a node that is isolated on any day t has no impact on the network from then onwards. Such nodes can be
regarded as “removed”. Therefore, it is removed from the contact network for all subsequent times t, t+1, . . ..
Fig. 1 (right) depicts a contact network at a given time t. We assume that a public health authority knows
the entire contact network and decides who to test based on this information. This assumption has been
made in several other works in this genre eg in [38].

Denote the set of neighbors of node i, in day t, by ∂i(t). The state of each node at time t+ 1 depends on the
state of its neighbors ∂i(t), as well as its own state in day t, as given by the following conditional probability:

Pr
(
σi(t+ 1)|{σj(t)}j∈∂+

i
(t)
)

where ∂+
i (t) = ∂i(t) ∪ {i}.

Node i is tested positive on day t if it is in the infectious state (I)1. Let Yi(t) denote the test result:

Yi(t) =
{

1 σi(t) = I
0 σi(t) ∈ {S,L,R}.

(1)

We do not assume any type of error in testing and Yi(t) is hence a deterministic function of σi(t). Let O(t)
be the set of nodes that have been tested (observed) in day t and denote the network observations at time t
by Y (t) = {Yi(t)}i∈O(t).

Our goal in this paper is to design testing and isolation strategies in order to contain the spread and minimize
the cumulative infections. Naturally, testing resources (and hence observations) are often limited and such
constraints make decision making challenging. Let B(t) be the maximum number of tests that could be
performed on day t, called the testing budget. B(t) can evolve based on the system necessities, e.g., in
contact tracing that is widely deployed for COVID-19, the number of tests is chosen based on the history of
observations2. Also, governments often upgrade testing infrastructure as the number of cases increase. Our
framework captures both fixed and time-dependent budget B(t), but we focus on time-dependent B(t) for
simulations.

Define the cumulative infections on day t, denoted by Cπ(t), as the number of nodes who have been infected
before and including day t, where π is the testing and isolation policy. Let Kπ(t) denote the set of tests π
performs on day t. Given a large time horizon T , our objective is:

min
π

E[Cπ(T )]

s.t. |Kπ(t)| ≤ B(t), 0 ≤ t ≤ T − 1.
(2)

Recall that σi(t), the state of node i on day t, is a random variable and unknown. For each node i, define a
probability vector vi(t) of size |X |, where each coordinate is the probability of the node being in a particular
state at the end of time t. The coordinates of vi(t) follow the order (I, L,R, S) and we have

vi(t) =
[
v(i)
x (t)

]
x∈X , v(i)

x (t) = Pr
(
σi(t) = x

)
. (3)

For example, v(i)
S (t) represents the probability of node i being in state S in time t. We now define Fi(D; t)

to be the conditional probability of node i being infected by nodes in D (for the first time) at day t, as a
function of the nodes’ states {σi(t)}i∈V(t). We have

Fi(D; t) = 1{σi(t)=S} ·
∏

j∈∂i(t)\D

(
1− β1{σj(t)=I}

)
·
(
1−

∏
j∈D∩∂i(t)

(1− β1{σj(t)=I})
)
. (4)

1We assume that a node in the latent state L is infected, but not infectious. We further assume that latent nodes test
negative.

2In practical implementations, scheduling constraints do play a role but we disregard that in this work.

6



Published in Transactions on Machine Learning Research (March/2023)

Equation (4), captures the impact that the nodes in D have on infecting node i at day t. In this equation
we assume that the infections from different nodes are independent. The same assumption has also been
made in several other papers in this genre, eg in [27, 28, 29]. Then, we find the expectation (with respect to
{σi(t)}i∈V(t)) of (4) as follows:

E{σi(t)}i∈V(t) [Fi(D; t)] = v
(i)
S (t) ·

{ ∏
j∈∂i(t)\D

(1− βv(j)
I (t))

}
·
{

1−
∏

j∈D∩∂i(t)

(1− βv(j)
I (t))

}
. (5)

It is worth noting that (4) is a probability conditioned on {σi(t)}i∈V(t), while (5) is an unconditional proba-
bility. To obtain (5), we have indeed assumed that the states of the nodes are independent. This assumption
does not hold in general and we only utilize it here to obtain a simple expression in (5) in terms of the
infection probabilities. We do not use this independence assumption in the rest of the paper. Define

S
(
D; t

)
=
∑
i∈V(t)

E [Fi(D; t)] . (6)

Here, S
(
D; t

)
represents the (expected) number of newly infectious nodes incurred by nodes in D at day t.

Recall that Kπ(t) be the set of nodes that are tested at time t. We show the following result in Appendix A.

Lemma 1. E
[
Cπ(t+ 1)− Cπ(t)

]
= S

(
V(t)\Kπ(t); t

)
.

2.1 Supermodularity
It is complex to solve (2) globally, especially if one seeks to find solutions that are optimal looking into the
future. We thus simplify the optimization (2) for policies that are myopic in time as follows. First, note that
Cπ(T ) can be re-written as follows through a telescopic sum:

Cπ(T ) =
T−1∑
t=0

Cπ(t+ 1)− Cπ(t). (7)

Then, we restrict attention to myopic policies that at each time minimize E [Cπ(t+ 1)− Cπ(t)]. We then
show how E [Cπ(t+ 1)− Cπ(t)] can be expressed in terms of a supermodular function.

Using (7) along with Lemma 1, we seek to solve the following optimization sequentially in time for 0 ≤ t ≤
T − 1:

min
|Kπ(t)|≤B(t)

S
(
V(t)\Kπ(t); t

)
. (8)

We now prove some desired properties for the set function S(Kπ(t); t) (see Appendix B).

Theorem 1. S
(
Kπ(t); t

)
defined in (6) is a supermodular3 and increasing monotone function on Kπ(t).

On day t, and given the network, the probability vectors of all nodes, and Kπ1 (t) ⊂ Kπ2 (t), for any node
i /∈ Kπ2 (t), node i will incur larger increment of newly infectious nodes under Kπ2 (t) than that under Kπ1 (t).
This is because node i may have common neighbors with nodes in Kπ2 (t). So, supermodularity holds in
Theorem 1.

The optimization (8) is NP-hard [59]. However, using the supermodularity of S
(
V(t)\Kπ(t); t

)
, we propose

Algorithm 1 based on [60, Algorithm A] to greedily optimize (8) in every day t. Denote the optimum solution
of (8) as OPT. As proved in [60], on every day t, Algorithm 1 attains a solution, denoted by K̃π(t), such
that

(
V(t)\K̃π(t); t

)
≤
(
1 + ε(t)

)
· OPT, i.e., the solution K̃π(t) is an ε(t)-approximation of the optimum

solution. Here, on day t, the constant ε(t), which is the steepness of the set function S(·; t) as described in
[60], can be calculated as follows, ε(t) = ε′

4(1−ε′) and ε′ = maxa∈V(t)
S(V(t);t)−S(V(t)\{a};t)−S({a};t)

S(V(t);t)−S(V(t)\{a};t) .

In Algorithm 1, on every day t, in every step, we choose the node who provides the minimum increment
on S(·; t) based on the results in the previous step, and then remove the node from the current node set.
Algorithm 1 is stopped when Kπ(t) nodes have been chosen. The complexity of this algorithm is discussed
in Appendix C.

3Let X be a finite set. A function f : 2X → R is supermodular if for any A ⊂ B ⊂ X , and x ∈ X\B, f(A ∪ {x})− f(A) ≤
f(B ∪ {x})− f(B).

7



Published in Transactions on Machine Learning Research (March/2023)

Algorithm 1 Greedy Algorithm
Step 0: On day t, input {vi(t)}i∈V(t), set A0 = V(t).
repeat

Step i: Let Ai = Ai−1\{ai}, where

ai = arg min
a∈Ai−1

S
(
{a} ∪ {a1, · · · , ai−1}; t

)
.

until i = N(t)− |Kπ(t)|, and return Kπ(t) = Ai.

3 Exploitation and Exploration
In Section 2.1, we proposed a near-optimal greedy algorithm to sequentially (in time) select the nodes to
test. However, Algorithm 1 has two shortcomings. (i) The computation is costly when N and/or T are large
(see Appendix C). (ii) The objective function S

(
V(t)\Kπ(t)

)
is dependent on {vi(t)}i∈V(t) which is unknown,

even though the network and the process are stochastically fully given (see Section 2). This is because the
set of infected nodes are unknown and time-evolving.

To overcome the first shortcoming, we propose a simpler reward maximization policy by minimizing an upper
bound on the objective function in (8). To overcome the second shortcoming, we estimate {vi(t)}i∈V(t)
using the history of test observations {Y (τ)}tτ=0 (as presented in Section 4). we refer to the estimates as
{ui(t)}i∈V(t). Both the greedy policy and its reward-based variant that we will propose in this section thus
need to perform decision making based on the estimates {ui(t)}i∈V(t) and we refer to them as “exploitation”
policies.

It now becomes clear that testing has two roles: to find the infected in order to isolate them and contain
the spread, and to provide better estimates of {vi(t)}i∈V(t). This leads to interesting tradeoffs between
exploitation and exploration as we will discuss next. Under exploitation policies, we test nodes determinis-
tically based on a function of {vi(t)}i∈V(t), (which is called “reward”, and will be defined later); while under
exploration policies, nodes are tested according to a probabilistic framework (based on rewards of all nodes).

To simplify the decision making into reward maximization, we first derive an upper bound on
S
(
V(t)\Kπ(t); t

)
. Define

ri(t) = S
(
{i}; t

)
. (9)

Using the supermodularity of the function S(·), we prove the following lemma in Appendix D.

Lemma 2. S
(
V(t)\Kπ(t); t

)
≤ S

(
V(t); t

)
−
∑
i∈Kπ(t) ri(t).

Remark 1. Recall that S(·; t) is a supermodular function, then the amount of newly infectious nodes incurred
by the set Kπ(t), S(Kπ(t); t), is larger than the sum of the amount of newly infectious nodes by every
individual node in Kπ(t), i.e.,

∑
i∈Kπ(t) ri(t). Thus, S

(
V(t)\Kπ(t); t

)
is upper bounded by S

(
V(t); t

)
−∑

i∈Kπ(t) ri(t).

We propose to minimize the upper bound in Lemma 2 instead of S
(
V(t)\Kπ(t); t

)
. Since V(t) is known and

S
(
V(t); t

)
is hence a constant, the problem reduces to solving:

max
|Kπ(t)|≤B(t)

∑
i∈Kπ(t)

ri(t). (10)

Given probabilities {vi(t)}i∈V(t), the solution to (10) is to pick the nodes associated with the B(t) largest
values ri(t). We thus refer to ri(t) as the reward of selecting node i.

Let {ui(t)}i∈V(t) be an estimate for {vi(t)}i∈V(t) found by estimating the conditional probability of the state of
node i given the history of observations {Y (τ)}t−1

τ=0. Our proposed reward-based Exploitation (RbEx) policy
follows the same idea of selecting the nodes with the highest rewards. Note that {vi(t)}i∈V(t) is unknown
to all nodes. Instead of using the true probabilities {vi(t)}i∈V(t), we consider the estimates of it which

8



Published in Transactions on Machine Learning Research (March/2023)

we sequentially update by computing the prior probabilities {ui(t)}i∈V(t) and the posterior probabilities
{wi(t)}i∈V(t). In particular, {ui(0)}i∈V(0) and {wi(0)}i∈V(0) are the prior probabilities and the posterior
probabilities on the initial day, respectively. Hence, we calculate the estimate of rewards, denoted by r̂i(t),
by replacing {vi(t)}i∈V(t) with {ui(t)}i∈V(t) in (6) and (9).

Algorithm 2 Reward-based Exploitation (RbEx) Policy
Input {wi(0)}i∈V(t), {ui(0)}i∈V(0), Y (0), and t = 0.
Repeat for t = 1, 2, · · · , T − 1.
Step 1: Calculate {r̂i(t)}i∈V(t) based on {ui(t)}i∈V(t) and (9).
Step 2: Re-arrange the sequence {r̂i(t)}i∈V(t) in descending order, and test the first B(t) nodes. Get the
new observations Y (t).
Step 3: Based on Y (t), update {ui(t+ 1)}i∈V(t+1) by Algorithm 4 (Step 0 ∼ Step 2) in Section 4.

The shortcoming of Algorithm 2 is that it targets maximizing the estimated sum rewards, even though the
estimates may be inaccurate. In this case, testing is heavily biased towards the history of testing and it does
not provide opportunities for getting better estimates of the rewards. For example, consider a network with
several clusters. If one positive node is known by Algorithm 2, then it may get stuck in that cluster and fail
to locate more positives in other clusters.

In Section 4.2, we will prove, in a line network, that the exploitation policy described in Algorithm 2 can be
improved by a constant factor (in terms of the resulting cumulative infections) if a simple form of exploration
is incorporated.

We next propose an exploration policy. Our proposed policy is probabilistic in the sense that the nodes
are randomly tested with probabilities that are proportional to their corresponding estimated rewards. This
approach has similarities and differences to Thompson sampling and more generally posterior sampling. The
similarity lies in the probabilistic nature of testing using posterior probabilities. The difference is that in our
setting decision making depends on the distributions of decision variables, but not samples of the decision
variables.

More specifically, at time t, node i is tested with probability min{1, B(t)r̂i(t)∑
j∈V(t)

r̂j(t)
}, which depends on the

budget B(t). Note that each node is tested with probability at most 1; so if B(t)r̂i(t)∑
j∈V(t)

r̂j(t)
> 1 for some node

i, then we would not fully utilize the budget. The unused budget is thus

c(t) =
∑
i∈V(t)

( B(t)r̂i(t)∑
j∈V(t) r̂j(t)

− 1
)+ (11)

and can be used for further testing4. Algorithm 3 outlines our proposed Reward-based Exploitation-
Exploration (REEr) policy.

Algorithm 3 Reward-based Exploitation-Exploration (REEr) Policy
Input {wi(0)}i∈V(t), {ui(0)}i∈V(0), Y (0), and t = 0.
Repeat for t = 1, 2, · · · , T − 1
Step 1: Calculate {r̂i(t)}i∈V(t) based on {ui(t)}i∈V(t) and (9).
Step 2: Test node i with probability min{1, B(t)r̂i(t)∑

j∈V(t)
r̂j(t)
}. After that, randomly select c(t)

(
defined in

(11)
)
further nodes to test (see Footnote 4). Get the new observations Y (t).

Step 3: Based on Y (t), update {ui(t+ 1)}i∈V(t+1) by Algorithm 4 (Step 0 ∼ Step 2) in Section 4.

4Note that c(t) is not always an integer. Instead of c(t), we use Int
(
c(t)
)
with probability |Int

(
c(t)
)
− c(t)| where Int(·) ∈

{b·c, d·e}.

9



Published in Transactions on Machine Learning Research (March/2023)

4 Message-Passing Framework
As discussed in Section 3, the probabilities {vi(t)}i are unknown. In this section, we develop a message
passing framework to sequentially estimate {vi(t)}i based on the network observations and the dynamics of
the spread process. We refer to these estimates as {ui(t)}i.

When node i is tested on day t, an observation Yi(t) is provided about its state. Knowing the state of node
i provides two types of information: (i) it provides information about the state of the neighboring nodes in
future time slots t+ 1, t+ 2, . . . (because of the evolution of the spread in time and on the network), and (ii)
it also provides information about the past of the spread, meaning that we can infer about the state of the
(unobserved) nodes at previous time slots. For example, if node i is tested positive in time t, we would know
that (i) its neighbors are more likely to be infected in time t+1 and (ii) some of its neighbors must have been
infected in a previous time for node i to be infected now. This forms the basis for our backward-forward
message passing framework.

Given the spread model of Section 2, we first describe the forward propagation of belief. Suppose that at
time t, the probability vector vi(t) is given for all i. The probability vector vi(t + 1) can be computed as
follows (see Appendix E):

vi(t+ 1) = vi(t)× Pi
(
{vj(t)}j∈∂+

i
(t)
)

(12)

where Pi
(
{vj(t)}j∈∂+

i
(t)
)
is a local transition probability matrix given in Appendix E.

Recall that Y (t) denotes the collection of network observations on day t. The history of observations is then
denoted by {Y (τ)}t−1

τ=1. Based on these observations, we wish to find an estimate of the probability vector
vi(t) for each i ∈ V(t). We denote this estimate by ui(t) = (u(i)

x (t), x ∈ X ) and refer to it, in this section, as
the prior probability of node i in time t. We further define the posterior probability wi(t) = (w(i)

x (t), x ∈ X )
of node i in time t (after obtaining new observations Y (t)). In particular,

u(i)
x (t) = Pr

(
σi(t) = x|{Y (τ)}t−1

τ=1
)

w(i)
x (t) = Pr

(
σi(t) = x|{Y (τ)}tτ=1

)
.

Here, the prior probability is defined at the beginning of every day, and the posterior probability is defined at
the end of every day. Conditioning all probabilities in (12) on {Y (τ)}tτ=1, we obtain the following forward-
update rule (see Appendix F)

ui(t+ 1) = wi(t)× Pi
(
{wj(t)}j∈∂+

i
(t)
)
. (13)

Remark 2. Following (13), we need to utilize the observations Y (t) and the underlying dependency among
nodes’ states to update the posterior probabilities {wi(t)}i, and consequently update {ui(t + 1)}i based on
the forward-update rule (13). This is however non-trivial. A Naive approach would be to locally incorporate
node i’s observation Yi(t) into wi(t) and obtain ui(t+ 1) using (13). This approach, however, does not fully
exploit the observations and it disregards the dependency among nodes’ states, as caused by the nature of the
spread (An example is provided in Appendix H).

Backward Propagation of Belief To capture the dependency of nodes’ states and thus best utilize the
observations, we proceed as follows. First, denote

ei(t− 1) = (e(i)
x (t− 1), x ∈ X )

e(i)
x (t− 1) = Pr

(
σi(t− 1) = x|{Y (τ)}tτ=1

)
.

Vector ei(t−1) is the posterior probability of node i at time t−1, after obtaining the history of observations
up to and including time t. By computing ei(t−1), we are effectively correcting our belief on the state of the
nodes in the previous time slot by inference based on the observations acquired at time t. This constitutes
the backward step of our framework and we will expand on it shortly. The backward step can be repeated
to correct our belief also in times t− 2, t− 3, etc. For clarity of presentation and tractability of our analysis

10



Published in Transactions on Machine Learning Research (March/2023)

and experiments, we truncate the backward step at time t − 1 and present assumptions under which this
truncation is theoretically justifiable. Considering larger truncation windows is straightforward but out of
the scope of this paper.

Once our belief about nodes’ states is updated in prior time slots (e.g., ei(t − 1) is obtained), it is propa-
gated forward in time for prediction and to provide a more accurate estimate of the nodes’ posterior and
prior probabilities. More specifically, consider (12) written for time t (rather than t + 1) and condition all
probabilities on {Y (τ)}tτ=1. We obtain the following update rule (see Appendix F):

wi(t) = ei(t− 1)× P̃i
(
{ej(t− 1)}j∈∂+

i
(t−1)

)
(14)

where P̃i
(
{ej(t − 1)}j∈∂+

i
(t−1)

)
is given in Appendix F. Note that the local transition matrix in (14) is not

the same as (13). This is because “future" observations were available in P̃i
(
{ej(t − 1)}j∈∂+

i
(t−1)

)
. The

probability vectors {ei(t− 1)}i provide better estimates for {wi(t)}i through (14) and the prior probabilities
{ui(t+ 1)}i are then computed using (13) to be used for decision making in time t+ 1. The block diagram
in Fig. 3 depicts the high-level idea of our framework. It is worth noting that Pi

(
{wj(t)}j∈∂+

i
(t)
)
in (13) and

P̃i
(
{ej(t− 1)}j∈∂+

i
(t−1)

)
in (14) both depend on the observations, {Y (τ)}tτ=1.

We next discuss how ej(t− 1) can be computed, starting with some notations. Denote by

ζi(t) = σi(t)|{Y (τ)}tτ=1
, θj(t) = σi(t)|{Y (τ)}t−1

τ=1
, (15)

the state of the nodes in the posterior probability spaces conditioned on the observations {Y (τ)}tτ=1 and
{Y (τ)}t−1

τ=1, respectively. We further define Ψi(t) to be the set of those neighbors of node i at time t − 1,
including node i, who are observed/tested at time t. This set consists of all nodes whose posterior probabilities
will be updated at time t− 1 (given a new observation Yi(t)). The set of all neighbors (except node i) of the
nodes in Ψi(t) then defines Φi(t). The set Φi(t) consists of all nodes whose posterior probabilities at time t
is updated by the observation Yi(t). More precisely, we have

Ψi(t) = O(t) ∩ ∂+
i (t− 1),

Φi(t) = {j|j ∈ ∂+
k (t− 1), k ∈ Ψi(t)}\{i},

Θi(t) = {j|j ∈ ∂+
k (t− 1), k ∈ O(t)}\{i}

where O(t) is the set of observed nodes at time t (see Figure 2). In Appendix G, we show

e(i)
x (t− 1)=

Pr
(
Y (t)|ζi(t−1)=x

)
w

(i)
x (t− 1)

Pr
(
Y (t)

) . (16)

It suffices to find Pr
(
Y (t)|ζi(t − 1) = x

)
. The denominator Pr

(
Y (t)

)
is then found by normalization of

the enumerator in (16). Let {xj}j∈O(t) be a realization of {θj(t)}j∈O(t) and {yl}l∈Θi(t) be a realization of
{ζl(t − 1)}l∈Θi(t). We prove the following in Appendix G under a simplifying truncation assumption (see
Assumption 1 in Appendix G) where the backward step is truncated in time t− 1:

Pr
(
Y (t)|ζi(t− 1) = x

)
= Pr

(
{Yj(t)}j∈Ψi(t)|ζi(t− 1) = x

)
=

∑
{xj}j∈Ψi(t)

∏
j∈Ψi(t)

Pr
(
Yj(t)|θj(t)

)
×

∑
{yl}l∈Φi(t)

∏
j∈Ψi(t)

Pr
(
xj |{yl}l∈∂+

j
(t−1)\{i}, x

)
×

∏
l∈{Φi(t)}

w(i)
yl

(t− 1).

(17)

We finally present our Backward-Forward Algorithm to sequentially compute estimates {ui(t)}i in Algorithm
4. The process of Algorithm 4 is given in Fig 3, and we also give a simple example to show the process of
Algorithm 4 in Appendix H.

11



Published in Transactions on Machine Learning Research (March/2023)

Figure 2: An example of Ψi(t), Φi(t) and Θi(t). Node i is marked in red, and its neighborhood ∂+
i (t− 1) is

shown by the red contour. Suppose that the gray nodes are tested on day t−1, then Ψi(t) is the set of nodes
within the green contour, and Φi(t) consists of the nodes in the purple contour. Finally, nodes in Θi(t) are
marked with bold black border

.

Figure 3: The process of Algorithm 4. One example of a complete process is given in unshaded blocks. Recall
that ui(τ), wi(τ), and ei(τ), where τ ∈ {t−1, t, t+1}, are the prior probabilities, the posterior probabilities,
and the updated posterior probabilities, respectively.

4.1 Necessity of Backward Updating
Now we provide an example which illustrates the necessity of backward updating.

Algorithm 4 Backward-Forward Algorithm
Input Y (0), {ei(0)}i∈V(0), {wi(0)}i∈V(0), {ui(0)}i∈V(0).
Repeat for t = 1, 2, · · · , T − 1
Step 0: Based on Y(t), get V(t) from V(t− 1).
Step 1: Backward step. Update ei(t− 1) by (16), (17), and then compute wi(t) by (14).
Step 2: Forward step. Compute ui(t+ 1) by (13).

12



Published in Transactions on Machine Learning Research (March/2023)

Figure 4: The line network in Example 1.

Example 1. Consider a line network with the node set V = {1, 2, . . . , N} and the edge set E = {(i, i+1), 1 ≤
i ≤ N − 1} (see Figure 4). On the initial day, we assume that each node is infected independently with
probability 1/N . Let β = 1, λ = 0, γ = 05, and B(t) = 1. We further assume that there is no isolation when
a positive node is tested.

Based on Example 1, we show that the naive approach of Remark 2 (i.e., forward-only updating) will cause
the estimated probabilities to never converge to the true probabilities of infection. Nonetheless, if we use the
Backward-Forward Algorithm 4, the estimated probabilities converge to the true probabilities after a certain
number of steps. Formally, we prove the following result in Appendix J.

Theorem 2. For any testing policy that sequentially computes {ui(t)}i based on (13) (see Remark 2), with
probability (approximately) 1

e , we have
∑N
i=1 ||vi(t) − ui(t)||

t→∞→ Θ(N), for large N 6. On the other hand,
there exists a testing policy that sequentially updates {ui(t)}i based on Algorithm 4 and attains

∑N
i=1 ||vi(t)−

ui(t)|| = 0, t ≥ 2N.

Roadmap of proof: Consider a simple case where every node is susceptible. Since each node is infected with
probability 1/N , then the case occurs with probability ' 1/e.

Under the case above, consider any testing policy based on the algorithm in Remark 2 . If a node is tested on
day t, then the policy “clears” the tested node. Since the updating rule of the algorithm can not go back to the
information on day t−1, then it can not “clear” any neighbors of the tested node and its probability of infection
updates to a non-zero value in the next day. Furthermore, we show that almost all nodes have an significantly
large probability of infection when time horizon is sufficiently large, hence

∑N
i=1 ||vi(t)− ui(t)||

t→∞→ Θ(N).

On the other hand, we can propose a specific testing policy. Note that there is no infection, if Algorithm 4
is used to update probabilities, then it can reveal the states of all nodes under the specific testing policy after
at most 2N days. So we have

∑N
i=1 ||vi(t)− ui(t)|| = 0, t ≥ 2N.

In Theorem 2, we illustrate the necessity of backward updating when testing is limited. In essence, we want
to “clear” the graph and confirm that there are no infections. If the number of tests is limited, we have
mathematically shown that no algorithm can correctly estimate the nodes’ infection probabilities if it does
not use the backward (inference) step. On the contrary, there is an algorithm that uses the backward step
along with the forward step and the estimates that it provides for the nodes’ infection probabilities converge
to the true probabilities of the nodes after some finite steps. Even though the considered graph is simple
but the phenomena it captures is general.

As discussed in Theorem 2, the backward updating is necessary. However, bacward updating can be compu-
tationally expensive in large dense graphs. To trade off the impact of backward updating and the reduction
of computation complexity, we propose an α-linking backward updating algorithm in Appendix K, where
Algorithm 4 is applied on a random subgraph with fewer edges.

4.2 Necessity of Exploration
Note that in reality we have no information for {vi(t)}i, and only have the estimates {ui(t)}i. One may
wonder if exploitation based on wrong initial estimated probability vectors, i.e., {ui(0)}i, misleads decision
making by providing poorer and poorer estimates of the probabilities of infection. If so, exploration may be
necessary.

5Here, λ = 0 implies there is no latent state, and γ = 0 implies that nodes never recover.
6Theorem 2 holds for all kinds of noem due to the equivalence of norms. In addition, the convergence is topological

convergence.

13



Published in Transactions on Machine Learning Research (March/2023)

Example 2. Consider V = {1, 2, . . . , N} and edges E = {(i, i+1), 1 ≤ i ≤ N−1} (see Figure 4). Let N � 10,
β = 1, λ = 0, γ = 0, and B(t) = 10. Suppose that on the initial day, node 1 is infected and all other nodes are
susceptible. Consider a wrong initial estimate: w(i)

I (0) = u
(i)
I (0) = 0 if i ≤ 9N

10 , and w
(i)
I (0) = u

(i)
I (0) = 10ε

N

otherwise, where ε > 0. With this initial belief, we have
∑N
i=1 ||wi(0)− vi(0)|| = O(1 + ε).

Different from Example 1, here we consider the isolation of nodes that are tested positive. In Example 2,
suppose that a specific exploration policy is applied: 1 (out of 10) tests is done randomly, and the other
9 tests are done following exploitation. Now, in Appendix L, we show that under the RbEx policy, the
cumulative infection is at least aN for a constant a, while under the exploration policy defined above, the
cumulative infection is at most bN with very high probability, and the ratio a/b can be any constant for a
large enough N . More formally, we have the following theorem. Let p0 be a large probability and consider a
large time horizon T . Denote the cumulative infections under the RbEx policy by CRbEx(T ) and under the
specific exploration policy defined above by Cexp(T ). We prove the necessity of exploration in the following
Theorem.

Theorem 3. With probability p0 ≥ 99
100 ,

CRbEx(T )
Cexp(T ) ≥ c(N, p0), where c(N, p0) is a constant only depending

on N and p0.

Roadmap of proof: Under the RbEx policy, we test nodes based on their predicted probabilities. Since the
nodes that are located towards the end of the line (right side in Fig. 4) have non-zero probabilities, they are
tested first while the disease spreads on the other end of the network (left side in Fig. 4). Mathematically,
suppose that for the first time, an infectious node is tested at day t = aN , then there are at least min{aN,N}
infectious nodes before the spread can be contained.

Under the specific exploration policy described above, consider the event that, for the first time, an infectious
node is explored on day t = b′N (b′ < a). We argue that with probability p0, the exploration policy catches at
least two new infections at each step after t = b′N . After 2t, the algorithm catches all the infections, and we
have at most 2b′N infections. Let b = 2b′. This is an improvement by a factor of at least a

b in comparison
to the RbEx strategy. Factor a

b depends on the values of N and p0.

In Theorem 3, we show the necessity of exploration when our initial belief is slightly wrong, i.e., it is slightly
biased toward the other end of the network (In general, this could be due to a wrong belief, prior test results,
etc). We have formally proved that when the testing capacity is limited, exploration can significantly improve
the cumulative infections, i.e., contain the spread. This motivates the design of exploration policies. Even
though the setting is simple, the phenomena it captures is much more general.

5 Simulations
5.1 Overview
In this section, we use simulations to study the performance of the proposed exploitation and exploration
policies for various synthetic and real-data networks. Towards this end, we define some metrics that quantify
how different metrics perform and key network parameters and attributes that determine the values of these
metrics and thereby how exploitation and exploration compare. We also identify benchmark policies which
represent the extreme ends of the tradeoff between exploration and exploitation to compare with the policies
we propose and assess the performance enhancements brought about by judicious combinations of exploration
and exploitation. Through our experiments, we aim to answer two main questions for various synthetic and
real-data networks: (i) Can exploration policies do better that exploitation policies and if so, when would
that be the case? (ii) What parameters would affect the performance of exploration and exploitation policies?
These are important questions to shed light on the role of exploration. These questions are particularly raised
by Theorem 3 in which we prove that exploration can significantly outperform exploitation in some (stylized)
networks. We design the experiments in order to shed light on the above questions and to understand the
extent of the necessity of exploration in different network models and scenarios.

Network parameters We consider the following parameters: (i) The unregulated delay ` which is the
time from the initial start of the spread to the first time testing and intervention starts; (ii) The (global)
clustering coefficient [61, Chapter 3], denoted by γc, which is defined as a measure of the degree to which
nodes in a graph tend to cluster together; (iii) The path-length, denoted by Lp, which measures the average

14



Published in Transactions on Machine Learning Research (March/2023)

shortest distance between every possible pair of nodes. We consider attributes such as the initialization of
the process, and the lack of knowledge about {vi(t)}i.

Performance metrics We consider the expected number of infected nodes in a time horizon [0, T ] as
the performance measure for various policies. Let C0(T ) be the number of infected nodes if there is no
testing and isolation, CRbEx(T ), CREEr(T ) be the corresponding numbers respectively for the RbEx policy
(Algorithm 2) and the REEr policy (Algorithm 3). We consider a ratio between the expectations of these:

Ratio =E[CRbEx(T )]− E[CREEr(T )]
E[C0(T )] . (18)

We define the estimation error Errπ(t) towards capturing the impact of the lack of knowledge about {vi(t)}i.

Errπ(t) = 1
N(t)

∑
i∈G(t)

||vi(t)− ui(t)||22. (19)

We consider the difference between the estimation errors of RbEx and REEr policies: ∆Err = ErrRbEx(T )−
ErrREEr(T ).

Benchmark policies We will compare the proposed policies with 4 benchmark policies. (i) (Forward)
Contact Tracing: we tested every day the nodes who have infectious neighbors (in a forward manner), denoted
by candidate nodes. Only some candidate nodes are selected randomly due to testing resources being limited.
Note that only exploitation is utilized under this benchmark. (ii) Random Testing: Every day, we randomly
select nodes to test. Typical testing policies that could come out of SIR optimal control formulations for our
problem would naturally reduce to random testing as they treat all nodes to be statistically identical and
ignore the impact of network topology. One can interpret that random testing implements exploration to
its full extent. (iii) Contact Tracing with Active Case Finding: A small portion of (for example, 5%) testing
budget is utilized for active case finding [38]. This portion of the testing budget is used to test nodes by
Random Testing. The remaining budget is utilized for forward contact tracing. (iv) Logistic Regression:
We use ideas presented in [51], where simple classifiers were proposed based on the features of real data. In
our setting, we choose the classifier to be based on logistic regression, and we define the feature of node i as
Xi(t) = [1, ni(t) + ε]T . Here, ni(t) is the number of quarantined neighbors node i has contacted before and
including day t, and ε 6= 0 is a superparameter aiming to avoid the case where ni(t) = 0. In simulations, we
set ε = 0.1. Let the observation Yi(t) be the testing result of node i. In particular, if node i is not tested
on day t, then we do not collect the data (Xi(t), Yi(t)). Thus, the probability of node i being infectious is
defined as the Sigmoid function

1
1 + exp(−Xi(t) · wT ) ,

where w is the parameter which should be learned.

Simulation Setting We consider a process as described in Section 2 with n0 randomly located initial
infected nodes. The process evolved without any testing/intervention for ` days and we refer to ` as the
unregulated delay. After that, one of the (initial) infectious nodes, denoted by node i0, is (randomly)
provided to the policies. Subsequently, the initial estimated probability vector is set to ui0(`) = (1, 0, 0, 0),
and ui(`) = (0, 0, 0, 1) when i 6= i0. We consider the budget to be equal to the expected number of infected
nodes at time t, i.e., B(t) =

∑N(t)
j=1 v

(j)
I (t).

We choose model parameters considering the particular application of COVID-19 spread. In particular,
1) the mean latency period is 1/λ = 1 or 2 days [56]; 2) the mean duration in the infectious state (I) is
1/γ = 7 ∼ 14 days [56, 57, 58]; 3) we choose the transmission rate β in a specific network such that after a
long time horizon, if no testing and isolation policies were applied, then around 60 ∼ 90 percent individuals
are infected. We did not consider the case where 100 percent individuals are infected because given the
recovery rate (and the topology), the spread may not reach every node.

We consider both synthetic networks such as Watts-Strogatz (WS) networks [62], Scale-free (SF) networks
[63], Stochastic Block Models (SBM) [64] and a variant of it (V-SBM), as well as real-data networks. De-
scriptions and further results for the synthetic networks and real networks are presented in Appendix M.

15



Published in Transactions on Machine Learning Research (March/2023)

Watts-Strogatz Networks. We consider a network WS(N, d, δ) with N nodes, degree d, and rewiring
probability δ. The transmission probability of the spread is set to β = 0.4 and the number of initial seed is
n0 = 3.

Scale-free Networks. We consider a network SF(N,α) with N nodes, and the fraction of nodes with
degree k follows a power law k−α, where α = 2.1, 2.3, 2.5, 2.7, 2.9. The transmission probability of the spread
is set to β = 0.5 and the number of initial seeds is n0 = 3.

Stochastic Block Models. The SBM is a generative model for random graphs. The graph is divided
into several communities, and subsets of nodes are characterized by being connected with particular edge
densities. The intra-connection probability is p1, and the inter-connection probability is p2. We denote the
SBM as SBM(N,M, p1, p2)7. The transmission probability of the spread is set to β = 0.04 and the number
of initial seed is n0 = 3. The construction of SBM is given in Appendix M.1.

A Variant of Stochastic Block Models. Different from SBM, we only allow nodes in cluster i to connect
to nodes in successive clusters (the neighbor clusters). Denote a variant of SBM as V-SBM(N,M, p1, p2).
The transmission probability of the spread is set to β = 0.04 and the number of initial seed is n0 = 3. The
construction of V-SBM is given in Appendix M.1.

Real-data Network I. We consider a contact network of university students in the Copenhagen Networks
Study [65]. The network is built based on the proximity between participating students recorded by smart-
phones, at 5 minute resolution. According to the definition of close contact by [58], we only used proximity
events between individuals that lasted more than 15 minutes to construct the daily contact network. The
contact network has 672 individuals spanning 28 days. To guarantee a long time-horizon, we replicate the
contact network 4 times so that the time-horizon is 112 days. We set β = 0.05 and n0 = 5 to have a realistic
simulation of the Covid-19 spread. Note that the network is relatively dense, so we choose a relatively small
value of β to avoid the unrealistic case in which the disease spreads very fast (see Figure 11 (left)).

Real-data Network II. We consider a publicly available dataset on human social interactions collected
specifically for modeling infectious disease dynamics [66, 67, 68]. The data set consists of pairwise distances
between users of the BBC Pandemic Haslemere app over time. The contact network has 469 individuals
spanning 576 days. Since the network is very sparse, then we compress contacts among individuals during
4 successive days to one day. Then, we have 469 individuals spanning 144 days. We set β = 0.95 and
n0 = 30 to have a realistic simulation of the Covid-19 spread. Note that the network is relatively sparse, so
we choose a relatively large value of β to avoid the unrealistic case in which the disease spreads very slow
(see Figure 11 (left)).

5.2 Simulation Results in Synthetic networks
In this section, we compare the performances of our proposed policies and the benckmarks (defined in
Section 5.1) in synthetic networks. We start with some specific networks and parameters for this purpose
(see Figure 5, Figure 6, Figure 7, and Figure 8). The figures reveal that our proposed policies, i.e., the RbEx
and REEr policies, outperform the benchmarks. In particular, in Figure 5 and Figure 6 (i.e., the WS and
SF networks), the REEr policy outperforms the RbEx policy, and the REEr policy provides a more accurate
estimation for {vi(t)}i. In Figure 7 and Figure 8 (i.e., the SBM and V-SBM networks), the RbEx policy
outperforms the REEr policy, and the RbEx policy provides a more accurate estimation for {vi(t)}i. In
addition, in Figure 5, we show that Algorithm 1 outperforms the RbEx policy but performs worse than the
REEr policy (recall that the compuation time of Algorithm 1 is high, we therefore only plot the performance
of Algorithm 1 in Figure 5 as an example). This implies that without exploration, the exploitation in a
greedy manner can not perform well in WS networks.

From the discussions above, the advantages of exploration in distinct settings (different network topologies
with variant parameters) are different. To investigate the advantages of exploration in distinct settings,
it suffices to show how the main parameters affect the exploration. In this work, we consider three main
parameters which are defined in Section 5.1, i.e., the unregulated delay `, the global clustering coefficient γc,
and the path-length Lp. Detailed discussions are later given in Section 5.2.1.

7Here, we assume that M is an exact divisor of N .

16



Published in Transactions on Machine Learning Research (March/2023)

0 50 100 150

Day t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

E
s
ti
m

a
ti
o

n
 E

rr
o

r 
E

rr
(t

)

WS(300,4,0.03)

Algorithm 1

RbEx policy

REEr policy

0 50 100 150

Day t

0

50

100

150

200

250

300
C

u
m

u
la

ti
v
e

 I
n

fe
c
ti
o

n
s
 E

[C
(t

)]
WS(300,4,0.03)

No tests

Random Testing

Contact tracing

Logistic Regression

Active Case Finding

RbEx policy

Algorithm 1

REEr policy

Figure 5: Performances and estimation errors of different policies in WS(300, 4, 0.03) when ` = 3.

0 20 40 60 80 100

Day t

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

E
s
ti
m

a
ti
o
n
 E

rr
o
r 

E
rr

(t
)

SF(300, 2.5)

RbEx policy

REEr policy

0 20 40 60 80 100

Day t

0

50

100

150

200

250

C
u
m

u
la

ti
v
e
 I
n
fe

c
ti
o
n
s
 E

[C
(t

)]

SF(300, 2.5)

No tests

Random Testing

Contact tracing

Active Case Finding

Logistic Regression

RbEx policy

REEr policy

Figure 6: Performances and estimation errors of different policies in SF(300, 2.5) when ` = 3.

17



Published in Transactions on Machine Learning Research (March/2023)

0 50 100 150

Day t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

E
s
ti
m

a
ti
o
n
 E

rr
o
r 

E
rr

(t
)

SBM(300, 10, .2736, .02)

RbEx policy

REEr policy

0 50 100 150

Day t

0

50

100

150

200

250

300
C

u
m

u
la

ti
v
e
 I
n
fe

c
ti
o
n
s
 E

[C
(t

)]
SBM(300, 10, .2736, .02)

No tests

Random Testing

Contact tracing

Logistic Regression

Active Case Finding

RbEx policy

REEr policy

Figure 7: Performances and estimation errors of different policies in SBM(300, 10, .2736, .02) when ` = 5.

0 50 100 150

Day t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

E
s
ti
m

a
ti
o
n
 E

rr
o
r 

E
rr

(t
)

VSBM(300, 10, .4184, .02)

RbEx policy

REEr policy

0 50 100 150

Day t

0

50

100

150

200

250

300

C
u
m

u
la

ti
v
e
 I
n
fe

c
ti
o
n
s
 E

[C
(t

)]

VSBM(300, 10, .4184, .02)

No tests

Random Testing

Contact tracing

Active Case Finding

Logistic Regression

REEr policy

RbEx policy

Figure 8: Performances and estimation errors of different policies in VSBM(300, 10, .4184, .02) when ` = 5.

18



Published in Transactions on Machine Learning Research (March/2023)

5.2.1 Impact of Network Parameters
In this subsection, we consider the impact of network parameters on the tradeoff between exploration and
exploitation.

Impact of `. We first investigate the impact of the unregulated delay, `. Specifically, from Table 2,
Table 3, Table 4, and Table 5, as ` increases, so does Ratio and ∆Err, implying that exploration becomes
more effective. With increase in `, the infection continues in the network for longer, there are greater number
of infectious nodes in the network and they are scattered throughout the network, thus exploration is better
suited to locate them. Thus, the REEr policy can contain the spread of the disease faster.

In particular, the REEr policy is always better in WS networks. This is because exploitation may confine
the tests in neighborhoods of some infected nodes. While in the SBM networks, the RbEx policy always
outperforms the REEr policy. In both the SF and V-SBM networks, the RbEx policy is better when ` is
small, and the REEr policy is better when ` is large. One interesting observation is that in the V-SBM
networks, the REEr policy performs better when ` is large (= 11, 13), but the corresponding estimation
errors are larger than those in the RbEx policy. In this specific network topology, it appears that smaller
estimation error does not always correspond to better cumulative infections. One potential reason is that
the REEr policy is sensitive to ` in this topology, i.e., we can achieve smaller cumulative infections under
the REEr policy even if the estimation error is larger.

WS, ` 3 5 7 9 11
Ratio 0.097 0.128 0.177 0.207 0.297
∆Err 0.553 0.814 1.092 1.197 1.449

Table 2: Role of the unregulated delay ` when δ = 0.03.

SF, ` 3 5 7 9 11
Ratio −0.0009 0.0026 0.0033 0.0042 0.0059
∆Err −0.0014 0.0237 0.0334 0.0434 0.1212

Table 3: Role of the unregulated delay ` when α = 2.1.

SBM, ` 5 7 9 11 13
Ratio −0.092 −0.079 −0.042 −0.035 −0.025
∆Err −0.026 −0.015 −0.010 −0.009 −0.009

Table 4: Role of the unregulated delay ` when (p1, p2) = (.274, .02).

V-SBM, ` 5 7 9 11 13
Ratio −0.022 −0.016 −0.007 0.011 0.019
∆Err −0.081 −0.066 −0.046 −0.033 −0.025

Table 5: Role of the unregulated delay ` when (p1, p2) = (.418, .02).

Impact of γc and Lp. Then, we investigate the impact of the global clustering coefficient, i.e., γc, and
the average shortest path-length, i.e., Lp. In Table 6, both γc and Lp decrease as δ increases. In Table 7, γc
decreases as α increases. For the SF networks, the graphs are often disconnected, so we only calculate γc in
Table 7. In Table 8 and Table 9, both γc and Lp decrease as p2 increases.

From these tables, as Lp or γc decreases, the benefits of exploration compared to exploitation decrease as
well. This confirms the intuition that exploration is particularly helpful in clustered networks with larger
path lengths where undetected infection can spread without any intervention as exploitation largely confines
the tests in neighborhoods of the infections that were previously detected. This is also supported by the
fact that exploration lowers estimation error in such scenarios, as shown in Table 6, Table 7, Table 8, and
Table 9. Furthermore, we investigate the role of γc and Lp individually in Appendix M.2.

19



Published in Transactions on Machine Learning Research (March/2023)

WS, δ γc Lp Ratio ∆Err

0 .5 62.876 0.191 1.153
.0075 .489 21.264 0.182 1.423
.015 .473 14.253 0.174 0.991
.0225 .467 12.171 0.126 0.779
.03 .456 10.81 0.097 0.554

Table 6: Role of clustering coefficient and path length when ` = 3.

SF, α γc Ratio ∆Err

2.1 .5017 0.0080 0.0334
2.3 .3374 0.0057 0.0253
2.5 .2348 0.0032 0.0177
2.7 .1496 −0.0019 0.0124
2.9 .0219 −0.0064 0.0081

Table 7: Role of clustering coefficient and path length ` = 3.

SBM, (p1, p2) γc Lp Ratio ∆Err

(0.274, 0.02) 0.111 2.573 −0.092 −0.026
(0.214, 0.026) 0.075 2.518 −0.103 −0.023
(0.159, 0.032) 0.056 2.492 −0.113 −0.026
(0.102, 0.039) 0.048 2.480 −0.118 −0.023
(0.045, 0.045) 0.043 2.455 −0.124 −0.027

Table 8: Role of clustering coefficient and path length ` = 5.

V-SBM, (p1, p2) γc Lp Ratio ∆Err

(0.418, 0.020) 0.3557 4.4264 −0.022 −0.081
(0.351, 0.052) 0.2365 3.6584 −0.091 −0.045
(0.284, 0.085) 0.1769 3.307 −0.104 −0.055
(0.217, 0.085) 0.1385 3.1562 −0.112 −0.041
(0.150, 0.0150) 0.1170 3.0563 −0.123 −0.042

Table 9: Role of clustering coefficient and path length ` = 5.

Real-data Network I, ` 5 8 11
Ratio −0.0559 −0.0255 0.009
∆Err −0.061 −0.030 0.035

Table 10: Role of the unregulated delay `

Real-data Network II, ` 5 8 11
Ratio 0.0808 0.1039 0.1208
∆Err 0.0317 0.0535 0.0615

Table 11: Role of the unregulated delay `

20



Published in Transactions on Machine Learning Research (March/2023)

0 20 40 60 80 100 120

Day t

0

0.2

0.4

0.6

0.8

1

1.2

1.4

E
s
ti
m

a
ti
o
n
 E

rr
o
r 

E
rr

(t
)

Real-data Network I

RbEx policy

REEr policy

0 20 40 60 80 100 120

Day t

0

50

100

150

200

250

300

350

400

450

500
C

u
m

u
la

ti
v
e
 I
n
fe

c
ti
o
n
s
 E

[C
(t

)]
Real-data Network I

No tests

Random Testing

Logistic Regression

Contact tracing

Active Case Finding

RbEx policy

REEr policy

Figure 9: Performances and estimation errors of different policies in the real-data network I when ` = 8.

0 50 100 150

Day t

0.2

0.4

0.6

0.8

1

1.2

1.4

E
s
ti
m

a
ti
o
n
 E

rr
o
r 

E
rr

(t
)

Real-data Network II

RbEx policy

REEr policy

0 50 100 150

Day t

0

50

100

150

200

250

C
u
m

u
la

ti
v
e
 I
n
fe

c
ti
o
n
s
 E

[C
(t

)]

Real-data Network II

No tests

Contact tracing

Active Case Finding

Random Testing

RbEx policy

Logistic Regression

REEr policy

Figure 10: Performances and estimation errors of different policies in the real-data network II when ` = 8.

21



Published in Transactions on Machine Learning Research (March/2023)

0 50 100 150

Day t

0

2

4

6

8

A
v
e
ra

g
e
 E

d
g
e
s
 p

e
r 

N
o
d
e

Real-data Network I

Real-data Network II

0 50 100 150

Day t

150

200

250

300

350

400

450

500

T
h
e
 N

u
m

b
e
r 

o
f 
C

o
m

p
o
n
e
n
ts

Real-data Network I

Real-data Network II

Figure 11: Left: The average number of edges per node on each day. Right: The number of components on
each day.

5.3 Simulation Results in Real-data Networks
In this section, we verify our proposed policies in real data networks (Real-data Network I and Real-data
Network II). In Figure 9, our proposed policies outperform the baselines, and the RbEx policy outperforms
the RREr policy. In Figure 10, the REEr policy can contain the spread and outperform other baselines and
RbEx, while the Logistic Regression policies outperforms RbEx. Comparing Figure 9 and Figure 10, we find
that the RbEx policy performs well in Real-data Network I (better than the REEr policy), but performs
not well in Real-data Network II (much worse than the REEr policy). In Figure 11 (left), we calculate the
average edges per node on every day, and in Figure 11 (right), we calculate the number of components on
every day. From Figure 11 (left), the Real-data Network I is denser than the Real-data Network II. However,
from Figure 11 (right), the Real-data Network II often has more components (subgraphs) than the Real-
data Network I. Thus, exploitation may become confined within some components (subgraphs), and fail to
locate infectious nodes elsewhere, and exploration becomes more effective in presence of a large number of
components. This explains the relative performances of REEr and RBEx in these. Contact tracing policy
employs only exploitation, while active case finding policy uses most of its test budget for exploitation (and
the small amount of the residual test budget for exploration). From Figure 9 and Figure 10, the contact
tracing and the active case finding policies perform relatively poorly in the Real-data Network II compared
to that in the Real-data Network I; this may again be attributed to the presence of a large number of
components in the former.

As ` increases, as we show in Table 10 and Table 11 that the benefit of exploitation decreases. In Table 11,
because of a large number of components, exploration always outperforms exploitation. However, in Table 10,
we observe that exploration outperforms exploitation only for larger values of `. Our results are thus
consistent with synthetic networks.

6 Conclusions and Future Work
In this paper, we studied the problem of containing a spread process (e.g. an infectious disease such as
COVID-19) through sequential testing and isolation. We modeled the spread process by a compartmental
model that evolves in time and stochastically spreads over a given contact network. Given a daily test
budget, we aimed to minimize the cumulative infections. Under mild conditions, we proved that the problem
can be cast as minimizing a supermodular function expressed in terms of nodes’ probabilities of infection
and proposed a greedy testing policy that attains a constant factor approximation ratio. We subsequently
designed a computationally tractable reward-based policy that preferentially tests nodes that have higher
rewards, where the reward of a node is defined as the expected number of new infections it induces in the next
time slot. We showed that this policy effectively minimizes an upper bound on the cumulative infections.

These policies, however, need knowledge about nodes’ infection probabilities which are unknown and evolving.
Thus, they have to be actively learned by testing. We discussed how testing has a dual role in this problem:

22



Published in Transactions on Machine Learning Research (March/2023)

(i) identifying the infected nodes and isolating them in order to contain the spread, and (ii) providing better
estimates for the nodes’ infection probabilities. We proved that this dual role of testing makes decision
making more challenging. In particular, we showed that reward based policies that make decisions based
on nodes’ estimated infection probabilities can be arbitrarily sub-optimal while incorporating simple forms
of exploration can boost their performance by a constant factor. Motivated by this finding, we devised
exploration policies that probabilistically test nodes according to their rewards and numerically showed that
when (i) the unregulated delay, (ii) the global clustering coefficient, or (iii) the average shortest path length
increase, exploration becomes more beneficial as it provides better estimates of the nodes’ probabilities of
infection.

Given the history of observations, computing nodes’ estimated probabilities of infection is itself a core
challenge in our problem. We developed a message-passing framework to estimate these probabilities utilizing
the observations in form of the test results. This framework passes messages back and forth in time to
iteratively predict the probabilities in future and correct the errors in the estimates in prior time instants.
This framework can also be of independent interest.

We showed novel tradeoffs between exploration and exploitation, different from the ones commonly observed
in multi-armed bandit settings: (i) in our setting, the number of arms is time-variant and actions cannot be
repeated; (ii) the tradeoffs in our setting are not due to lack of knowledge about the network or the process
model, but rather due to lack of knowledge about the time-evolving unknown set of infected nodes.

We now describe directions for future research.

Our framework can be extended to incorporate delay and/or error in test results in a relatively straightforward
manner (an outline of the extension incorporating a delay is given in Appendix I), but generalizing the
performance guarantees for the proposed policies in these cases forms a direction of future research. This
includes establishing fundamental lower bounds using genie-aided myopic policies.

6.1 Impact Statements
We have made several assumptions for the purpose of analytical and computational tractability which do
not hold in practice: (1) the infections from different nodes are independent (2) given the entire history of
testing results the states of nodes on the truncation day are independent (Assumption 1), (3) the symptoms
need not be considered in deciding who should be tested and (4) the public health authority knows the entire
network topology and uses it to determine who should be tested (5) independence of states of nodes (in one
step). The first two assumptions were used to derive the message passing framework and to prove that the
objective function is super-modular which in turn led to a myopic testing strategy which is also optimal.
The first assumption is reasonable as specific actions of infected individuals, eg, coughing, touching, spread
the infection, which are undertaken independently.

We now consider the second assumption, ie, Assumption 1, in which we assume that the nodes’ states ζ(t−g)
(in the posterior probability space on day t−g) are independent. Note that g is the truncation time for each
backward step, that is, once we get the observations Y (t), we do the backward step and truncate at time
t − g. This assumption does not impose independence on the state of the nodes, but only in the posterior
space at a specific time. That is, in the process of propagating information back to time t − g, we are
assuming that there is no further correlation between time t − g − 1 and time t − g worthwhile to exploit
given observations at time t. Naturally, as g gets larger and larger, our framework and calculations become
more precise, as the impact of the testing results at time t in inferring about the nodes’ probabilities at time
t − g vanishes as g gets large. But increase in g significantly increases the computation time. Therefore,
for computational tractability, of the backward update equations, we use g = 1. In principle the derivations
of the backward update equations can be generalized in a straightforward manner to g > 1. But designing
approximation strategies that ensure computational tractability for larger g constitutes a direction of future
research.

Consider the third assumption. We have not considered symptoms in determining who to test. But for
some infectious diseases, symptoms are a reliable manifestation of the disease (e.g., Ebola). In principle
our testing framework can be generalized in a straightforward manner to consider symptoms by introducing
additional states in the compartmental model for evolution of the disease. But introduction of additional

23



Published in Transactions on Machine Learning Research (March/2023)

states significantly increases the computation time, for example of the forward and backward updates of the
probabilities that individuals have the disease, which renders implementation of our framework challenging.
Considering symptoms while retaining computational tractability constitutes a direction of future research.

Next, consider the fourth assumption. In practice, public health authorities will not typically know contact
networks in their entirety particularly when they are large, for example, as in large cities. However, small
network topologies, for example, contact networks within a community, may be observed by the public
health authority. As a specific example, the Government of China fully detected contact networks in many
communities in Wuhan and tracked paths traversed by every individual [69]. This tracking may also generate
concerns about privacy which is beyond the scope of this paper. Nonetheless, the technology for learning
contact networks in their entirety for small communities exists and our framework can be utilized for those.
Generalizing our framework to obtain approximation guarantees when contact networks can only be partially
observed constitutes a direction of future research.

Finally consider the last assumption. Note that it is a strong assumption and clearly does not hold in general
but it has been resorted to for only one step in the entire framework. Specifically to obtain Equation (5) we
have assumed that the state of the nodes are independent. This allows us to obtain a simple expression in
(5) in terms of the infection probabilities. We do not use this independence assumption in the rest of the
paper.

Acknowledgments
This work was supported by NSF CAREER Award 2047482, NSF Award 1909186, NSF Award 1910594, and
NSF Award 2008284.

References
[1] B. Shulgin, L. Stone and Z. Agur. Pulse vaccination strategy in the SIR epidemic model. Bulletin of

Mathematical Biology, 60:1123 – 1148, 1998.

[2] P. Tapaswi and J. Chattopadhyay. Global stability results of a ”susceptible-infective-immune-
susceptible” (SIRS) epidemic model. Ecological Modelling, 87(223 - 226), 1996.

[3] L.Stone, B.Shulgin and Z.Agur. Theoretical examination of the pulse vaccination policy in the SIR
epidemic model. Mathematical and Computer Modelling, 31:207 – 215, 2000.

[4] Y. Takeuchi, W. Ma and E. Beretta. Global asymptotic properties of a delay SIR epidemic model with
finite incubation times. Nonlinear Analysis: Theory, Methods & Applications, 42:931 – 947, 2000.

[5] J. Aron. Acquired immunity dependent upon exposure in an SIRS epidemic model. Mathematical
Biosciences, 88:37 – 47, 1988.

[6] L. Allen. Some discrete-time SI, SIR, and SIS epidemic models. Mathematical Biosciences, 124:83 –
105, 1994.

[7] A. M. Ramos, M. R. Ferrandez, M. Vela-Perez and et al. A simple but complex enough θ-SIR type
model to be used with COVID-19 real data. Application to the case of Italy. Physica D, 421-132839,
2021.

[8] A. G. M. Neves and G. Guerrero. Predicting the evolution of the COVID-19 epidemic with the A-SIR
model: Lombardy, Italy and Sao Paulo state, Brazil. Physica D, 413-132693, 2020.

[9] A. Simha, R. Prasad and S. Narayana. A simple Stochastic SIR model for COVID-19 Infection Dynamics
for Karnataka after interventions – Learning from European Trends. arXiv: 2003.11920, 2020.

[10] B. Ndiaye, L. Tendeng and D. Seck. Analysis of the COVID-19 pandemic by SIR model and machine
learning technics for forecasting. arXiv: 2004.01574, 2020.

[11] J. Zhu, P. Ge, C. Jiang and et al. Deep-learning artificial intelligence analysis of clinical variables
predicts mortality in COVID-19 patients. Journal of the American College of Emergency Physicians
Open, 1(6):1364–1373, 2020.

24



Published in Transactions on Machine Learning Research (March/2023)

[12] C. Mahanty, R. Kumar, B. K. Mishra, and et al. Prediction of COVID-19 active cases using exponential
and non-linear growth models. Expert Systems, 39(3), 2020.

[13] E. B. Postnikov. Estimation of COVID-19 dynamics “on a back-of-envelope”: Does the simplest SIR
model provide quantitative parameters and predictions? Chaos, Solitons and Fractals, volume = 135-
109841, 2020.

[14] B. Ndiaye, L. Tendeng and D. Seck. Comparative prediction of confirmed cases with COVID-19 pan-
demic by machine learning, deterministic and stochastic SIR models. arXiv: 2004.13489, 2020.

[15] I. Rahimi, A. H. Gandomi, P. G. Asteris and et al. Analysis and Prediction of COVID-19 Using SIR,
SEIQR, and Machine Learning Models: Australia, Italy, and UK Cases. Information, 12(109), 2021.

[16] G. Hu and J. Geng. Heterogeneity learning for SIRS model: an application to the COVID-19. Statistics
and Its Interface, 14:73 – 81, 2021.

[17] R. Vega, L. Flores and R. Greiner. SIMLR: Machine Learning inside the SIR Model for COVID-19
Forecasting. Forecasting, 4(1):72 – 94, 2022.

[18] H. Bastani, K. Drakopoulos, V. Gupta and et al. Efficient and targeted COVID-19 border testing via
reinforcement learning. Nature, 599:108 – 113, 2021.

[19] S. A. Alanazi, M. M. Kamruzzaman, M. Alruwaili and et al. Measuring and Preventing COVID-19
Using the SIR Model and Machine Learning in Smart Health Care. Journal of Healthcare Engineering,
2020-8857346, 2020.

[20] G. Perakis, D. Singhvi, O. S. Lami, and et al. COVID-19: A multiwave SIR-based model for learning
waves. Production and Operations Management, (13681), 2022.

[21] S. Chowdhury, S. Roychowdhury and I. Chaudhuri. Universality and herd immunity threshold : Revis-
iting the SIR model for COVID-19. International Journal of Modern Physics C, 3(6), 2021.

[22] W. Choi and E. Shim. Optimal strategies for social distancing and testing to control COVID-19. Journal
of Theoretical Biology, 512(110568), 2021.

[23] D. Acemoglu, A. Fallah, A. Giometto and et al. Optimal adaptive testing for epidemic control: combining
molecular and serology tests. arXiv:2101.00773, 2021.

[24] L. Abraham, G. Becigneul and B. Scholkopf. Crackovid: Optimizing Group Testing. arXiv:2005.06413,
2020.

[25] C. Tsay, F. Lejarza, M. Stadtherr and et al. Modeling, state estimation, and optimal control for the US
COVID-19 outbreak. Scientific reports, 10(10711), 2020.

[26] F. Piguillem and L. Shi. Optimal COVID-19 quarantine and testing policies. Nature Communications,
12(356), 2021.

[27] M. Tanaka K. Kuga and J. Tanimoto. Pair approximation model for the vaccination game: predicting
the dynamic process of epidemic spread and individual actions against contagion. Proceedings of the
Royal Society A, 477(2246):20200769, 2021.

[28] K. Kuga K. Kabir and J. Tanimoto. The impact of information spreading on epidemic vaccination
game dynamics in a heterogeneous complex network-a theoretical approach. Chaos, Solitons & Fractals,
132:109548, 2020.

[29] K. Kabir and J. Tanimoto. Evolutionary vaccination game approach in metapopulation migration model
with information spreading on different graphs. Chaos, Solitons & Fractals, 120:41–55, 2019.

[30] L. Willem, S. Abrams, P. J. K. Libin and et al. The impact of contact tracing and household bubbles
on deconfinement strategies for COVID-19. Nature Communications, 12(1524), 2021.

25



Published in Transactions on Machine Learning Research (March/2023)

[31] J. Kim, X. Chen, H. Nikpey and et al. Tracing and testing multiple generations of contacts to COVID-19
cases: cost-benefit tradeoffs. Royal Society Open Science, 9(10):1 – 20, 2022.

[32] A. Aleta, D. Martin-Corral, A. Piontti and et al. Modelling the impact of testing, contact tracing and
household quarantine on second waves of COVID-19. Nature Human Behaviour, 4:964–971, 2020.

[33] J. Hellewell, S. Abbott, A. Gimma and et al. Feasibility of controlling COVID-19 outbreaks by isolation
of cases and contacts. The Lancet Global Health, 8(4), 2020.

[34] A. Kucharski, P. Klepac, A. Conlan and et al. Effectiveness of isolation, testing, contact tracing,
and physical distancing on reducing transmission of SARS-CoV-2 in different settings: a mathematical
modelling study. The Lancet Infectious Diseases, 20(10), 2020.

[35] S. Kojaku, L. Hebert-Dufresne, E. Mones, and et al. The effectiveness of backward contact tracing in
networks. Nature Physics, 17:652 – 658, 2021.

[36] A. J. Kucharski, A. J. K. Conlan, S. M. Kissler, etc. Effectiveness of isolation, testing, contact tracing,
and physical distancing on reducing transmission of SARS-CoV-2 in different settings: a mathematical
modelling study. The Lancet Infectious Diseases, 20(10):1151 – 1160, 2020.

[37] A. Perrault, M. Charpignon, J. Gruber, etc. Designing Efficient Contact Tracing Through Risk-Based
Quarantining. Working Paper, National Bureau of Economic Research, Nov. 2020.

[38] H. Ou, A. Sinha, S. Suen, etc. Who and when to screen: Multi-round active screening for network
recurrent infectious diseases under uncertainty. In Proceedings of 19th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), 2020.

[39] P. Auer, N. Cesa-Bianchi and P. Fischer. Finite-time Analysis of the Multiarmed Bandit Problem.
Machine Learning, 47:235–256, 2002.

[40] S. Agrawal and N. Goyal. Analysis of Thompson sampling for the multi-armed bandit problem. In
Proceedings of the 25th Annual Conference on Learning Theory, volume 23, pages 1–26, 2012.

[41] S. Agrawal and N. Goyal. Regret analysis of stochastic and nonstochastic multi-armed bandit problems.
Foundations and Trends in Machine Learning, 5(1):1–122, 2012.

[42] K. Madhama and T. Murata. A multi-armed bandit approch for exploring partially observed networks.
Applied Network Science, 4(26):1–18, 2019.

[43] M. Bilgic, L. Mihalkova and L. Getoor. Active learning for networked data. In Proceedings of the 27th
International Conference on International Conference on Machine Learning, pages 79–86, 2010.

[44] X. Wang and R. Garnett and J. Schneider. Active search on graphs. In Proceedings of the 19th ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 731–738, 2013.

[45] Y. Ma and T. K. Huang and J. Schneider. Active search and bandits on graphs using sigma-optimality.
In Proceedings of the Thirty-First Conference on Uncertainty in Artificial Intelligence, pages 542 – 551,
2015.

[46] R. Garnett, Y. Krishnamurthy, D. Wang and et al. Bayesian optimal active search on graphs. In
Proceedings of the 29th International Coference on International Conference on Machine Learning,
pages 843–850, 2011.

[47] D. Zhao, J. Liu, R. Wu and et al. Data-Efficient Reinforcement Learning Using Active Exploration
Method. In International Conference on Neural Information Processing, pages 265–276, 2018.

[48] Y. Burda, H. Edwards, A. Storkey and et al. Exploration by random network distillation. In Interna-
tional Conference on Learning Representations, 2019.

26



Published in Transactions on Machine Learning Research (March/2023)

[49] M. Bellemare, S.Srinivasan, G. Ostrovski and et al. Unifying count-based exploration and intrinsic
motivation. In Proceedings of the 30th International Conference on Neural Information Processing
Systems, pages 1479–1487, 2016.

[50] R. Singh, F. Liu and N. B. Shroff. A Partially Observable MDP Approach for Sequential Testing for
Infectious Diseases such as COVID-19. arXiv:2007.13023, 2020.

[51] H. Grushka-Cohen, R. Cohen, B. Shapira and et al. A framework for optimizing COVID-19 testing
policy using a Multi Armed Bandit approach. arXiv:2007.14805, 2020.

[52] E. Meirom, H. Maron, S. Mannor, and G. Chechik. Controlling Graph Dynamics with Reinforcement
Learning and Graph Neural Networks. In Proceedings of the 38th International Conference on Machine
Learning, number 139, pages 7565 – 7577, 2021.

[53] L. Kaelbling and M. Littman and A. Cassandra. Planning and acting in partially observable stochastic
domains. Artificial intelligence, 101(1-2):99–134, 1998.

[54] G. Monahan. State of the Art—A Survey of Partially Observable Markov Decision Processes: Theory,
Models, and Algorithms. Management Science, 28(1):1–16, 1982.

[55] G. Walter and M. Contreras. Compartmental Modeling with Networks. Birkhauser, Boston, MA, 1999.

[56] S. Ma, J. Zhang, M. Zeng and et al. Epidemiological parameters of coronavirus disease 2019: a
pooled analysis of publicly reported individual data of 1155 cases from seven countries. medRxiv:
https://doi.org/10.1101/2020.03.21.20040329, Feb 2020.

[57] A. Byrne, D. McEvoy, A. Collins and et al. Inferred duration of infectious period of SARS-CoV-2: rapid
scoping review and analysis of available evidence for asymptomatic and symptomatic COVID-19 cases.
BMJ Open, 10, 2020.

[58] CDC. The U.S. Centers for Disease Control and Prevention (CDC).
https://www.cdc.gov/coronavirus/2019-ncov/php/contact579tracing/contact-tracing-plan/contact-
tracing.html, Sept 2020.

[59] D. Topkis. Supermodularity and Complementarity. Princeton University Press, 1998.

[60] V. Ilev. An approximation guarantee of the greedy descent algorithm for minimizing a supermodular
set function. Discrete Applied Mathematics, 114:131–146, 2001.

[61] D. L. Hansen, B. Shneiderman, M. A. Smith and et al. Analyzing Social Media Networks with NodeXL
(Second Edition). Morgan Kaufmann, 2020.

[62] D. J. Watts and S. H. Strogatz. Collective dynamics of small-world networks. Nature, 393(4):440–442,
1998.

[63] A. D. Broido and A. Clauset. Scale-free networks are rare. Nature Communications, 10(1017):1 – 10,
2019.

[64] C. Lee and D. J. Wilkinson. A review of stochastic block models and extensions for graph clustering.
Applied Network Science, 4(122), 2019.

[65] P. Sapiezynski, A. Stopczynski, D. D. Lassen and et al. Interaction data from the Copenhagen Networks
Study. Scientific Data, 6(1):1–10, 2019.

[66] S. M. Kissler, P. Klepac, M. Tang, etc. Sparking “The BBC Four Pandemic”: Leveraging citizen science
and mobile phones to model the spread of disease. bioRxiv https://doi.org/10.1101/479154., 2018.

[67] P. Klepac, S. Kissler and J. Gog. Contagion! The BBC Four Pandemic – the model behind the
documentary. Epidemics, 24:49 – 59, 2018.

27



Published in Transactions on Machine Learning Research (March/2023)

[68] J. A. Firth, J. Hellewell, P. Klepac, etc. Using a real-world network to model localized COVID-19
control strategies. Nature Medicine, 26:1616 – 1622, 2020.

[69] X. Yu and N. Li. How Did Chinese Government Implement Unconventional Measures Against COVID-19
Pneumonia. Risk Manag Healthc Policy, 13:491 – 499, 2020.

[70] R. D. Shachter. Bayes-Ball: The Rational Pastime (for Determining Irrelevance and Requisite Informa-
tion in Belief Networks and Influence Diagrams). arXiv: 1301.7412, 2013.

[71] M. Jordan. An Introduction to Probabilistic Graphical Models. https://people.eecs.berkeley.edu/ jor-
dan/prelims, 2003.

A Proof of Lemma 1
Note that a node is counted in Cπ(t) once it has been infected. Then, on day t + 1, Cπ(t + 1) increases
(comparing to Cπ(t)) only because some susceptible nodes are infected by infectious nodes and are in the
latent state for the first time.

After testing, positive nodes in Kπ(t) would not infect others because they are quarantined, and negative
nodes would not infect others due to the model assumptions. Hence

Cπ(t+ 1) = Cπ(t) +
∑
i∈V(t)

Fi(V(t)\Kπ(t); t).

Taking the expectation on both sides, we obtain the desired result.

B Proof of Theorem 1
To show S

(
Kπ(t); t

)
defined in (6) is a supermodular function. It suffices to show that for any A ⊂ B ⊂ V(t),

and for x ∈ V(t)\B, we have

S
(
A ∪ {x}; t

)
− S

(
A; t

)
≤ S

(
B ∪ {x}; t

)
− S

(
B; t
)
. (20)

Then, it suffices to show for any i ∈ V(t),

E[Fi
(
A ∪ {x}; t

)
]− E[Fi

(
A; t

)
] ≤ E[Fi

(
B ∪ {x}; t

)
]− E[Fi

(
B; t
)
]. (21)

Now, we consider three cases.

Case 1. If A∩ ∂i(t) = B ∩ ∂i(t), then from (5), the LHS and RHS in (21) are exactly the same. Hence, (21)
holds.

Case 2. If A ∩ ∂i(t) ⊂ B ∩ ∂i(t), and x /∈ ∂i, then from (5), fi(A ∪ {x}) = fi(A) and fi(B ∪ {x}) = fi(B).
Hence (21) holds.

Case 3. If A ∩ ∂i(t) ⊂ B ∩ ∂i(t), and x ∈ ∂i(t), let Y =
(
B ∩ ∂i(t)

)
\
(
A ∩ ∂i(t)

)
. Here x /∈ Y . From (5), we

can compute

E[Fi(A ∪ {x}; t)]− E[Fi(A; t)]

= v
(i)
S (t)

∏
j∈∂i(t)\(A∪{x})

(
1− βv(j)

I (t)
)

×
(

1−
∏

j∈∂i(t)∩(A∪{x})

(1− βv(j)
I (t))− (1− βv(x)

I (t))
(
1−

∏
j∈∂i(t)∩A

(1− βv(j)
I (t))

))
,

28



Published in Transactions on Machine Learning Research (March/2023)

which implies

E[Fi(A ∪ {x}; t)]− E[Fi(A; t)]

= v
(i)
S (t)

∏
j∈∂i(t)\(A∪{x})

(
1− βv(j)

I (t)
)

×
(
βv

(x)
I (t)−

∏
j∈∂i(t)∩(A∪{x})

(1− βv(j)
I (t)) +

∏
j∈∂i(t)∩(A∪{x})

(1− βv(j)
I (t))

))
=v(i)

S (t)
∏

j∈∂i(t)\(A∪{x})

(
1− βv(j)

I (t)
)
βv

(x)
I (t).

Similarly, note that
(
B ∩ ∂i(t)

)
=
(
A ∩ ∂i(t)

)
∪ Y . We have

E[Fi(B ∪ {x}; t)]− E[Fi(B; t)]

=v(i)
S (t)

∏
j∈∂i(t)\(A∪({x}∪Y))

(
1− βv(j)

I (t)
)
βv

(x)
I (t).

Thus,

E[Fi(A ∪ {x}; t)]− E[Fi(A; t)]
E[Fi(B ∪ {x}; t)]− E[Fi(B; t)] =

∏
y∈Y

(
1− βv(y)

I (t)
)
≤ 1,

which implies S
(
T Pπ(t)

)
is supmodular.

To show S
(
Kπ(t); t

)
is an increasing monotone function on Kπ(t), it suffices to show E[Fi

(
Kπ(t); t

)
] is an

increasing monotone function on Kπ(t) for any i.

For A ⊂ B, we have ∂i(t)\B ⊂ ∂i(t)\A, and A ∩ ∂i(t) ⊂ B ∩ ∂i(t). Then∏
j∈∂i(t)\B

(
1− βv(j)

I (t)
)
≥

∏
j∈∂i(t)\A

(
1− βv(j)

I (t)
)

∏
j∈B∩∂i(t)

(1− βv(j)
I (t)) ≤

∏
j∈A∩∂i(t)

(1− βv(j)
I (t)),

and thus, from (5), we have E[Fi
(
A; t

)
] ≤ E[Fi

(
B; t
)
].

C Complexity of Algorithm 1
First of all, we consider the complexity of (5). Suppose {vi(t)}i∈V(t) is given for every day t. For any Kπ(t),
the complexity of computing (5) is

1 + |∂i(t)\Kπ(t)| − 1 + 1 + |∂i(t)\Kπ(t)|+ |∂i(t) ∩ Kπ(t)| − 1 + |∂i(t) ∩ Kπ(t)| = 2|∂i(t)|.

Then, for any Kπ(t), the complexity of computing S
(
Kπ(t); t

)
is

2
∑
j∈V(t)

|∂j(t)|.

From Algorithm 1, in step i, the complexity is(
N(t)− i+ 1

)
× 2

∑
j∈V(t)

|∂j(t)|.

And in total we have
(
N(t)− |Kπ(t)|

)
steps, therefore, on day t the complexity of Algorithm 1 is

N(t)−|Kπ(t)|∑
i=0

2
(
N(t)− i+ 1

) ∑
j∈V(t)

|∂j(t)|.

29



Published in Transactions on Machine Learning Research (March/2023)

Recall that the time horizon is T , then the total complexity of Algorithm 1 is

T−1∑
t=0

N(t)−|Kπ(t)|∑
i=0

2
(
N(t)− i+ 1

) ∑
j∈V(t)

|∂j(t)|.

Note that
N(t)−|Kπ(t)|∑

i=1
2
(
N(t)− i+ 1

)
≤O
(
N2(t)

)
∑
i∈V(t)

|∂i(t)| ≤O
(
N2(t)

)
.

Then, the total complexity is bounded by

O
( T−1∑
t=0

N4(t)
)
.

D Proof of Lemma 2
As defined in [60] (an equivalent definition of footnote 3), consider a finite set I, f : 2I → R is a supermodular
function if for all X,Y ⊂ I,

f(X ∪ Y ) + f(X ∩ Y ) ≥ f(X) + f(Y ). (22)

Following the supermodularity of function S(·) as shown in Theorem 1, set X = V(t)\Kπ(t) and Y = Kπ(t)
in (22), we have

S
(
V(t)\Kπ(t); t

)
≤ S

(
V(t); t

)
− S

(
Kπ(t); t

)
. (23)

Again, set X = Kπ(t)\{i} and Y = {i} in (22), and use (22) repeatedly to obtain:

S
(
Kπ(t); t

)
≥

∑
i∈Kπ(t)

S
(
{i}; t

)
=

∑
i∈Kπ(t)

ri(t). (24)

Substituting (24) in (23), we obtain

S
(
V(t)\Kπ(t); t

)
≤ S

(
V(t); t

)
−

∑
i∈Kπ(t)

ri(t).

E Local Transition Equations
In this section, we will describe the local transition matrix Pi

(
{vj(t)}j∈∂+

i
(t)
)
used in (12). The state of each

node evolves as follows: (i) if node i is susceptible on day t, then it might be infected by its neighbors in
∂i(t); (ii) an infectious node remains in the latent state with probability 1 − λ, and changes state to the
infectious state (I) with probability λ; (iv) if node i is in state I, it will recover after a geometric distribution
with parameter γ. Let ξi(t) = 1−

∏
m∈∂i(t)

(
1−v(m)

I (t)β
)
. In particular, define ξi(t) = 0 if ∂i(t) = ∅. Then,

the probabilities of nodes being in different states evolve in time as follows:

v
(i)
I (t+ 1) =v(i)

I (t)(1− γ) + v
(i)
L (t)λ (25)

v
(i)
L (t+ 1) =v(i)

L (t)(1− λ) + v
(i)
S (t)ξi(t) (26)

v
(i)
R (t+ 1) =v(i)

R (t) + v
(i)
I (t)γ (27)

v
(i)
S (t+ 1) =v(i)

S (t)
(
1− ξi(t)

)
. (28)

30



Published in Transactions on Machine Learning Research (March/2023)

Note that row vector vi(t) is defined in (3). Collecting (25) - (28), we define the local transition probability
matrix as given below:

Pi
(
{vj(t)}j∈∂+

i
(t)
)

=


(1−γ) 0 γ 0
λ 1−λ 0 0
0 0 1 0
0 ξi(t) 0 1− ξi(t)

 . (29)

and we obtain (12).

F Proofs of (13) and (14)
First of all, we give the following definition.

Definition 1. Let X be a random variable and B be an event. Define X|B as the random variable X given
B; i.e.,

Pr
(
X|B = x

)
= Pr

(
X = x|B

)
. (30)

For brevity, let us define

θi(t) = σi(t)|{Y (τ)}t−1
τ=1

, ζi(t) = σi(t)|{Y (τ)}tτ=1
.

We thus have

u(i)
x (t) = Pr

(
θi(t) = x

)
, w(i)

x (t) = Pr
(
ζi(t) = x

)
.

Recall that

vi(t) =
[
v(i)
x (t)

]
x∈X , v

(i)
x (t) = Pr

(
σi(t) = x

)
.

Then, (12) can be re-written as

Pr
(
σi(t+ 1) = x′i

)
= Pr

(
σi(t) = xi

)
Pi
(
{σj(t)}j∈∂+

i
(t) = {xj}j∈∂+

i
(t)

)
, (31)

where x′i, {xj}j∈∂+
i

(t) ∈ X . Conditioning both sides of (31) on {Y (τ)}t−1
τ=1, state variables σi(t) and σi(t− 1)

in (31) can be replaced by θi(t) and ζi(t− 1), respectively, to obtain

ui(t) = wi(t− 1)× Pi
(
{wj(t− 1)}j∈∂+

i
(t−1)

)
, (32)

which gives (13). In addition, define

φi(t) = σi(t)|{Y (τ)}t+1
τ=1

,

and
ei(t− 1) = (e(i)

x (t− 1), x ∈ X ),
e(i)
x (t− 1) = Pr

(
φi(t− 1) = x

)
.

(33)

This notation implies

φi(t− 1) = θi(t− 1)|Y (t). (34)

Similarly, conditioning both sides of (32) on Y (t), we find

wi(t) = ei(t− 1)× P̃i
(
{ej(t− 1)}j∈∂+

i
(t−1)

)
, (35)

which gives (14). P̃i({ej(t− 1)}j∈∂+
i

(t−1)) is obtained in the following subsection.

31



Published in Transactions on Machine Learning Research (March/2023)

F.1 Computing the transition probability matrix P̃i({ej(t− 1)}j∈∂+
i

(t−1))

Note that P̃i({ej(t−1)}j∈∂+
i

(t−1)) is not the same as Pi({wj(t)}j∈∂+
i

(t)). This is because “future” observations
were available in P̃i({ej(t− 1)}j∈∂+

i
(t−1)). To get P̃i

(
{ej(t− 1)}j∈∂+

i
(t−1)

)
, we split the nodes V(t) into two

classes of nodes: (i) nodes who do not get new observations and (ii) nodes who get new observations.
P̃i({ej(t − 1)}j∈∂+

i
(t−1)) is obtained by the following rules. For the first class of nodes, the local transition

matrix in (35), i.e., P̃i({ej(t − 1)}j∈∂+
i

(t−1)), is the same as that in (32). However, for the second class of
nodes, the local transition matrices are changed accordingly because of the new observations. Let [A]{i,:}
be the ith row of matrix A, and qi be a 1 × 4 vector with the ith element being one and the rest zero. For
brevity, denote the local transition matrices in (32) and (35) by Pi(t−1) and P̃i(t−1), respectively. We have
the following three cases:

(i) If node i is not observed, then node i does not have new observation and we have

P̃i(t− 1) = Pi(t− 1). (36)

(ii) If Yi(t) = 0, then node i is not infectious in day t with probability 1. The local transition matrix is
changed to

[P̃i(t− 1)]{j,:} =


q3 j = 1
q2 j = 2
[Pi(t− 1)]{j,:} otherwise

. (37)

(iii) If Yi(t) = 1, then node i is infectious in day t with probability 1. The local transition matrix is
changed to

[P̃i(t− 1)]{j,:} =


q1 j = 1
q1 j = 2
[Pi(t− 1)]{j,:} otherwise

. (38)

G Proofs of (16) and (17)
Using new observations, we aim to move backward in time and update our belief (posterior probability) in
previous time slots. Define a truncation number g and suppose that {Y (t)} affects the posterior probabilities
from day t to day t−g. We call day t−g the truncation day associated with day t. To get accurate posterior
probabilities in every day, we need to set g = t on every day t and track back to the initial time. However,
the influence weakens as time elapses backwards, and for computation tractability, we continue under the
following assumption where g = 1. Recall that ζi(t) = σi(t)|{Y (τ)}tτ=1

.

Assumption 1. On the truncation day (t − g), {ζi(t − g)}i are independent over i. In the following, the
truncation number is assumed to be g = 1.

Remark 3. In Assumption 1, we assume that the nodes’ states ζ(t − g) (in the posterior probability space
on day t− g) are independent. This assumption is only used at time t of our probability update in a moving
window kind of way. It provides us with a truncation time for each backward step. In particular, under
Assumption 1, once we get the observations Y (t), we do the backward step and truncate at time t − g. For
example, in the trivial case of g = t, the assumption holds. This assumption does not impose independence
on the state of the nodes, but only in the posterior space at a specific time. In a sense, in the process of
propagating information back to time t−g, we are assuming that there is no further correlation between time
t − g − 1 and time t − g worthwhile to exploit given observations at time t. Naturally, as g gets larger and
larger, our framework and calculations become more precise but this comes at a huge computational cost.
The idea behind truncating the backward step lies in the observation that the impact of the testing results
at time t in inferring about the nodes’ probabilities at time t − g vanishes as g gets large. For simplicity of
derivations and to have manageable complexity, we set g = 1. The idea and the derivations can be generalized
in a straightforward manner to larger g.

32



Published in Transactions on Machine Learning Research (March/2023)

Note that the posterior probabilities on day t − 1, wi(t − 1), i ∈ V(t − 1), are assumed known (and are
conditioned on the history of observations {Y (τ)}t−1

τ=1). The probability vector ei(t− 1) is the new posterior
probability at time t− 1 which is updated (from wi(t− 1)) based on new observations Y (t). In other words,
we infer about the previous state of the nodes given new observations at present time.

To obtain {wi(t)}i∈V(t), it suffices to obtain ei(t−1) and the corresponding local transition matrix P̃i
(
{ej(t−

1)}j∈∂+
i

(t−1)
)
, see (14). Note that the posterior probabilities wi(t − 1), i ∈ V(t − 1), which are calculated

based on Y (t− 1), are known. The vector ei(t− 1) is the new posterior probability which is updated based
on Y (t) and wi(t− 1).

Equation (16), which we aim to prove, simply follows from Definition 1, (33)-(34), and Bayes rule:

e(i)
x (t− 1) = Pr

(
ζi(t− 1) = x|Y (t)

)
=

Pr
(
Y (t)|ζi(t− 1) = x

)
w

(i)
x (t− 1)

Pr
(
Y (t)

) . (39)

To find Pr
(
Y (t)|ζi(t − 1) = x

)
, and establish (17), we now proceed as follows. We introduce {θj(t)}j∈O(t)

into (39). In particular, we have

Pr
(
Y (t)|ζi(t− 1) = x

)
=

∑
θj(t), j∈O(t)

Pr
(
{θj(t)}j∈O(t), Y (t)|ζi(t− 1) = x

)
By the chain rule of conditional probability,

Pr
(
Y (t)|ζi(t− 1) = x

)
=

∑
θj(t), j∈O(t)

Pr
(
Y (t)|{θj(t)}j∈O(t), ζi(t− 1) = x

)
× Pr

(
{θj(t)}j∈O(t)|ζi(t− 1) = x

)
.

From (15), {ζj(t)}j∈V(t) and {θj(t)}j∈V(t) are variables defined by {σj(t)}j∈V(t) in posterior spaces of
{Y (τ)}tτ=1 and {Y (τ)}t−1

τ=1, respectively. Since Y (t) is a deterministic function of {σj(t)}j∈O(t), and hence
{θj(t)}j∈O(t), then Y (t) is independent of ζi(t− 1) given {θj(t)}j∈O(t). In addition, the testing result Yj(t)
(on day t) of node j only depends on its state, i.e., given θj(t), the testing results are determined. Therefore,
we have

Pr
(
Y (t)|{θj(t)}j∈O(t), ζi(t− 1) = x

)
= Pr

(
Y (t)|{θj(t)}j∈O(t)

)
=

∏
j∈O(t)

Pr
(
Yj(t)|θj(t)

)
.

The product above is an indicator which takes values on {0, 1}. We can thus re-write it as follows:

Pr
(
Y (t)|{θj(t)}j∈O(t), ζi(t− 1) = x

)
, δ({Yj(t), θj(t)}j∈O(t)).

where
δ({Yj(t), θj(t)}j∈O(t)) = 1

if the pairs {Yj(t), θj(t)}j∈O(t) are consistent, and

δ({Yj(t), θj(t)}j∈O(t)) = 0

otherwise.

Next, define

Θi(t) = {j|j ∈ ∂+
k (t− 1), k ∈ O(t)}\{i}

to represent the neighbors (in day t− 1) of nodes in O(t) excluding node i. Then,

Pr
(
{θj(t)}j∈O(t)|ζi(t− 1) = x

)
=

∑
ζl(t−1), l∈Θi(t)

Pr
(
{θj(t)}j∈O(t), {ζl(t−1)}l∈Θi(t)|ζi(t− 1) = x

)
. (40)

33



Published in Transactions on Machine Learning Research (March/2023)

By the chain rule of conditional probability,

Pr
(
{θj(t)}j∈O(t)|ζi(t− 1) = x

)
=

∑
ζl(t−1), l∈Θi(t)

Pr
(
{θj(t)}j∈O(t)|{ζl(t−1)}l∈Θi(t), ζi(t− 1) = x

)
× Pr

(
{ζl(t−1)}l∈Θi(t)|ζi(t− 1) = x

)
.

Given {ζl(t− 1)}l∈Θi(t) ∪ {ζi(t− 1)}, {θj(t)}j∈O(t) are independent. We thus have

Pr
(
{θj(t)}j∈O(t)|{ζl(t− 1)}l∈Θi(t), ζi(t− 1) = x

)
=
∏

j∈O(t)

Pr
(
θj(t)|{ζl(t− 1)}l∈Θi(t), ζi(t− 1) = x

)
=
∏

j∈O(t)

Pr
(
θj(t)|{ζl(t−1)}l∈∂+

j
(t−1)\{i}, ζi(t−1) = x

)
.

Based on Assumption 1,

Pr
(
{ζl(t− 1)}l∈Θi |ζi(t− 1) = x

)
=
∏

l∈{Θi(t)}

Pr
(
ζl(t− 1)

)
.

Therefore,

Pr
(
Y (t)|ζi(t− 1) = x

)
=

∑
θj(t), j∈O(t)

δ({Yj(t), θj(t)}j∈O(t))

×
∑

ζl(t−1)

∏
j∈O(t)

Pr
(
θj(t)|{ζl(t−1)}l∈∂+

j
(t−1)\{i}, ζi(t− 1) = x

)
×

∏
l∈{Θi(t)}

Pr
(
ζl(t− 1)

)
.

(41)

Denote {xj}j∈O(t) as a realization of {θj(t)}j∈O(t) and {yl}l∈Θi(t) as a realization of {ζl(t−1)}l∈Θi(t). Then,

Pr
(
Y (t)|ζi(t− 1) = x

)
=

∑
{xj}j∈O(t)

δ({Yj(t), xj}j∈O(t))

×
∑

{yl}l∈Θi(t)

∏
j∈O(t)

Pr
(
xj |{yl}l∈∂+

j
(t−1)\{i}, ζi(t− 1) = x

)
×

∏
l∈{Θi(t)}

Pr
(
ζl(t− 1) = yl

)
.

Denote
ρ
(
{xj}j∈O(t), x

)
=

∑
{yl}l∈Θi(t)

∏
j∈O(t)

Pr
(
xj |{yl}l∈∂+

j
(t−1)\{i}, ζi(t− 1) = x

)
×

∏
l∈Θi(t)

Pr
(
ζl(t− 1) = yl

)
. (42)

Then,
Pr
(
Y (t)|ζi(t− 1) = x

)
=

∑
xj∈X ,j∈O(t)

δ({Yj(t), xj}j∈O(t))ρ
(
{xj}j∈O(t), x

)
. (43)

Based on Assumption 1, we can further simplify (43). Consider node i, Y (t) can be split into Y i,1(t) and
Y i,2(t), where Y i,1(t) is the observations of the set O(t) ∩ ∂+

i (t − 1), and Y i,2(t) is the observations of the
rest of the nodes. Note that Y i,1(t) ∪ Y i,2(t) = Y (t) and Y i,1(t) ∩ Y i,2(t) = ∅.

Lemma 3. Conditioned on Y i,1(t), ζi(t− 1) is independent of Y i,2(t).

Proof. To show Lemma 3, we use the structured belief network as defined in [70]. ζj(t) is the random
variable associated with node j. Note that Yj(t) is the test result of ζj(t) on day t. Now, we consider
j ∈

(
O(t)\(O(t) ∩ ∂+

i (t− 1))
)
. By [70, Theorems 1] and Bayes ball algorithm defined in [71, Section 2], we

investigate the following two cases.

34



Published in Transactions on Machine Learning Research (March/2023)

(i) For any j ∈
(
O(t)\(O(t) ∩ ∂+

i (t − 1))
)
with Yj(t) = 1, the corresponding state ζj(t) is determined

(which is I). Then, probabilities conditioning on Yj(t) is equivalent to (equal to) probabilities
conditioning on ζj(t). By Bayes ball algorithm [70, 71], the information (the ball) is blocked at ζj(t)
when the information (the ball) reaches ζj(t), which implies the information (the ball) can not reach
ζi(t− 1).

(ii) For any j ∈
(
O(t)\(O(t) ∩ ∂+

i (t − 1))
)
with Yj(t) = 0, ζj(t) is not determined. By Bayes ball

algorithm [70, 71], when the information (the ball) reaches ζj(t), it can traverse Yj(t) when blocking
Yj(t) (conditioning on Yj(t)). However, by Assumption 1, ζi(t− 1) and ζj(t− 1) are independent, so
any path between ζi(t− 1) and ζj(t− 1) is blocked, including the path ζj(t− 1)↔ ζj(t)↔ Yj(t)↔
ζj(t)↔ ζi(t− 1). Thus, the information (the ball) can not reach ζi(t− 1).

A simple example is given in Figure 12: Let Y1(t) = 0 and Y2(t) = 1. Given Y1(t) and Y2(t), Y3(t) is
independent of ζ1(t− 1).

Figure 12: Bayes ball algorithm in the network of 3 nodes. The terms on which we have conditioning are
shaded gray and are equivalently blocked.

From Lemma 3,

e(i)
x (t− 1) = Pr

(
ζi(t− 1) = x|Y (t)

)
= Pr

(
ζi(t− 1) = x|Y i,1(t)

)
. (44)

We simplify (43) based on Lemma 3 or (44). From (44), denote the observations of nodes in ∂+
i (t − 1) as

Y ∂+
i

(t), Y ∂+
i

(t) is independent of ζi(t− 1). Denote Ψi(t) = O(t)∩ ∂+
i (t− 1). Then, We can replace O(t) by

Ψi(t) in (16). Subsequently, denote Φi(t) = {j|j ∈ ∂+
k (t − 1), k ∈ Ψi(t)}\{i}, and we can replace Θi(t) by

Φi(t) in (40). Thus, from (42) and (43), we respectively have

ρ
(
{xj}j∈Ψi(t), x

)
=

∑
{yl}l∈Φi(t)

∏
j∈Ψi(t)

Pr
(
xj |{yl}l∈∂+

j
(t−1)\{i}, ζi(t− 1) = x

)
×

∏
l∈Φi(t)

Pr
(
ζl(t− 1) = yl

)
(45)

and
Pr
(
{Yj(t)}j∈Ψi(t)|ζi(t− 1) = x

)
=

∑
xj∈X ,j∈Ψi(t)

δ({Yj(t), xj}j∈Ψi(t))ρ
(
{xj}j∈Ψi(t), x

)
(46)

which give the desired result (17).

35



Published in Transactions on Machine Learning Research (March/2023)

Figure 13: The original graph (left). The graphical model of states and observations (right)

H A Simple Example for Algorithm 4
In this section, we give a simple example to illustrate the ideas and steps of Algorithm 4. Besides, we
compare our proposed algorithm (Algorithm 4) with the Naive approach discussed in Remark 2. Consider
a simple network with three nodes. Node 1 has an edge with node 2, node 2 has an edge with node 3 (see
Fig 13). Nodes 1 and 3 are symmetric and statistically identical, and node 2 has higher degree.

Consider the following situation: on the initial day (day 0), assume that nodes 1 and 3 are susceptible, and
node 2 is infectious. On day 1, let node 2 be tested. Recall that we define the posterior probability vectors
at the end of every day, and the prior probability vectors at the beginning of every day. Nodes’ states change
in the beginning of every day and testing is also done in the beginning of every day. Let the initial belief,
i.e., the posterior probability wi(0) and the prior probability ui(0) on day 0, of the nodes be

wi(0) = [1/3, 0, 0, 2/3], i = 1, 2, 3
ui(0) = [1/3, 0, 0, 2/3], i = 1, 2, 3.

Day 0: No tests on day 0, the prior probabilities are updated by the forward step (Step 2 in Algorithm 4).

Day 1: By Step 2 in Algorithm 4, we have

u1(1) = [0.3144, 0.0373, 0.0633, 0.5849]
u2(1) = [0.3559, 0.0676, 0.0633, 0.5131]
u3(1) = [0.3144, 0.0373, 0.0633, 0.5849].

After testing node 2, we know that node 2 is positive. We use the test result to infer about the state of
the nodes in prior times. In particular, we update the posterior probability on day 0 (wi(0)). Denoting the
updated posterior probability as ei(0), by Step 1 in Algorithm 4, we find

e1(0) = [0.3144, 0.0373, 0.0633, 0.5849]
e2(0) = [0.9615, 0.0385, 0.0, 0.0]
e3(0) = [0.3144, 0.0373, 0.0633, 0.5849].

We can now say that at the end of day 0, node 2 was infectious with probability 0.9615 and it was in the
latent state with probability 0.0385. Moreover, we see that the (posterior) infection probabilities of nodes 1
and 3 on day 0 have increased since they may have infected node 2 on day 0, i.e., 0.3517 = e

(i)
I (0) + e

(i)
L (0) >

1/3 = w
(i)
I (0) + w

(i)
L (0) with i = 1, 3. Next, we obtain the posterior probability on day 1. Recall that wi(t)

36



Published in Transactions on Machine Learning Research (March/2023)

describes the posterior probability vector of node i at the end of day t. By Step 1 in Algorithm 4,

w1(1) = [0.4008, 0.0, 0.1268, 0.4724]
w2(1) = [0.90, 0.0, 0.10, 0.0]
w3(1) = [0.4008, 0.0, 0.1268, 0.4724].

One may wonder why the posterior probability is [0.9, 0, 0.1, 0] rather than [1, 0, 0, 0]. This is because testing
is done in the beginning of time t and the posterior probabilities are defined at the end of time slots t. The
infected node may have recovered by the end of time t = 1 and this is reflected in the posterior probabilities
computed.

Day 2: We can get the prior probability vectors on day 2 by our forward update (making predictions):

u1(2) = [0.2883, 0.0, 0.1268, 0.5849]
u2(2) = [0.8135, 0.0, 0.1865, 0.0]
u3(2) = [0.2883, 0.0, 0.1268, 0.5849].

On the other hand, if we apply the naive updating rule defined in Remark 2, on day 2, we find

u′1(2) = [0.4074, 0.0896, 0.0948, 0.4082]
u′2(2) = [0.81, 0.0, 0.19, 0.0]
u′3(2) = [0.4074, 0.0896, 0.0948, 0.4082].

Recall that we use Assumption 1 in the proposed algorithm (Algorithm 4), and the Naive approach in
Remark 2 does not have the backward step, so both approaches do not capture the correlations among
nodes. By Monte Carlo simulations, the correlations among nodes are captured, and the nodes’ probability
vectors are approximated on day 2 as follows:

v1(2) = [0.3235, 0.0976, 0.0196, 0.5593]
v2(2) = [0.7244, 0, 0.2756, 0]
v3(2) = [0.3158, 0.1072, 0.019, 0.558]

which yields the following comparison for the incurred estimation errors:

0.4342 =
3∑
i=1
||ui(2)− vi(2)|| <

3∑
i=1
||u′i(2)− vi(2)|| = 0.5018.

The left hand side shows the estimation error under our proposed backward-forward update and the right
hand side shows the estimation error under the naive approach.

I Delay of Testing Results
One can extend the framework to a more realistic case where testing results are not able to be obtained on
the same day, but will be obtained after a delay a. In other words, if nodes are tested on day t− a, the test
results are provided on day t. The extended framework is summarized as follows.

On day t, before getting the test results of day t− a, the algorithm knows the following information: (i) the
network topology from day t− a− 1 to day t, i.e., G(t− a− 1), · · · ,G(t) (it is affected by the past actions);
(ii) the posterior probability of nodes on day t − a − 1,

{
wi(t − a − 1)

}
i∈G(t−a−1); and (iii) and the prior

probability vectors of nodes from day t− a to day t, i.e.,
{
ui(t− a)

}
i∈G(t−a), · · · ,

{
ui(t)

}
i∈G(t).

After getting the test results on day t − a, we can obtain the updated posterior probability vectors on
day t − a − 1, and the posterior probability vectors on day t − a, i.e.,

{
ei(t − a − 1)

}
i∈G(t−a−1), and{

wi(t− a)
}
i∈G(t−a), by Step 1 in Algorithm 4.

37



Published in Transactions on Machine Learning Research (March/2023)

Based on {w(t− a)}i∈G(t−a), by Step 2 in Algorithm 4, we update the prior probability from day t− a+ 1
to day t, and obtain the prior probability on day t+ 1, i.e., {ui(t+ 1)}i∈G(t+1).

Repeating the process, we can compute the estimated probability vectors of nodes and apply the exploration
and exploitation policies.

J Proof of Theorem 2
Step 1: Preliminaries.

We divide the distributions of initial infectious nodes into two complementary events:

I1 ={No node is infectious}
I2 =Ic1.

Let N be sufficiently large,

Pr{I1} = (1− 1/N)N ≈ 1/e
Pr{I2} ≈ 1− 1/e.

In event I1, since there is no infection on the initial day, then no node is infectious in the future, i.e., the
true probability of nodes v(i)

I (t) = 0 for all i ∈ V(t) and t ≥ 1.

Note that in Example 1, each node can be in one of two states, S and I. The transmission probability β = 1.
So, on day t, the probability of node i being in state I includes the infection of node i on day t− 1, and the
infection from its neighbors. Then, based on (13), we have

u
(i)
I (t) =w(i)

I (t− 1) + {1− w(i)
I (t− 1)}

{
1−

(
1− w(i−1)

I (t− 1)
)(

1− w(i+1)
I (t− 1)

)}
=1− {1− w(i−1)

I (t− 1)}{1− w(i)
I (t− 1)}{1− w(i+1)

I (t− 1)}.
(47)

For convention, we assume that nodes 0 and N + 1 are two virtual nodes with no probability of infection,
i.e., u(0)

I (t) = u
(N+1)
I (t) = 0 for all t, and no tests are applied to these two nodes all the time.

Since w(i)
I (t+ 1), w(i−1)

I (t+ 1), w(i+1)
I (t+ 1) ∈ [0, 1], then from (47),

u
(i)
I (t) ≥ 1− 1× (1− w(i)

I (t− 1))× 1 = w
(i)
I (t− 1). (48)

Thus, by symmetry over w(i−1)
I (t− 1), w(i)

I (t− 1), and w(i+1)
I (t− 1) we get the inequality

u
(i)
I (t) ≥ max{w(i−1)

I (t− 1), w(i)
I (t− 1), w(i+1)

I (t− 1)}. (49)

Step 2: Consider the computation of {ui(t)}i based on (13)
(
equivalently (47)

)
under event I1.

Recall that B(t) = 1 for all t. On any day t, if node i0 is tested, then the result is negative, and w(i0)
I (t) = 0,

and

w
(i)
I (t) = u

(i)
I (t) for all i 6= i0. (50)

In (49), at most one of w(i−1)
I (t − 1), w(i)

I (t − 1), and w
(i+1)
I (t − 1) is updated to 0. We first prove the

following facts.

Fact 1. u(i)
I (t) ≥ 1

N for all t. On any day t, w(i)
I (t) ≥ 1

N with i 6= i0, where i0 is the index of node tested on
day t.

Proof. We prove Fact 1 by mathematical induction. On the initial day, by model assumption in Example 1,
u

(i)
I (0) = 1

N for all i. Then, if node i0 is tested, then as mentioned above, w(i0)
I (0) = 0, and by (50)

w
(i)
I (0) = u

(i)
I (0) = 1/N for all i 6= i0.

38



Published in Transactions on Machine Learning Research (March/2023)

Suppose Fact 1 holds for all τ ≤ t−1. Now, we consider τ = t. From (49), we have u(i)
I (t) ≥ max{w(i−1)

I (t−
1), w(i)

I (t − 1), w(i+1)
I (t − 1)} ≥ 1/N . Then, if node i0 is tested, we have w(i0)

I (t) = 0, and then by (50),
w

(i)
I (t) = u

(i)
I (t) ≥ 1/N for all i 6= i0.

Fact 2. If node i has not been tested up to day t, then u(i)
I (t) tends to 1 as t→∞.

Proof. Since node i is not tested from the initial day to day t, then

w
(i)
I (τ) = u

(i)
I (τ), τ ≤ t. (51)

Note that at most one of its neighbors is tested on day t. By (47) and Fact 1,

u
(i)
I (t) ≥ 1− (1− 1/N)(1− w(i)

I (t− 1)) = 1− (1− 1/N)(1− u(i)
I (t− 1)), ,

which implies

(1− 1/N)(1− u(i)
I (t− 1)) ≥ 1− u(i)

I (t),
which implies

1− u(i)
I (t) ≤ (1− 1/N)t(1− u(i)

I (0)) = (1− 1/N)t+1.

Letting t→∞ completes the proof.

Fact 3. If node i is not tested on day t− 1, then

u
(i)
I (t) ≥ w(i)

I (t− 1) + 1
N

(1− w(i)
I (t− 1))w(i)

I (t− 1).

Proof. By Fact 3, if node i is not tested on day t− 1, then w(i)
I (t− 1) > 0. From (47), by some algebra,

u
(i)
I (t) =w(i)

I (t− 1) + (1− w(i)
I (t− 1))(w(i−1)

I (t− 1) + w
(i+1)
I (t− 1)− w(i−1)

I (t− 1)w(i+1)
I (t− 1))

=(1 + ε)w(i)
I (t− 1)

where

ε = 1− w(i)
I (t− 1)

w
(i)
I (t− 1)

× (w(i−1)
I (t− 1) + w

(i+1)
I (t− 1)− w(i−1)

I (t− 1)w(i+1)
I (t− 1)).

Note that at most one of the neighbors of node i is tested on day t− 1, then

1− w(i)
I (t− 1)

w
(i)
I (t− 1)

≥1− w(i)
I (t− 1)

w
(i−1)
I (t− 1) + w

(i+1)
I (t− 1)− w(i−1)

I (t− 1)w(i+1)
I (t− 1) ≥max{w(i−1)

I (t− 1), w(i+1)
I (t− 1)}.

From Fact 1, max{w(i−1)
I (t − 1), w(i+1)

I (t − 1)} ≥ 1/N . Thus, ε ≥ (1 − w
(i)
I (t − 1)) × 1/N . Hence,

u
(i)
I (t) ≥ w(i)

I (t− 1) + 1
N (1− w(i)

I (t− 1))w(i)
I (t− 1).

Since we consider all possible sequential testing policies, then we divide all nodes into two sets
S1(t) ={nodes that have not been tested up to day t}
S2(t) =Sc1(t).

In the following proof, let t → ∞. By Fact 2, u(i)
I (t) → 1 if i ∈ S1(t). Next, we focus on the set S2(t).

Denote the index of node which is tested on day t−1 as i0(t). By Fact 1, w(i)
I (t−1) ≥ 1/N for all i 6= i0(t).

Then, we define

S21(t) ={i|1/N ≤ w(i)
I (t− 1) < 1− 1/N}

S22(t) ={i|1− 1/N ≤ w(i)
I (t− 1)}.

Thus, we have S2(t) = S21(t) ∪ S22(t) ∪ {i0(t)}. Due to the equivalence of norms, without loss of generality,
we consider L1 norm in the rest of the proof.

39



Published in Transactions on Machine Learning Research (March/2023)

(i) If i ∈ S1(t), then u(i)
I (t)→ 1. Thus ||ui(t)− vi(t)||1 → 2.

(ii) If i ∈ S21(t), then ||ui(t)− vi(t)||1 ≥ ||ui(t− 1)− vi(t− 1)||1 + 2(N−1)
N3 . In fact, since i ∈ S21(t), then

i 6= i0(t), thus by (50) and Fact 3,

u
(i)
I (t) ≥ u(i)

I (t− 1) + 1
N

(1− w(i)
I (t− 1))w(i)

I (t− 1).

Note that N is sufficiently large, so 1/N < 1/2 < 1− 1/N . If x ∈ [1/N, 1− 1/N), then the fuction
f(x) = x(1− x) has the minimum value N−1

N2 when x = 1/N . Thus,

u
(i)
I (t) ≥ u(i)

I (t− 1) + N − 1
N3 . (52)

Recall that v(i)
I (t) = 0 and v(i)

S (t) = 1 for all t, and u(i)
I (t) + u

(i)
S (t) = 1, then

||ui(t)− vi(t)||1 = |u(i)
I (t)− v(i)

I (t)|+ |u(i)
S (t)− v(i)

S (t)| = 2|u(i)
I (t)− v(i)

I (t)|. (53)

From (52),

||ui(t)− vi(t)||1 = 2|u(i)
I (t)− v(i)

I (t)| ≥ 2|u(i)
I (t− 1) + N − 1

N3 − v(i)
I (t− 1)|

≥ 2|u(i)
I (t− 1)− v(i)

I (t− 1)|+ 2(N − 1)
N3 = ||ui(t− 1)− vi(t− 1)||1 + 2(N − 1)

N3 .

(iii) If i ∈ S22(t), then node i is not tested on day t, thus from (49), u(i)
I (t) ≥ w

(i)
I (t − 1) = 1 − 1/N .

Thus, by (53), ||ui(t)− vi(t)||1 ≥
2(N−1)
N .

Since we consider N sufficiently large, then we can prove the following lemma.

Lemma 4. limt→∞ S21(t) = ∅.

Proof. We first prove the following Claims.

Claim 1. If (i) u(i−1)
I (t) ≥ 1−1/N and node i−1 is not tested on day t, or (ii) u(i+1)

I (t) ≥ 1−1/N and node
i+ 1 is not tested on day t, or (iii) u(i−1)

I (t) ≥ 1− 1/N and u(i+1)
I (t) ≥ 1− 1/N , then u(i)

I (t+ 1) ≥ 1− 1/N .

Proof. By (47) and (50), we can derive u(i)
I (t+ 1) ≥ 1− 1/N directly.

Claim 2. No node can stay in S21(t) for successive
⌈
N3/(N − 1)

⌉
days.

Proof. if node i stays in S21(t) for successive
⌈
N3/(N − 1)

⌉
days, i.e., from day τ to day τ +

⌈
N3/(N − 1)

⌉
,

then by (52), u(i)
I (τ +

⌈
N3/(N − 1)

⌉
) > 1, which contradicts with u(i)

I (t) ≤ 1 for all t.

Now, we prove the lemma by contradiction. Based on Claim 2, assume there exists at least one j and an
increasing sequence {ti}∞i=0 with limn→∞ tn =∞, such that j ∈ S21(ti) for all {ti}∞i=0.

For some i, node j is in S22(ti − 1) on day ti − 1, and node j is in S21(ti) on day ti. In other words,
u

(j)
I (ti) < 1−1/N ≤ u(j)

I (ti−1). From (47) and Calim 1, u(j)
I (ti) < 1−1/N ≤ u(j)

I (ti−1) holds only because
node j is tested on day ti− 1, and all of its neighbors (i.e., nodes j − 1, j + 1) have u(j−1)

I (ti− 1) < 1− 1/N
and u

(j+1)
I (ti − 1) < 1 − 1/N . However, since u(j)

I (ti − 1) ≥ 1 − 1/N and node j is tested on day ti − 1,
then by Claim 1, u(j−1)

I (ti) ≥ 1 − 1/N and u
(j+1)
I (ti) ≥ 1 − 1/N . Subsequently, by Claim 1, we have

u
(j)
I (ti+1) ≥ 1−1/N . Thus, on day ti+1, at least one of its neighbors, say j−1, has u(j−1)

I (ti+1) ≥ 1−1/N .
By Claim 1, node j never fall into S21(t) for t ∈ {ti+1, ti+2, · · · }, which contradicts with the assumption.

From Lemma 4, when t → ∞, we have |S1(t)| = Θ(N) or |S22(t)| = Θ(N). Thus,
∑N
i=1 ||ui(t) − vi(t)||1 =

Θ(N).

Step 3: Consider the computation of {ui(t)}i based on Algorithm 4.

40



Published in Transactions on Machine Learning Research (March/2023)

In this step, we consider a specific testing policy: We test node i on day k, where k ≡ i− 1(mod M) for all
1 ≤ i ≤M .

In event I2, since the transmission probability β = 1, then all nodes are infected at most N days because
there is no recovery. Thus, no node with positive testing result is repeatedly tested. So in at most 2N days,
all nodes are infectious, and the algorithm finds all infected nodes, so ui(t) = vi(t), t ≥ 2N .

In event I1, whenever a node is tested, it is negative. Node 1 is tested on day 0, the result is negative. On
day 1, node 2 is tested and the result is negative. By backward updating, since β = 1 and no recovery, then
nodes 1&3 are inferred to be in state S on day 0. Since node 2 is in state S on day 1. Then, node 1 is
inferred in state S on days 0 and 1.

Assume that nodes 1, 2, · · · , k − 2 are inferred to be in state S by day k − 1. Now, we day k, where k ≤ N .
On day k, node k − 1 is tested negative, hence by backward updating, nodes k − 2 and k are inferred to be
in state S on day k − 1. By the testing result of node k − 1 on day k, nodes 1, 2, · · · , k − 1 are inferred in
state S by day k. By induction, after N days, it clears every node, so ui(t) = vi(t), t ≥ N .

From Steps 1∼3, we complete the proof.

K α-linking Backward Updating
K.1 Complexity Reduction
Let {xj}j∈O(t) be a realization of {θj(t)}j∈O(t) and {yl}l∈Θi(t) be a realization of {ζl(t − 1)}l∈Θi(t). Let
node i have state x in day t− 1. Consider one node k ∈ ∂+

j (t− 1)\{i} and the probability

Pr
(
xj |{yl}l∈∂+

j
(t−1)\{i}, x

)
, j ∈ Ψi(t).

Since node k is not infectious if yk = L, yk = R or yk = S, then the probability above remians the same no
matter whether yk = L, yk = R or yk = S.

Thus, we introduce a new state, denoted by E, to be a replacement of {L,R, S}, and

Pr
(
yk = E

)
=

∑
x∈{L,R,S}

Pr
(
yk = x

)
.

Next, denote X ′ = {I, E}. Equation (17) can be re-written as follows:

Pr
(
{Yj(t)}j∈Ψi(t)|ζi(t− 1) = x

)
=

∑
{xj}j∈Ψi(t)

∏
j∈Ψi(t)

Pr
(
Yj(t)|θj(t)

)
×

∑
{yl}l∈Θi(t)

∏
j∈Ψi(t)

Pj
(
xj |{yl}l∈∂+

j
(t−1)\{i}, x

)
×

∏
zl∈X ′,l∈Θi(t)

Pr
(
ζl(t− 1) = zl

)
,

(54)

with reduces the computation complexity. Subsequently, ei(t− 1) in (16) can be calculated by (54) directly.

K.2 α-linking Backward Updating
In the backward step, the computation complexity is large even in (54). To further reduce the complexity
in (54), one way is to update the posterior probability ei(t) in a sparser network. Now, we define α-linking
Backward Updating as follows:

(i) We generate a subgraph Gα(t) based on the pre-determined graph G(t): Suppose that each edge (in
G(t)) exists with probability α, 0 ≤ α ≤ 1. If α = 1, then Gα(t) = G(t); if α = 0, then Gα(t) is a
graph with no edges.

(ii) Backward updating in Gα(t): Similar with ∂i(t), Ψi(t), Φi(t) and Θi(t), we define ∂i,α(t), Ψi,α(t),
Φi,α(t) and Θi,α(t) on graph Gα(t), respectively. Subsequently, replace ∂i(t), Ψi, Φi(t) and Θi(t) by
∂i,α(t), Ψi,α(t), Φi,α(t) and Θi,α(t) in (54), respectively.

41



Published in Transactions on Machine Learning Research (March/2023)

L Proof of Theorem 3
Step 1. Preliminaries.

In Example 2, β = 1, λ = 0, and γ = 0, there is no recovery and we assume no latent state. Based on
(9), the expression of rewards r̂i(t) for every node is given as follows. If node i has two neighbors (without
quarantine)

r̂i(t) =u(i−1)
S (t)(1− u(i−2)

I (t))u(i)
I (t) + u

(i+1)
S (t)(1− u(i+2)

I (t))u(i)
I (t). (55)

If node i only has one neighbor, then

r̂i(t) =u(i+d)
S (t)

(
1− u(i+2d)

I (t)
)
u

(i)
I (t), d ∈ {−1, 1}. (56)

For simplicity, we introduce artificial nodes −1, 0, N + 1, N + 2 with u
(−1)
I (t) = u

(0)
I (t) = u

(N+1)
I (t) =

u
(N+2)
I (t) = 0 for all t, and these 4 nodes are never tested.

Step 2. The RbEx policy.

Under the RbEx policy, the algorithm always tests the nodes with maximum rewards. Let an infectious node
be found, for the first time, on day aN , where a is a positive real number. Note that until the first infected
node is found, in any application of the RbEx policy, u(i)

I (t) is the same for any given i, and hence r̂i(t) is
also the same. So, a is the same for any application of the RbEx policy. Recall that in Example 2, nodes
that are tested positive will be isolated. The cumulative infections is at least min{aN,N} in the end.

Step 3. Consider the exploration process of the specific exploration policy.

Recall that from Step 2, an infectious node is found, for the first time, by the RbEx policy with budget 10
tests on day aN . Under the specific defined exploration policy, we can choose a specific b′ with b′ < a, such
that no infectious node is tested by the RbEx policy with budget 9 tests before and including day t = b′N .

We know that on day τ , nodes 1, 2, · · · , τ are infectious since β = 1. Note that one test is applied to
exploration (randomly choice) on every day, so with probability

τ∏
τ ′=1

(1− τ ′

N
), (57)

no infectious node is explored from the initial day to day τ . Then, with probability

τ−1∏
τ ′=1

(1− τ ′

N
) · τ
N
,

one infectious node is detected on day τ . Thus, with probability

t∑
τ=1

τ−1∏
τ ′=1

(1− τ ′

N
) · τ − 1

N
, (58)

one infectious node is tested by exploration process on day τ (τ ≤ t), and this node is not the new infectious
one on day τ , i.e., has index τ . The probability defined in (58) increases with t when N is fixed, and it
can be close to 1 when t close to N . Therefore, We can choose proper parameters b′ and N such that the
probability defined in (58) is larger than or equal to p0. In particular, if N is large, we can choose a relatively
small b′. In Theorem 3, we set p0 ≥ 99/100.

Let the infectious node detected (for the first time) by the exploration process have index j on day t′, where
t′ ≤ t. As discussed above, node j is not the new infectious node on day t′, so we have j < t′. In other words,
node j+ 1 must be infecitous on day t′ with a positive test result, i.e., Yj(t′) = 1. By Step 1 in Algorithm 4,
the updated posterior probability of node j

e
(j)
I (t′ − 1) = 1, e

(j)
S (t′ − 1) = 0. (59)

42



Published in Transactions on Machine Learning Research (March/2023)

Again, by Step 1 in Algorithm 4,

w
(j−1)
I (t′) = w

(j+1)
I (t′) = 1. (60)

Then, by Step 2 in Algorithm 4,

u
(j−2)
I (t′ + 1) = u

(j−1)
I (t′ + 1) = u

(j)
I (t′ + 1) = u

(j+1)
I (t′ + 1) = u

(j+2)
I (t′ + 1) = 1. (61)

Since j is detected and isolated on day t′, then,

r̂j(t′ + 1) = 0. (62)

By (56) and (61),
r̂j−1(t′ + 1) = u

(j−2)
S (t′ + 1)

(
1− u(j−3)

I (t′ + 1)
)

= 0

r̂j+1(t′ + 1) = u
(j+2)
S (t′ + 1)

(
1− u(j+3)

I (t′ + 1)
)

= 0.
(63)

By (55) and (61),
r̂j−2(t′ + 1) = u

(j−3)
S (t′ + 1)

(
1− u(j−4)

I (t′ + 1)
)

r̂j+2(t′ + 1) = u
(j+3)
S (t′ + 1)

(
1− u(j+4)

I (t′ + 1)
)
.

(64)

Step 4.The exploitation process of the specific exploration policy.

We first study an extreme case where no tests are applied. In this case, denote the prior probability of node
i on day τ as U (i)

I (τ), which can be calculated by the following recursion:

U
(i)
I (τ + 1) = U

(i)
I (τ) + U

(i)
S (τ)

(
1− (1− U (i−1)

I (τ))(1− U (i+1)
I (τ))

)
. (65)

Based on (65), recall that U (i)
I (0) = 0 if i ≤ 9N

10 , and U
(i)
I (0) = 10ε

N if 9N
10 < i ≤ N , then U (i)

I (τ) increases
over τ and is a function of ε. Then, given b′, N and t = b′N , we can choose a small enough ε, denoted by
ε(b′, N), such that U (i)

I (2t) < 1
2 for all i. Since U (i)

I (τ) increases over τ , then U (i)
I (τ) < 1

2 , τ ≤ 2t.

Now, we introduce the exploitation process. Let t = b′N < min{ 9
40 , a}N . There are at most 2t infectious

nodes on day 2t, i.e., nodes 1, 2, · · · , 2t. Since t < min{ 9
40 , a}N , then nodes with index from 9N/10−2t to N

are in state S, which implies nodes with index from 9N/10− 2t to N can never be tested positive before day
2t. Thus, on any day τ ≤ 2t, for 9N/10− 2t ≤ i ≤ N , if node i is tested, and the testing result is negative.
Recall that U (i)

I (τ) in (65) is calculated without any negative testing results. Hence, u(i)
I (τ) ≤ U

(i)
I (τ).

Furthermore, with the condition t = b′N < min{ 9
40 , a}N , we can find a small enough ε(b′, N), such that

under the specific exploration policy,

u
(i)
I (τ) < 1

2 , τ ≤ 2t, 9N/10− 2t ≤ i ≤ N. (66)

In the rest, we divide the nodes in to 3 sets: Q1 = {i|i ≤ 2t}, Q2 = {i|2t < i < 9N/10 − 2t}, and
Q3 = {i|9N/10− 2t ≤ i ≤ N}.

Fact 1. For i ∈ Q1 and τ ≤ 2t, u(i)
I (τ) = 1 or u(i)

I (τ) = 0.

Proof. If no test is applied to Q1, then u(i)
I (τ) = 0 for all i ∈ Q1.

On some day τ ≤ 2t, if one node with index j ∈ Q1 is tested positive on day τ − 1, then by (61), u(j−2)
I (τ) =

u
(j−1)
I (τ) = u

(j)
I (τ) = u

(j+1)
I (τ) = u

(j+2)
I (τ) = 1. In other words, if node j is tested positive on day τ − 1,

then node j, its neighbors and neighbors of neighbors have probability of infection equal to 1 on day τ .

On some day τ , if node j is not tested positive on day τ − 1, and neither of its neighbors and neighbors of
neighbors are is not tested positive, then u

(j)
I (τ) = 1 only when u

(j)
I (τ − 1) = 1, or u(j−1)

I (τ − 1) = 1 or
u

(j+1)
I (τ − 1) = 1 since β = 1. Otherwise u(j)

I (τ) = 0.

43



Published in Transactions on Machine Learning Research (March/2023)

Fact 2. For i ∈ Q1 and τ ≤ 2t, r̂i(τ) = 1 or r̂i(τ) = 0.

Proof. If u(i)
I (τ) = 0, then r̂i(τ) = 0 by (55) and (56).

Now, we consider u(i)
I (τ) = 1 in the following cases: (i) If both neighbors of node i are isolated, then

r̂i(τ) = 0. (ii) If one of neighbors of node i (for example, node i − 1) is isolated, then by (56), r̂i(τ) = 0
when u

(i+1)
I (τ) = 1, and r̂i(τ) = 1 when u

(i+1)
I (τ) = 0. (iii) If both neighbors are not isolated, then

u
(i−1)
I (τ − 1) = 1 or u(i+1)

I (τ − 1) = 1, otherwise, u(i)
I (τ) = 0. Since there is no recovery, then u(i−1)

I (τ) = 1
or u(i+1)

I (τ) = 1. By Fact 1, u(j)
I (τ) = 1 or u(j)

I (τ) = 0 when j ∈ Q1. If u(i+1)
I (τ) = u

(i−1)
I (τ) = 1, then

r̂i(τ) = 0. If u(i+1)
I (τ) = 1, then by (55), r̂i(τ) = 0 when u(i−2)

I (τ) = 1, r̂i(τ) = 1 when u(i−2)
I (τ) = 0. If

u
(i−1)
I (τ) = 1, then by (55), r̂i(τ) = 0 when u(i+2)

I (τ) = 1, r̂i(τ) = 1 when u(i+2)
I (τ) = 0.

From (66), for all τ ≤ 2t and i ∈ Q3, we have

r̂i(τ) ≤ 2u(i)
I (τ) < 1. (67)

Note that only nodes in Q1 and Q3 may have positive probability of infection. For all τ ≤ 2t and i ∈ Q2,
since u(i)

I (τ) = 0, then r̂i(τ) = 0. Therefore, a node with reward equal to 1 has the largest reward.

Recall that on day t′, node j is tested positive. From (64), nodes j − 2 and j + 2 have largest rewards (= 1)
on day t′ + 1, which are exploited on day t′ + 1, and all other nodes in Q1 have rewards 0. This is because
t′ is the first day when a positive node is found. Since node j is tested positive and isolated on day t′, then
all infectious nodes with index less than j can no longer infect other nodes in the line network. Now, we
consider the nodes with index larger than j. Recall that j < t′, so node j + 1 must be infectious on day
t′, and node j + 2 must be infectious on day t′ + 1 since β = 1. Thus, node j + 2 is tested positive and is
isolated. Since the network is a line, both nodes j + 1 and j + 2 can no longer infect other nodes once node
j + 2 is isolated. Note that nodes in Q3 have positive rewards. When N is sufficiently large, in the rest of
the exploitation process, nodes in Q3 are tested. Recall that we have one test for exploration, and we can
isolate at least 2 infectious nodes with index larger than j.

Repeat the process, we exploit nodes j + 4, j + 6, · · · on day t′ + 2, t′ + 3, · · · , respectively. Consider the
direction from node 1 to node N . On every day, there is at most one new infectious node, but at least two
infectious nodes can be isolated. On some day, denote as day t′ + x, the exploitation process can progress
beyond the infections (exceeding by one node) for the first time. In other words, node j+2x is tested negative
on day t′ + x. By Step 2 in Algorithm 4, e(j+2x)

I (t′ + x − 1) = 0. However, since w(j+2x−1)
I (t′ + x) = 1

becuase node j+2x−2 is tested positive on day t′+x−1. By Step 1 in Algorithm 4, u(j+2x)
I (t′+x+1) = 1,

hence by (64), r̂j+2x(t′ + x + 1) = 1, which implies node j + 2x has the largest reward and is exploited on
day t′ + x+ 1, and it will be tested positive. On day t′ + x+ 1, all infectious nodes are isolated.

Finally, we can calculate the total number of infections to be

j + 2(t′ − j) = 2t′ − j ≤ 2t′ ≤ 2t = 2b′N.

Let b = 2b′. This is an improvement by a factor of at least a
b in comparison to the RbEx strategy, where a

b
can be as large as desired by increasing the value of N or decreasing p0.

M Construction of Networks and Further Results
M.1 Constructions of SBM and V-SBM
In this section, we construct SBMs and its variants.

SBM The SBM is a generative model for random graphs. The graph is divided into several communities,
and subsets of nodes are characterized by being connected with one another with particular edge densities.8
The intra-connection probability is p1, and inter-connection probability is p2. We denote the SBM as

8Here, we assume that M is an exact divisor of N .

44



Published in Transactions on Machine Learning Research (March/2023)

WS, (d, δ) γc Lp Ratio
(6, 0.05) 0.504 4.952 .0003

(4, 0) 0.500 62.876 0.191
(6, 0.1) 0.456 5.718 −0.027
(4, 0.03) 0.456 10.810 0.097

Table 12: Clustering coefficients of WS networks

WS, (d, δ) γc Lp Ratio
(6, .001) 0.599 21.188 0.209
(4, .0075) 0.489 21.264 0.182
(6, .005) 0.592 14.310 0.211
(4, .015) 0.473 14.253 0.174
(6, .009) 0.585 12.081 0.137
(4, .0225) 0.467 12.171 0.125

Table 13: Clustering coefficients of WS networks

SBM(N,M, p1, p2). Note that the (expected) number of edges, denoted by |E|, is

|E| = p1

2 N(N
M
− 1) + p2

2
N2

M
(M − 1). (68)

Now, we fix |E|, and choose the pair (p1, p2) under a fixed |E| in (68). The aim of fixing |E| is to guarantee
that the transmission of the disease would not be affected by edges.

V-SBM Now, we consider a variant of SBM, denoted by V-SBM. Different from SBM, we only allow
nodes in cluster i to connect to nodes in successive clusters (the neighbor clusters). Denote the V-SBM as
V-SBM(N,M, p1, p2). Similarly, the expected number of edges, denoted by |E|, is

|E| = p1

2 N(N
M
− 1) + p2

N2

M
. (69)

Now, we fix |E|, and choose the pair (p1, p2) under a fixed |E| in (69). The aim of fixing |E| is to guarantee
that the transmission of the disease would not be affected by edges.

M.2 The impact of γc and Lp individually
In this subsection, we investigate the role of γc and Lp individually, not through the common factor δ. We
consider different WS networks with degrees d = 4, 6, and then adjust the rewiring probability δ, such that
one of (γc, Lp) is almost constant, and the other is varying. We can see that the trend is similar to what we
observed by varying δ in Table 6.

45


	Introduction
	Modeling
	Supermodularity

	Exploitation and Exploration
	Message-Passing Framework
	Necessity of Backward Updating
	Necessity of Exploration

	Simulations
	Overview
	Simulation Results in Synthetic networks
	Impact of Network Parameters

	Simulation Results in Real-data Networks

	Conclusions and Future Work
	Impact Statements

	Proof of Lemma 1
	Proof of Theorem 1
	Complexity of Algorithm 1
	Proof of Lemma 2
	Local Transition Equations
	Proofs of (13) and (14)
	Computing the transition probability matrix i({ej(t-1)}j+i(t-1))

	Proofs of (16) and (17)
	A Simple Example for Algorithm 4
	Delay of Testing Results
	Proof of Theorem 2
	-linking Backward Updating
	Complexity Reduction
	-linking Backward Updating

	Proof of Theorem  3
	Construction of Networks and Further Results
	Constructions of SBM and V-SBM
	The impact of c and Lp individually


