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Abstract

A preemptive multi-hop contact tracing scheme that tracks not only the direct contacts of
those who tested positive for COVID-19, but also secondary or tertiary contacts has been
proposed and deployed in practice with some success. We propose a mathematical meth-
odology for evaluating this preemptive contact tracing strategy that combines the contact
tracing dynamics and the virus transmission mechanism in a single framework using micro-
scopic Markov Chain approach (MMCA). We perform Monte Carlo (MC) simulations to vali-
date our model and show that the output of our model provides a reasonable match with the
result of MC simulations. Utilizing the formulation under a human contact network generated
from real-world data, we show that the cost-benefit tradeoff can be significantly enhanced
through an implementation of the multi-hop contact tracing as compared to traditional con-
tact tracing. We further shed light on the mechanisms behind the effectiveness of the multi-
hop testing strategy using the framework. We show that our mathematical framework allows
significantly faster computation of key attributes for multi-hop contact tracing as compared
to MC simulations. This in turn enables the investigation of these attributes for large contact
networks, and constitutes a significant strength of our approach as the contact networks
that arise in practice are typically large.

1 Introduction

Traditional contact tracing is known to be one of the effective ways to control epidemics
through quickly identifying and isolating individuals who quietly infect others without display-
ing symptoms [1, 2]. Thus, public health authorities such as the US Center for Disease Control
and Prevention (CDC) have recommended to trace direct contacts of those who tested posi-
tive. To break the chain of transmission in a more efficient way, a multi-hop contact tracing
scheme has been proposed and deployed in practice with some success. The multi-hop contact
tracing scheme traces not only the direct contacts of those who tested positive, but also second-
ary contacts (i.e., contacts of contacts) or tertiary contacts (i.e., contacts of secondary contacts)
and even higher order contacts. The first work in this field proposed to test secondary contacts
and evaluated it using simulations [3]. Recently we have proposed a generalized multi-hop
contact testing which tests k-hop contacts and decides the number k considering the benefit
(reduction in outbreak size) and cost (the number of individuals isolated) as a function of k
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[4]. Our extensive simulations on various contact networks reveal that the tradeoff between
cost and benefit can be significantly enhanced through the multi-hop tracing scheme as com-
pared to the traditional contact tracing [4]. In practice, Vietnam has implemented the multi-
hop contact tracing scheme, and during the first 100 days of the epidemic, many people who
were contact-traced and quarantined turned out to be actually the secondary contacts of those
who had tested positive [5].

Given that the state of the art research and deployment in practice promises that multi-hop
contact tracing can effectively control the spread of infectious diseases, it is imperative to
devise computationally efficient strategies for thorough evaluation. So far the evaluations have
only been through simulation. The limitation of simulation approach in realistic scenarios is
that it is computationally expensive as it requires a large number of iterative runs for accurately
estimating statistics based on the results at any finite time, e.g., how does the type of contact
tracing strategy affect the probability of identifying a superspreader in close contact with a
large number of people? In this paper we propose an analytical methodology for evaluating
multi-hop contact tracing strategy. Towards this end we incorporate the dynamics of virus
transmission through a compartmental model and the dynamics of multi-hop contact tracing
through a microscopic Markov Chain approach (MMCA) [6]. This combination has been suc-
cessfully deployed to model a traditional (i.e., 1-hop) contact tracing strategy in a recent study
[7]. The formulation introduced in this recent study shows that reducing the number of infec-
tions through traditional contact tracing comes at the cost of an increase in the number of
individuals isolated [7].

The current paper is the first work to provide a mathematical model for investigating
multi-hop contact tracing strategy. We combine the multi-hop contact tracing dynamics
and the virus transmission mechanism in a single framework using microscopic Markov
chain approach (MMCA) [6]. The framework can compute various attributes such as the
number of infections in any desired time period, the number of individuals quarantined,
the number of individuals tested, etc. For simplicity of exposition, we present the framework
for 2-hop contact tracing in the main body of the paper, and generalize to accommodate k-
hop contact tracing in the S1 Text. We first perform Monte Carlo (MC) simulations to vali-
date our model and show that the output of our model provides a good match with the result
of MC simulations. We then utilize our formulation to show the effectiveness of multi-hop
contact tracing scheme in controlling an epidemic for a human contact network generated
from real-world data. Utilizing our formulation we show that multi-hop contact tracing can
significantly reduce the number of infections, as compared to 1-hop contact tracing, and
even while doing so, multi-hop contact tracing decreases the number of people quarantined.
Thus multi-hop contact tracing incurs benefits (i.e., reduce the number of infections) while
reducing cost (the number of people quarantined), which is apparently counter-intuitive
but clearly enhances the cost-benefit tradeoff. We analyze the root cause for enhancing this
tradeoff by investigating the connectivity pattern of individuals in the contact networks and
the probability of identifying a superspreader with a large number of contacts. Our numeri-
cal computations reveal that under multi-hop contact tracing infected nodes have almost
zero probability of evading identification and consequently the number of infections can be
significantly reduced when multi-hop contact tracing is performed. The number of individ-
uals quarantined reduces because the overall number of infections is significantly reduced.
We finally compare the computational time for running the MC simulations with that for
obtaining the output of the MMCA formulation. The comparison shows that MMCA for-
mulation allows for significantly faster computation than MC simulations and the computa-
tion advantage of the former increases with increase in size of the contact networks. This
allows MMCA formulation to efficiently scale to contact networks which arise in practice—
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those that arise in practice are invariably large and therefore present significant computa-
tion challenges for the MC simulation. Throughout the paper we consider the specific con-
text of COVID-19, though our formulation can be adapted to any other contagious disease
that spreads through contact by choosing the appropriate compartmental model for the
disease.

2 Model formulation

To combine the contact tracing dynamics and the virus transmission mechanism in a single
framework, we construct an epidemic model with the following 7 compartments: Susceptible
(S), Latent (L), Presymptomatic (I,), Symptomatic (I;), Asymptomatic (I,,), Detected (D), and
Removed (R). Fig 1 illustrates the different stages of the disease and notations representing
probabilities of transition between them at any given time.

When a susceptible (S) individual comes into contact with a symptomatic (I;) individual,
he is infected with the probability of infection f3, . Similarly, a presymptomatic (I,) and an
asymptomatic (I,) individual infects a susceptible upon contact with transmission probabili-
ties, ﬁIP and f8, , respectively. Once an individual is infected he becomes Latent (L) in which

the individuals never develop symptoms, do not infect others for a mean latency duration of
1/A, and subsequently become either asymptomatic (I,) with a probability p, or presymp-
tomatic (I,) with a probability (1 - p,,). An asymptomatic individual remains contagious
without displaying symptoms for a mean duration of 1/y, if he isn’t diagnosed and removed
earlier; after this duration he is no longer contagious, we consider that he is removed (R).
Likewise, without being detected by a health authority, a presymptomatic individual remains
contagious without displaying symptoms yet for a mean duration of 1/a; after this duration
he develops symptoms and is called symptomatic. A symptomatic individual continues to
infect his contacts for a mean duration of 1/u before he moves to removed (R) state if he is
not detected before.

When an individual tests positive, he is said to be detected and enters the detected (D)
state and remains there subsequently. A detected individual is quarantined until he is no
longer contagious, i.e., until he either recovers from the disease or is dead. Thus detected
individuals can not infect others and are effectively removed from the system. Note that
we do not consider re-infection in this paper. We consider that every test is accurate, i.e.,
there are no false positives and no false negatives. Thus, whenever tested 1) presymptom-
atic, asymptomatic and symptomatic individuals test positive and are detected 2)

presymptomatic symptomatic

A(1=pa)
susceptible /1, 31, latpnt
HI_IST’ remOVEd
i,
Hl“ —D
APa H
asymptomatic

Fig 1. A pictorial illustration of state transitions involved in the spread and evolution of COVID-19.

https://doi.org/10.1371/journal.pone.0288394.9001
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susceptible and latent individuals test negative and are not detected (susceptible individu-
als test negative because they are not infected and since there is no false negative, latent
individuals are already infected but the virus has not grown in them to the point that it
can be detected through tests). Presymptomatic and asymptomatic individuals can be
tested only as a result of contact tracing as they do not display symptoms. Symptomatic
individuals can be tested either 1) after being traced from a contact or 2) because they
develop symptoms. We consider that a symptomatic individual is tested because he devel-
ops symptoms with probability w, w can be less than 1 as not everyone reports his
symptoms.

Contact tracing will be done from any individual detected by a health authority. However,
it has been documented that only a fraction of contacts of patients who test positive can be
tested, as many contacts either do not consent or can not be obtained or traced by public
health authorities [8]. We consider cases in which only f proportion of interactions per day
can be identified by a health authority, i.e., each contact (i.e., each edge) information is
acquired for contact tracing with probability f each day by a health authority. We refer to fas
activation probability. Contact-tracing apps installed in wearable or hand-held devices can
increase the amount of information on interactions among people, but still do not guarantee
full acquisition of contact information as individuals may not install the apps and may not
carry their personal devices all the time. Hence, activation probability f may be low in real life.
Finally, a detected (D) individual transits to Removed (R) state with probability 1, meaning
that the detected individual transitions to Removed state the next day. Refer to Table 1 for the
disease parameters.

2.1 Dynamics of epidemic spreading and contact tracing

The probabilities that a node i is in each compartment at time ¢ are denoted as p}(t), p*(t),

ol (1), pE(t), po (1), pP(t), and p(t) (Susceptible, Latent, Presymptomatic, Symptomatic,
Asymptomatic, Detected, and Removed, respectively). The dynamics of spreading of epidem-
ics and different types of contact tracing intervention can be captured by the discrete-time evo-
lution of theses probabilities in the form of microscopic Markov chain approach (MMCA) [6].
The dynamics depend on both time and space, we capture this dependence through explicitly
expressing these probabilities as a function of time ¢ and including node identity i as a parame-
ter. We devise a framework to compute these probabilities. The evolution of these probabilities

Table 1. Disease parameters.

At mean latency period

u! mean duration in asymptomatic/symptomatic stage

a’l mean duration in presymptomatic stage

Pa proportion of infections that are asymptomatic

w probability that a symptomatic is tested because he shows symptoms
f activation probability;

probability that each contact information (i.e., edge) is acquired for contact tracing by a health authority
ITy " (t) | probability that a susceptible node i is infected at time ¢
IT"(¢) | probability that a node i in state X is tested at time ¢

I17P(t) | probability that a node i in state X is detected via any route at time ¢

https://doi.org/10.1371/journal.pone.0288394.t001
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is given by
pit+1) = [1—TIH()]ps(t)
prE+1) = (1—=Npk(t) + I (1)ps(e)
prt+ 1) = =TI ()1 = a)p? (t) + M(1 = p,)pH(1)
prt+1) = [L=TI(@))(1 = p)pf (1) + hp,pt ()
prt+1) = [L—TIP(O)(1— wpf(t) + [1 =TI "(8)]op! (¢)
pP(t+1) = T P(0pr () + T (0)pl (1) + TIF " (H)p! (¢)
PRE+1) = pR() + pP(8) + pll = T ()] pf () + w1 — T ()] pf (1)

Note that pS(£) + p“(£) 4 pi' (£) + pE(t) + pl“(t) + pP(t) + p*(t) = 1 at each time ¢. In the
equations above, I1;*(t) is the probability that a susceptible node i is infected (and then tran-
sits to Latent state) at time ¢, which can be described as

N

HiSHL(t) = 1- H[l - Aij{ﬁlpp;p(t) + ﬁlup;“(t) + ﬁlsp;‘(t)}], (1)

j=1

where A = (Aj) is the adjacency matrix of the original graphs G(V, E), in which |V| = N, and
Aj; = 1if there exists an edge between node i and node j, and A;; = 0 otherwise. Nodes i and j
are said to be direct neighbors of each other if A;; = 1. Note that a node can be infected only
through contact with his direct neighbors. The terms in the bracket [. . .] represent the proba-
bility that the node i is not infected via contact with j. Thus, IT; " (¢) represents the probability
that the node i is infected by at least one node.

Furthermore, [T/ (¢) is the probability that a node i in the state X is detected with test-
ing at time t. We start with a sanity check. The above probability when there is no contact
tracing and 1-hop contact tracing have been calculated in [7]; our equations in the absence
of any contact tracing provide below the same expression as has been obtained by [7] the
probability:

(1) = {0, Xe{l,1} @

w, X=1,

In the absence of contact tracing, only symptomatic individuals can be detected, and that
too with probability w. Thus, [T (¢) is w for symptomatic individuals while it is 0 for indi-
viduals who do not display symptoms.

We now proceed to utilize our framework to obtain the above probability when there is tra-
ditional 1-hop contact tracing. It is:

() = 1-]T5 0 - A;fpj ()], Xe{l,L} 5
1-(1-o)[[50-AfpP®), X=1LI.

The terms in the bracket [. . .] represent the probability that the node i is not detected due

to tracing from his direct neighbor j. Thus, 1 — HJI\;

symptomatic or asymptomatic node i is traced through 1-hop contact tracing. Similarly,

[. . .] represent the probability that the pre-

1-(1-w) H]N:1 [. . .] represent the probability that the symptomatic node i is detected either
through 1-hop contact tracing or because it shows symptoms.
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We next compute the probabilities that a node i is detected under 2-hop contact tracing.
For simplicity, we consider only 2-hop in the main body of this paper, but we provide the gen-
eralization to arbitrary k hops in S1 Text. The 1-hop neighborhood of node i is defined as the
set of direct neighbors of a source node i. Denote G\ (V\", E\") as the sub-graph consisting of
aset V" of nodes (the 1-hop neighborhood of node i as well as node i) and a set E\"’ of edges
(all the edges between them). The 2-hop neighborhood of node i is defined as the set of nodes
that are reachable from the source node i in 2 hops or fewer. Denote G” (V\”, E') as the sub-
graph consisting of a set V' of nodes (the 2-hop neighborhood of node i as well as node i)
and a set E” of edges (all the edges between them); see an example of G\ (V{?, E”) in Fig 2a,
a sub-graph consisting of 2-hop neighborhood from a node i = 1 and edges between them. The
challenge is, if G’ is not a tree-like graph, it is very hard to compute the true probability that a
node i is detected under 2-hop contact tracing due to the complex correlations among nodes.
Thus, in order to compute the approximate probability, we convert the undirected cyclic
graph, G” (V") E®), into an undirected acyclic graph, G\” (V" E®), through the following
approach.

Let Afl) denote the set of direct neighbors of the source node i (i.e., Af” = VI\ V" where
V,-(O) =1). Let AEZ) denote the set of nodes at exactly 2-hop from a source node i (i.e.,

A = VP\ V). We first traverse from the source node i to its direct neighbors, A{". For
2-hop contact tracing, we then traverse from each node of the set Afl) to reachable nodes in the
set of A/ U AP During this process, we can visit the previously visited nodes again. In the
example of Fig 2a, we first traverse from the source node 1 to a set of direct neighbors

A = {2,3,4}. We then traverse from node 2 € A" to a set of reachable nodes {4, 5, 6, 7}

€ (AYUAP). Since node 4 is a node that was already visited, we make a copy of node 4 (i.e.,
shadow node, colored in blue) and append it as a child of 2. We traverse from nodes 2 and 3
through the same process. The Fig 2b shows the acyclic graph G\ (V\”, E”’) converted from
the original sub-graph G (V?, E”). Note that V" = V" and V" = V", Let A\” = (ij,l)
denote the adjacency matrix of G\”.

Recall that IT) " (t) is the probability that a node i in the state X is detected at time ¢. The
theoretical probability, [T} " (¢), for 2-hop contact tracing can be calculated using the acyclic
graph assumption:

1 =Tzogoll - ALfeP(6) — AL = pP()H1 - [irongo (1 = AQfor )Y, X e{I, 1}
4

1= =) [[gogoll - ALfpP(e) — A1 = pP()H1 - [Liror g (1 = ASfoR(e)}, X =1,

The terms in the bracket [. . .] represent the probability that the node i is not detected by

any node in the particular branch including node j (e.g., in the graph G\” shown in Fig 2b,
there are three branches in the network from the node i = 1, each containing nodes 2, 3 and
4, respectively). Thus 1 — Hjevfz) [. . .] represent the probability that the node i is detected by
any of the nodes within radius 2 through 2-hop contact tracing. The second term in the
bracket represents the probability that node i is detected by node j (1-hop neighbor). The
third term represents the probability that node i is not detected by node j (1-hop neighbor)
but is detected by any of the node’s 2-hop neighbors in the particular branch including node
j(e.g., ifi=1and j = 2, the third term represents the probability that node i = 1 is not
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Fig2. (a) An example sub-graph G'* consisting of 2-hop neighborhood of the source node i = 1 and edges between

them. (b) A new acyclic graph G* converted from the example sub-graph G\’ shown in (a). Shadow nodes are colored
in blue. (c) Probability of detection for each node i in University Student Network under 2-hop contact tracing:
experimental probability (black dots), theoretical probability under the acyclic graph assumption (blue circles), and the
difference between the probabilities. Nodes are numbered in ascending order according to their degree. The
theoretical probability, ITY " (¢), given in Eq (4) closely approximates the experimental probability; the average of the
differences is 0.00098.

https://doi.org/10.1371/journal.pone.0288394.9002

detected by node j = 2 but is detected by any of the nodes 4, 5, 6, and 7 in the graph G\’
shown in Fig 2b).

To verify the accuracy of the approximate formulation, for each node i, we compare the
output of the Eq (4) (under the assumption of acyclic graph, G?) to the empirical detection
probability obtained from simulation (under the original graph, G”, without the assumption
of acyclic graph). We compute the probability of detection for each node i in a data-driven net-
work (a total of 672 nodes and a set of 32, 689 edges) under 2-hop contact tracing scheme with
f=0.1 (refer to Section 3 for details on the data-driven network). We assume that a random
1% of the population is in Detected state. The experimental probability without the acyclic
assumption is calculated by dividing the number of outcomes with detection by the total num-
ber of 100, 000 trials. Fig 2c shows that the output of Eq (4) closely approximates the experi-
mental probability despite the assumption.

Next, we compute the probability that a node i is tested. The probability can be derived
from an adaptation of the probability that a node i is detected. Individuals in symptomatic (I;)
state can be tested and detected either after showing symptoms or via contact tracing; thus, the
probability that an individual in symptomatic (I,) state is tested at time # is equivalent to the
probability that the person is detected at time t. Moreover, individuals in asymptomatic (1,)
and presymptomatic (I,) states can be tested and detected only via contact tracing, and indi-
viduals in Susceptible (S) and Latent (L) state are tested only if they are contact traced by their
neighbors, but they do not transit to the detected state; thus, the probability that an individual
in those states is tested at time ¢ is equivalent to the probability that the person is detected via
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contact tracing at time . Hence, the probability that a node i in state X is tested at time ¢ is

TP (), Xe{lL}

’ - (5)

(=9 '
7 () =117 (1), Xe{l,1,S L}.

2.2 Evaluation metrics

Using the expressions for the probabilities of states and state transitions obtained in Section
2.1 as a function of time and neighborhood for each node, we define metrics that will be used
to quantify the cost-benefit tradeoff of different contact tracing strategies. We first present
expressions for the 1) expected number of nodes detected, 2) expected number of nodes
detected as a result of contact tracing and expected number of nodes detected as a result of
tests initiated because they show symptoms 3) expected number of tests, for the contact tracing
strategies we consider. We subsequently obtain expressions for these attributes over time in
the time horizon [1, . . ., 7] that we consider (Section 2.2.1). We use the above expressions to
compare the outbreak sizes, cumulative number of nodes quarantined, tested and detected
under the differing contact tracing strategies we consider. When we compare these attributes
across contact tracing strategies we distinguish the attributes associated with different contact
tracing strategies using the number of hops k of the contact tracing strategies in subscript (Sec-
tion 2.2.2). Refer to Table 2 for the evaluation metrics.

2.2.1 Performance metrics for contact tracing strategies. The expected number of indi-
viduals infected during the course of an epidemic by time 7 is

N

= -5} (6)

i=1

The expected number of individuals detected at time ¢ after testing as a result of 1) showing
symptoms and 2) contact tracing respectively are:

DS (t) = wzp?(t), (7)

Table 2. Evaluation metrics.

T Time horizon of evaluation is day 1 to day 7
Iinop | total number of individuals infected under k-hop contact tracing by time 7

Rl nop | Ik-hop/To-nops ratio of number of individuals infected under k-hop by time 7 to number of individuals
infected under 0-hop by time 7

D; ,,, | number of individuals detected by time 7 because they tested as a result of experiencing symptoms
DT, | number of individuals detected via k-hop contact tracing by time

Dihop | Di_pop + Dy total number of individuals detected under k-hop contact tracing by time 7 (either because
they tested 1) as a result of showing symptoms or 2) through k-hop contact tracing)

RDy. Dyc_nop! Do-hops tatio of number of individuals detected under k-hop by time 7 to total cases detected under
hop 0-hop by time 7

Tynop | number of tests under k-hop contact tracing by time 7
i(k) probability that a node of degree k has been infected by time 7
d(k) probability that a node of degree k has been detected by time 7

https://doi.org/10.1371/journal.pone.0288394.t002

PLOS ONE | https://doi.org/10.1371/journal.pone.0288394  July 13, 2023 8/28


https://doi.org/10.1371/journal.pone.0288394.t002
https://doi.org/10.1371/journal.pone.0288394

PLOS ONE

Interplay between epidemic spreading and multi-hop contact tracing

N
D) =) [Hfﬁ%)pfﬂ(t) + (0! (1) + (0 (0) — w)pl (1) | (8)
i=1
Thus, by time 7, the expected number of individuals detected is

D=D+DT = i[Ds(t) + D (1)]. 9)

t=1

The expected number of individuals tested at time ¢ is
T(t) = S0 [T (0)p3 (1) + T (6)ph(1) + T (0)pl () + T ()p) (6) + T (1) p (1) | (10)
By time 7, the expected number of total tests is

T= iT(t). (11)

Thus, the expected number of undetected infections by time T, is the difference

U:=I — D.

2.2.2 Notations used to compare performances of k-hop contact tracing strategies
across k. 'We now describe the notations used to compare the attributes in Section 2.2.1
across different values of k for k-hop contact tracing strategies.

We will compute the ratio of cases infected via k-hop contact tracing by time 7 to the cases
infected when no contact tracing is performed (i.e., 0-hop contact tracing). This ratio is
denoted as RIj_p,p and obtained from (6) as:

I k—hop

o IU—hop ,

RI,

k=1,2. (12)

where the subscript k is used to distinguish the count in (6) for different values of k.

We will compute the ratio of the number of individuals quarantined under k-hop contact
tracing by time 7 to the corresponding number when no contact tracing is performed. Every
detected individual is quarantined and vice-versa. This ratio is therefore denoted as RDj.j,,
and computed as the number of individuals detected by time 7 under k-hop contact tracing to
that under 0-hop (i.e., no contact tracing):

S CT
RD o Dk—hop - Dk—hop Dk—hop k=1.9
k—hop — - ’ — e
? D[]fhop D(]fhop D()*hop (13)
——— N —
RD} RDCT
k—hop k—hop

Again, here the subscript k is used to distinguish the count in (9) for different values of k.
We divide RDy.j.p into two parts as well, RD,ffhop and Rfohop to elucidate how symptom-based
detection and contact-tracing based detection respectively contribute to RDy._,p. These parts
can be computed using the expressions in (7) and (8).

Furthermore, to shed light on the mechanisms behind the effectiveness of 2-hop contact

tracing, we analyze the degrees of the nodes that are 1) infected and 2) detected for different
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contact tracing strategies. The degrees of the nodes represent the number of contacts of the
corresponding individuals. With some overloading of notation we use k to represent different
values of degrees of nodes in addition to different values of the number of hops in contact trac-
ing, because it is customary to use k for both degrees and hops in network science. The proba-
bility that a node of degree k has been infected by time 7 is

. 1
i) =~ [1-p3(r)], (14)

k i;|k;=k

where Ny is the total number of nodes with degree k. The probability that a node of degree k
has been detected by time 7 is

1 £ 1,—D I I
(k) = 7 D2 O[T (0)pl(e) + TP (1)l (6) + T2 (1) ()] (15)

kislk=k T4

In addition, the difference between the two probabilities, u(k) := i(k) — d(k), is used to rep-
resent the probability that a node of degree k has been infected but undetected.

We will compare the number of individuals tested by time 7 under k-hop contact tracing
for k = 1, 2, by studying T’ _j0p» T1-nop and the ratio T j0p/ T1-nop» Where the subscripts are used
to distinguish T obtained from (11) for different k-hop contact tracing strategies, k = 2, 1.

3 Results

Throughout this section, we assume 8, =, = f8 L and denote all of these as 5.

3.1 Empirical validation

In this section, we validate our model through a comparison between results of Monte Carlo
(MC) simulations and MMCA formulation. Considering both the data-driven network we
used in Section 2, and synthetic networks (specifically Watts-Strogatz network [9] and scale-
free network [10]), we show that the computations from our model equations relatively closely
match the results of MC simulations. The data-driven network we consider is generated from
data collected by smartphones of University students, as part of the Copenhagen Networks
Study [11]. The smartphones were equipped with Bluetooth cards which recorded proximity
between participating students at 5-minute resolution. According to the definition of close con-
tact by CDC [12], we only used proximity events between individuals that lasted more than 15
minutes in a row in the same day to construct daily contact networks. We postulated that two
individuals had a contact if there are at least three consecutive proximity events with a 5-min-
ute resolution between them. The constructed contact network has 32, 689 contacts among
672 individuals. The advantage of this data set is that it provides actual proximity events of a
moderate number of individuals. The synthetic networks we consider have N = 1, 000 nodes
and average degrees of (k) = 8.

We now describe the synthetic networks we consider in this section. Watts-Strogatz net-
work is a synthetic network generated as follows. We start with a regular ring lattice and each
endpoint of each edge is rewired with a certain probability to another node chosen uniformly
randomly over the rest of the ring. We choose the Watts-Strogatz as representative of synthetic
networks because two important attributes that determine the rate of spread of infectious dis-
eases in contact networks, namely average path lengths, and clustering coefficients, can be con-
trolled in this class through the choice of a parameter, namely the rewiring probability.
Accordingly, this class of networks has been utilized extensively for simulation studies in
spread and control of infectious diseases over contact networks [13]. Note that the average
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path length is defined as follows for a given network. The distance between a pair of nodes is
the length of the shortest path between them, i.e., the number of links in the path between
them that has the minimum number of links among all paths between them. The average path
length for a given network is the average of this distance over all pairs of nodes in it. Clustering
coefficient is the average of C; over all nodes i where C; is defined as the ratio between the
actual number of links between the neighbors of i and the maximum possible number of links
between the neighbors of i [9]. As the rewiring probability increases from 0 to 1, 1) average
path lengths range from linear to logarithmic functions of the number of nodes 2) clustering
coefficients range from high to vanishingly small [9, 14]. The special case of the Watts-Strogatz
model in which the rewiring probability is 1 corresponds to a variant of the Erdés Rényi ran-
dom networks which has also been extensively utilized in the study of spread and control of
infectious diseases [15, 16]; we consider this variant as well. Furthermore, we consider scale-
free network (generated by Barabasi-Albert model) to capture the existence of hubs with an
excessive number of connections. Unlike scale-free network, the probability of the existence of
the hubs in Watts—Strogatz network is low.

We first compare the total infection counts over the course of 1 year (i.e., 7= 365) obtained
from MMCA formulation with an average of 200 runs of the MC simulations under the data-
driven network and the Erd3s Rényi random networks. We consider different values of the
activation probability funder 1-hop and 2-hop contact tracing and focus on average and maxi-
mum percentage discrepancies or errors. We assume that a random 1% of the population is
initially infected and is in a Latent state. Fig 3 represents the total infection count as a function
of transmission probability § under 1-hop contact tracing for various values of f. This shows
that MMCA formulation closely approximate the MC simulation results under 1-hop contact
tracing. The trend of the variation of the total infection count as a function of 3 is the same for
both MMCA and MC. We compare the results of MMCA and MC for a total of 201 values of

B, varying from 0 to 1 with uniform interval 0.005 (with the exception of replacing 0 with
[MMCA—MC]|
MMCA

crepancies over all the values of . For data-driven network, the average discrepancy between
the two is (a) 0.1% for f= 0.3, (b) 0.2% for f= 0.5, and (c) 0.4% for f = 0.9; for random network,
the average discrepancy is (d) 1.5% for f= 0.3, (e) 1.5% for f= 0.5, and (f) 2.9% for f = 0.9; for
scale-free network, the average discrepancy between the two is (g) 1.8% for f= 0.3, (h) 2.2% for
f=0.5,and (i) 3.4% for f= 0.9. The average discrepancy is least for data-driven network, next
lowest for random network and highest for scale-free network. All the average discrepancies

0.001). We compute the discrepancy, i.e., , for each value of 3, and average the dis-

are nonetheless low, below 3.5%.

Fig 4 shows a comparison between MMCA formulation and MC simulation under 2-hop
contact tracing. MMCA still approximates the MC simulation reasonably well. Again the trend
of the variation of the total infection count as a function of § is the same for both MMCA and
MC. For data-driven network, the average discrepancy between the two is (a) 0.2% for f= 0.3,
(b) 0.8% for f= 0.5, and (c) 1.5% for f= 0.9; for random network, the average discrepancy is
(d) 1.5% for f= 0.3, (e) 2.1% for f= 0.5, and (f) 5.9% for f = 0.9; for scale-free network, the aver-
age discrepancy is (g) 2.6% for f= 0.3, (h) 4.4% for f= 0.5, and (i) 8.2% for f= 0.9. Again, the
average discrepancy is the least for data-driven network, next lowest for random network and
highest for scale-free network. All the average discrepancies are nonetheless low, below 4.5%,
except in one case that of the combination of very high value of fand scale-free network. Even
for the last combination, the average discrepancy is below 10% and therefore deemed low.

The mismatch that we observe arises because the model equations (refer to Eq (1)) were
derived under simplifying assumptions and approximations. The assumption was that the
infection status of different nodes constitute independent random variables, but in practice the
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Fig 3. The total infection count I as a function of # € [0.001, 1] for 1-hop contact tracing for various contact networks. The first, second, and third
rows respectively represent Data-Driven network, Erdés-Rényi Random Network, and Scale-Free Network. For each network topology, we consider
various values of activation probability f= 0.3, 0.5, 0.9. The lines represent the MMCA formulation and the points represent MC simulation. The
MMCA formulation closely approximates the MC simulation results under 1-hop contact tracing.

https://doi.org/10.1371/journal.pone.0288394.9003

infection statuses of nodes exhibit stochastic correlation and the correlation typically decreases
with increase in distance between concerned nodes in the contact graph. This assumption is
somewhat commonplace in works that model contact tracing and the spread of epidemic
through contacts, and has for example been resorted to in [6]. For k-hop contact tracing where
k > 1, there is an additional approximation: we approximate a cyclic contact graph as an acylic
one through a specific construction. The results discussed above show that the discrepancy
under 2-hop contact tracing is greater than the one under 1-hop contact tracing, which is likely
because of this additional approximation. Furthermore, the results above shows that, for both
1-hop and 2-hop contact tracing, the discrepancy increases as the value of fincreases. This is
because as fincreases greater number of contacts can be traced, which increases the correla-
tions between the infection status of nodes by facilitating detection of infection in neighbors of
detected nodes.
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Fig 4. The total infection count I as a function of # € [0.001, 1] for 2-hop contact tracing for various contact networks. The first, second, and third
rows respectively represent Data-Driven network, Erdés-Rényi Random Network, and Scale-Free Network. For each network topology, we consider

various values of activation probability f= 0.3, 0.5, 0.9. The lines represent the MMCA formulation and the points represent MC simulation. The
MMCA formulation closely approximates the MC simulation results under 2-hop contact tracing.

https://doi.org/10.1371/journal.pone.0288394.9004

Next, we consider Watts-Strogatz networks with various values of rewiring probability .
Fig 5 represents the total infection count as a function of g for various values of r, 2-hop con-
tact tracing and f = 0.3. This shows that average error decreases with increase in r; the error is
(a) 2.4% for r=0.1, (b) 1.6% for r = 0.5, and (c) 1.5% for r = 1.0. Fig 6 shows a comparison for
2-hop contact tracing and f= 0.7. It also confirms the phenomenon observed in Fig 5; the aver-
age error is (a) 5.3% for r = 0.1, (b) 4.1% for r = 0.5, and (c) 3.5% for r = 1.0.

3.2 Use of the model for cost-benefit analysis

The Markovian equations enable us to explore the effectiveness of epidemic control via differ-
ent types of contact tracing strategies on any contact network. Using the data-driven network,
we evaluate the impact of different types of contact tracing strategies on benefit (i.e., reduction
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https://doi.org/10.1371/journal.pone.0288394.9005

in outbreak size) and costs (i.e., the number of quarantines and tests). In this section, we show
that the cost-benefit tradeoft can be enhanced through an implementation of the multi-hop
contact tracing. We here assume that a random 1% of the population is initially infected and is
in a Latent state.

3.2.1 Effectiveness of epidemic control via contact tracing. We first compare the out-
break size (i.e., the total number of infections) over the course of 1 year (i.e., 7= 365) for differ-
ent types of contact tracing strategies. We evaluate the ratio Rl of cases infected via k-hop
contact tracing by time 7 to the cases infected when no contact tracing is performed, with
respect to the activation probability fand attack rate. RI}.p,,, is less (greater, respectively) than
1 if k-hop contact tracing results in fewer (greater, respectively) number of infections than
0-hop contact tracing. The attack rate is defined as the proportion of individuals in a popula-
tion who has been infected during the course of an epidemic by time 7 when no contact tracing
is performed, i.e., Io_pqp/N, which characterizes the intrinsic speed of virus spread in the
absence of contact tracing. We consider fin the range of [0.1, 1.0] with uniform interval 0.1,
and also consider the attack rate in the range of [0.2, 0.9] by varying 8 with uniform interval
0.0001. Recall that greater the value of f greater is the number of contacts available for tracing
and more effective contact tracing is expected to be. Fig 7a shows that RI;_j,,, is less than 1 in
the range of all values of the variables (i.e., fand attack rate) we consider, i.e., 1-hop contact
tracing enables the reduction in the number of infections across all the ranges. As fincreases
and attack rate decreases, RI;_j,, decreases; in an ideal scenario of the highest f, i.e., f= 1 and
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Fig 6. The total infection count I as a function of # under 2-hop contact tracing with f= 0.7 for various values of rewiring probability (a) r = 0.1,
(b) r=0.5, and (c) r = 1.0 for Watts-Strogatz networks.

https://doi.org/10.1371/journal.pone.0288394.9006
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the lowest attack rate 0.2, RI;_j,, is lower bounded by 0.41. Fig 7b shows that R _j,,, is also less
than 1 regardless of the values of fand attack rate we consider, and more importantly it shows
that RI, j,, is significantly lower than RI}_jqp; Rl 4p is lower bounded by 0.04. This shows that
a slightly more aggressive policy of simply adding one more hop, 2-hop contact tracing, can
significantly contain the spread of epidemics. In particular, even in an undesirable case with a
high attack rate, a slight increase in funder 2-hop contact tracing scheme can lead to a dra-

matic decrease in outbreak size.

We now try to understand why 2-hop contact tracing has a significantly lower infection
count as compared to 1-hop contact tracing. For this we plot the total number of infections (I),
the total number of detected infections (D), and undetected infections (U) over the course of 1
year (i.e., T = 365) for the two contact tracing strategies (Fig 8). We plot I, D, U as functions of

-o- Infected -®- Detected -®- Undetected
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Fig 8. The expected number of infections (I), and the number of detected infections (D) and undetected infections

(U) as a function of activation probability f. We use the data-driven network for this figure.

https://doi.org/10.1371/journal.pone.0288394.9008
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tracing strategies. This figure shows the probability that a node of degree k has been infected i(k), detected d(k), and
infected but not detected u(k):= i(k) — d(k). We use the data-driven network for this figure.

https://doi.org/10.1371/journal.pone.0288394.9009

activation probability f when attack rate is 0.8. The number of infections slowly decreases
under 1-hop contact tracing as fincreases, but there are still non-negligible number of unde-
tected infections even in an ideal scenario of f= 1. The undetected infections continue to
spread the infection leading to a large overall infection count. On the other hand, in case of
2-hop contact tracing, even a small increase in f can significantly reduce the number of unde-
tected infections to almost zero. Thus infections are being detected and consequently isolated
(quarantined). Thus not many nodes can spread the infection, which consequently signifi-
cantly reduce the number of infections with even a small increase in f. It is clear that 2-hop
contact tracing can effectively contain the epidemic even in challenging environments with a
small f, primarily because it can detect and therefore isolate most of the infected individuals.

Next, we analyze the connectivity pattern of those cases infected and detected for different
contact tracing strategies through computing 1) i(k), the probability that a node of degree k
has been infected by time 7, 2) d(k), the probability that a node of degree k has been detected
by time 7, and 3) u(k) = i(k) — d(k), the probability that a node of degree k has been infected
but not detected by time 7. In Fig 9a, we plot i(k), d(k), and u(k) when no contact tracing is per-
formed. We set f= 0.7 and the attack rate to 0.8. This shows that i(k) increases with increase in
the degree k, i.e., the greater number of contacts an individual has, the more likely he is to get
infected. We observe that d(k) also increases with increase in degree k; this is because nodes
with higher number of contacts are more likely to be infected and consequently more likely to
be detected after showing symptoms. However, u(k) is as large as d(k). Therefore, a large num-
ber of superspreaders (i.e., infected nodes with large degrees) are evading detection when no
contact tracing is performed.

An outbreak can be effectively controlled only if the superspreaders are detected early on.
When 1-hop contact tracing is performed, u(k) decreases significantly across the values of
degree k as compared to the case of no contact tracing (Fig 9b). In particular, u(k) displays a
maximum at some degree k, and beyond this maximum value, u(k) decreases with increase in
k. Thus contact tracing is detecting superspreaders of very high degrees. Moreover, as shown
in Fig 9¢, 2-hop contact tracing demonstrates maximum efficiency. u(k) approaches zero for
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all values of degree k meaning that infected nodes have almost zero probability of evading
detection.

3.2.2 Cost-effectiveness of contact tracing. We have shown that detecting and isolating
the infected individuals through 2-hop contact tracing can stop greater number of infected
individuals from further spreading the disease as compared to 1-hop contact tracing. But
2-hop contact tracing can also involve an increase in the number of people tested and quaran-
tined as compared to 1-hop and no contact tracing schemes. We show how our framework
can determine if this is indeed the case by allowing the evaluation of the above quantities
which represent the costs associated with contact tracing strategies. This in turn helps public
health authorities decide the level of contact tracing a public health system ought to opt for
based on the magnitude of the costs it can afford. Using the results from our framework, we
argue that 2-hop provides a more favarable cost-benefit tradeoff compared to 0-hop and
1-hop.

We first compare the quarantining cost, i.e., the total number of people that need to be
quarantined (equivalently, the total number of people detected), over the course of 1 year (i.e.,
7 = 365) for different types of contact tracing strategies. We compute the ratio RDy_,,, of the
total number of individuals detected by time 7 under k-hop contact tracing to that under
0-hop.

We first plot RD, ., with respect to fand attack rate. Fig 10a shows that as f decreases and
attack rate increases, RD_j,p increases; RD;_j,p is greater than 1 in higher region of attack rate
and lower region of £, i.e., 1-hop contact tracing quarantines a greater number of individuals
compared to the case of no contact tracing. In particular, when the attack rate is very high,
1-hop contact tracing quarantines a greater number of individuals regardless of the value of f.
On the other hand, Fig 10b shows that RD,_j,, is less than 1, and that RD,_j, is significantly
lower than RD)_j, across almost all values of fand attack rate we consider. Thus, 2-hop con-
tact tracing substantially decreases the overall number of quarantines (i.e. quarantine cost)
compared to traditional 1-hop contact tracing regardless of fand attack rate, despite the fact
that 2-hop controls the outbreak more effectively. Moreover, 2-hop contact tracing signifi-
cantly reduces the number of quarantines required even compared to the case of no contact

05 06 07 08 08 02 03 04 05 06 07 08 09
Attack Rate Attack Rate

(a) 1-hop (b) 2-hop

Fig 10. The ratios (a) RD;_s0p and (b) RD, _j,,, are expressed in color as a function of attack rate (x-axis) and
activation probability f (y-axis). We choose different color codes to represent different ranges of values of the ratios
(i.e., RDy_jop and RD; ) corresponding to values of f and attack rate. We have highlighted the case RDyj,qp = 1 (black
line) signaling that 0-hop and k-hop quarantine the same number of individuals. We use the data-driven network for
this figure.

https://doi.org/10.1371/journal.pone.0288394.9010
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tracing in all but extremely challenging environments; see bottom right region surrounded by
black line in Fig 10b which corresponds to very low f (therefore most contacts can not be
traced) and very high attack rate.

We now explain the apparently counter-intuitive result, that is, as to why 2-hop contact
tracing quarantines substantially fewer number of individuals as compared to 1-hop or 0-hop
contact tracing. Recall that RD, ,,,, = RD",  + RD; , ., where RD;”, s the ratio of the num-
ber of individuals detected via k-hop contact tracing by time 7 to the number of individuals
detected under 0-hop and RD;_,,, is the ratio of the number of individuals detected because
they tested as a result of showing symptoms by time 7 to the number of individuals detected
under 0-hop. We plot RDy s RD; ,,» and RD{T, for different contact tracing strategies, as a
function of f when attack rate is 0.8 (Fig 11). For 1-hop contact tracing (left plot in Fig 11), the
number of quarantines required slowly decreases (from 1.13 to 1) as fincreases. In particular,
RD{T, increases with fwhile RD} , decreases. Nevertheless, both detection via contact trac-
ing and symptom-based detection contribute significantly to the number of quarantines for all
values of f. On the other hand, in case of 2-hop contact tracing (right plot in Fig 11), even a

small increase in freduces RDj , to a value close to 0. This suggests that the number of indi-

viduals with symptoms (and therefore the number of individuals infected as a certain fixed
fraction of infected individuals develop symptoms) reduce to near 0 with even a modest
increase in f (the probability that a contact can be traced). Thus, the overall infection count
becomes very small with a modest increase in f. Once the overall infection count becomes
small, the number of individuals detected would have to become small, this in turn reduces the
number of primary contacts and therefore the number of secondary contacts traced. Thus,
RDST,  also rapidly decreases with increase in f. Naturally then RD, ., which equals

RDST

2—hop
It however turns out that 2-hop contact tracing needs to test a greater number of individu-

s o .
+ RD;_,,,» also significantly reduces as fincreases.

als compared to 1-hop contact tracing. Fig 12 shows that the ratio of total tests via 2-hop con-
tact tracing to total tests via 1-hop (i.e., T5-pop/ T1-nop) is greater than 1 across the values of fand

-+ RD & Rp®T ‘o RDS

1-hop 2-hop

0.8

RD

064 &

0.4+

0.24

0.0

T — ~—— T — R — —T — ™ —
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f

Fig 11. RDj o, RDZT,, , RDS
this figure.

https://doi.org/10.1371/journal.pone.0288394.g011

_op With respect to the activation probability f. We use the data-driven network for
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Fig 12. The ratio of total tests via 2-hop contact tracing to total tests via 1-hop (i.e., T5-hop/ T1-nop) are expressed in
color as a function of attack rate (x-axis) and activation probability f (y-axis). We choose different color codes to
represent different ranges of values of the ratio (i.e., T5-pop/ T1-nop) corresponding to values of fand attack rate. We use
the data-driven network for this figure.

https://doi.org/10.1371/journal.pone.0288394.g012

attack rate we consider. In addition, the ratio decreases with fand increases with attack rate.
Thus, 2-hop contact tracing incurs greater testing cost as compared to 1-hop contact tracing.

We now argue that for any contact tracing scheme, the number of individuals quarantined
should be considered a more significant component of the overall cost than the number of
tests. Note that various countries, at least the developed ones, could quickly scale up testing
capacity within a few months of start of Covid-19. In general, an individual finds it more dis-
ruptive to be quarantined than to be tested because the former usually involves several days of
not being able to discharge regular professional and social responsibilities. The following have
been documented in 2 years of Covid. Long-term quarantines significantly increase non-
COVID-19 fatalities [17]. During lockdowns, which represents long-term quarantines, there
has been an increase in drug overdose deaths (eg, in Ontario and British Columbia), possibly
as a result of isolation [18]. Lockdowns have been associated with an increase in domestic vio-
lence (e.g., 30% more in France and 25% more in Argentina) [19]. Lockdowns have wreaked
havoc on economies around the world, especially in developing nations [20, 21]. Quantifying
the negative effects of all of the aforementioned are challenging. Overall, nevertheless, the sub-
stantially greater quarantine cost may be more important than other costs.

Thus, since 2-hop contact tracing significantly lowers 1) the most significant component of
the costs, and 2) the overall infection count compared to 1-hop and 0-hop, the cost-benefit
tradeoff for 2-hop may be considered more favorable compared to 1-hop and 0-hop.

3.3 Computation time

We finally compare the computational time required in generating the output of the MMCA
model formulation with that of running 500 runs of MC simulations. We observe the change
in computation time required for both with the size of Erd8s Rényi random network, from 1,
000 to 20, 000 nodes and fixed mean degree (k) = 8. We set 8= 0.001 and f= 0.5. Fig 13 shows
that computation times for both MC simulations and MMCA formulation increase linearly
with the network size (i.e., the numbers of nodes), but the computation time for MC
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Fig 13. Computation time as a function of population size for Erdés Rényi random network.

https://doi.org/10.1371/journal.pone.0288394.g013

simulations increases much more rapidly. In addition, MC simulations usually requires a sig-
nificantly larger number of iterative runs for accurate statistics based on samples (simulations
run). As a result, the computation time for MC simulation increases even more steeply with
network size if a greater number of runs are made, and the difference in computation time
between MC simulation and MMCA may become greater as the former requires greater accu-
racy. In practice, contact networks can be large, e.g., population in large cities in US are of the
order of millions (e.g., New York city had more than 8 million residents in 2021) while small
towns in US have thousands of residents. Thus, MMCA can scale to contact networks that
arise in practice in a computationally efficient manner, which MC simulations may not be able
to accommodate in reasonable computation times. We used Amazon Web Services (AWS)
mba.large instances to compare the computation time.

4 Comparing contact tracing strategies when number of tests are
equal and under testing fatigue

We have shown in Section 3.1 that 2-hop contact tracing substantially reduces the outbreak
size and quarantine cost as compared to 1-hop and 0-hop contact tracing, but incurs a greater
number of tests overall. We now examine if the above benefits of 2-hop contact tracing are
only or primarily because it tests a larger number of individuals or because it intelligently
selects who to test. Towards that end, we first generalize the testing strategies to consider a
combination of contact tracing and additional random testing individuals and design a
numerical framework to evaluate the combination (Section 4.1). This generalization allows us
to approximately equalize the overall number of tests of 1) 2-hop contact tracing and 2) the
combination of 1-hop contact tracing and additional random testing by choosing the number
of additional random tests in the latter. Once the overall number of tests has been equalized
we compute and compare the outbreak size under each; the comparison reveals that 2-hop
contact tracing still substantially reduces the outbreak size as compared to the combination,
which in turn suggests that 2-hop contact tracing is able to significantly reduce the outbreak
size because it judiciously deploys its additional tests as compared to 1-hop contact tracing.
We subsequently obtain a realistic generalization wherein once an individual tests negative he
does not test further for a certain duration unless he develops symptoms in the interim period;
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the size of the duration can be appropriately selected to satisfy budgets on average daily overall
test count (Section 4.2). Our numerical computation reveals that 2-hop contact tracing contin-
ues to considerably reduce the outbreak size as compared to 1-hop contact tracing even when
it satisfies stringent budgets on average daily overall test count and even as its number of tests
becomes close to that for 1-hop contact tracing. This again shows that 2-hop contact tracing
attains better cost-benefit tradeoff than 1-hop contact tracing because it judiciously selects
which nodes to test. Both these generalizations demonstrate that our numerical computation
framework is flexible enough to accommodate several features of reality.

4.1 Combination of contact tracing and random testing

We consider a combination of contact tracing and random testing in which a node can be
tested with probability 6 for each time step even if he is not in a k-hop neighborhood of a
detected node or even if he does not show symptoms. We consider k = 1, 2 in this section, but
the framework directly generalizes to larger values of k through an extension of the k-hop con-
tact tracing framework provided in the S1 Text. Specifically, earlier, pre-symptomatic and
asypmtomatic nodes could be detected only through contact testing; now such nodes can be
detected either through random testing or through contact tracing. Earlier symptomatic nodes
could be detected through contact tracing, or testing with probability w because of showing
symptoms; now they may also be detected through random testing.

Under this approach, only the value of the probability that a node i in the state X is detected
through testing at time ¢, 1" (¢), need to be adapted. For k = 1,

e 1= (1=0)[TL [ — AfpP(1)], Xe{l,L}
Hi (t) = (16)
1-(1=0)(1-o)[[LI -AfeP(0)],  X=1.

When k = 2, the term in bracket [. . .] need to be replaced by H,-EV!”\V?“) in Eq 4. The rest of

the framework presented in Section 2.1 holds as is once the modified value of IT} () is used
therein.

We use this framework to compare 2-hop contact tracing with the combination of 1-hop
contact tracing and random testing. For the latter, i.e., ‘1-hop + random testing’ approach, we
choose J so that the total number of tests for 2-hop’ and ‘1-hop + random testing’ are almost

. T,
the same (i.e., ——%—
1—h

op+random

~ 1) (Note that T} _0p+ random €an be obtained from Section 2.1 by

using [T} (t) computed above for k = 1 in place of IT} " (¢) computed for k = 1 in Section
2.1.). We choose 7 as 365 days as before. We then compare the total number of infections for
2-hop’ and ‘1-hop + random testing’. Fig 14 shows that, despite both 2-hop’ and ‘1-hop + ran-
dom testing’ incurring the same number of tests, 2-hop contact tracing provides significant
advantage over ‘1-hop + random testing’ strategy in terms of outbreak size for all attack rates.
This demonstrates that the cost-benefit tradeoff can be enhanced through an implementation
of the multi-hop contact tracing.

4.2 Contact tracing under testing fatigue

We here study a realistic generalization of our strategies which reduces the average daily
number of tests of contact tracing strategies and thereby satisfy budgetary constraints on this
average through appropriate selection of parameters. In Section 2, for the sake of model sim-
plicity, we had assumed that individuals can be repeatedly tested if traced from contacts who
test positive regardless of the outcome of their previous tests. But in reality, individuals
develop a testing fatigue if they are frequently subjected to repeated tests, and the tests are
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negative. Due to this fatigue, individuals may therefore refuse to be tested shortly after a neg-
ative test, unless they develop symptoms, even if traced from contacts who test positive. Pub-
lic health bodies may also avoid recommending tests for an individual shortly after he tests
negative unless he develops symptoms, to avoid testing fatigue, elicit his cooperation in
future, and satisfy constraints on the overall number of tests. We therefore consider that an
individual is not tested for a random duration after he is tested negative unless he develops
symptoms, even if he is traced from a 1-hop or 2-hop contact; if he tests positive he is quar-
antined and not tested again as we don’t consider reinfection. The random duration is geo-
metrically distributed with mean 1/£. We show that & can be tuned to have both 1-hop and
2-hop satisfy budgetary constraints on daily average number of tests, reduce the difference
between the daily average number of tests of 2-hop and 1-hop, and still reduce the outbreak
size through 2-hop compared to 1-hop.

Modeling the above requires a generalization of our state diagram and modeling equa-
tions (Fig 15). We consider that right after an individual tests negative he becomes “not-
ready-to-test” for a random time. In this condition he does not test unless he develops symp-
toms. We split the states up to symptomatic (namely, susceptible, latent, presymptomatic,
asymptomatic) into two distinct states representing whether 1) individuals are ready to test
or 2) otherwise. Thus, susceptible state is split into ready-to-test susceptible (S1) and not-
ready-to-test susceptible (S2), latent state is split into ready-to-test latent (L1) and not-ready-
to-test latent (L2), etc.

Once an S1 (82, respectively) individual is infected, he transitions to L1 (L2, respectively).
An S1 (L1, respectively) individual can be tested as a result of contact tracing, if he is tested, he
tests negative and transitions to S2 (L2, respectively). An S2 (L2, respectively) individual is not
tested, even if he is traced from a 1-hop or 2-hop contact, but he transitions to S1 (L1, respec-
tively) at any given time with probability &. Basically S1’s possible next states are S2, L1, §2’s
possible next states are S1, L2.

Presymptomatics (Asymptomatics, respectively) are also split into ready to test and not
ready to test versions: I, 1, I,2 (I,1, 1,2, respectively). Upon progression of the disease, L1 tran-
sitions to I,1 or 1,1, L2 transitions to I,2 or I,2. An individual in I,,1, I, 1 state is tested if he is
traced from a 1-hop or 2-hop contact, when he is tested he tests positive and transitions to the
detected state. An individual in I,2 (I,,2, respectively) state is not tested even if he is traced
from a 1-hop or 2-hop contact, but at each time ¢ he becomes ready to test, i.e., transitions to
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I,1 (1,1, respectively), with probability & A symptomatic (I,) is always ready to test as he expe-
riences symptoms. Thus, we don’t split the symptomatic state, and upon progression of the
disease, both I,1, 1,2 become symptomatic. We don’t split the removed (R) state either. Thus,
I,1’s next states are D, I, I,2’s next states are I, 1, I, I,1’s next states are D, R, [,2’s next states
areI,1, R.

The probability that a susceptible node i is infected (and then transits to Latent state) at
time ¢ is the same for S1, S2, as the contact rates and the probability that a contact transmits
the contagion do not depend on the readiness to be tested. Hence we still denote it as IT; " (¢),
i.e., we use a generic S instead of S1, S2. But its value will be different from when the states are
not partitioned, i.e., when everyone is willing to be tested all the time. When states are parti-
tioned, its value is:

N

() = 1= [J[0 = AB{p] (6) + 57 (6) + oI (1) + pf (1) + o} (1)}, (17)

-1

where as before p7'(t) is the probability that node i is in state X at time ¢, A = (Aj) is the adja-
cency matrix of the original graphs G(V, E), in which |V| = N, and A;; = 1 if there exists an edge
between node i and node j, and A;; = 0 otherwise.

Recall also that [T} " (¢) and ITX " (¢) are the probabilities that a node i in the state X is
detected and tested at time t, respectively. Note that state names containing the number 2 are
neither tested nor detected. To simplify the notation, numbers corresponding to partitions of
states (i.e., 1 and 2) are excluded from the notation of these probabilities (e.g., Hf” ﬁD(t) instead
of I HD(t)). The expressions for these probabilities, IT* () and IT} " (¢), are the same as
expressions as in equations in Section 2. The dynamics of spreading of epidemics and different
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types of contact tracing intervention can be adapted as follows:

pilt+1) = [1—TI )] — T (O)]pS (1) + [1 = T (6))€ps(2)

pR(E+1) = [1 =TI = &p(t) + [1 = T HOIITT (1) (t)

PR(E+1) = (1= W)L =TI (6)]pH (1) + T (6)pst (1) + (1 — W) EpH(t)
PE(+1) = (1=1)(1 = EpR () + I (HpR(t) + (1 — ML T(£)pH (1)
pl(t+1) = =TI (01— a)p (£) + M1 — p,)pH (8) + E(1 — w)p! (1)
pli(t+1) = (1=&)(1—a)p! (1) + M1 — p,)p"(t) (18)
P+ 1) = 1= TIP(0))(1 = )l (1) + hp,pt (1) + E(1 — p)pl (1)

PIE(E+1) = (1= &)(1— p)pl(t) + hppl (1)

prt+1) = [1L—TIP(O)(1— wpi (1) + [1 =TI (O)]ap! () + ap) (1)
pR(t+1) = T P()pr(t) + T (1)pr (>+n’ﬁ‘)<t>p?<>

PR(t+1) = pR(t) + p2(t) + p[l — T2 ()] pi () + [l — TP ()] p* (1) + (1)

We consider an example attack rate, 0.21. We first assume that an individual who tests neg-
ative can be tested again after 14 days on average (£ = 1/14), which is reasonable. This corre-
sponds to a situation where average number of tests per day is less than 27 for 2-hop and
1-hop (the left in Fig 16a). Considering that the population size is 672, the average daily testing
load is less than 4% of the total population. However, as shown on the right in Fig 16a, 2-hop
can reduce the outbreak size by up to 73% compared to 1-hop and 87% compared to 0-hop.

We note that as & decreases average number of tests per day decreases for both 1-hop and
2-hop, and the average number of tests for both become closer and closer, but throughout
2-hop considerably reduces the outbreak size as compared to 1-hop. When & = 1/60, the aver-
age number of tests per day is less than 15 for both 1-hop and 2-hop; 2-hop can reduce the
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Fig 16. The average number of tests per day and fraction of the populace infected via 1-hop and 2-hop as a function of activation probability f.
Figures (a), (b), (c), and (d) show the results for & = 1/14, &£ = 1/60, & = 1/90 and & = 0, respectively. The horizontal dotted lines in the figures on the right
represent the number of individuals infected when no contact tracing is performed. We use the data-driven network for this figure.

https://doi.org/10.1371/journal.pone.0288394.9016
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outbreak size by up to 55% compared to 1-hop and 69% compared to 0-hop (the right in Fig
16b). When & = 1/90, the average number of tests per day is less than 10; 2-hop can reduce the
outbreak size by up to 51% compared to 1-hop and 64% compared to 0-hop (the right in Fig
16¢). As an example of extreme case, to further constrain the testing budget, we assume that
£ =0, i.e, individuals who have been tested once will not be tested again. This corresponds to a
situation where the average number of tests per day is less than 2, and the difference in the
number of tests between 1-hop and 2-hop becomes insignificant (the left in Fig 16d). Never-
theless, the right in Fig 16d shows that 2-hop can reduce the outbreak size by up to 41% com-
pared to 1-hop and 49% compared to 0-hop.

In conclusion, one can satisfy desired constraints on the average number of tests per day by
appropriately choosing &, and still attain a considerable reduction in outbreak size through
2-hop contact tracing over 1-hop contact tracing.

5 Conclusion and discussion

In this study, we provide a mathematical framework that computes key attributes for multi-
hop contact tracing, by combining the multi-hop contact tracing dynamics and the virus trans-
mission mechanism using microscopic Markov chain approach (MMCA). We first consider
2-hop contact tracing and subsequently generalize it to k-hop contact tracing for completeness
of the formulation. We utilize our formulation to compare 2-hop contact tracing with 1-hop
and 0-hop, and show that 2-hop contact tracing significantly enhances cost-benefit tradeoft as
compared to traditional 1-hop contact tracing. Considering a human contact network gener-
ated from real-world data, we show that 2-hop contact tracing can reduce the number of infec-
tions by more than 80% while reducing quarantine costs by more than 80% compared to case
of no contact tracing in large ranges of parameters. This dramatic enhancement of cost-benefit
tradeoft accomplished by 2-hop contact tracing alone suggests that contact tracing with larger
number of hops would be redundant for the contact network we considered.

We use the same contact network and 2-hop contact tracing scheme to shed light on the
mechanisms behind the effectiveness of multi-hop contact tracing. We show that, under 1-hop
contact tracing, the number of infections declines, but slowly, as contact information that can
be identified by health authorities increases. Even when all contact information can be identi-
fied by a health authority, there are still a sizable proportion of undetected infections. In con-
trast, for 2-hop contact tracing, even a modest increase in the identifiable contact information
can drastically lower the number of undetected infections to almost zero and therefore signifi-
cantly reduce the number of infections. Furthermore, we show that superspreaders (i.e.,
infected nodes with large degrees) have almost zero probability of evading detection in 2-hop
contact tracing while they can evade detection with non-negligible probabilities in 1-hop con-
tact tracing. Thus, in comparison to 1-hop, 2-hop is significantly more effective in controlling
an outbreak. Despite the better efficiency of 2-hop, we show that 2-hop contact tracing quaran-
tines substantially fewer number of individuals as compared to 1-hop. Since the overall infec-
tion count becomes very small with a modest increase in contact information that can be
identified by health authorities, the number of individuals detected would have to become
small, this in turn reduces the number of primary contacts and therefore the number of sec-
ondary contacts traced, and therefore the overall number of individuals quarantined. Overall,
the cost-benefit tradeoff for 2-hop can be considered significantly more favorable compared to
1-hop.

We now describe some limitations of our work which in turn identify directions for
future research. We have implicitly assumed that any number of contacts can be traced on
any given day. But public health systems may have constraints on the number of contacts
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that can be traced per day owing to limitation on tracing personnel for example. There may
be constraints on the average number of contacts that can be traced per day which can be
satisfied through an appropriate choice of f. As f decreases, average number of contacts
traced per day decreases. There may also be hard upper bound on the number of contacts
that can be traced on each day. In this case, contact tracing strategies need to be adapted to
satisfy such constraints. This constitutes a direction for future research. Such constraints
however become less stringent if contacts are traced through digital tools, e.g, digital contact
tracing apps. For example, digital tools were utilized in Vietnam to execute multi-hop con-
tact tracing [5]. But then not all contacts can be digitally traced either as not everyone down-
loads such apps and the willingness is different in different countries. In Singapore, for
example, more than 92% of the population aged six and above had downloaded the govern-
ment’s contact tracing app on their smartphones [22], but the percentage has been lower in
other countries. The nature of the constraints depend on the degree of reliance of the public
health system on manual tracing.

When evaluating the effectiveness of contact tracing in Section 3, we had assumed that
B, =B, =8 L = p by following the parameter setup in study [7], although we had allowed

these parameters to be different while formulating our model in Section 2 In reality, different
types of contacts may pass on infection with different probabilities. This transmission proba-
bility may also depend on a range of factors, such as whether the individuals observe social dis-
tancing and wear protective equipment, and varies from one venue to another. Explicitly
investigating the impact of non-uniform transmission probabilities constitute directions for
future research.

We have considered two public health cost metrics, quarantine cost and testing cost. There
are several other cost metrics that are of interest from a public health perspective such as over-
all hospitalization and death counts. Hospitalizations are of interest particularly because public
healthcare systems have limited hospitalization capacity. Hospitalization and death counts can
be investigated by adding new states to the model e.g., a hospitalization state can be added
between symptomatic and removed states, the hospitalization state can lead into dead and
recovered states, etc. Comparing different contact tracing strategies from the point of view of
those costs constitutes a direction of future research.

Our computations show that the discrepancy between our MMCA formulation and MC
simulations under 2-hop contact tracing is somewhat greater than that under 1-hop contact
tracing. This is because k-hop contact tracing involves an acyclic graph approximation for
k > 1, which it does not for k = 1. The magnitude of the discrepancy may further increase as
the number of hops increases. This constitutes a limitation of our approach, which future
research may be able to surmount.
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