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Abstract
We provide several equivalent characterizations of locally flat, d-Ahlfors regular, uni-
formly rectifiable sets E in Rn with density close to 1 for any dimension d ∈ N,
1 ≤ d < n. In particular, we show that when E is Reifenberg flat with small constant
and has Ahlfors regularity constant close to 1, then the Tolsa α coefficients associated
to E satisfy a small-constant Carleson measure estimate. This estimate is new, even
when d = n − 1, and gives a new characterization of chord-arc domains with small
constant.
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1 Introduction

The connection between quantitative properties of elliptic PDEs, harmonic analysis,
and geometric measure in the past thirty years has significantly been influenced by the
introduction of uniformly rectifiable sets by David and Semmes in the early 90s. At
its core, uniform rectifiability of a d-dimensional set E ⊂ Rn is the precise condition
on E which guarantees all (sufficiently nice) Calderón-Zygmund operators are L2

bounded [11]. In terms of elliptic boundary value problems, it turns out that uniform
rectifiability of the boundary ∂& of a domain & arises naturally as one of the sharp
geometric conditions under which one can solve the Laplace-Dirichlet problem on
& with singular (i.e., L p) boundary data (see [3] for a recent result, but also the
series of works [19, 21, 22]). At their core, though, uniformly rectifiable sets have
many equivalent geometric characterizations, all of which quantify (in some sense)
the d-rectifiability of E at different points x ∈ E and scales r > 0.

Just to list two such examples, a d-Ahlfors regular set E ⊂ Rn is d-uniformly
rectifiable if and only if the TolsaαHd |E numbers satisfy theCarlesonmeasure estimate
[40]

sup
x∈E, r>0

r−d
ˆ r

0

ˆ
E∩B(x,r)

αHd |E (y, t)
2 dHd(y)dt

t
≤ M1, (1.1)

for some uniform M1 > 0. Here the αHd |E (x, r) are bounded coefficients which
measure the distance from E to the space of d-planes in the ball B(x, r) (see Definition
1.5), and so the estimate (1.1) says that for most balls B(x, r) centered on E , this
distance is quantitatively small in a precise sense. Of course, in the estimate above,
one could take different coefficients (e.g., the so-called L1 beta coefficients, β1) and
still obtain a characterization [11]. In terms of a slightly more concrete definition, it
turns out that (1.1) is equivalent to E having “big pieces of Lipschitz images of subsets
of Rd ,” which is to say the following: there is some uniform M2 > 0 so that for each
x ∈ E and every r > 0, one can find a Lipschitz mapping ρ : Bd(0, r) ⊂ Rd → Rn

with Lipschitz norm ≤ 1+ M2 so that

Hd(E ∩ B(x, r) ∩ ρ(Bd(0, r))) ≥ (1+ M2)
−1Hd(Bd(0, r)). (1.2)

There aremany other interesting geometric and analytic characterizations of uniformly
rectifiable sets, and we refer the reader to [10, 11] where this is pursued. The goal
of the current paper is to take on a systematic study of the quantitative relationship
between such constants M1 and M2 in the small-constant regime: if M1 is sufficiently
small, does it mean thatM2 also is? If so, can such a relationship bemade quantitative?

In this paper, we show that this is indeed the case. In fact, we show that the estimate
(1.1)with small constantM1 (alongwith goodAhlfors regularity control) characterizes
a certain class of Ahlfors regular sets E ⊂ Rn of any dimension 1 ≤ d ≤ n − 1 that
have very good approximations by very flat Lipschitz graphs (Theorem 1.9). This
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approximation property is even stronger than the “big pieces of Lipschitz images of
subsets of Rd” property mentioned above. We call such sets uniformly rectifiable of
dimension d with small constant δ > 0 (see Definition 1.7). Moreover, our result is
quantitative in that (1.1) holds withM1 = δθ for some dimensional constant θ ∈ (0, 1)
depending only on n and d; whenever, E ⊂ Rn is uniformly rectifiable of dimension
d with small constant δ, and a converse holds as well. This quantitative Carleson
measure estimate serves as an important tool in the upcoming work in [17], where the
authors study the regularity of the Poisson kernel associated to a degenerate elliptic
operator outside of Ahlfors regular sets of high co-dimension in Rn . In addition, our
method of proof brings with it several other characterizations. In particular, we relate
the constant M1 to the control of the oscillation of the tangent planes to E and the
Reifenberg flatness of E .

These two other characterizations are largely motivated by the of work Semmes
[38, 39] (and later Blatt [5]) on chord-arc surfaces with small constant as well as
Kenig and Toro [27, 28] in their study of the Poisson kernel regularity for chord-arc
domains with small (and vanishing) constant. In particular, the work of Kenig and
Toro showed that chord-arc domains with small constant in many ways serve as an
appropriate substitute for C1 domains in the study of boundary value problems for
elliptic PDEbelow theLipschitz thresh-hold. It turns out that under a global assumption
of Reifenberg flatness of a domain &, the Poisson kernel k associated to the Laplace
operator on & satisfies log k ∈ VMO(∂&) if and only if the domain & is a chord-arc
domain with vanishing constant [29]. This result is the proper analog (and converse)
of the earlier result of Jerison and Kenig, which says that log k ∈ VMO(∂&) for C1

domains (though, in general log k need not be continuous or even bounded for such
domains) [25]. Since then, chord-arc domains with small constant have continued to
be an important geometric object in the study of quantitative properties of solutions
to elliptic PDE on rough domains [8, 9, 16, 20, 33, 34], free boundary problems for
elliptic measure [2, 4, 6, 7, 36], and even have corresponding analogs and importance
in other PDE settings [18, 30, 35], and we can only scratch the surface here on the
plethora of theory devoted to the study of PDE on such domains.

Since chord-arc domains with small constant & have rich PDE properties, there
has been much interest in understanding and providing alternative geometric charac-
terizations of such domains. Roughly speaking, these are domains whose boundaries
locally separate space in two and whose boundaries are Ahlfors regular and bilaterally
well approximated by hyperplanes. In addition, these domains have unit normal with
small BMO-norm (see Definition 1.13 for a more precise statement) [28]. It is known
that such domains also have good Lipschitz graph approximations, and thus, their
boundaries are closely related to uniformly rectifiable sets of dimension (n − 1) with
small constant. In fact, when & is a domain satisfying some underlying topological
assumptions, we shall use our results to give an alternative characterization of& being
a chord-arc domain with small constant using the Carleson measure estimate (1.1) on
∂& (see Theorem 1.15).

Before rigorously stating the main result, we remark that the relationship between
some of the defining characteristics of chord-arc domains with small constant (such
as Reifenberg flatness, oscillation of the unit normal, and Lipschitz graph approx-
imations) has been studied and exists in the literature in varying contexts (in the
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co-dimension one case for chord-arc surfaces and chord-arc domains in [20, 29, 38],
and in any co-dimension for smooth embedded hypersurfaces [5], for example). Still
in our main result for uniformly rectifiable sets E ⊂ Rn of dimension d and small
constant δ > 0, we provide proofs that hold for general Ahlfors regular sets of any co-
dimension, andwe do not impose any topological assumptions on the setRn\E apriori.
In any case, the characterization in terms of the small constant Carleson measure esti-
mate (1.1) is new in any dimension and co-dimension. In addition, our techniques
provide a systematic way to obtain small-constant Carleson measure estimates such
as (1.1) for coefficients besides the Tolsa α numbers for small-constant uniformly
rectifiable sets, which we hope to prove useful for small-constant PDE results in the
future. Let us now provide enough background to state the main result, Theorem 1.9.

1.1 Main Result and Outline of the Paper

In this paper, we always denote the ambient space by Rn , for n ∈ N, and d ∈ N
will always be so that 0 < d < n. We reserve the notation A(n, d) to denote the
collection of all d-planes P ⊂ Rn , andG(n, d) for theGrassmannian of d-dimensional
subspaces ofRn . Also, we denote byHd the d-dimensional Hausdorff measure onRn ,
normalized for notational convenience so that if P ∈ A(n, d), x ∈ P , and r > 0, then
Hd(B(x, r) ∩ P) = rd . Lastly, whenever P is a plane, we denote by πP : Rn → P
the orthogonal projection onto the plane P . Let us begin by introducing several related
notions of d-dimensional sets in Rn and their geometric regularity that are needed to
state our main result.

Definition 1.1 A Borel measure µ on Rn is said to be d-Ahlfors regular with constant
Cµ > 0 provided that for each x ∈ sptµ and each r > 0, one has

C−1
µ rd ≤ µ(B(x, r)) ≤ Cµrd . (1.3)

If E ⊂ Rn is closed, we say that E is d-Ahlfors regular with constant CE > 0 ifHd |E
is d-Ahlfors regular with constant CE > 0. Finally, if only the upper (lower) bound
holds as above, then we say µ is upper (lower) d-Ahlfors regular with constant Cµ.

Remark 1.2 The choice to normalize Hd as above, and the role of the constant Cµ in
Definition 1.1 is important, sincewe shall oftenwant tomeasure how close a d-Ahlfors
regular measureµ is to d-dimensional surfacemeasure on sptµ. In particular, we shall
often use the phrase “d-Ahlfors regularwith small constant”when the constantCµ > 1
is very close to 1, even though the phrase is misleading.

Next we introduce Jones’ β numbers (see [11, 26]) and Tolsa’s α numbers (see
[40]), which have been studied extensively in relation to rectifiable and uniformly
rectifiable measures on Rn and singular integral operators. We also introduce the
notion of Reifenberg flat sets, which were introduced by Reifenberg in his solution of
the Plateu problem [37].
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Definition 1.3 If E is a d-Ahlfors regular set, then define for x ∈ Rn and r > 0,

bβ1,E (x, r) := r−d−1 inf
P∈A(n,d)

(ˆ
B(x,r)

dist (y, P) dHd |E (y)

+
ˆ
B(x,r)

dist (y, E) dHd |P (y)
)
.

Definition 1.4 For & ⊂ Rn open, denote by *(&) the space of 1-Lipschitz functions
f : Rn → R that are compactly supported in &. If µ and ν are measures on Rn , then
we define the localized Wasserstein distance between µ and ν in B(x, r) ⊂ Rn by

Dx,r (µ, ν):= sup
f ∈*(B(x,r))

∣∣∣∣

ˆ
f (dµ − dν)

∣∣∣∣ .

Definition 1.5 Denote by Flat(n, d) the set of measures of the form cHd |P where
c > 0 and P ∈ A(n, d). If µ is a d-Ahlfors regular measure, then define for x ∈ Rn

and r > 0,

αµ(x, r) := r−d−1 inf
ν∈Flat(n,d)

Dx,r (µ, ν).

In our notation αµ, we omit the dependence on the dimension d of the measure µ,
since it shall be clear from context.

Definition 1.6 We define the normalized local Hausdorff distance for closed sets
E, F ⊂ Rn that meet B(x, r) by

dx,r (E, F) := r−1

(

sup
y∈E∩B(x,r)

dist (y, F)+ sup
y∈F∩B(x,r)

dist (y, E)

)

.

With this distance, we define the bilateral beta (infinity) numbers by

bβ∞,E (x, r) := inf
P
dx,r (E, P),

where the infimum is taken over all d-planes P ∈ A(n, d) thatmeet B(x, r).Moreover,
we say that a closed set E ⊂ Rn is δ-Reifenberg flat if bβ∞,E (x, r) ≤ δ for every
x ∈ E and r > 0. We warn the reader that this definition of δ-Reifenberg flatness is
different than that in [28].

Finally, we come to the notion of small-constant uniformly rectifiable sets.

Definition 1.7 A closed set E ⊂ Rn is δ-uniformly rectifiable of dimension d (δ-UR
for short) if 0 < δ < 1/10 and the following holds:

for everyx ∈ Eandr > 0, there is ad − dimensional Lipschitz graph,
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with constant ≤ δso thatHd |B(x,r)(E-,) ≤ δrdand, ∩ B(x, r/2) )= ∅. (1.4)

Again we usually omit the dimension d since it will be clear from context.

Remark 1.8 In the definition of δ-UR, we impose that δ < 1/10. This is because if δ

were allowed to be large, the definition would be satisfied for any d-Ahlfors regular
set E , whereas we want the δ-UR condition to be some small-constant quantification
uniform rectifiability. In particular, since δ < 1/10, it is straight forward to verify that
δ-UR sets are d-Ahlfors regular with constant close to 1 (see Lemma 3.2). Moreover,
they satisfy the “big pieces of Lipschitz graphs condition” and so δ-UR sets are d-
uniformly rectifiable as in the sense of David and Semmes [10] with bounded constant
(see Definition 4.1). From the previous discussion, it follows that δ-UR sets are d-
rectifiable, so they have approximate tangent planes for Hd -almost all x ∈ E (see
Theorem 5.1), which we denote by T (x) ∈ G(n, d).

Notice also that the δ-UR condition is strictly stronger than the “big pieces of
Lipschitz images of subsets of Rd” condition mentioned in (1.2) with small constant
M2. Indeed, if E = V1 ∪ V2 where V1 and V2 are distinct d-planes in Rn , then one
can check that E is d-Ahlfors regular and satisfies (1.2) with M2 = 0 but is not δ-UR
of dimension d for δ small.

In the language of the above, our main result is that a set E ⊂ Rn is δ-UR of
dimension d if and only if one of various other quantities is sufficiently small (with
quantitative control). We refer the reader to Definition 2.1 for the precise definition
of a δ-Corona decomposition, which is somewhat cumbersome to place here without
first discussing the Christ-David dyadic lattice in Sect. 2.1.

Theorem 1.9 Fix n, d ∈ N with 0 < d < n and CE > 0. Then there are constants
δ0 > 0 and θ0 ∈ (0, 1) depending only on n, d, and CE > 0, so that the following
holds. Whenever 0 < δ < δ0, E ⊂ Rn is d-Ahlfors regular with constant CE , and one
of the following conditions holds

(A) E is δ-uniformly rectifiable,
(B) E admits δ-Corona decompositions,
(C) E is upper d-Ahlfors regular with constant (1+δ), and for any Borel g satisfying

(1 + δ)−1 ≤ g ≤ (1 + δ), if dµ(x) = g(x)dHd |E (x), then for all x ∈ E and
r > 0,

µ(B(x, r))−1
ˆ
B(x,r)

ˆ r

0
αµ(y, t)2

dµ(y)dt
t

≤ δ,

(D) E is upper d-Ahlfors regular with constant (1+ δ), and for all x ∈ E and r > 0,
bβ1,E (x, r) ≤ δ,

(E) E is upper d-Ahlfors regular with constant (1+ δ) and δ-Reifenberg flat,
(F) E is d-rectifiable, lower d-Ahlfors regular with constant (1 + δ), and for every

x ∈ E and r > 0, there is a V ∈ G(n, d) so that

 
B(x,r)

∥∥πT (x) − πV
∥∥ dHd |E (x)+ sup

y∈B(x,r)∩E

∣∣πV⊥(y − x)
∣∣

r
≤ δ,
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then all of the others also hold with constant δθ0 in place of δ.

Remark 1.10 (Sharpness of theAhlfors regularity assumption) Let us discuss the sharp-
ness of the small-constant Ahlfors regularity assumptions appearing in the conditions
(A)–(F) in Theorem 1.9. We reminder the reader that in the statement of Theorem 1.9
and the discussion that follows below, our sets E ⊂ Rn are always assumed to be
d-Ahlfors regular with (large) constant CE > 1.

First, in the places they appear in (D), (E), and (F), they are necessary. We shall
see shortly that (D) and (E) are easily seen to be equivalent. In (E), the upper Ahlfors
regularity assumption can be seen to be necessary by example of a very flat snowflake,
as in [13]. The key point is that there are δ-Reifenberg flat snowflakes for arbitrarily
small δ that have infinite Hd measure. Finite truncations of such constructions yield
very flat d-Ahlfors regular sets E with large constant CE - 1, but for which small-
constant Ahlfors regularity fails. By Lemma 3.2, such sets are not δθ0 -UR. In (F), one
can see the lower d-Ahlfors regularity assumption is necessary by taking E = V+ for
some half d-plane V+. Again, such an E is d-Ahlfors regular with large constant and
satisfies the other condition in (F) trivially with δ = 0, but is not δθ -UR.

This brings us to (C) which is more delicate. If one instead considers the measure
dµ(x) = g(x)dHd |E (x) where 1/2 ≤ g ≤ 2, g attains the values 1/2 and 2 some-
where, yet ‖g‖BMO = δ, then in fact, our arguments will show that still the Carleson
condition

µ(B(x, r))−1
ˆ
B(x,r)

ˆ r

0
αµ(y, t)2

dµ(y)dt
t

≤ δθ0 ,

holds whenever E is δ-UR (see the proofs of Lemmas 4.4 and 4.5). On the other hand,
µ is not d-Ahlfors regular with small-constant, and thus, a small-constant Carleson
condition on the coefficients αµ alone cannot imply small-constant Ahlfors regularity
of the measure µ. This is not to say that the implication cannot hold for the measure
Hd |E , and indeed, there is a subtle but important difference between µ and Hd |E in
the α coefficients. At this stage, we do not knowwhether the small-constant d-Ahlfors
regularity assumption in (C) is necessary.

We prove Theorem 1.9 one step at a time, proving (in alphabetical order) each of
the conditions (A)–(F) with constant δ implies the subsequent condition with constant
C0δ

θ0 , whereC0, θ0 > 0 depend only on n, d, andCE . Instead of repeating this phrase
over and over, we shall instead write “(A) gives (B)”, when really we mean that (A)
implies (B) with constant C0δ

θ0 in place of δ. By taking δ0 and θ0 even smaller, this
is enough to prove the Theorem. We do not explicitly compute θ0 in the proof of each
implication, except for where there is a clear optimal power; instead, we care only that
each condition is quantitatively controlled by the previous one.

The bulk of our work (and our main contribution) is in showing (A) gives (B),
and (B) gives (C), which are done in Sects. 3 and 4, respectively. Here we should
emphasize as stated previously that for (large-constant) Ahlfors regular, uniformly
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rectifiable measures µ, one has the large-constant Carleson measure estimate

sup
x∈sptµ,r>0

µ(B(x, r))−1
ˆ
B(x,r)

ˆ r

0
αµ(y, t)2

dµ(y)dt
t

< ∞,

(see [40, Theorem 1.2]). However, it takes delicate analysis to show that this quantity
is small for δ-UR sets (and in fact, necessitates the appropriate notion of a “small-
constant”-Corona decomposition, which we introduce here).

That (C) gives (D) is immediate once one recalls the fact that for Ahlfors regular
sets E , the Carleson measure estimate in (C) in fact implies that αµ(x, r)2 ≤ Cδ,
and that the αµ dominate the bβ1,E [40, Lemma 3.2]. Similarly that (D) gives (E)
is a straight-forward estimate that uses the Lipschitz nature of the distance function
and d-Ahlfors regularity of E to show bβ∞,E (x, r) ≤ Cbβ1,E (x, r)1/(d+1). As such
we omit the proofs. We prove that (E) gives (F) in Sect. 5 from an argument that
estimates the portion of E whose tangent planes make a large angle with a good
approximation to E in a ball B(x, r). This argument is different than the proof using
the Gauss-Green Theorem by Kenig and Toro in co-dimension 1 (see Theorem 2.1 in
[27] and also the proof following (2.18) in [7]), and in particular also works in any co-
dimension. Finally, the proof of (F) gives (A) exists in several forms in the literature.
When d = n − 1 and E is a smooth enough hypersurface, the argument is due to
Semmes [38, Proposition 5.1] (and the resulting approximating Lipschitz graphs are
referred to as Semmes decompositions) and later used in [27]. It is also proved under
different topological assumptions of a domain & in [20, Theorem 4.16], where the
hypothesis on the quantity

∣∣πV⊥(y − x)
∣∣ /r is removed, and proved by other means.

When d < n − 1, this implication is essentially proved in [5, Lemma 3.2] again when
E ⊂ Rn is a C1 manifold, but for the sake of completeness, we outline the proof of
Blatt in Sect. 6 to make clear the fact that in our setting (and with the Ahlfors regularity
assumptions), the argument does not require E to be a C1 manifold.

1.2 An Application to Chord-Arc Domains

Let us end the introduction with a discussion relating δ-UR sets of dimension (n −
1) in Rn , and δ-chord-arc domains (as defined in [28]), as promised earlier. All of
the arguments involved in the proof of Theorem 1.9 are local, and thus, there are
corresponding local and “vanishing” results that follow from these arguments, though
they are slightly technical to write down. In fact, these local results, which we leave
to Sect. 7, are in more direct analogy to the so-called δ-chord-arc domains introduced
by Kenig in Toro in [27] and [28]. Let us define these rigorously now.

Definition 1.11 A domain & ⊂ Rn is said to satisfy the separation property if for
each K ⊂ Rn compact, there is an RK > 0 so that for each x ∈ ∂& ∩ K and each
r ∈ (0, RK ), there is a choice of V ∈ A(n, n − 1) and choice of normal vector /nV to
V so that x ∈ V , and

T +(r , x) ={y + t /nV ∈ B(x, r) : y ∈ V , t > r/4} ⊂ &,

T −(r , x) ={y + t /nV ∈ B(x, r) : y ∈ V , t < r/4} ⊂ &c.
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If & is unbounded, we assume also that ∂& divides Rn into two distinct, nonempty
connected components.

Definition 1.12 Let δ ∈ (0, δn) for some small dimensional constant δn > 0.A domain
& ⊂ Rn is said to be a δ-Reifenberg flat domain if for each K ⊂ Rn compact, there
is an RK > 0 so that for each x ∈ ∂& ∩ K and each r ∈ (0, RK ), bβ∞,∂&(x, r) ≤ δ.
If & is unbounded, we assume also that

sup
x∈∂&, r>0

bβ∞,∂&(x, r) ≤ δn .

Definition 1.13 Let δ ∈ (0, δn). A set of locally finite perimeter & ⊂ Rn is called a δ-
chord-arc domain if& is a δ-Reifenberg flat domain satisfying the separation property,
∂& is (n − 1)-Ahlfors regular, and in addition the following holds. For each K ⊂ Rn

compact, there is an RK > 0 so that for each x ∈ ∂& ∩ K ,

‖/n‖∗ (B(x, RK )) ≤ δ.

Here /n(y) is the unit outer normal to ∂&, /ny,s =
ffl
∂&∩B(y,s) /n(z) dHn−1(z), and

‖/n‖∗ (B(y, r)) = sup
0<s≤r

( 
∂&∩B(y,r)

∣∣/n(z) − /ny,s
∣∣2 dHn−1(z)

)1/2

.

In the terminology, we have introduced thus far, there is no immediate containment
between δ-UR sets of dimension (n−1) and boundaries of δ-chord-arc domains. This
is because chord-arc domains satisfy topological separation conditions and are sets of
locally finite perimeter, and because δ-UR sets satisfy global flatness conditions, while
δ-chord-arc domains satisfy local ones. However, these differences are minor, and the
two notions are very closely related. In particular, equation (2.18) in [7] says that for
δ-chord-arc domains, one has

∣∣〈/nx,r , y − x〉
∣∣ ≤ Cδ1/2r for y ∈ B(x, r) whenever

‖/n‖∗ (B(x, r)) ≤ δ. This implies that the second condition in (F) holds locally for δ-
chord-arc domains. In addition, one can prove local lower (n−1)-Ahlfors regularity of
∂& (with small constant) from the local Reifenberg flatness condition (see the proof of
Theorem 5.2). Combining these with the fact that the proof of Theorem 1.9 is local, we
see that when& is a δ-chord-arc domain, then on compact sets for small enough scales,
∂& satisfies the δθ0 -UR conditions. This is made precise by the following Theorem,
and in fact, as long as we assume some underlying conditions on a domain &, we
obtain a new characterization of δ-chord-arc domains. For simplicity, we choose just
one such condition coming from (A)-(F) to give the characterization, which we make
as the following local definition.

Definition 1.14 Let µ be d-Ahlfors regular. We say that µ satisfies the local δ-UR
condition of dimension d if for each K ⊂ Rn compact, there is an RK > 0 so that for
each x ∈ sptµ ∩ K and r ∈ (0, RK ) one has µ(B(x, r)) ≤ (1+ δ)rd and

µ(B(x, r))−1
ˆ
B(x,r)

ˆ r

0
αµ(y, t)2

dµ(y)dt
t

≤ δ.
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Theorem 1.15 Fix n ∈ N and CE > 0. Then there are constants δ0, θ0 ∈ (0, 1)
depending only on n and CE so that the following holds.

Let & ⊂ Rn be a set of locally finite perimeter such that & satisfies the separation
property and ∂& is (n − 1)-Ahlfors regular with constant CE . If & is unbounded,
assume in addition that supx∈∂&, r>0 bβ∞,∂&(x, r) ≤ δ0. Then for any δ ∈ (0, δ0)
each of the conditions

(I) & is a δ-chord-arc domain,
(II) For any measure dµ(x) = g(x)Hn−1|∂&(x) with (1 + δ)−1 ≤ g ≤ 1 + δ, µ

satisfies the local δ-UR condition of dimension (n − 1),

implies the other with constant δθ0 in place of δ.

For a discussion of the proof of Theorem 1.15, see Sect. 7.

2 Preliminary Definitions

We introduce the systemof “dyadic cubes” forAhlfors regular sets, which is an integral
part of the definition of a δ-Corona decomposition. They also play an important role
in the square function estimates we prove on the Tolsa α coefficients in Theorem 4.7,
since we opt to prove a dyadic version instead of the continuous one.

2.1 The Christ-David Dyadic Lattice

Recall that as in [12], if E is a d-Ahlfors regular set in Rn with constant CE , then one
can construct a family of subsets of E that plays an analogous role to the family of
dyadic cubes in Rn . In particular, for each j ∈ Z, there is a partition - j of E into
“dyadic cubes" of E that satisfy the following:

if j ≤ k, Q ∈ - j , andQ′ ∈ -k, then eitherQ ∩ Q′ = ∅orQ ⊂ Q′, (2.1)

ifQ ∈ - j , thenC−1
D 2 j ≤ diam Q ≤ CD2 jandC−1

D 2 jd ≤ Hd(Q) ≤ CD2 jd , (2.2)

ifQ ∈ - jandτ > 0thenHd
({

x ∈ Q : dist (x, E \ Q) ≤ τ2 j
})

≤ CDτ 1/CD2 jd .

(2.3)

Remark that in (2.1)–(2.3) above, the constant CD only depends on the dimensions
n, d, and CE . Also, condition (2.3) for τ sufficiently small furnishes the existence of
a “center” of each cube cQ ∈ Q, which satisfies

dist (cQ, E \ Q) ≥ C−1
D diam Q,

so that

B(cQ,C−1
D diam Q) ∩ E ⊂ Q. (2.4)
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By convention, we define for λ > 1,

λQ = {x ∈ E : dist (x, Q) ≤ (λ − 1)diam Q}.

In a similar manner, for any Q, we define BQ = B(cQ, diam Q) so that BQ is a ball
centered on E satisfying

Q ⊂ BQ ∩ E ⊂ 2Q.

If Q ⊂ Q′, and Q ∈ - j , Q′ ∈ - j+1, then Q is said to be a child of Q′, and Q′ is
said to be the parent of Q. Similarly, if R and R′ share a parent, then they are said to
be siblings. The set of all dyadic cubes of E is - = ∪ j- j , and for R ∈ -, we denote
all dyadic cubes contained in R by -(R). Finally, if Q ∈ - belongs to - j , we write
gen Q = j .

2.2 Small-Constant Corona Decompositions

Let us define precisely δ-Corona decompositions for d-Ahlfors regular sets. We opt to
make the definition as strong as possible, sincewe anticipate thiswill be themost useful
property of small-constant UR sets from which one can obtain precise, quantitative,
small-constant square function estimates. Fix a constant Cn,d > 1 large, and to be
determined below in the discussion of Remark 2.2.

Definition 2.1 Suppose that E ⊂ Rn is d-Ahlfors regular, and E has a system of
dyadic cubes - with constant CD ≤ Cn,d . Then we say that E admits a δ-Corona
decomposition in R0 ∈ - if for each R ∈ - such that gen R = gen R0 and R ⊂
δ−1BR0 , there is a partition F(R) of -(R) which satisfies the following:

eachS ∈ F(R)has a maximal cubeQ(S)so that ifQ ∈ Sand some

Q′ ∈ -(R)satisfiesQ ⊂ Q′ ⊂ Q(S), thenQ′ ∈ S.Moreover, ifQ ∈ S,

then either all of its children, or none of its children are inS. (2.5)

for eachS ∈ F(R)there is ad − dimensional Lipschitz graph, = ,(S)with

Lipschitz constant ≤ δso that for everyQ ∈ S,

Hd(δ−1BQ(S) ∩ (E-,)) ≤ δHd(Q(S)).

Moreover, for eachQ ∈ Sandx ∈ δ−1BQ ∩ (E ∪ ,),we havedist (x, E)+
dist (x,,) ≤ δdiam Q.(HereE-, = (E \ ,) ∪ (, \ E)is not to be confused

with the symbol for dyadic lattices- = ∪ j∈Z- j ). (2.6)

the maximal cubesQ(S)satisfy a small-constant Carleson packing condi-
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tion in that for eachR′ ∈ -(R), one has
∑

S∈F(R)
Q(S)⊂R′

Hd(Q(S)) ≤ (1+ δ)Hd(R′). (2.7)

Moreover, we have the following condition on the “top”Lipschitz graphs of theCorona
decomposition:

IfSR, SR0are so thatR ∈ SR ∈ F(R)andR0 ∈ SR0 ∈ F(R0),

then,(SR) = ,(SR0).That is to say, each of the chosen Lipschitz graphs for

the collections containing the top cubesRare identical. (2.8)

Finally we say that E admits δ-Corona decompositions if it admits a δ-Corona
decomposition in each R0 ∈ -.

Remark 2.2 Some remarks about this definition (and how it is different from the usual
Corona decomposition as in [11]) are in order. In general, a Corona decomposition for
a uniformly rectifiable set E includes a partition of dyadic cubes into “good cubes"
and “bad cubes," where the bad cubes do not have a good approximating Lipschitz
graph as in (2.6). In the small-constant setting, it turns out that all cubes are “good,"
and thus the main condition satisfied is that there are not too many families S ∈ F(R)
as quantified by (2.7). Also, since we are interested in bi-lateral approximations of
Ahlfors regular sets by planes, we include in (2.6) that the approximating graph , be
sufficiently close to E as well. The facts that there are measure estimates on E-,

inside δ−1B(Q(S)) and that (2.8) holds are perks we obtain for free when showing
(A) gives (B), which shall be useful to us in estimating the Tolsa α coefficients for
δ-UR sets. However, it should be noted that these measure estimates in condition (2.6)
are the strongest; for δ sufficiently small, the condition (2.6) implies that E is Cδ-UR
(recall Definition 1.7). Since we shall use this fact later, we provide a quick proof in
Lemma 2.3 below.

One other main difference is that in a δ-Corona decomposition, as opposed to
a general one, we require that the Carleson packing constant appearing in (2.7) be
controlled as δ ↓ 0. This plays a crucial role in the arguments that follow, since this
implies that if R′ ∈ -(R) is a maximal cube in some family, R′ = Q(S) for some
S ∈ F(R), then necessarily one has

∑

S∈F(R)
Q(S)!R′

Hd(Q(S)) ≤ δHd(R′). (2.9)

Also it is important to remark that the so-called “coherent” condition on the families
F(R) from (2.5) includes two pieces. The second part, which asserts that if Q ∈ S then
either all of its children are or none of its children are, has as an important consequence
that

ifx ∈ Q(S)then eitherx is in arbitrarily small cubes ofS, orx is contained
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in a minimal cube ofS. (2.10)

Finally this brings us to the appearance (and definition) of the constantCn,d . Notice
that by definition, a δ-Corona decomposition of E is assumed to hold over a dyadic
system-with bounded constantCD ≤ Cn,d whereCn,d is chosen as follows.We shall
soon see (Lemma 3.2) that δ-UR sets of dimension d inRn are d-Ahlfors regular with
uniformly bounded constant. In particular, they admit a system of dyadic cubes- as in
Sect. 2.1 with constant CD depending only n, d, which we define to be Cn,d . Forcing
this condition on the system - is rather minor, but it allows us to rule out pathological
examples of δ-Corona decompositions for δ-UR sets associated to a system of dyadic
cubes with very large constant.

Lemma 2.3 Suppose that E is d-Ahlfors regular and admits a system of dyadic cubes
with constant CD > 1. Then if E admits δ-Corona decompositions for 0 < δ <

(2CD + 1)−1 and δ sufficiently small, then E is (CDδ)-UR.

Proof Fix x ∈ E and r > 0. Choose some integer j ∈ Z so that 2 j ≤ r ≤ 2 j+1. Since
- j is a partition of E , we may choose a dyadic cube R0 ∈ - j so that x ∈ R0.

Now since E admits δ-Corona decompositions, then it admits a δ-Corona decompo-
sition in R0, and thus there is a partition of-(R0) into coherent subfamilies S ∈ F(R0),
S ⊂ -(R0) satisfying conditions (2.5)–(2.8). Since the subfamilies S ∈ F(R0) par-
tition -(R0) and R0 ∈ -(R0), there is some S ∈ F(R0) so that R0 ∈ S. Notice that
the maximal cube Q(S) of S is a subset of R0, but since R0 ∈ S then R0 ≡ Q(S).

Applying condition (2.6) to R0 ≡ Q(S), we see that there is Lipschitz graph ,

with Lipschitz constant ≤ δ so that

Hd(δ−1BR0 ∩ (E-,)) ≤ δHd(R0) ≤ δCD2 jd ≤ δCDrd . (2.11)

By (2.11), the proof will be finished as long as we show that δ−1BR0 ⊃ Br (x).
However, if |y − x | < r , then

∣∣y − cR0

∣∣ ≤ |y − x | +
∣∣x − cR0

∣∣ < r + diam(R0) ≤ 2 j+1 + diam(R0)

≤ (2CD + 1)diam(R0),

where cR0 is the center of R0. This proves the inclusion, since BR0 :=Bdiam(R0)(cR0).
78

2.3 Conventions for Constants

In general, we denote by C a constant which is allowed to change line per line,
depending on the parameters explicitly stated in the statement of a Lemma, Theorem,
or Corollary. We avoid using the symbols !," but very infrequently will use the
notation A 9D B to mean that there is some constant C > 0 depending only on D so
that C−1A ≤ B ≤ CA.
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3 ı-URMeasures Admit ı!0-Corona Decompositions

In this section, we show that (A) gives (B), i.e., we prove Theorem 3.3. Let us begin
within two useful lemmas. The first shall be used repeatedly in future Sections.

To motivate the first result, remark that if µ is d-Ahlfors regular with constant
Cµ > 0 and support E , then in general we may only conclude that µ and Hd |E are
mutually absolutely continuous with density g = dµ/dHd |E satisfying C−1

µ ≤ g ≤
2dCµ, and moreover, E is d-Ahlfors regular with constant 2dC2

µ (see for example,
[32, Theorem 6.9]). This crude estimate is problematic if we want precise control of
the Ahlfors regularity constant of Hd |E when µ is d-Ahlfors regular with constant
Cµ that is close to 1. When more geometric regularity is assumed, though, this can be
strengthened as in the following.

Lemma 3.1 Suppose that µ is a d-Ahlfors regular measure in Rn with constant Cµ >

0, and that E = sptµ is d-rectifiable. Then the density dHd |E/dµ exists and satisfies

C−1
µ ≤ dHd |E/dµ ≤ Cµ,

µ-almost everywhere. In particular, for any subset A ⊂ Rn Borel, we have

C−1
µ ≤ Hd |E (A)

µ(A)
≤ Cµ, (3.1)

and Hd |E is d-Ahlfors regular with constant C2
µ > 0.

Proof It is straight-forward to see from the Ahlfors regularity of µ that E is also
d-Ahlfors regular, and Hd |E and µ are mutually absolutely continuous with density
dHd |E/dµ bounded above and below. Since E is rectifiable, we know that the density

θd(x) = lim
r↓0

Hd |E (B(x, r))/rd

exists and equals 1 forHd almost all x ∈ E (see, for example, Theorem 16.2 in [32]).
It follows then that forHd |E (and thus µ) almost all x ,

dHd |E
dµ

(x) ≤ lim sup
r↓0

Hd |E (B(x, r))
µ(B(x, r))

= lim sup
r↓0

Hd |E (B(x, r))
rd

rd

µ(B(x, r))

≤ Cµ,

by Ahlfors regularity of µ. A similar computation shows dHd |E/dµ(x) ≥ C−1
µ for

µ almost all x , and thus whenever A ⊂ Rn is Borel,

C−1
µ µ(A) =

ˆ
A
C−1
µ dµ ≤

ˆ
A

dHd |E
dµ

dµ ≤ Cµ

ˆ
A
dµ = Cµ µ(A).
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Since Hd |E (A) =
´
A(dH

d |E/dµ) dµ (see for example, Theorem 2.12 in [32]), this
shows (3.1). The last claim of the Lemma follows by taking A = B(x, r) for x ∈ E
in (3.1) and using Ahlfors regularity of µ. 78

The proof of the following lemmas are omitted, since they are proved (when d =
n − 1) in [16, Lemma 5.4]. The arguments in higher codimension are the same.

Lemma 3.2 (see Lemma 5.4, [16]) There is a constant C0 ≥ 1 depending only on n
and d such that if E ⊂ Rn is δ-UR of dimension d, then E is d-Ahlfors regular with
constant at most 1+ C0δ

1/d and C0δ
1/d-Reifenberg flat.

Wemay now state the main Theorem of this section, which is that (A) gives (B). Of
course, in our setting of δ-UR sets, life becomes easier in that we need not go through
the effort of constructing the Lipschitz graphs by hand in a small-constant Corona
decomposition, as the authors do in [11]. Instead, the following result simply says that
with our approximating Lipschitz graphs coming from the definition of a δ-UR set,
we obtain a Corona decomposition with a loss in a constant, and an exponent in δ.

Theorem 3.3 There are C0 ≥ 1, δ0 > 0 and θ0 ∈ (0, 1) depending only on the
underlying dimensions n and d so that if E ⊂ Rn is δ-UR of dimension d in Rn with
δ ∈ (0, δ0), then E admits C0δ

θ0 -Corona decompositions.

Proof As mentioned at the end of Remark 2.2, since E is δ-UR of dimension d, we
may fix once and for all a system of dyadic cubes - for E with constant CD ≤ Cn,d .

Now begin with some dyadic cube R0 ∈ - for E . Denote by CE the Ahlfors
regularity constant of Hd |E , which by Lemma 3.2, is bounded. Fix θ, θ ′ ∈ (0, 1) to
be determined, and set η:=δθ ,M :=δ−θ ′

. For definiteness, we state now that θ = 1/2
and θ ′ < θ/(2d) shall suffice here, but these parameters are different than the θ0 in
the conclusion of the Theorem. We construct our partition F ≡ F(R0) by sequential
coherent generations. That is, we will construct F as a disjoint union F = F0 ∪
F1 ∪ F2 ∪ . . . where each Fi consists of coherent collections S ⊂ -(R0), and F0
contains a single collection S0 with top cube Q(S0) = R0. Moreover, each Fi for
i ∈ N will satisfy the following: for each S ∈ Fi , there is a unique S′ ∈ Fi−1 so that
Q(S) ⊂ Q(S′), and all cubes Q ∈ -(R0) with Q(S) ! Q ⊂ Q(S′) are such that
Q ∈ S′. Also, we shall deal only with the partitionF = F(R0) of-(R0) for now, and
leave to the very end of the proof how to ensure that (2.8) holds for the other R ∈ -

that are nearby BR0 .
As mentioned, we shall take R0 to be the top cube of the only collection S0 in

the zeroth generation family, F0. Since E is δ-UR, we choose a δ-Lipschitz graph
, ≡ ,(S0) so that

Hd |E (MBR0 \ ,)+Hd |,(MBR0 \ E) ≤ δ(Mdiam R0)
d .

= δ1−dθ ′
(diam R0)

d . (3.2)

In what follows, estimate (3.2) (and the fact that ,, E are sufficiently flat) shall be the
only fact we use about, to ensure that this particular, shall suffice in the construction
of S0.
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Now we continue adding children of R0 to the collection S0 until we reach a cube
Q that has a sibling Q′ (possibly Q′ = Q) which is mediocre for S0, meaning that

Hd(Q′ \ ,) > ηHd(Q′). (3.3)

At this stage, Q, and all of its siblings become minimal cubes of the collection S0, and
all of their children become top cubes for the new collections S ∈ F1. Notice that for
such Q, if Q̃ is the parent of Q, then Q̃ is not mediocre for S0, and thus,

Hd(Q \ ,) ≤ Hd(Q̃ \ ,) ≤ ηHd(Q̃) ≤ CηHd(Q), (3.4)

with constant C depending only on CD and the underlying dimensions.
Let us make some observations about the family S0 constructed. First of all, S0 is

coherent (i.e., satisfies condition (2.5)) by construction. Moreover, from (3.4) we see
that all Q ∈ S0 satisfy

Hd(Q \ ,) ≤ CηHd(Q), (3.5)

since those Q ∈ S0 that are not minimal satisfy the above inequality with C = 1. Let
us show now that this measure estimate implies that for the cubes in S0, , and E are
very near each other in that for any Q ∈ S0, we have

sup
x∈MBQ∩(E∪,)

dist (x,,)+ dist (x, E) ≤ CM2η1/ddiam Q

= Cδθ/d−2θ ′
diam Q, (3.6)

for some constant C depending only on the dimensions and CD .
First, suppose that Q ∈ S0, and x ∈ B(cQ,C−1

D diam Q/2) ∩ Q\, (recall that
cQ is the center of Q, for which (2.4) holds). Denoting r = dist (x,,), then as
long as δ0 is sufficiently small, we must have r ≤ C−1

D diam Q/2. This is because
otherwise we have Q \, ⊃ Q∩ B(x,C−1

D diam Q/2), and thusHd(Q\,) ≥ Hd(Q∩
B(x,C−1

D diam Q/2)) ≥ cHd(Q) for some constant 0 < c < 1 depending only on
CD and CE . When δ0 (and thus η) is sufficiently small, this contradicts (3.5) and
whence the fact that Q ∈ S0. Hence, we may assume that r ≤ C−1

D diam Q/2, so
B(x, r) ⊂ B(cQ,C

−1
D diam Q), and thus

Hd(Q \ ,) ≥ Hd(Q ∩ B(x, r)) ≥ C−1
E rd .

Since Q ∈ S0, we have that (3.5) gives r ≤ Cη1/ddiam Q, i.e.,

sup
x∈E∩B(cQ ,C

−1
D diam Q/2)

dist (x,,) ≤ Cη1/ddiam Q. (3.7)
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Next, recall from Lemma 3.2 that E is Cδ1/d Reifenberg flat, and similarly, so is ,.
We claim that for δ0 sufficiently small, this implies

for everyx ∈ (, \ E) ∩ B(cQ,C−1
D diam Q/8), there is a point

y ∈ E ∩ B(x, 2dist (x, E)) ∩ B(cQ,C−1
D diam Q/2)withdist (y,,) ≥

(2/3)dist (x, E). (3.8)

Assume (3.8) for the time being. Along with (3.7), the existence of such a point shows
that

sup
x∈B(cQ ,C−1

D diam Q/8)∩(E-,)

dist (x,,)+ dist (x, E) ≤ Cη1/ddiam Q. (3.9)

Appealing again to the fact that E and , are Cδ1/d Reifenberg flat, one deduces (3.6)
from (3.9) with a possibly larger C . The proof is slightly technical, but it merely
requires choosing good approximating planes for E and , at different scales. For the
sake of completeness, let us sketch a few details.

Recall here that we use the notation dx,r for the normalized local Hausdorff distance
as in Definition 1.6. In addition, θ, θ ′ are such that θ ′ < θ/(2d), and thus we have
that M2η1/d can be made arbitrarily small if δ0 is chosen small enough. Since , is a
δ-Lipschitz graph, we know that there is some plane d-plane P, so that

dcQ ,r (,, P,) ≤ Cδ1/d ,

as long as δ0 is sufficiently small, and as long as r ≥ C−1
D diam Q/8. Since E is

Cδ1/d -Reifenberg flat, we may choose d-planes PE and P ′
E so that

dcQ ,2diam Q(E, PE )+ dcQ ,2Mdiam Q(E, P ′
E ) ≤ Cδ1/d .

The fact that PE and P ′
E are very good approximations to E inside 2BQ , and run very

near the center of BQ , imply that dcQ ,2diam Q(PE , P ′
E ) ≤ CMδ1/d , and thus

dcQ ,Mdiam Q(PE , P ′
E ) ≤ CMδ1/d .

Finally, recalling estimate (3.9), we see that dcQ ,diam Q(P,, PE ) ≤ Cη1/d , which
implies dcQ ,Mdiam Q(P,, PE ) ≤ Cη1/d . Thus if we compare distances from ,, to P, ,
to PE , then P ′

E and finally to E inside B(cQ,Mdiam Q), we obtain (3.6).
This leaves us to justifying (3.8), which can be argued by contradiction. Indeed, if

no such point y ∈ E∩B(x, 2dist (x, E)) exists, then each such y satisfies dist (y,,) <
(2/3)dist (x, E). Then the fact that E and , are very well approximated by d-planes
in B(x, 2dist (x, E)) and similar arguments to those described above would lead to
the contradiction that there is some z ∈ E with |x − z| < dist (x, E). Now we
simply recall that cQ ∈ E , and so since x ∈ B(cQ,C−1

D diam Q/8) we have that
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dist (x, E) ≤ C−1
D diam Q/8, so that necessarily, y ∈ B(cQ,C−1

D diam Q/2). This
completes the proof of (3.8).

Hence, for the first family F0, we have that the first part of (2.6) holds with
CM2η1/d = Cδθ/d−2θ ′

. By construction (recall (3.2)), we also have the desired mea-
sure estimate

Hd(MBQ(S0) ∩ (E-,)) ≤ Cδ1−dθ ′
Hd(Q(S0)). (3.10)

We have one final step for F0, which is to estimate the portion of minimal cubes of
S0, denoted m(S0), contained in Q(S0).

Recall that if Q ∈ m(S0), then necessarily Q has a sibling Q′ ∈ m(S0) which is
mediocre for S0, i.e., (3.3) holds. Then since the number of siblings of any dyadic
cube in - is uniformly bounded (by Ahlfors regularity of E), we have that

∑

Q∈m(S0)

Hd(Q) ≤ C
∑

Q′∈m(S0)
Q′ mediocre

Hd(Q′) ≤ C
η

∑

Q′∈m(S0)
Q′ mediocre

Hd(Q′ \ ,)

≤ C
η
Hd(Q(S0) \ ,) ≤ C

η
Hd |E (MBR0 \ ,)

≤ Cδ1−dθ ′−θHd(R0)

by definition of η. Notice that if θ, θ ′ are sufficiently small, then 1− dθ ′ − θ > 0, and
in particular, taking θ = 1/2 and θ ′ < θ/2d shall suffice for these purposes.

Now assuming that Fi−1 has been constructed for i ∈ N, we make each child Q0
of some Q′ ∈ m(S′) for S′ ∈ Fi−1 a top cube Q0 = Q(S) of a new collection S ∈ Fi ,
and construct S ∈ Fi in the same way as we did S0 ∈ F0. That is, since E is δ-UR,
we choose a Lipschitz a δ-Lipschitz graph , = ,(Q0) for which

Hd |E (MBQ0 \ ,)+Hd |,(MBQ0 \ E) ≤ δ(Mdiam Q0)
d .

We continue to add subcubes of Q ∈ -(Q0) to the collection S until we find a some
cube Q who has a sibling Q′ which is mediocre for S in that (3.3) holds. At this
stage Q and all of its siblings become minimal cubes of S, and each of their children
become top cubes in the next generation Fi+1. The same proof above applies to this
collection S in place of S0: it is coherent in that (2.5) holds, and in addition, we have
the following estimates:

sup
x∈MBQ∩(E∪,)

dist (x, E)+ dist (x,,(Q(S))) ≤ Cδθ/d−2θ ′
diam Q for Q ∈ S,

(3.11)

Hd(MBQ(S) ∩ (E-,(Q(S)))) ≤ Cδ1−dθ ′
Hd(Q(S)), (3.12)

∑

Q∈m(S)

Hd(Q) ≤ Cδ1−dθ ′−θHd(Q(S)). (3.13)
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Recalling that M = δ−θ ′
, we conclude that E admits a Cδθ0 Corona decomposition

with θ0 = min{θ/d − 2θ ′, 1− dθ ′ − θ, θ ′} > 0 provided that we show (3.13) implies
(2.7) with Cδθ0 in place of δ, i.e.,

∑

S∈F
Q(S)⊂R

Hd(Q(S)) ≤ (1+ Cδθ0)Hd(R). (3.14)

Let R ∈ -(R0), and choose an index i∗ ∈ N ∪ {0} and a collection S∗ so that
R ∈ S∗ ∈ Fi∗ . Assume first R is the top cube of S∗, R = Q(S∗). Then by construction,

⋃

S∈Fi∗+1
Q(S)!R

Q(S) =
⋃

Q∈m(S∗)
Q⊂R

Q,

where each of the unions above is a disjoint union. In particular, we see

∑

S∈Fi∗+1
Q(S)!R

Hd(Q(S)) =
∑

Q∈m(S∗)
Q⊂R

Hd(Q)

≤ Cδ1−dθ ′−θHd(R)

≤ Cδθ0Hd(R),

by (3.13). Now, for any index k ∈ N, k ≥ i∗ + 1, we have that

⋃

S∈Fk
Q(S)!R

Q(S) =
⋃

S∈Fk−1
Q(S)!R




⋃

Q∈m(S)

Q





where each of the unions above are disjoint. This gives

∑

S∈Fk
Q(S)!R

Hd(Q(S)) =
∑

S∈Fk−1
Q(S)!R




∑

Q∈m(S)

Hd(Q)





≤ Cδθ0
∑

S∈Fk−1
Q(S)!R

Hd(Q(S))

≤ (Cδθ0)k−i∗Hd(R), (3.15)

where the first inequality in the above follows from (3.13), and the second is by
induction on k. As long as δ0 is small enough (depending only on θ0 and the underlying
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dimensions), Cδ
θ0
0 < 1. Whence from (3.15) we obtain

∑

S∈F
Q(S)!R

Hd(Q(S)) ≤
∑

k≥i∗+1

∑

S∈Fk
Q(S)!R

Hd(Q(S))

≤
∑

k≥i∗+1

(
Cδθ0

)k−i∗ Hd(R)

=
( ∞∑

k=1

(Cδθ0)k

)

Hd(R)

≤ Cδθ0Hd(R),

since again, δ0 is small enough so that
∑

k≥1(Cδθ0)k = 1 − (1 − Cδθ0)−1 ≤ Cδθ0 .
We have thus shown that whenever R ∈ -(R0) is a top cube, R = Q(S∗), then

∑

S∈F
Q(S)!Q(S∗)

Hd(Q(S)) ≤ Cδθ0Hd(Q(S∗)). (3.16)

From here, we deduce our estimate for general R.
Suppose that R ∈ -(R0) is arbitrary. Then we can decompose the collection of top

cubes Q(S) ⊂ R, S ∈ F into 2 disjoint collections, T (R) and R(R), where

T (R):={S ∈ F : Q(S) ⊂ R, and Q(S) ⊂ Q(S′) ⊂ R implies S = S′}
R(R):={S ∈ F : Q(S) ⊂ R, S /∈ T (R)}.

Put simply, T (R) consists of the collections S ∈ F whose top cubes are the “first”
descendants of R that are top cubes, and R(R) are the rest. Note that necessarily the
cubes in T (R) are disjoint, and also to each Q(S) ∈ R(R) there is some S′ ∈ T (R)
for which Q(S) ! Q(S′). We estimate

∑

S∈F
Q(S)⊂R

Hd(Q(S)) =
∑

S∈T (R)

Hd(Q(S))+
∑

S∈R(R)

Hd(Q(S))

≤
∑

S∈T (R)

Hd(Q(S))+
∑

S′∈T (R)




∑

S∈R(R)
Q(S)!Q(S′)

Hd(Q(S))





≤
∑

S∈T (R)

Hd(Q(S))+
∑

S′∈T (R)




∑

S∈F
Q(S)!Q(S′)

Hd(Q(S))





≤
∑

S∈T (R)

Hd(Q(S))+ Cδθ0
∑

S′∈T (R)

Hd(Q(S′))
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= (1+ Cδθ0)
∑

S∈T (R)

Hd(Q(S))

≤ (1+ Cδθ0)Hd(R).

In the above, we used (3.16) in the third inequality, and the fact that the cubes Q(S) for
S ∈ T (R) are disjoint and contained in R in the last. This shows (3.14), and thus our
proof is complete once we can justify how to construct the otherF(R) as in Definition
2.1 so that (2.8) holds.

However, this last step is simple. Notice that if R ∈ - j where gen R = j = gen R0,
and also R ⊂ (M/3)BR0 , then for δ0 sufficiently small, we have that (M/3CD)BR ⊂
MBR0 . Hence (3.2) gives that

Hd |E
((

M
3CD

BR

)
\ ,(S0)

)
+Hd |,(S0)

((
M

3CD
BR

)
\ E

)
≤ Cδ1−dθ ′

(diam R)d ,

where C > 0 depends only on n, d and CD . In particular, we recall that this was the
only condition we used on the Lipschitz graph ,(S0) to be chosen for the top cube
of S0 in order to construct F . In particular, by simply taking C > 0 larger in the
conclusion of the Theorem, we can use this same Lipschitz graph ,(S0) for each such
R, and repeat the construction of F essentially verbatim to construction the partition
F(R) of -(R) for each such R, finishing the proof of the Theorem. 78

4 ı-Corona Decompositions Imply˛"(x, r) are Small

In this section, we show that (B) gives (C), i.e., we prove Theorem 4.7. Although the
Carleson measure estimate we prove is a dyadic version of (C), this discrete estimate
appearing in Theorem 4.7 implies the continuous one. This estimate can be found in
[15, Lemma 5.9] so we omit the proof. The first step in the proof is to obtain small-
constant Carleson measure estimates on the αµ(x, r) when µ is a measure supported
on a small-constant Lipschitz graphs with density close to 1. This estimate is done in
[40] when µ is surface measure on the graph, but for completeness we fill in the gap
when one takes µ slightly more general.

To state the Theorem in the same language as in [40], whenever E = sptµ is
d-Ahlfors regular,- is a system of dyadic cubes for E , and Q ∈ E , we abuse notation
of αµ and set

αµ(Q):=αµ(cQ, 3 diam Q) (4.1)

where of course, αµ(cQ, 3 diam Q) is as in Definition 1.5. There is a veryminor differ-
ence in αµ(Q) and that written in [40], where the normalization is takenwith respect to
the quantity 1(Q) (which is 1(Q) = 2 j when Q ∈ - j ) in place of 3 diam Q, but since
these quantities are comparable (with constant CD) this difference is unimportant in
the estimates that follow. Let us state two main Theorems proved in [40], which we
shall use in our proof of Theorem 4.7. First we recall the definition of “large-constant”
uniformly rectifiable measures.
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Definition 4.1 Suppose that µ is a d-Ahlfors regular measure on Rn . Then µ is said
to be d-uniformly rectifiable (with constant M > 1) if for each x ∈ sptµ and r > 0,
there exists a Lipschitz map f : Bd(0, r) ⊂ Rd → Rn with Lipschitz constant ≤ M ,
so that

µ(B(x, r) ∩ f (Bd(0, r))) ≥ M−1rd .

Theorem 4.2 (Theorem 1.2 in [40]) Let µ be a d-Ahlfors regular measure in Rn

with constant Cµ, and suppose that µ is d-uniformly rectifiable (with large constant,
M > 1). Fix a system - of dyadic cubes for µ with constant CD > 0. Then there is
some constant C0 = C0(n, d,Cµ,M,CD) > 1 so that one has the Carleson condition

sup
R0∈-

µ(R0)
−1

∑

Q∈-(R0)

αµ(Q)2µ(Q) ≤ C0. (4.2)

Theorem 4.3 (Theorem 1.1 and Remark 4.1 that follows in [40]) Suppose that , is a
d-dimensional Lipschitz graph inRn with constant δ < 1, let µ = Hd |, , and suppose
that - is a system of dyadic cubes for E with constant CD > 0. Then the following
Carleson condition holds:

sup
R0∈-

µ(R0)
−1

∑

Q∈-(R0)

αµ(Q)2µ(Q) ≤ C0δ
2,

where C0 = C0(n, d,CD) is independent of δ.

To be totally transparent, Remark 4.1 in [40] is stated for true dyadic cubes in Rn

that meet the Lipschitz graph ,, and the result is stated as a global Carleson packing
condition for compactly supported Lipschitz graphs. However, it is straight-forward
to deduce the Theorem above from how Remark 4.1 is stated. Indeed, one can obtain
a local result from a global one by fixing an initial cube R0 of ,, and finding a
(Cδ)-Lipschitz graph ,′ that agrees with , in 10BR0 and has support in 20BR0 . Then
Theorem 4.3 applied to ,′ gives the result, since the αµ(Q) are local to 3BR0 anyway.

From here, we can extend this small-constant estimate to measures of the form
dµ(x) = g(x) dHd |,(x) where g(x) is some controlled density, using the following
two Lemmas.

Lemma 4.4 Suppose that µ is a d-Ahlfors regular inRn with constant Cµ > 0, and -

is a system of dyadic cubes for sptµwith constant CD > 0. Then for any g ∈ L2
loc(µ),

the coefficients Oµ,g(Q) defined on the cubes Q by

Oµ,g(Q):=(diam Q)−d−1 inf
λ∈R

sup
f ∈*(3BQ)

∣∣∣∣

ˆ
f g − λ f dµ

∣∣∣∣ (4.3)

satisfy the Carleson condition

sup
R0∈-

µ(R0)
−1

∑

Q∈-(R0)

Oµ,g(Q)2µ(Q) ≤ C0

( 
C0R0

∣∣g − (g)C0R0

∣∣2 dµ
)
.
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Here, C0 = C0(n, d,Cµ,CD) > 0 is independent of g.

Proof The idea is to use a dyadic Martingale decomposition of g with respect to
the dyadic cubes for E = sptµ, but for a family of adjacent dyadic cubes for E
rather than the single system from Sect. 2.1 (we shall see the flexibility this gives us
shortly). Lemma 2.2 in [1] (which uses Theorems 2.9 and 5.9 in [24]) imply that there
exists δ ∈ (0, 1) small, and M ∈ N, CD > 1, large depending only on n, d and
Cµ, so that the following holds. For each ω ∈ {1, . . . ,M}, one can find a system of
D(ω) = ∪ j∈ZD j (ω) of “dyadic cubes” for E such that

for all j ∈ Z, E = ∪Q∈D j (ω)Q, (4.4)

ifR, R′ ∈ D j (ω)andR )= R′, thenHd(R ∩ R′) = 0, (4.5)

for each j ≤ 1andQ ∈ D1(ω), one hasQ = ∪R⊂Q,R∈D j (ω)R, (4.6)

eachQ ∈ D j (ω)has a “center,”zQso thatB(zQ, δ j/5) ∩ E ⊂ Q ⊂
B(zQ, 3δ j ).Consequently,Hd(Q) 9Cµ δ jd . (4.7)

These first properties are essentially the same as the system - from Sect. 2.1, but here
the {D(ω) : 1 ≤ ω ≤ M} also satisfy

for anyx ∈ E, r > 0, there is some choice of1 ≤ ω ≤ M, j ∈ ZwithC−1
D r

≤ δ j ≤ CDr , andQ ∈ D j (ω)so thatB(x, r) ⊂ Q. (4.8)

We shall use the family of dyadic systems {D(ω)}Mω=1 in conjunction with the fixed
dyadic system - from Sect. 2.1 to prove the result.

Let Q0 ∈ - be a dyadic cube of E from Sect. 2.1, and fix any cube R ⊂ Q0.
By (4.8), there exists some 1 ≤ ωR ≤ M , jR ∈ Z with δ jR 9CD diam R, and
QR ∈ D jR (ωR) so that 3BR ⊂ QR . Now since gχQR ∈ L2(µ), we may write

(g − (g)QR )χQR =
∑

S∈D(ωR ,QR)

-Sg (4.9)

with convergence in L2(µ), where by definition, D(ωR, QR) are the subcubes of QR
(in D(ωR)),

-Sg =
∑

S′∈child(S)
((g)S′ − (g)S)χS′ ,

and (g)A =
ffl
A g dµ. Moreover, one has that

‖(g − (g)QR )χQR‖2L2(µ)
=

∑

S∈D(ωR ,QR)

‖-Sg‖2L2(µ)
,

since the terms on the right-hand side of (4.9) are pairwise orthogonal in L2(µ).
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NowsinceOµ,g(R) = Oµ,g+a(R) for any constant a, wemay assume that (g)QR =
0 in our estimate of Oµ,g(R). Fix f ∈ *(3BR), and note that since f is 1-Lipschitz
and spt f ⊂ QR ,

∣∣∣∣

ˆ
g f dµ

∣∣∣∣ ≤
∑

S∈D(ωR ,QR)

∣∣∣∣

ˆ
-Sg f dµ

∣∣∣∣

=
∑

S∈D(ωR ,QR)

∣∣∣∣

ˆ
-Sg( f − f (zS)) dµ

∣∣∣∣

≤ Cµ

∑

S∈D(ωR ,QR)

(diam S)1+d/2‖-Sg‖L2(µ).

Since f was arbitrary, taking λ = 0 in (4.3) and recalling that µ(R) 9Cµ (diam R)d

we obtain for some constant C depending only on n, d and Cµ,

Oµ,g(R)2µ(R) ≤ C




∑

S∈D(ωR ,QR)

(diam S)1+d/2

(diam R)
||-Sg||L2(µ)




2

1
µ(R)

.

Using the fact that diam QR 9CD diam R, the Cauchy-Schwarz inequality, and the

estimate
(∑

S∈D(ωR ,QR)

(
diam S
diam R

)
µ(S)

)
≤ Cµ(QR) ≤ Cµ(R) give

∑

R∈-(Q0)

Oµ,g(R)2µ(R) ≤ C
∑

R∈-(Q0)




∑

S∈D(ωR ,QR)

(
diam S
diam R

)
||-Sg||2L2(µ)





×




∑

S∈D(ωR ,QR)

(
diam S
diam R

)
µ(S)



 1
µ(R)

≤ C
∑

R∈-(Q0)




∑

S∈D(ωR ,QR)

(
diam S
diam QR

)
||-Sg||2L2(µ)



 .

(4.10)

Setting I(ω) = {Q ∈ D(ω) : Q ⊂ C2Q0} for some large C2 > 1 depending only
on n, d,Cµ,CD and CD, we can crudely estimate (4.10) by

C
M∑

ω=1

∑

Q∈I(ω)

∑

S∈D(ω,Q)

(
diam S
diam Q

)
||-Sg||2L2(µ)

(4.11)

for some large constant C > 1 depending on the same parameters. This is because
each term in the summand of (4.10) appears in (4.11), and to each term in (4.11)
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there are only finitely many terms coming from (4.10) which are associated to those
of (4.11), by Ahlfors regularity and the fact that diam QR 9CD R.

Finally, switching the order of summation in (4.11) and using the fact that

∑

Q∈I(ω),Q⊃S

(
diam S
diam Q

)
≤ C,

we see that

∑

R∈-(Q0)

Oµ,g(R)2µ(R) ≤ C
M∑

ω=1

∑

Q∈top(I(ω))

∑

S∈D(ω,Q)

||-Sg||2L2(µ)

≤ C
M∑

ω=1

∑

Q∈top(I(ω))
‖(g − (g)Q)χQ‖2L2(µ)

≤ Cµ(Q0)

( 
C2Q0

∣∣g − (g)C2Q0

∣∣2 dµ
)

where top(I(ω)) are the maximal cubes in I(ω) whose boundaries intersect in sets of
zeroHd measure. This completes the proof, since the constants δ,M and CD depend
only on n, d and Cµ. 78

Lemma 4.5 Suppose that µ is a d-Ahlfors regular measure with constant (1+ δ) < 2.
Moreover, assume that E = sptµ is d-rectifiable. Fix -, a system of dyadic cubes for
E with constant CD > 0. Then for the function g = dµ/dHd |E , we have

C−1
0

(
−C0Oµ,g−1(Q)+ αHd |E (Q)

)
≤ αµ(Q) ≤ C0

(
OHd |E ,g(Q)+ αHd |E (Q)

)
,

where C0 = C0(n, d,CD) > 0 is independent of µ and δ.

Proof By virtue of Lemma 3.1, we know that the densities dHd |E/dµ and dµ/dHd |E
exist and satisfy

(1+ δ)−1 ≤ dHd |E
dµ

,
dµ

dHd |E
≤ (1+ δ)

µ-almost everywhere. Set g:=dµ/dHd |E . We readily compute for any dyadic cube
Q ∈ -, any f ∈ *(3BQ), λ ∈ R and ν a d-flat measure,

∣∣∣∣

ˆ
f (dµ − dν)

∣∣∣∣ =
∣∣∣∣

ˆ
f
(
gdHd |E − dν

)∣∣∣∣

≤
∣∣∣∣

ˆ
f (g − λ) dHd |E

∣∣∣∣ +
∣∣∣∣

ˆ
f
(
λdHd |E − dν

)∣∣∣∣ .
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Taking the infimum over λ ∈ R which minimizes the quantity OHd |E ,g (which one
readily sees must be in [(1+ δ)−1, (1+ δ)], by the bounds on g), and then taking the
infimum over flat measures in the definition of αHd |E , we obtain

αµ(Q) ≤ C
(
OHd |E ,g(Q)+ αHd |, (Q)

)
,

with constant C > 0 depending on n, d and CD . Reversing the roles of µ and Hd |E
gives the other inequality. 78

Putting together the previous Lemmas and Theorem 4.3, we obtain our small-
constant Carleson measure estimate we shall use in proving Theorem 4.7.

Corollary 4.6 Suppose that , is a d-dimensional δ-Lipschitz graph in Rn, and µ is a
d-Ahlfors regular measure with support , and with constant (1+ δ). Fix -, a system
of dyadic cubes for, with constant CD. Then one has the Carleson packing condition,

sup
R0∈-

µ(R0)
−1

∑

Q∈-(R0)

αµ(Q)2µ(Q) ≤ C0δ
2.

Here C0 = C0(n, d,CD) > 0 is independent of µ and δ.

Proof Set g:=dµ/dHd |, . Lemma 3.1 implies that g, g−1 ≤ (1 + δ). We combine
the cube-wise inequality from Lemma 4.5 along with the Carleson packing conditions
from Theorem 4.3 and Lemma 4.4 to see that for any R0 ∈ - and osc g = ess sup g−
ess inf g,

µ(R0)
−1

∑

Q∈-(R0)

αµ(Q)2µ(Q)

≤ Cµ(R0)
−1




∑

Q∈-(R0)

(
OHd |,,g(Q)2 + αHd |, (Q)2

)
µ(Q)





≤ C((osc g)2 + δ2)

≤ C
((

(1+ δ) − (1+ δ)−1
)2

+ δ2
)

≤ Cδ2,

completing the proof of the Corollary. 78

Finally, we transfer the α-Carleson packing conditions from Lipschitz graphs to
δ-UR sets with the small-constant Corona decomposition, i.e., we prove (B) implies
(C). The upper Ahlfors regular in this implication essentially comes for free.

Theorem 4.7 There are constants C0 > 1 and δ0, θ0 ∈ (0, 1) depending only on the
dimensions n and d so that the following holds. Whenever 0 < δ < δ0, E ⊂ Rn is
d-Ahlfors regular and admits δ-Corona decompositions, then for any measureµ of the
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form dµ(x) = g(x)dHd |E (x) where g is Borel and satisfies (1+δ)−1 ≤ g ≤ (1+δ),
we have the Carleson condition

sup
R0∈-

µ(R0)
−1

∑

Q∈-(R0)

αµ(Q)2µ(Q) ≤ C0δ
θ0 . (4.12)

Moreover, E is upper d-Ahlfors regular with constant 1+ C0δ
θ0 .

Here - is a fixed system of dyadic cubes for E with bounded constant CD ≤ Cn,d
coming from the definition of δ-Corona decompositions.

Proof Choose a system of dyadic cubes - for E as in the definition of a δ-Corona
decomposition with constant CD ≤ Cn,d . We begin the proof with a reduction. Recall
that by Lemma 2.3, E isCδ-UR as long as δ0 is sufficiently small. By Lemma 3.2 then,
we may assume that E is Ahlfors regular with constant (1+C0δ

1/d) ≤ (1+C0δ
1/d
0 ).

Let µ̃ = Hd |E . Whenever R0 ∈ -, denote by F(R0) the partition of -(R0) given by
the δ-Corona decomposition of E in Definition 2.1.Moreover, denote by SR0 ∈ F(R0)

the subcollection of-(R0) containing R0.We show that the conclusion of the Theorem
follows from the estimate

sup
R0∈-

µ̃(R0)
−1

∑

Q∈SR0

αµ̃(Q)2µ̃(Q) ≤ C0δ
θ0 . (4.13)

Indeed, assume that (4.13) holds, and let R0 ∈ - be given. Choose F(R0) as in the
Definition of a δ-Corona decomposition. Then

µ̃(R0)
−1

∑

Q∈-(R0)

αµ̃(Q)2µ̃(Q) = µ̃(R0)
−1

∑

Q∈SR0

αµ̃(Q)2µ̃(Q)

+ µ̃(R0)
−1

∑

S∈F(R0)\{SR0 }

∑

Q∈S
αµ̃(Q)2µ̃(Q)

(4.2)
≤ C0δ

θ0 + Cµ̃(R0)
−1

∑

S∈F(R0)\{SR0 }
µ̃(Q(S))

(2.9)
≤ C0δ

θ0 + Cδ,

as long as δ0 < 1, where C > 0 is some dimensional constant depending only on n, d
here and in the future. Next, one argues just as in the proof of Corollary 4.6 to replace
µ̃ with µ to obtain

µ(R0)
−1

∑

Q∈-(R0)

αµ(Q)2µ(Q) ≤ C

(

C0δ
θ0 +

(
osc

dµ
dµ̃

)2
)

≤ CC0δ
θ0 + Cδ2.

This shows that it suffices to demonstrate (4.13), and thus from here on we fix R0 ∈ -,
F = F(R0), and wemay as well assume in our estimates thatµ = µ̃ = Hd |E . Fix the
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top family S ≡ SR0 ∈ F to be the subcollection for which R0 ∈ SR0 , and choose an
approximating δ-Lipschitz graph , = ,(S) as in (2.6) that also satisfies (2.8). Notice
also that R0 = Q(S). We break the remainder of the proof into three steps.
Step one: We define a measure on , ∩ 3BQ(S) to compare to µ. Recall that cQ(S) is
the center of Q(S), and that BQ(S) = B(cQ(S), diam Q(S)) ⊃ Q(S). The condition
(2.6) on the proximity of , to E near δ−1BQ(S) implies that there is c,,S ∈ , ∩ BQ(S)
so that

∣∣cQ(S) − c,,S
∣∣ ≤ δ diam Q(S).

Now we produce a system of dyadic cubes for , that come from true dyadic cubes
in Rn as follows. Note that up to rotation, we may assume that , is the graph of a
Lipschitz function over Rd ⊂ Rn . Let Q,(S) be a (true) closed cube in Rn with axis-
parallel sides centered at c,,S such that 10BQ(S) ⊂ Q,(S) ⊂ 20

√
nBQ(S), so that

diam Q,(S) 9n,d diam Q(S). Denote by Q̃,(S) the projection of Q,(S) ontoRd , and
notice that Q̃,(S) is a true cube inRd , since Q,(S) has axis-parallel sides. Split Q̃,(S)
into 2d closed subcubes Q̃,

1,1 . . . , Q̃
,
1,2d of Q̃

,(S) ⊂ Rd with disjoint interiors.Denote

this collection of cubes in Rd by -,
1 (Q̃

,(S)), which we call first generation (true)
dyadic cubes in Rd contained in Q̃,(S). Then one generates the family -,

j (Q̃
,(S))

from -,
j−1(Q̃

,(S)) by splitting each cube in the previous generation into 2d more

(true) closed cubes in Rd . With -,
0 (Q̃

,(S)) = {Q̃,(S)}, denote by

-,(Q̃,(S)) =
⋃

j≥0

-,
j (Q̃

,(S)).

We then lift the dyadic cubes in-,(Q̃,(S)) to closed cubes inRn centered on ,. That
is, if Q̃, ∈ -,

j (Q̃
,(S)) with center cQ̃, , then since , is a δ-Lipschitz graph defined

over Rd , there is a unique cQ, ∈ , so that πRd (cQ, ) = cQ̃, . Let Q, be a closed cube
in Rn with axis-parallel sides, center equal to cQ, , and side-length equal to that of
Q̃, . Denote the collection of all such cubes generated this way by -,

j (Q
,(S)), and

set

-, ≡ -,(Q,(S)) =
⋃

j≥0

-,
j (Q

,(S)).

Notice by construction we have the following facts about the dyadic cubes in
-,(Q,(S)):

for each j ≥ 0, the cubes in-,
j (Q

,(S))have disjoint interiors. Moreover,

, ∩ Q,(S) = ∪Q,∈-,
j (Q

,(S))(, ∩ Int(Q,)) ∪ Fj ,whereFj ⊂ ,is anHd − null

set. (4.14)

ifQ, ∈ -,
j (Q

,(S))where j ∈ N, then there is a uniqueR, ∈ -,
j−1(Q

,(S))

so thatQ, ⊂ R,, (4.15)

for eachQ, ∈ -,, one has that
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(1+ Cδ)−1Hd(πRd (Q,)) ≤ Hd(, ∩ Q,) ≤ (1+ Cδ)Hd(πRd (Q,)). (4.16)

Indeed, conditions (4.14), (4.15), and (4.16) follow from the fact that, is a δ-Lipschitz
graph as long as δ0 is chosen small enough.

Fix parameters M, λ > 1 to be determined. In the end, the choice of these param-
eters shall depend only on the underlying dimensions n and d. Since E is d-Ahlfors,
the set

{
R ∈ -gen R0 : R ∩ 20

√
nBQ(S) )= ∅

}

has boundedly many elements, R1, R2, . . . , Rk with k ≤ C , again for some dimen-
sional constant C depending only on n and d. As per (2.8), we know that for each
1 ≤ j ≤ k, there is a partition Fi = F(Ri ) of -(Ri ) that satisfy the conditions of
the δ-Corona decomposition, (2.5)–(2.7). Moreover, such a partition can be chosen
so that when Si ∈ Fi is the subcollection with Ri ∈ Si , we know that the conditions
(2.5)–(2.7) are satisfied with the same Lipschitz graph , as the one chosen for S.

We perform a stopping time argument on the cubes in -, to find some coherent
collection S, ⊂ -, of (true) cubes in Rn for which , and E are sufficiently close.
Let us say that a cube Q, ∈ -, is ‘far from S’ (written FS) if the cube λQ, does not
meet any Q ∈ S ∪ S1 ∪ · · · ∪ Sk=:S∗ satisfying

M−1diam Q, ≤ diam Q ≤ Mdiam Q,. (4.17)

Now we proceed generation by generation. If M, λ are chosen large enough and if
δ0 is sufficiently small (depending on only on the underlying dimensions), then one
readily checks that the first few generations of cubes in -, are not FS. Therefore, let
the first generation of-, be in the set S, . We continue generation by generation in the
dyadic system -, adding cubes to S, , until we reach a cube Q, which has a sibling
(possibly itself) which is FS. At this stage, Q, and all of its siblings become minimal
cubes of S, , denoted m(S,), and no other subcubes from the parent of Q, are added
to S, . Notice that this gives that the collection S, is coherent, and its minimal cubes
are disjoint and contained in Q,(S). In addition, if Q, ∈ m(S,), then the fact that its
parent, R, is not FS implies that λR, meets some element Q ∈ S∗ with

M−1diam R, ≤ diam Q ≤ Mdiam R,,

As long as δ0 is taken sufficiently small (depending on M and λ), then the fact that
diam R, and diam Q are comparable and the fact that λR, meets Q implies that

δ−1BQ ⊃ δ−1
0 BQ ⊃ R,.

Then condition (2.6) implies that

sup
x∈(E∪,)∩R,

dist (x, E)+ dist (x,,) ≤ δdiam Q ≤ δMdiam R,. (4.18)
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Since Q, ⊂ R, , this implies

sup
x∈(E∪,)∩Q,

dist (x, E)+ dist (x,,) ≤ 2δMdiam Q,. (4.19)

Now, we claim that for any cube Q, satisfying (4.19) (and thus, for all cubes
Q, ∈ S,), we have that

1 − C1δ
θ1 ≤ Hd |E (Q,)

Hd |,(Q,)
≤ 1+ C1δ

1/d (4.20)

for constants C1 > 1 and θ1 ∈ (0, 1/d) depending only the underlying dimensions n,
d, and the constant M as long as δ0 is small. The proof of this fact is a bit tedious,
but the main ideas are that , is the graph of a δ-Lipschitz graph defined over Rd , and
there is another δ-Lipschitz graph ,′ that gives a good (measure) approximation to E
inside Q, in the sense that

Hd(Q, ∩ (E-,′)) ≤ Cδ(diam Q,)d , (4.21)

by virtue of (2.6). Then the fact that Q, is centered on ,, and estimate (4.19)
implies that ,′ also passes near the center of Q, in that dist (cQ, ,,′) ≤ C(δ1/d +
δM)diam Q, ≤ Cδ1/ddiam Q, . Moreover, ,′ can be written as a Cδ1/d -Lipschitz
graph over Rd , so that since Q, is a true cube with sides parallel to the coordinate
axes, we can estimate with the area formula that

(diam Q,)d ≤ Hd |,(Q,), Hd |,′(Q,) ≤ (1+ Cδ1/d)(diam Q,)d .

Along with (4.21), the estimate above on Hd |,′(Q,) then implies

(1 − Cδ)(diam Q,)d ≤ Hd |E (Q,) ≤ (1+ Cδ1/d)(diam Q,)d ,

so that the estimates on Hd |,(Q,) in (4.21) then give (4.20) with any θ1 ∈ (0, 1/d)
and C1 depending on θ1.

Finally, we define our density for our measure on ,. Define the coefficients
bQ, :=Hd |E (Q,)/Hd |,(Q,), set

g(x):=
{
bQ, , when x ∈ , ∩ Q,, and Q, ∈ m(S,)

1 otherwise,

anddefinedγ (x):=g(x)dHd |,(x).Notice that by (4.20),wehave that 1−C1(Mδ)θ1 ≤
g(x) ≤ 1+ C1(Mδ)θ1 on ,, so that since , is a δ-Lipschitz graph, we have that

γ is ad − Ahlfors regular measure with support,and constant1+ C1(Mδ)θ1 .

(4.22)
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for some (larger) C1 > 1, depending only on n and d. In addition, the density g(x) is
chosen in such a way that for each Q, ∈ m(S,),

µ(Q,) = Hd |E (Q,) = γ (Q,), (4.23)

where we recall that we are assuming without loss of generality that µ = Hd |E . With
our definition of our approximating measure in hand, we move to the main estimate.
Step two: We estimate the αµ by the αγ . First, notice that if x ∈ (E-,)∩Q,(S), then
x belongs to some minimal cube of S, (since otherwise, being contained in arbitrarily
small cubes of S, , and (4.19) gives that x ∈ E ∩ ,). From this, one deduces that for
any cube Q, ∈ S, ,

(
(E-,) ∩ Q,

)
⊂

⋃

R,∈m(S,)

R,⊂Q,

R,. (4.24)

Now, let us begin our estimate. Fix any cube Q ∈ S for E . Notice 3BQ ⊂
10BQ(S) ⊂ Q,(S), by choice of Q,(S). Now since F is coherent, any Q, ∈ -,

meeting 3BQ that also satisfies Mdiam Q, ≥ diam Q must be so that Q, ∈ S, .
Indeed let us argue this by contradiction and suppose that this is not true. Then there
is some minimal cube R, ∈ S, containing Q, , and some sibling of R, , (R,)′ ∈ -,

which is FS. That is, λ(R,)′ does not meet any R ∈ S∗ satisfying

M−1diam (R,)′ ≤ diam R ≤ Mdiam (R,)′.

However, notice that as long as λ is chosen large enough (depending on M), then the
fact that (R,)′ and R, are siblings, R, meets 3BQ , and diam Q ≤ Mdiam Q, ≤
Mdiam (R,)′ implies that λ(R,)′ meets Q. Since (R,)′ is FS, then Q ∈ S and
diam Q ≤ Mdiam (R,)′ imply diam (R,)′ > Mdiam Q. However, since F is coher-
ent, and λ(R,)′ meets Q, one may find some parent Q′ ⊃ Q with Q′ ∈ S so that

M−1diam (R,)′ ≤ diam Q′ ≤ Mdiam (R,)′,

which contradicts the fact that (R,)′ is FS. Hence, we have proved that for any cube
Q, ∈ -, ,

Q ∈ S, 3BQ ∩ Q, )= ∅, and Mdiam Q, ≥ diam Q ⇒ Q, ∈ S,. (4.25)

From here, we see that (4.25) and the fact that -, partitions the space Q,(S) that
whenever Q ∈ S,

3BQ meets some Q, ∈ S, satisfying diam Q ≤ diam Q, ≤ 2diam Q. (4.26)

For every Q ∈ S, denote by any such choice of a cube Q, as in (4.26) by T (Q) ∈ S, .
Remark that since diam T (Q) ≥ diam Q for Q ∈ S, we know that 10T (Q) ⊃ 3BQ .
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For each cube Q ∈ S, choose a flat measure νQ minimizing the quantity

α̃γ (T (Q)):=(diam T (Q))−d−1 inf
ν∈Flat(n,d)

DcT (Q),10diam T (Q)(γ , ν),

where Flat(n, d) is the space of flat measures as in Definition 1.5 and Dx,r is as in
Definition 1.4. Then whenever f ∈ *(3BQ),

(diam Q)−d−1
∣∣∣∣

ˆ
f (dµ − dνQ)

∣∣∣∣

≤ (diam Q)−d−1
(∣∣∣∣

ˆ
f (dµ − dγ )

∣∣∣∣ +
∣∣∣∣

ˆ
f (dγ − dνQ)

∣∣∣∣

)

≤ (diam Q)−d−1
∣∣∣∣

ˆ
f (dµ − dγ )

∣∣∣∣ + C α̃γ (T (Q)). (4.27)

To estimate the first term above, we notice that by (4.24), we have

∣∣∣∣

ˆ
f (dµ − dγ )

∣∣∣∣ ≤
∑

Q,∈m(S,)

Q,∩3BQ )=∅

∣∣∣∣

ˆ
Q,

f (dµ − dγ )

∣∣∣∣

≤
∑

Q,∈m(S,)

Q,∩3BQ )=∅

∣∣∣∣

ˆ
Q,

f − f (cQ, )dµ
∣∣∣∣ +

∣∣∣∣

ˆ
Q,

f − f (cQ, )dγ

∣∣∣∣

≤ C
∑

Q,∈m(S,)

Q,∩3BQ )=∅

(diam Q,)µ(Q,),

since µ(Q,) = γ (Q,) for Q, ∈ m(S,) (recall (4.23)), and since f is 1-Lipschitz.
Combining the above with (4.27) then gives

∑

Q∈S
αµ(Q)2µ(Q) ≤ C

∑

Q∈S
α̃γ (T (Q))2µ(Q)

+ C
∑

Q∈S
µ(Q)(diam Q)−2d−2

( ∑

Q,∈m(S,),

Q,∩3BQ )=∅

(diam Q,)µ(Q,)
)2

=:(I)+ (II).

To estimate (I), we remark that the diameter estimate on T (Q), (4.26), gives us that
for some dimensional constant C > 0, and uniformly over all R, ∈ S, ,

#
{
Q ∈ S : T (Q) = R,

}
≤ C . (4.28)
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Hence we readily see,

∑

Q∈S
α̃γ (T (Q))2µ(Q) ≤ C

∑

R,∈-,(Q,(S))

α̃γ (R,)2γ (R,)

≤ C(Mδ)θ1γ (Q,(S)) ≤ C(Mδ)θ1µ(Q(S)).

To be clear, the second to last inequality above follows from the estimate on the d-
Ahlfors regularity constant of γ , (4.22), and the fact that , is a δ-Lipschitz graph.
Along with the fact that the cubes Q, ∩ , for Q, ∈ -, serve as a system of dyadic
cubes for ,, the estimate then follows from Corollary (4.6). This gives our desired
estimate on (I).

We now move onto (II). Define the collection of cubes I(Q) ⊂ m(S,) for Q ∈ S
by

I(Q):={Q, ∈ m(S,) : Q, ∩ 3BQ )= ∅, Q, ⊂ R, ∈ S,

for some R,satisfying(4.26)}.

Notice that the same argument that precedes (4.25) can be used to demonstrate that if
Q, ∈ m(S,) and Q, ∩ 3BQ )= ∅ for Q ∈ S, then necessarily, diam Q, ≤ 2diam Q.
Indeed, otherwise, the fact that Q, isminimal and choosingλ large enough (depending
on M) guarantees the stronger inequality diam Q, > Mdiam Q. But then the fact that
S is coherent can be used to show that none of the siblings of Q, are far from S, so
Q, is not minimal. Thus,

Q, ∈ m(S,) and Q, ∩ 3BQ )= ∅ ⇒ diam Q, ≤ 2diam Q,

from which we can easily see we have equality of sets

I(Q) = {Q, ∈ m(S,) : Q, ∩ 3BQ )= ∅}. (4.29)

We now move on to the main estimate for (II).
We have the following string of inequalities:

(II) =
∑

Q∈S
µ(Q)(diam Q)−2d




∑

Q,∈m(S,)

Q,∩3BQ )=∅

(
diam Q,

diam Q

)
µ(Q,)





2

≤ C
∑

Q∈S
(diam Q)−d




∑

Q,∈I(Q)

(
diam Q,

diam Q

)
µ(Q,)




2

≤ C
∑

Q∈S




∑

Q,∈I(Q)

µ(Q,)

(
diam Q,

diam T (Q)

)2


 (diam Q)−d




∑

Q,∈I(Q)

µ(Q,)




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≤ C
∑

Q∈S




∑

Q,∈I(Q)

µ(Q,)

(
diam Q,

diam T (Q)

)2




≤ C
∑

R,∈S,

∑

Q,∈m(S,) : Q,⊂R,

Q, meets some3BQwhere Q∈S

µ(Q,)

(
diam Q,

diam R,

)2

≤ C
∑

Q,∈m(S,)

µ(Q,)
∑

R,∈S,

R,⊃Q,

(
diam Q,

diam R,

)2

≤ C
∑

Q,∈m(S,)

µ(Q,).

In the above, the first inequality holds simply because we sum the same cubes, by
(4.29), and since µ(Q) 9n,d (diam Q)d . The second holds by Cauchy-Schwarz and
since diam Q 9n,d diam T (Q), and the third because the cubes in I(Q) are disjoint
minimal cubes of S, contained in 10BQ . The fourth follows from (4.26) and (4.28),
so that to each Q there corresponds an R, ∈ S, for which the term appears, and each
such R, corresponds to only finitely many such Q ∈ S. The fifth is just a switching
of the order of summation, and the sixth is because the remaining inner series is a
geometric series.

In view of our estimate on (I), our last step of the proof is to verify that for some
θ > 0 (depending only on n and d),

∑

Q,∈m(S,)

µ(Q,) ≤ Cδθµ(Q(S)). (4.30)

In fact, we shall see that we may take θ = 1.
Step three: we prove (4.30). Let Q, ∈ m(S,). By definition, there is some R, ∈ S, ,
a sibling of Q, that is FS. Recall that R, ⊂ Q,(S) ⊂ 20

√
nBQ(S), and thus (4.20)

implies that R, must meet one of the R0, R1, . . . , Rk , say R j , as long as δ0 is small.
Indeed (4.20) says that such an R, must meet some portion of E for δ0 small, and
since the Ri cover all of E in a neighborhood of R0, then R, must meet one of them.
For convenience write S0 = S = S(R0). Recall that

diam R, ≤ diam Q,(S) ≤ Cdiam Q(S) ≤ C2diam R j ,

for some dimensional constant C2 > 1. By taking M ≥ max{C2,CD}, we see that it
must be the case that diam R j > Mdiam R, , since otherwise R, is not FS. Now we
repeat this argument on the children of R j . Because R, meets R j , we see that there is
some R1

j ⊂ R j a child of R j that meets R, . Since diam R1
j ≥ C−2

D diam R j , we know

that diam R1
j ≥ MC−2

D diam R, ≥ M−1diam R, by the choice of M above. Since
R, is FS, either R1

j /∈ S j , or, R1
j ∈ S j and in fact the stronger inequality diam R1

j >

Mdiam R, holds. We continue this argument finitely many times until we reach a
child R1

j ⊂ R j , R1
j ∈ m(S j ), which meets R, and satisfies diam R1

j > Mdiam R, .
In particular, since Q, is a sibling of R, , and since diam R, < M−1diam R1

j , we
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readily see that Q, ⊂ 3BR1
j
. This shows that

⋃

Q,∈m(S,)

Q, ⊂
k⋃

j=0

⋃

Q∈m(S j )

3BQ . (4.31)

Using (4.31) and the fact that the Q, ∈ m(S,) are disjoint, we then estimate

∑

Q,∈m(S,)

µ(Q,) = µ




⋃

Q,∈m(S,)

Q,



 ≤ µ




k⋃

j=0

⋃

Q∈m(S j )

3BQ





≤
k∑

j=0

∑

Q∈m(S j )

µ(3BQ) ≤ C
k∑

j=0

∑

Q∈m(S j )

µ(Q)

≤ C
k∑

j=0

∑

S∈F(R j ),S )=S j

µ(Q(S))

(2.9)
≤ C

k∑

j=0

δµ(R j ) ≤ C(k + 1)δµ(R0).

Recalling that k ≤ C for some dimensional constant C depending only on n and d
this shows (4.30), and thus the proof of the Theorem is complete. 78

5 Reifenberg Flatness Implies #(E) is Small

In this section show that (E) gives (F), i.e., we prove Theorem 5.2. First let us introduce
in what sense E will have tangent planes, which requires some notation. If µn, µ are
Radon measures on Rn , then we write µn⇀µ (and say, µn converges weakly to µ) to
mean that for each φ ∈ Cc(Rn),

´
φ dµn →

´
φ dµ as n → ∞. Whenever µ is a

Radon measure and f : Rn → Rn is proper continuous map, then the Radon measure
f#µ is defined by f#µ(A) ≡ µ( f −1(A)). Finally, denote for x ∈ Rn and r > 0,
6x,r (y) = (y − x)/r .

Theorem 5.1 (see Theorem 10.2, [31]) Let E ⊂ Rn be d-rectifiable. Then for Hd-
almost all x ∈ E, there is a unique d-plane T (x) ∈ G(n, d) so that

r−d(6x,r
)
#H

d |E⇀Hd |T (x).

We call T (x) the approximate tangent d-plane to E at x.

Finally, we introduce the quantity γ (E) as in [5] which is the one appearing in
Condition (F) in Theorem 1.9. Suppose that E ⊂ Rn is d-Ahlfors regular and d-
rectifiable, so that E has approximate d-planes T (x) for Hd -almost all x ∈ E by
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Theorem 5.1. Define

γ (E):= sup
x∈E,r>0

inf
V∈G(n,d)

( 
B(x,r)

∥∥πT (x) − πV
∥∥ dHd |E (x)

+ sup
y∈B(x,r)∩E

∣∣πV⊥(y − x)
∣∣

r

)

.

Our intent in this section is to estimate this γ (E) when E is Reifenberg flat as in
the following Theorem. In the next section, we will then use arguments from [5] to
construct Lipschitz graph approximations to E when γ (E) is small.

Theorem 5.2 There are constants C0, δ0 > 0 depending only on n and d so that
whenever δ ∈ (0, δ0), E ⊂ Rn is d-Ahlfors upper regular with constant (1 + δ) and
δ-Reifenberg flat, then E is d-rectifiable, and moreover, γ (E) ≤ C0δ

1/2. In addition,
E is lower d-Ahlfors regular with constant (1+ C0δ).

Proof Suppose that the hypotheses of the Theorem hold. As long as δ0 > 0 is chosen
sufficiently small (depending only on n and d), then Theorem 15.2 in [13] implies
that E satisfies the “big pieces of Lipschitz graphs” property, and thus is d-uniformly
rectifiable (see the main Theorem in [11], or Theorem 1.57 in [10]). Here we are using
the fact that if δ0 is small enough, then then the Reifenberg flatness of E guarantees
that E is lower d-Ahlfors regular with some bounded constant (this is made more
precise in the following paragraph). In particular, E is d-rectifiable, and thus T (x)
exists for Hd -almost all x ∈ E . Denote the set of all such x by E ′.

Fix x ∈ E, r > 0, and denote by P ∈ A(n, d) some choice of a d-plane so
that dx,2r (E, P) = bβ∞,E (x, 2r) ≤ δ. Notice that by translation invariance of the
hypotheses and conclusion of the Theorem, we may as well assume that P ∈ G(n, d).
Recall that dx,r is the normalized local Hausdorff distance, so that by definition,

sup
y∈E∩B(x,2r)

dist (y, P)+ sup
y∈P∩B(x,2r)

dist (y, E) ≤ 2δr .

Choose some point p ∈ P so that |x − p| ≤ 2δr , and thus we have that
B(p, (1 − 2δ)r) ⊂ B(x, r). By Reifenberg’s topological disk Theorem, we have
that if δ0 is chosen sufficiently small depending only on n and d, then necessarily E
is a Cα-topological, d-disk [37] (see also Section 3 in [14] or [23] for other proofs).
In particular, since E is very well approximated by P in B(x, 2r), one can argue by
contradiction to show that for y ∈ P ∩ B(p, r), there is some xy ∈ E ∩ B(p, (3/2)r)
so that πP (xy) = y, provided that δ0 is sufficiently small. The argument is essentially
contained in Lemma 8.3 of [14], so we omit the details. This conclusion on projections
also gives that E is lower d-Ahlfors regular as follows.

Notice that in fact, the above implies that to each y ∈ P ∩ B(p, (1 − 4δ)r), there
is some xy ∈ E ∩ B(p, (1 − 2δ)r) for which πP (xy) = y. Indeed, just choose the xy
from above, so that xy ∈ E ∩ B(p, (3/2)r). Then we estimate

∣∣xy − p
∣∣ ≤

∣∣xy − y
∣∣ + |y − p|
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=
∣∣xy − πP (xy)

∣∣ + |y − p|
= dist (xy, P)+ |y − p|
< 2δr + (1 − 4δ)r

= (1 − 2δ)r ,

so necessarily xy ∈ B(p, (1− 2δ)r). In particular, since πP is 1-Lipschitz, we obtain
the lower Ahlfors regularity of E :

Hd(E ∩ B(x, r)) ≥ Hd(π |P (E ∩ B(x, r))

≥ Hd |P (B(p, (1 − 4δ)r))

= (1 − 4δ)drd

≥ (1+ C0δ)
−1rd ,

as long as δ0 is small enough and C0 > 1 is large enough.
We are now ready to begin our estimate on the πT (x). Fix ε > δ to be determined,

and set

F :={x ∈ E ′ ∩ B(p, (1 − 2δ)r) :
∥∥πT (x) − πP

∥∥ > ε}, F̃ :=πP (F).

Define ν:=(πP )#Hd |E to be the push-forward measure ofHd |E through the map πP .
Notice that a naive application of Chebysev gives us the estimate ν(F) ≤ Cε−1rd .
The key step in estimating γ (E) is to show the stronger estimate ν(F) ≤ Cδε−1rd

given that E is δ-Reifenberg flat. We claim that

lim inf
s↓0

ν(B(y, s))
Hd |P (B(y, s))

≥ (1 − ε)−1 (5.1)

for each y ∈ F̃ . Let us show this now.
Let y ∈ F̃ so that there is some xy ∈ E ′ ∩ B(p, (1 − 2δ)r) with πP (xy) = y

and
∥∥πT (xy) − πP

∥∥ > ε. Choose a unit vector ey ∈ Rn for which ey ∈ T (xy)
but

∣∣πP (ey)
∣∣ < 1 − ε. We assume as well that πP (ey) )= 0, but the argument

when πP (ey) = 0 is similar, and in fact, one can show in this case that the
left-hand side of (5.1) is +∞. Choose unit vectors e1, . . . , ed−1 ∈ Rn so that
{πP (ey)/

∣∣πP (ey)
∣∣ , e1, . . . , ed−1} is an orthonormal basis for P ⊂ Rn . If we con-

sider the set

Hs(xy):=
{

xy +
(

β0ey +
d−1∑

i=1

βi ei

)

+ v : v ∈ P⊥, (1 − ε)2β2
0 +

d−1∑

i=1

β2
i < s2

}

,

for s = r , then a direct computation of |y − πP (z)| =
∣∣πP (xy − z)

∣∣ for z ∈ Hs(xy)
using

∣∣πP (ey)
∣∣ < 1−ε gives that πP (Hs(xy)) ⊂ P∩ B(y, s). In particular, we obtain

ν(B(y, s)) = Hd |E (π−1
P (B(y, s) ∩ P))
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≥ Hd |E (Hs(xy)),

so that

ν(B(y, s))
Hd |P (B(y, s))

= ν(B(y, s))
sd

≥ Hd |E (Hs(xy))
sd

= Hd |E (sH + xy)
sd

, (5.2)

where sH + xy ≡ Hs(xy) defines the set H . However, H contains a d-ellipsoid
A ⊂ T (xy) of the form

A:={β0ey +
d−1∑

i=1

βi e′
i : (1 − ε)2β2

0 +
d−1∑

i=1

β2
i < 1},

where {ey, e′
1, . . . , e

′
d−1} is some orthonormal basis for T (xy). Thus, in view of The-

orem 5.1, (5.2), and the fact thatHd |T (xy)(∂A) = 0, we obtain that

lim inf
s↓0

ν(B(y, s))
Hd |P (B(y, s))

≥ lim
s↓0

Hd |E (sH + xy)
sd

= lim
s↓0

s−d(6xy ,s)#H
d |E (H)

= Hd |T (xy)(A)
= (1 − ε)−1, (5.3)

proving (5.1). Here we have used the fact that if µn⇀µ and B ⊂ Rn is Borel and
bounded with µ(∂B) = 0, then µn(B) → µ(B) (see for example, Proposition 4.26
in [31]). We are also using our convention that Hd is normalized so that if B is a
ball of radius r centered on T (xy), then Hd |T (xy)(B) = rd , which gives the value of
Hd |T (xy)(A) above.

Finally, we get an estimate on the size ofHd |E (F). First, Theorem 2.13(2) in [32]
along with estimate (5.3) implies

Hd |E (F) = ν(F̃) ≥
ˆ
F̃
lim sup

r↓0

ν(B(y, r))
Hd |P (B(y, r))

dHd |P (y) ≥ (1 − ε)−1Hd |P (F̃),

(5.4)

(in particular, we do not need ν = Hd |P to get the first inequality above). DenoteG =
E ∩ B(p, (1−2r))\ F . Recalll that πP (E ∩ B(p, (1−2δ)r)) ⊃ P ∩ B(p, (1−4δ)r)
and the fact that Hd |E (B(p, (1 − 2δ)r)\(F ∪ G)) = 0. Hence the inequality (5.4),
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the fact that Hd |E is upper d-Ahlfors regular with constant (1+ δ), and the fact that
πP is 1-Lipschitz gives

(1 − 4δ)drd = Hd |P (B(p, (1 − 4δ)r)))

≤ Hd(πP (G))+Hd |P (F̃)
≤ Hd |E (G)+ (1 − ε)Hd |E (F)
= Hd |E (B(p, (1 − 2δ)r)) − εHd |E (F)
≤ (1+ δ)(1 − 2δ)drd − εHd |E (F).

Rearranging for Hd |E (F) yields that

Hd |E (F) ≤ ε−1
(
(1+ δ) − (1 − 4δ)d)

)
rd ≤ Cδε−1rd ,

where C is some constant depending only on d. Thus since B(x, (1 − 4δ)r) ⊂
B(p, (1 − 2δ)r),

ˆ
B(x,(1−4δ)r)

∥∥πT (x) − πP
∥∥ dHd |E ≤

ˆ
G

∥∥πT (x) − πP
∥∥ dHd |E

+
ˆ
F

∥∥πT (x) − πP
∥∥ dHd |E

≤ εHd |E (B(x, r))+ 2Hd(F)

≤ C(ε + δε−1)rd

≤ Cδ1/2rd

by taking ε = δ1/2.
Now we take on the second term of γ (E); this estimate comes directly by choice

of P . Notice that for any y ∈ B(x, (1 − 4δ)r) ∩ E we have that

∣∣πP⊥(y − x)
∣∣ = |y − πP (y) − x + πP (x)|
≤ |y − πP (y)| + |x − πP (x)|
≤ 2δr ,

by choice of P . Thus, altogether we’ve shown that

ˆ
B(x,(1−4δ)r)

∥∥πT (x) − πP
∥∥ dHd |E

+ sup
y∈E∩B(x,(1−4δ)r)

∣∣πP⊥(y − x)
∣∣

r
≤ C

(
δ1/2 + Cδ

)
rd ,

from which we readily see that γ (E) ≤ Cδ1/2. 78
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6 #(E) Small Implies Good Lipschitz Approximations to E

In this last section, we briefly detail how the work of [5] demonstrates that (F) gives
(A). The argument involving the Hardy-Littlewood Maximal function goes back to
the co-dimension 1 case in [38]. Under different assumptions on a domain & when
∂& is (n − 1)-Ahlfors regular, there is also a proof in [20]. Our goal here is to point
the reader to the fact that for these particular arguments in [5], one does not need E to
be a C1 d-dimensional chord-arc submanifold, as long as we instead assume Ahlfors
regularity of E . Since all of the arguments exist in this work, we only enumerate the
various steps in the proof. Let us state precisely the Theorem that can be obtained.

Theorem 6.1 (Theorem 3.1 in [5]) There are constants δ0,C0 > 0 depending only
on n, d, and CE , so that whenever E is lower d-Ahlfors regular with constant (1+ δ),
upper d-Ahlfors regular with constant CE > 0, and γ (E) ≤ δ < δ0, then E is
(C0δ

1/2)-UR.

Proof Recall that γ (·) is only defined on d-rectifiable subsets, so we assume γ (E) ≤ δ

and E is d-rectifiable. Thus Theorem 5.1 applies so that E has approximate tangent
d-planes almost everywhere in E . We continue as in the proof of Lemma 3.2 of [5].

Fix x0 ∈ E, R > 0, and τ ∈ (10δ, 1/3). Denote by MR for R > 0 the variant of
the Hardy-Littlewood Maximal function, MR f (x) = sup0<r<R

ffl
B(y,r) | f | dHd |E

for x ∈ E and MR f (x) = 0 otherwise.
Set

F :={y ∈ B(x0, R) ∩ E : M4R(
∥∥∥πT − πTx0,4R

∥∥∥)(y) ≤ τ },
B:=(B(x0, R) ∩ E) \ F,

where T (y) is the approximate tangent d-plane to E at y and Tx0,4R ∈ G(n, d) is a
d-plane minimizing the quantity

 
B(x0,4R)

∥∥πT (y) − πV
∥∥ dHd |E (x)+ sup

y∈B(x0,4R)∩E

∣∣πV⊥(y − x0)
∣∣

4R

over all V ∈ G(n, d). Then Step 1 in [5, Lemma 3.2] (which only uses the Ahlfors
regularity of E , and the definition of γ (E)) gives that for δ0 chosen small enough,
there are uniform constants a,C > 0 depending only on n, d, and CE so that

Hd(B) ≤ Ce−aτ/δRd . (6.1)

Steps 2 and 4 of the proof of the sameLemma (which again, only useAhlfors regularity
of E and Step 1) then give that for δ0 sufficiently small, there is a Lipschitz graph ,

with constant ≤ Cτ for which F ⊂ ,. Consequently, setting τ = δ1/2 gives

Hd((B(x0, R) ∩ (E \ ,)) ≤ Ce−aδ−1/2
Rd

≤ CδRd . (6.2)
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The fact that Hd |E is lower d-Ahlfors regular with constant (1+ δ) and the norm on
the Lipschitz constant of , readily give

Hd(B(x0, R) ∩ (, \ E)) = Hd(, ∩ B(x0, R)) − Hd(E ∩ B(x0, R))

≤
(√

1+ Cδ − (1+ δ)−1
)
Rd

≤ Cδ1/2Rd .

Together with (6.2), this shows that E is (C0δ
1/2)-UR. 78

In all, Theorem 6.1 thus concludes the proof of Theorem 1.9.

7 A Comment on Local Results and Chord-Arc DomainsWith Small
Constant

As mentioned in the introduction, Theorem 1.9 has local and “vanishing” versions,
which correlate more closely to the local definition of δ-chord-arc domains as in
[28]. Instead of formulating very precise local definitions here, we simply remark
the following about the proofs of Theorems 3.3, 4.7, 5.2, and 6.1. In each of these
proofs, the conclusion of the Theorem is deduced inside a ball B(x, r) centered on E
using information about E in the ball B(x,C0r) up to scaleC0r for some dimensional
constantC0 = C0(n, d,CE ) > 0, except for Theorem3.3. In the argument of Theorem
3.3, we used information about E inside the larger ball B(x,C0r) up to the scale
C0δ

−θ ′
r where θ ′ ∈ (0, 1/4d). This means that the local version of Theorem 1.9

should be loosely formulated in the following way.

Theorem 7.1 (Local version of Theorem 1.9) Fix n, d ∈ N with 0 < d < n and
CE > 0. Then there are constants τ0, θ0, δ0 ∈ (0, 1) depending only on n, d and CE
so that the following holds.

Suppose that E is a set which satisfies

C−1
E rd ≤ Hd(E ∩ B(x, r)) ≤ CErd

for each x ∈ E ∩ B(0, R) and 0 < r < r0. Assume in addition that any one of the
conditions (A)–(F) hold for x ∈ E∩B(0, R) and 0 < r < r0 with constant δ ∈ (0, δ0).
Then the rest hold for all points x ∈ E ∩ B(0, τ0R0) and scales 0 < r < δτ0r0 with
constant δθ0 .

Here, the phrase “condition (B) holds for x ∈ E ∩ B(0, R) and 0 < r < r0 with
constant δ” really means that for each Q0 ∈ - with dist (Q0, B(0, R)) ≤ r0 and
diam Q0 ≤ r0, E admits δ-Corona decompositions in Q0. For the others, the meaning
is self-explanatory: we just mean the conditions defining the statement are required to
hold only for such points x ∈ E and such scales r > 0 as opposed to uniformly.

In particular, this remark can be used to prove Theorem 1.15 in the following way.
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Proof of Theorem 1.15 Let & ⊂ Rn be such a domain as in the statement of the Theo-
rem, and for convenience write σ :=Hn−1|∂&. Fix θ0, τ0, and δ0 coming from Theorem
7.1 depending on n and CE , and let δ < δ0.

Suppose first that & is a δ-chord-arc domain. Fix a ball B(0, R) with R > 1 large,
and assume without loss of generality that 0 ∈ ∂&. Then we may find some ρ > 0
small so that for x ∈ ∂& ∩ B(0, R) and r ∈ (0, ρ),

bβ∞,∂&(x, r), ‖/n‖∗ (B(x, ρ)) ≤ δ.

This first local Reifenberg condition on ∂& gives, by the proof of Theorem 5.2 that

σ (B(x, r)) ≥ (1+ Cδ)−1rn−1,

whenever x ∈ B(0, τ0R) and r ≤ τ0ρ for some constant C > 0 depending only
on n. Moreover, [7, equation (2.18)] implies the estimate

∣∣〈/nx,r , y − x〉
∣∣ ≤ Crδ1/2

whenever x ∈ ∂& ∩ B(0, R), r ∈ (0, ρ) and y ∈ ∂& ∩ B(x, r). Here C is a constant
depending only on n and CE . Combined with the lower Ahlfors regularity condition
above, this says exactly that ∂& satisfies condition (F) for points x ∈ ∂&∩ B(0, τ0R)
and scales r ∈ (0, τ0ρ) with constant Cδ1/2. Theorem 7.1 then implies that (C) holds
for points x ∈ ∂& ∩ B(0, τ 20 R) and scales r ∈ (0, δτ 20 ρ) with constant Cδθ0/2. Since
R > 0 is arbitrary, this shows that (I) implies (II) with worse constant, δθ ′

0 for some
θ ′
0 small.
Conversely, assume that & satisfies (II). Again fix a ball B(0, R)with R > 1 large,

and assume without loss of generality that 0 ∈ ∂&. By assumption, there is some
ρ > 0, so that the measure σ satisfies the small-constant Carleson measure condition

σ (B(x, r))−1
ˆ
B(x,r)

ˆ r

0
ασ (y, s)2

dσ (y)ds
s

≤ δ,

for all x ∈ ∂& ∩ B(0, R) and r ∈ (0, ρ). Also, σ (B(x, r)) ≤ (1+ δ)rn−1 for such x
and r . In other words, ∂& satisfies condition (C) for x ∈ B(0, R) and r ∈ (0, ρ) with
constant δ, so Theorem 7.1 implies that for x ∈ ∂& ∩ B(0, τ0R) and r ∈ (0, δτ0ρ),
∂& satisfies conditions (E) and (F) with constant δθ0 . In other words, for each x ∈
∂& ∩ B(0, τ0ρ) and r ∈ (0, δτ0ρ), we have

bβ∞,∂&(x, r) ≤ δθ0 , and ‖/n‖∗ B(x, δτ0ρ) ≤ δθ0 .

Since R > 0 is arbitrary, then joint with the underlying assumptions on & made in the
statement of the Theorem, this implies that & is a δθ0 -chord-arc domain. 78
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